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Abstract

Let G be a complex semisimple Lie group and H a complex closed
connected subgroup. Let g and h be their Lie algebras. We prove
that the regular representation of G in L2(G/H) is tempered if and
only if the orthogonal of h in g contains regular elements by showing
simultaneously the equivalence to other striking conditions such as h
has a solvable limit algebra.
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1 Introduction

Let X = G/H be a homogeneous space of a Lie group G. This article is the
fourth one in our series of papers [1, 2, 3] dealing with a question about when
L2(X) is tempered, i.e., to be weakly contained in the regular representation
in L2(G). We proved in [1, 2] a criterion (1.1) below by an analytic and
dynamical approach when G is real reductive, and accomplished in [3] a
classification of all the pairs (G,H) of real reductive Lie groups for which
L2(X) is non-tempered. We refer to the introduction of both [1] and [2] for
some motivations and perspectives on this question.

In this article we find a striking relationship of this question with other
disciplines such as a topological condition concerning the “limit subalgebras”
and a geometric condition concerning coadjoint orbits. The relationship is
perfect whenG is complex reductive (Theorem 1.6). For the proof, we explore
the temperedness of L2(X) beyond reductive setting (Theorem 1.1).

1.1 Real homogeneous spaces

We extend the criterion in [1, 2] for the temperedness of L2(X)
to the general setting where X is a homogeneous of a real Lie
group which is not necessarily reductive.

In the first two papers [1] and [2], we first noticed that the property of
L2(G/H) being tempered depends only on the pair (g, h) of Lie algebras, and
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introduced for an h-module V and Y ∈ h, the quantity

ρV (Y ) := half the sum of the absolute values of the

real part of the eigenvalues of Y in V .

We found the following temperedness criterion whenG is a connected semisim-
ple Lie group with finite center, and H is a connected closed subgroup:

L2(G/H) is tempered ⇐⇒ ρh ≤ ρg/h on h. (1.1)

This criterion (1.1) was proven in [1] when h is assumed to be semisimple
by a dynamical approach, and was extended in [2] to arbitrary h by an idea
of “domination of G-spaces”. Developing the techniques in a more general
setting, we extend (1.1) without any reductive assumptions of g and h:

Theorem 1.1 (see Theorem 3.2). Let G be a real algebraic Lie group, and
H an algebraic subgroup. We fix maximal reductive subgroups Gs and Hs of
G and H, respectively, such that Hs ⊂ Gs. Then one has the equivalence:

L2(G/H) is Gs-tempered ⇔ ρgs ≤ 2ρg/h on hs.

Theorem 1.1 (and its further generalization to the Hilbert bundle valued
case) serves as a “tool” in proving the relationship with other discipines,
which is formulated in Theorem 1.6 below.

1.2 Temperedness condition and the orbit philosophy

We discuss what the orbit philosophy suggests about the ge-
ometry of coadjoint orbits “corresponding to” the temperedness
condition of L2(G/H).

Let g be the Lie algebra of a Lie group G, and g∗ its dual. We denote
by Ĝ the unitary dual of G, i.e., the set of equivalence classes of irreducible
unitary representations of G. The orbit philosophy due to Kirillov–Kostant–
Duflo expects an intimate connection of the unitary dual Ĝ with the set
of coadjoint orbits g∗/Ad∗(G). This works perfectly for simply connected
nilpotent groups, but does not exactly for semisimple Lie groups. Never-
theless, g∗/Ad∗(G) may be considered to be a fairly good approximation

as a parameter set of Ĝ. As an expected functionality, the orbit philoso-
phy also suggests that the disintegration of L2(G/H) would be supported
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on the subset of Ĝ “corresponding to” the closure of Ad∗(G)h⊥/Ad∗(G)
where h⊥ := Ker(g∗ → h∗). On the other hand, for a connected semisimple
Lie group G, loosely speaking, irreducible tempered representations of G are
supposed to be obtained as “geometric quantization” of semisimple coadjoint
orbits having amenable isotropy subgroups. Thus one expects that the tem-
peredness of the unitary representation L2(G/H) may be characterized by its
“classical limit” in the geometry of coadjoint orbits via the orbit philosophy.
When G is a complex Lie group, we formulate a precise criterion below from
this viewpoint.

1.3 Complex homogeneous spaces

In the third paper [3] and in this one, we extend and deepen
the theory of tempered homogeneous spaces with focus on the
complex setting.

Suppose g is a complex semisimple algebra. Via the Killing form

K(X, Y ) := tr(adX adY ),

we identify g∗ with g, and h⊥ with the orthogonal subspace of h in g with
respect to K. An element X ∈ g is called regular if its centralizer zg(X) in g
has minimal dimension, i.e., dim zg(X) = rank g. We denote by greg the set
of regular elements X of g, and set

h⊥reg := h⊥ ∩ greg.

In the third paper [3] we found yet another but more geometric tempered cri-
terion for L2(G/H) when both g and h are assumed to be complex semisimple
Lie algebras. As we see in Proposition 2.10 this geometric criterion can be
reformulated as h⊥reg 6= ∅. In the present paper, we extend this criterion to
all complex Lie subalgebras h of g.

Theorem 1.2. Let g be a complex semisimple Lie algebra and h be a complex
Lie subalgebra. Then one has the equivalence :

L2(G/H) is tempered ⇐⇒ h⊥reg 6= ∅. (1.2)

Since the set h⊥reg is Zariski open in h⊥, one always has the equivalence

h⊥reg 6= ∅ ⇐⇒ h⊥reg is dense in h⊥, (1.3)
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and thus Theorem 1.2 fits well into the aforementioned orbit philosophy.
One sees from [2, Cor. 5.6] that Theorem 1.2 for complex Lie groups yields

the sufficiency of the temperedness in the real setting as well:

Corollary 1.3. Let G be a real semisimple algebraic Lie group and H an
algebraic subgroup. If h⊥reg 6= ∅, then L2(G/H) is tempered.

Remark 1.4. (1) The implications =⇒ in (1.2) and (1.5) are not always true
for a real semisimple Lie group G. For instance, when G is not R-split and
H is a maximal compact subgroup, the representation L2(G/H) is tempered
but h⊥reg is empty. Another example is given by G/H = SL(3,H)/SL(2,H).
(2) Let game denote the set of elements in g with amenable stabilizer for the
adjoint action of G. For reductive H, by [3, Thm. 1.5] and Lemma 2.14
below, one has the implication:

L2(G/H) is tempered =⇒ h⊥ ∩ game is dense in h⊥. (1.4)

The converse implication (1.4) does not always hold even for semisimple
symmetric spaces ([3, Sect. 8.5]).

By (1.1), our main task for Theorem 1.2 will be to prove the following.

Proposition 1.5. Let g be a complex semisimple Lie algebra and h a complex
Lie subalgebra. Then one has the equivalence :

2ρh ≤ ρg ⇐⇒ h⊥reg 6= ∅. (1.5)

1.4 The equivalent conditions

We now introduce two other conditions that we will prove to
be equivalent to (1.5).

Let us think of h as a point in the variety L of all Lie subalgebras of
g. One surprising feature of the equivalence (1.5) is that the left-hand side
is a closed condition on h while the right-hand side is an open condition
on h. Since both conditions are invariant by conjugation by G, this remark
suggests us to work with the adjoint orbit closure of h. As we will see,
this new point of view will be very fruitful, first by suggesting new striking
conditions equivalent to (1.5) and eventually by leading to a proof of (1.5).
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Let AdG be the adjoint group, let AdG h be the AdG-orbit of h in L
and AdG h be the closure of this orbit. We introduce also the following two
G-invariant algebraic subvarieties of L:

Lsol := {r ∈ L | r is solvable},
Lmun := {n ∈ L | n is maximal unipotent in g}.

We recall that a Lie subalgebra is said to be unipotent if all its elements are
nilpotent.

As we mentioned, we will prove the equivalence (1.5) by showing simulta-
neously the equivalence to other striking conditions that we introduce now.
Let H be the closure of a connected subgroup of G with Lie subalgebra h.

Tem(g, h) : L2(G/H) is tempered,

Rho(g, h) : ρh ≤ ρg/h,

Sla(g, h) : AdG h ∩ Lsol 6= ∅,
Tmu(g, h) : there exists n ∈ Lmun such that h ∩ n = {0},
Orb(g, h) : h⊥reg 6= ∅.

To refer to these conditions, we might say informally that
- h is a tempered Lie subalgebra,
- h satisfies the ρ-inequality,
- h admits a solvable limit algebra,
- h has a transversal maximal unipotent,
- h⊥ meets a regular orbit.

Theorem 1.6. Let g be a complex semisimple Lie algebra and h a complex
Lie subalgebra. Then the following five conditions are equivalent :

Tem(g, h)⇐⇒ Rho(g, h)⇐⇒ Sla(g, h)⇐⇒ Tmu(g, h)⇐⇒ Orb(g, h).

The proof of Theorem 1.6 will last up to Section 5.5.

Corollary 1.7. Let g be a complex semisimple Lie algebra. The set Lsla of
Lie subalgebras h ⊂ g satisfying Sla(g, h) is both closed and open in L.

Proof of Corollary 1.7. The conditionRho(g, h) is closed, while the condition
Orb(g, h) is open.
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Corollary 1.8. Let g be a complex semisimple Lie algebra and h a complex
Lie subalgebra. Choose h′ ∈ AdG h. Then one has the equivalence

Sla(g, h)⇐⇒ Sla(g, h′). (1.6)

Proof of Corollary 1.8. This is a consequence of Corollary 1.7

The equivalence (1.6) can be reformulated as follows:

If the orbit closure AdG h contains at least one solvable h′′,
then any h′ in AdG h is solvable as far as AdG h′ is closed.

(1.7)

Although the statement (1.6) is purely a structure theorem of Lie subal-
gebras, our proof of (1.6) relies on the theory of unitary representations via
Theorem 1.6. We would like to point out that we are not aware of a more
direct proof of (1.6).

Remark 1.9. We will explain in Theorem 5.1, how to extend the equivalence
Tem(g, h)⇐⇒ Rho(g, h)⇐⇒ Sla(g, h) to complex algebraic non-semisimple
Lie algebras g. In particular, we will see in Corollary 5.2 that the equivalence
(1.6) is true for any pair g ⊃ h of complex Lie algebras.

1.5 Strategy of proof and organization

We now explain the strategy of the proof of Theorem 1.6. Since we already
know from (1.1) the equivalence

Tem(g, h)⇐⇒ Rho(g, h) , (1.8)

it remains to prove the equivalences

Rho(g, h)⇐⇒ Sla(g, h)⇐⇒ Tmu(g, h)⇐⇒ Orb(g, h). (1.9)

All these statements are purely algebraic and we will prove these implications
by algebraic methods in Chapter 2 except for the implication

Sla(g, h) =⇒ Rho(g, h). (1.10)

The proof of this implication (1.10) is more delicate and will be given in
Chapter 5. It will use an induction argument that reduces to the case where
h is semisimple. The induction argument will involve unitary representation
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theory and a parabolic subgroup G0 of G containing H. This will force us to
deal with algebraic groups G which are not semisimple.

The proof will also use the analytic interpretation of Rho(g, h) as a
temperedness criterion, and the disintegration of the unitary representation
L2(G0/H). Indeed we will spend Chapters 3 and 4 proving the extension of
the temperedness criterion (1.1) that we need. This extension (Theorem 1.1)
is valid for any real algebraic Lie group G and any real algebraic subgroup
H. The proof of this extension will rely on the Hertz majoration principle
for unitary representations.

Acknowledgments. The authors are grateful to the IHES and to The
University of Tokyo for their support. The second author was partially sup-
ported by JSPS Kakenhi Grant Number JP18H03669.

2 Sla, Tmu and Orb

In this chapter, we focus on the proof of the implications in (1.9) that uses
only algebraic tools. That is all of them except for the implication (1.10).

2.1 Sla and Tmu

We begin with the easiest of all these equivalences.

Proposition 2.1. Let g be a complex semisimple Lie algebra and h ⊂ g be
a complex Lie subalgebra. Then, one has the equivalence

Sla(g, h) ⇐⇒ Tmu(g, h) . (2.1)

Proof of Proposition 2.1. =⇒ Since we assume Sla(g, h), there exists a se-
quence (gn)n≥1 in G such that the limit r = lim

n→∞
Adgn h exists and is a

solvable Lie subalgebra of g. Since r is solvable, there exists a Borel subalge-
bra b− of g containing r. Let n be a maximal unipotent subalgebra of g
which is opposite to b−, so that one has b− ⊕ n = g. In particular, one has
r ∩ n = {0} and, for n large, Adgn h ∩ n = {0}. This proves Tmu(g, h).
⇐= Since we assume Tmu(g, h), there exists a maximal unipotent sub-

algebra n of g such that h∩n = {0}. Let b be the Borel subalgebra containing
n, let j be a Cartan subalgebra of b so that b = j⊕n and let n− be the maximal
unipotent subalgebra of g which is opposite to b and normalized by j. Let
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∆ = ∆(g, j) be the root system of j in g. We write ∆ = ∆+ ∪ ∆− where
∆+ and ∆− are respectively the roots of j in n and n−. Choose an element
X ∈ j in the positive Weyl chamber, this means that for all α ∈ ∆+, one has
Re(α(X)) > 0. Since h∩ n = {0}, the limit r := lim

n→∞
Ade−nX h exists and is

a subalgebra of b−. In particular, this Lie algebra r is solvable. This proves
Sla(g, h).

Corollary 2.2. Let g be a complex semisimple Lie algebra. Then, the set of
subalgebras h satisfying Sla(g, h) is open in L.

Proof. The condition Tmu(g, h) is clearly an open condition.

2.2 Related Lie subalgebras

We now explain why we can often assume that h = [h, h].

Lemma 2.3. Let g be a complex semisimple Lie algebra and h ⊂ g be a
complex Lie subalgebra. Let G be a Lie group with Lie algebra g and H1 = H
be the smallest closed subgroup of G whose Lie algebra contains h. Set h0 =
[h, h] and h1 := Lie(H). Then, one has the equivalences

(i) Sla(g, h) ⇐⇒ Sla(g, h0) . (2.2)

(ii) Sla(g, h) ⇐⇒ Sla(g, h1) . (2.3)

Proof of Lemma 2.3. (i) =⇒ This follows from the inclusion h0 ⊂ h.
(i) ⇐= Since we assume Sla(g, h0), there exists a sequence (gn)n≥1 in G

such that the limit r0 = lim
n→∞

Adgn h0 exists and is a solvable Lie subalgebra

of g. Then, after extraction, the limit r := lim
n→∞

Adgn h exists and satisfies

[r, r] ⊂ lim
n→∞

[Adgn h,Adgn h] = r0. In particular, the limit r is a solvable Lie

subalgebra of g. This proves Sla(g, h).
(ii) This follows from (i) and the inclusions [h1, h1] ⊂ h ⊂ h1.

2.3 Sla and Orb

The proof of the following equivalence is still purely algebraic
but slightly more tricky.
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Proposition 2.4. Let g be a complex semisimple Lie algebra and h ⊂ g be
a complex Lie subalgebra. Then, one has the equivalence

Sla(g, h) ⇐⇒ Orb(g, h) . (2.4)

Proof of the implication =⇒ in Proposition 2.4. Since we assume Sla(g, h),
there exists a sequence (gn)n≥1 in G such that the limit r = lim

n→∞
Adgn h exists

and is a solvable Lie subalgebra of g. Since r is solvable, there exists a Borel
subalgebra b of g containing r. Since the orthogonal of b is the maximal
unipotent subalgebra b⊥ = n := [b, b], the orthogonal r⊥ also contains n. By
a result of Dynkin (see [6, Thm. 4.1.6]), the Lie algebra n always contains
regular elements of g, the orthogonal r⊥ also contains regular elements of
g. Since the set greg is open, for n large, the orthogonal Adgn h

⊥ contains

regular elements and h⊥ too. This proves Orb(g, h).

The proof of the converse implication will rely on the following two lem-
mas.

Lemma 2.5. Let g be a complex semisimple Lie algebra and q = l ⊕ u
be a parabolic subalgebra where l is a reductive Lie subalgebra and u is the
unipotent radical of q.

Let X = Xl + Xu be an element of q with Xl ∈ l and Xu ∈ u. If X is
regular in g, then Xl is regular in l.

Let r be the rank of g. We recall that the set greg of regular elements
of g is the set of elements X ∈ g whose centralizer in g has dimension
dim zg(X) = r. Similarly, the set lreg of regular element of l is the set of
elements X ∈ l whose centralizer in l has dimension dim zl(X) = r. This set
may not be equal to l∩greg. For instance, when q is a Borel subalgebra, then
l is a Cartan subalgebra of g and one has lreg = l.

Proof of Lemma 2.5. One computes

dim g− r = dim AdGX

≤ dimG/Q+ dim AdQX

≤ 2 dim u + dim(AdQX + u)/u

= 2 dim u + dim AdLXl.

This proves dim AdLXl ≥ dim l− r and hence Xl is regular in l.
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Lemma 2.6. Let g be a complex semisimple Lie algebra, h a complex Lie
subalgebra, and X ∈ h⊥. Then there exists h′ ∈ AdG h such that X ∈ h′

⊥

and [X, h′] ⊂ h′.

We recall that G is a connected complex Lie group with Lie algebra g.
Such a Lie group has a unique structure of complex algebraic Lie group.

Proof of Lemma 2.6. Let A ⊂ G be the Zariski closure of the one-parameter
subgroup {etX | t ∈ C}. This group A is abelian.

Note that, for all a in A, the Lie subalgebra Ada h is orthogonal to X.
Therefore, all Lie subalgebra h′ in the orbit closure AdA h are orthogonal
to X. This orbit closure AdA h is a A-invariant subvariety of the projective
algebraic variety L. By Borel fixed point theorem [4, Theorem 10.6], the
solvable group A has a fixed point in this subvariety. This means that there
exists h′ in AdA h such that AdA h′ = h′. In particular, [X, h′] ⊂ h′.

Proof of the implication ⇐= in Proposition 2.4. We argue by induction on
the dimension of g. We assume that h⊥ contains a regular element X, and
we want to prove Sla(g, h). By Corollary 2.2 and Lemma 2.6, we can also
assume that X normalizes h, i.e. that [X, h] ⊂ h. In particular, the sum

h̃ := CX ⊕ h is a Lie subalgebra of g. By Lemma 2.3 (i), we may and do
assume that h = [h, h]. Let q be a parabolic subalgebra of g of minimal

dimension containing h̃, and u the unipotent radical of q. By minimality of
q, the image of h̃ in q/u is reductive. Therefore we can write h = s⊕v where
s is a semisimple Lie subalgebra and v := h∩ u is the unipotent radical of h.
We can then write q = l⊕ u where l is a reductive Lie subalgebra containing
s. We sum up this discussion by the inclusions:

h = s⊕ v ⊂ q = l⊕ u ⊂ g .

Since X is in h̃ ⊂ q, we can decompose X as X = Xl + Xu with Xl ∈ l
and Xu ∈ u. By Lemma 2.5, the element Xl is regular in l. Since u is the
orthogonal of q with respect to the Killing form K, one has

K(Xl, s) = K(Xl +Xu, s⊕ v) = K(X, h) = 0.

This proves that Xl is orthogonal to s.
We now claim that q 6= g. Indeed, if q = g, one has the equalities h̃ =

h = s, and this Lie algebra is semisimple by the assumption that h = [h, h].
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Therefore the Killing form restricted to h is nondegenerate. This contradicts
the assumption X ∈ h⊥.

Therefore one has q 6= g. The normalizer L := NG(l) of l in G has Lie
algebra l. We have seen that the intersection s⊥ ∩ lreg is non-empty. There-
fore, by induction hypothesis, the orbit closure AdL s contains a solvable Lie
algebra, and the orbit closure AdL h also contains a solvable Lie algebra.
This proves Sla(g, h).

2.4 Rho and Sla

In this section we will prove the following implication which
is still purely algebraic. The proof of the converse will be much
more delicate.

We will in fact prove a stronger statement

Proposition 2.7. Let g be a complex semisimple Lie algebra and h ⊂ g be
a complex Lie subalgebra. Then, one has the implication

Rho(g, h) =⇒ Sla(g, h) . (2.5)

More precisely, if h satisfies Rho(g, h), then every Lie algebra h′ in AdGh
satisfies Sla(g, h).

It will be useful to introduce the following two G-invariant subsets of L.

Lrho := {h ∈ L | ρh ≤ ρg/h}, (2.6)

Lclo := {h ∈ L | AdG h is closed in L}. (2.7)

Remark 2.8. We have the following nice characterisation of closed orbits in
L.

h ∈ Lclo ⇐⇒ the normalizer Ng(h) is a parabolic subalgebra of g (2.8)

⇐⇒ h is normalized by a Borel subalgebra of g (2.9)

Proof of Proposition 2.7. This follows from Lemma 2.9 below and from the
fact that the orbit closure always contains a closed G-orbit.

Lemma 2.9. Let g be a complex semisimple Lie algebra. Then,
(i) Lrho is closed in L.
(ii) Let h ⊂ g be a complex Lie subalgebra with AdG h closed. Then,

h is solvable ⇐⇒ Rho(g, h) .
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Proof of Lemma 2.9. (i) The map (h, Y ) 7→ ρh(Y ) is continuous on the set
{(h, Y ) | h ∈ L , Y ∈ h}. Let hn ∈ Lrho be a sequence that converges to a
Lie algebra h∞. We want to prove that h∞ ∈ Lrho. Let Y∞ ∈ h∞. We can
find a sequence Yn ∈ hn converging to Y∞. Therefore, one has

ρg(Y∞)− 2 ρh∞(Y∞) = lim
n→∞

ρg(Yn)− 2 ρhn(Yn) ≥ 0 .

This proves that h∞ is in Lrho.
(ii) =⇒ Since h is solvable, it is included in a Borel Lie subalgebra b.

Note that b satisfies the ρ-inequality, more precisely, one has the equality
ρb(Y ) = ρg/b(Y ), for all Y in b. Therefore, h also satisfies Rho(g, h).

(ii)⇐= Let h be a Lie subalgebra with AdG h closed and which satisfies
Rho(g, h). We want to prove that h is solvable. Replacing a few times h by
its derived subalgebra [h, h] if necessary, we may assume that h = [h, h]. Let
q be the normalizer of h and u be the unipotent radical of q. By assumption
q is a parabolic Lie subalgebra. The projection of h in the reductive Lie
algebra q/u is an ideal and hence is a semisimple Lie algebra. Therefore we
can write h = s⊕ v, where s is a semisimple Lie subalgebra and v := h∩ u is
the unipotent radical of h. We then write q = l⊕ u where l is a reductive Lie
subalgebra containing s. Let u− be the opposite unipotent subalgebra which
is opposite to q and normalized by l so that g = u−⊕ l⊕u. Fix Y in s. Since
q normalizes h one has

ρh(Y ) = ρl(Y ) + ρu(Y ) . (2.10)

Since u− is dual to u as an l-module, one has

ρg(Y ) = ρl(Y ) + 2 ρu(Y ) . (2.11)

Combining (2.10) and (2.11), and using the ρ-inequality, one gets

ρs(Y ) ≤ ρl(Y ) = 2 ρh(Y )− ρg(Y ) ≤ 0 .

Since this is true for all Y in the semisimple Lie algebra s, one must have
s = 0. This proves that h is solvable.

2.5 Reductive homogeneous spaces

In this section we check Theorem 1.6 for h reductive by relying
on the previous papers of this series. We will prove:
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Proposition 2.10. Let g be a complex semisimple Lie algebra and h ⊂ g a
complex reductive Lie subalgebra. The following conditions are equivalent :

Tem(g, h)⇐⇒ Rho(g, h)⇐⇒ Sla(g, h)⇐⇒ Tmu(g, h)⇐⇒ Orb(g, h).

Remark 2.11. Since g is semisimple and h is reductive, one has a decom-
position g = h ⊕ h⊥ with respect to the Killing form, and the orthogonal
complement h⊥ is isomorphic to the quotient g/h as an h-module.

The proof uses the condition Ags(g, h) that we introduced in [3] and
proven to be equivalent to Rho(g, h). It is defined by:

Ags(g, h) : the set {X ∈ h⊥ | zh(X) is abelian } is dense in h⊥.

Proof of Proposition 2.10.
? The equivalence Tem(g, h)⇐⇒ Rho(g, h) is proven in [1, Thm. 4.1] for all
real semisimple Lie algebra g and all real reductive Lie subalgebra h.
? The equivalence Sla(g, h) ⇐⇒ Tmu(g, h) ⇐⇒ Orb(g, h) has been proven
in the previous sections for all complex Lie subalgebra h.
? The equivalence Rho(g, h)⇐⇒ Ags(g, h) is proven in [3, Thm. 1.6] for all
complex semisimple Lie algebra g and all complex reductive Lie subalgebra
h.
? The equivalence Ags(g, h) ⇐⇒ Orb(g, h) is proven in Proposition 2.12
below.

Proposition 2.12. Let g be a complex semisimple Lie algebra and h ⊂ g be
a complex reductive Lie subalgebra. Then, one has the equivalence

Ags(g, h) ⇐⇒ Orb(g, h) . (2.12)

We will need the following lemma which relates centralizer in g and cen-
tralizer in h.

Lemma 2.13. Let g be a real semisimple Lie algebra, h a real reductive Lie
subalgebra, and regard h⊥ ⊂ g via the Killing form as before. Let

h⊥min := {X ∈ h⊥ | dim zg(X) = rg,h} where rg,h := min
X∈h⊥

dim zg(X)

Then, for every X0 in h⊥min, one has [zg(X0), zg(X0)] ⊂ zh(X0) .
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Note that Lemma 2.13 applied to h = {0} implies that zg(X0) is abelian

if X0 ∈ greg. Indeed, when h = {0}, one has rg,h = rank g and h⊥min = greg.

This lemma is a special case of the following general lemma for coadjoint
orbits of real Lie algebras which is well-known when h = {0}.

Lemma 2.14. Let g be a real Lie algebra and h ⊂ g be a real Lie subalgebra.
Let g∗be the dual of g and h⊥ := {f ∈ g∗ | f(h) = {0}}. We set

h⊥min := {f ∈ h⊥ | dim gf = rg,h} where rg,h := min
f∈h⊥

dim gf .

Then, for every f0 in h⊥min, one has [gf0 , gf0 ] ⊂ hf0 .

Here gf := {Y ∈ g | Y f = 0} denotes the stabilizer of f in g and
hf := gf ∩ h its stabilizer in h.

Proof of Lemma 2.14. Fix f0 ∈ h⊥min and two elements Y0 and Z0 in gf0 . We

want to prove that [Y0, Z0] ∈ h. We write

g = gf0 ⊕m

where m is a complementary vector subspace.
For all f ∈ h⊥, for t ∈ R small enough the element ft := f0 + tf is also

in the open set h⊥min. Choose a linear projection π0 : g∗ → gf0. By the local
inversion theorem, the map

Φ: (Y0 + m)× R → gf0 × R
(Y, t) 7→ (π0(Y ft), t)

is a local diffeomorphism near (Y0, 0). Let t 7→ Yt be the differentiable curve
near 0 starting from Y0 given by Φ(Yt, t) = (0, t). Since for t small the linear
map π0 : gft → gf0 is an isomorphism, it satisfies

Yt ∈ Y0 + m and Ytft = 0 .

For the same reason, there exists a differentiable curve t 7→ Zt near 0 starting
from Z0 such that

Zt ∈ Z0 + m and Ztft = 0 .

They satisfy the equality ft([Yt, Zt]) = 0 whose derivative at t = 0 gives

f([Y0, Z0]) + f0([Y
′
0 , Z0]) + f0([Y0, Z

′
0]) = 0
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Since both Y0 and Z0 stabilize f0 the last two terms are zero. One deduces

f([Y0, Z0]) = 0 for all f in h⊥.

This proves that [Y0, Z0] is in h as required.

The following lemma will also be useful.

Lemma 2.15. Let g be a complex semisimple Lie algebra and h ⊂ g be a
complex reductive Lie subalgebra. Then the set

h⊥ss := {X ∈ h⊥ | X is semisimple}.

is Zariski dense in h⊥.

Proof of Lemma 2.15. There exists a compact real form gR of g such that h
is defined over R. Since gR = hR ⊕ h⊥R , the vector space h⊥R is Zariski dense
in h⊥. Since all elements of gR are semisimple, this proves our claim.

Proof of Proposition 2.12. ⇐= Since the Zariski open set greg meets the or-

thogonal h⊥ for the Killing form, the intersection h⊥reg is dense in h⊥. By
Lemma 2.13 applied with the zero subalgebra, every X0 in greg has an abelian
centralizer in g. In particular, every X0 in greg has an abelian centralizer in
h. This proves Ags(g, h).

=⇒ Let r′ := min{dim zh(X) | X ∈ h⊥}. The set

h⊥gen := {X ∈ h⊥min | dim zh(X) = r′}

is nonempty and Zariski open in h⊥. By assumption the set

h⊥abe := {X ∈ h⊥gen | zh(X) is abelian}

is dense in h⊥gen. Since it is also closed in h⊥gen, one has h⊥abe = h⊥gen. There-

fore by Lemma 2.15 the set h⊥abe contains a semisimple element X0. The
centralizer zg(X0) is then a reductive Lie algebra. By Lemma 2.13, the Lie
algebra [zg(X0), zg(X0)] is included in zh(X0) which is an abelian Lie algebra.
Therefore the Lie algebra zg(X0) itself is abelian. Since X0 is semisimple,
this centralizer is a Cartan subalgebra and X0 is regular in g. This proves
Orb(g, h).
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3 Real algebraic homogeneous spaces

The proof of the last remaining implication (1.10) will last up to the end of
this paper. Because of the induction method which involves parabolic sub-
groups, we need to extend the temperedness criterion of [2] to non-semisimple
algebraic groups G. This extension will be valid for all real algebraic group.

3.1 Notations

Let G be a real algebraic Lie group, H be an algebraic Lie subgroup. We
write G = LU and H = SV where S ⊂ L are reductive subgroups and where
V and U are the unipotent radical of H and G. Note that, in general one
does not have the inclusion V ⊂ U . We denote by g, h, l, u, etc... the
corresponding Lie algebras.

We consider the following conditions:

Tem(g, h) : L2(G/H) is L-tempered.

Rho(g, h) : ρl ≤ 2 ρg/h as functions on s.

Sla(g, h) : AdG h contains a solvable Lie algebra.

Remark 3.1. By L-tempered, we mean tempered as a representation of L, or,
equivalently, tempered as a representation of the semisimple Lie group [L,L].
When G is not semisimple this notion happens to be much more useful than
the temperedness as a representation of G.

Theorem 3.2. Let G be a real algebraic Lie group, H be an algebraic Lie
subgroup. One has the equivalence,

Tem(g, h)⇐⇒ Rho(g, h).

Remark 3.3. For real algebraic groups, the last condition Sla(g, h) is not
always equivalent to the first two, but it is often the case. For instance, we
will see in Theorem 5.1, that this is true for complex algebraic Lie groups.

In the induction process, we will have to work with slightly more general
representations than the regular representation L2(G/H). Let W be a finite-
dimensional algebraic representation of H. We will have to deal with the
(L2-)induced representation IndGH(L2(W )) ' L2(G ×H W ), where G ×H W
is the G-equivariant bundle over G/H with fiber W , see [2, Section 2.1] for
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more precise definition. This is why we also introduce the following two
conditions.

Tem(g, h,W ) : IndGH(L2(W )) is L-tempered.

Rho(g, h,W ) : ρl ≤ 2 ρg/h + 2 ρW as a functions on s.

The following theorem is a generalization of our Theorem 3.6 in [2] where
we assumed that G is semisimple.

Theorem 3.4. Let G be a real algebraic Lie group, H be an algebraic Lie
subgroup and W a finite-dimensional algebraic representation of H. One has
the equivalence,

Tem(g, h,W )⇐⇒ Rho(g, h,W ).

We have assumed here that G and H are algebraic only to avoid uninteres-
ting technicalities. It is not difficult to get rid of this assumption.

Proof of Theorem 3.2. It is a special case of Theorem 3.4 with W = 0.

The proof of Theorem 3.4 follows the same line as in [2, Theorem 3.6].
In this Chapter 3 we will prove the direct implication =⇒.
In the next Chapter 4, we will prove the converse implication ⇐=.

3.2 The Herz majoration principle

We first recall a few lemmas on tempered representations and
on induced representations.

The first lemma is a variation on Herz majoration principle.

Lemma 3.5. Let G be a real algebraic Lie group, L be a reductive algebraic
Lie subgroup of G and H be a closed subgroup of G. If the regular representa-
tion in L2(G/H) is L-tempered then the induced representation Π = IndGH(π)
is also L-tempered for any unitary representation π of H.

Proof. See for instance [2, Lemma 3.2].

The second lemma will prevent us to worry about connected components
of H and will allow us to assume that H = [H,H].
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Lemma 3.6. Let G be a real algebraic Lie group, L be a reductive algebraic
subgroup of G and H ′ ⊂ H be two closed subgroup of G.
1) If L2(G/H) is L-tempered then L2(G/H ′) is L-tempered.
2) The converse is true when H ′ is normal in H and H/H ′ is amenable (for
instance finite, compact, or abelian).

Proof. See for instance [2, Proposition 3.1].

The third lemma is good to keep in mind.

Lemma 3.7. Let Q = LU be a real algebraic Lie group which is a semidirect
product of a reductive subgroup L and its unipotent radical U . Let π0 be a
unitary representation of Q which is L-tempered and trivial on U . Then the
representation π0 is also Q-tempered.

Proof. See for instance [2, Lemma 4.3].

This lemma is useful for a parabolic subgroup Q of a semisimple Lie group
G. In this case the induced representation IndGQ(π0) is also G-tempered.

3.3 Decay of matrix coefficients

We now recall the control of the matrix coefficients of tempe-
red representations of a reductive Lie group.

In the sequel, it will be more comfortable to deal with a reductive group
L than just with a semisimple group even though, in the temperedness con-
dition, the center ZL of L plays no role.

So, let L be a real reductive algebraic Lie group. We fix a maximal
compact subgroup K of L and denote by Ξ the Harish-Chandra spherical
function on L. By definition, Ξ is the matrix coefficient of a normalized
K-invariant vector v0 of the spherical unitary principal representation π0 =
IndLP (1P ) where P is a minimal parabolic subgroup of L. That is

Ξ(`) = 〈π0(`)v0, v0〉 , for all ` in L. (3.1)

Since P is amenable, the representation π0 is L-tempered.

Proposition 3.8 (Cowling, Haagerup and Howe [7]). Let L be a real al-
gebraic reductive Lie group and π be a unitary representation of L. The
following are equivalent:
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(i) the representation π is tempered,
(ii) for every K-finite vector v in Hπ, for every ` in L, one has

|〈π(`)v, v〉| ≤ Ξ(`) ‖v‖2 dim〈Kv〉.

See [7, Thms. 1, 2 and Cor.]. See also [8], [10] for other applications of
Proposition 3.8.

For the regular representation in an L-space, this proposition becomes:

Corollary 3.9. Let L be a real algebraic reductive Lie group and X be a
locally compact space endowed with a continuous action of L preserving a
Radon measure vol. The regular representation of L in L2(X) is L-tempered
if and only if, for any K-invariant compact subset C of X, one has

vol(` C ∩ C) ≤ vol(C) Ξ(`) , for all ` in L. (3.2)

Recall that the notation ` C denotes the set ` C := {`x ∈ X : x ∈ C}.

3.4 The function ρV

We now explain, following [2, Section 2.3] how to deal with
the functions ρV occurring in the temperedness criterion.

Let H be a real algebraic Lie group, h its Lie algebra and V be a real
algebraic finite-dimensional representation of H. For all element Y in h, we
consider the eigenvalues of Y in V and we denote by V+ and V− the largest
vector subspaces of V on which the real part of all the eigenvalues of Y are
respectively positive and negative, and we set

ρV (Y ) := 1
2

Tr(Y |V+)− 1
2

Tr(Y |V−).

Let a = ah be a maximal split abelian Lie subalgebra of h i.e. the Lie subal-
gebra of a maximal split torus A of H. The function ρV on h is completely
determined by its restriction to a. Let PV be the set of weights of a in V
and, for all α in PV , let mα := dimVα be the dimension of the corresponding
weight space. Then one has the equality

ρV (Y ) = 1
2

∑
α∈PV

mα|α(Y )| for all Y in a. (3.3)
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For example, when h is semisimple and V = h via the adjoint action, our
function ρh is equal on each positive Weyl chamber a+ of a to the sum of the
corresponding positive roots i.e. to twice the usual “ρ” linear form.

The functions ρV occurs in the volume estimate of Corollary 3.9 through
the following Lemma.

Lemma 3.10. Let V = Rd. Let a be an abelian split Lie subalgebra of
End(V ) and C be a compact neighborhood of 0 in V . Then there exist con-
stants m

C
> 0 , M

C
> 0 such that

m
C
e−ρV (Y ) ≤ e−Tr(Y )/2 vol(eYC ∩ C) ≤M

C
e−ρV (Y ) for all Y ∈ a.

Proof. This is [2, Lemma 2.8].

3.5 The direct implication

We first prove the direct implication in Theorem 3.4 which is :

Proposition 3.11. Let G be a real algebraic Lie group, H an algebraic Lie
subgroup of G and W an algebraic representation of H. Let L be a maximal
reductive subgroup of G containing a maximal reductive subgroup S of H.
If Π := IndGH(L2(W )) is L-tempered then one has ρl ≤ 2 ρg/h + 2 ρW on s.

Proof. This representation Π is also the regular representation of the G-space
X := G×HW . Let A be a maximal split torus of S and a be the Lie algebra
of A. We choose an A-invariant decomposition g = h ⊕ m and small closed
balls B0 ⊂ m and BW ⊂ W centered at 0. We can see BW as a subset of X
and the map

B0 ×BW −→ G×H W, (u, v) 7→ exp(u)v

is a homeomorphism onto its image C. Since Π is L-tempered one has a
bound as in (3.2)

〈Π(`)1C , 1C〉 ≤MC Ξ(`) for all ` in L. (3.4)

We will exploit this bound for elements ` = eY with Y in a. In our coordinate
system (3.4) we can choose the measure νX to coincide with the Lebesgue
measure on m⊕W . Taking into account the Radon–Nikodym derivative and
the A-invariance of m, one computes as in [2, Section 3.3],

〈Π(eY )1C , 1C〉 ≥ e−Trm(Y )/2−TrW (Y )/2 volm(eYB0 ∩B0) volW (eYBW ∩BW ),

21



and therefore, using Lemma 3.10, one deduces

〈Π(eY )1C , 1C〉 ≥ m
C
e−ρm(Y )e−ρW (Y ) for all Y in a. (3.5)

Combining (3.4) and (3.5) with known bounds for the spherical function Ξ
as in [9, Prop 7.15], one gets, for suitable positive constants d, M0,

mC

MC

e−ρm(Y )−ρW (Y ) ≤ Ξ(eY ) ≤M0 (1 + ‖Y ‖)de−ρl(Y )/2 for all Y in a.

Therefore one has ρl ≤ 2 ρm + 2 ρW as required.

4 Proof of temperedness for real groups

In this Chapter, we prove the converse implication in Theorem 3.4 which is :

Proposition 4.1. Let G be a real algebraic Lie group, H an algebraic Lie
subgroup of G and W an algebraic representation of H. Let L be a maximal
reductive subgroup of G containing a maximal reductive subgroup S of H.
If ρl ≤ 2 ρg/h + 2 ρ

W
on s, then Π := IndGH(L2(W )) is L-tempered.

Recall that, when W = 0, one has Π = L2(G/H).

4.1 Domination of G-spaces

The proof relies on the notion of domination of a G-action
that we have introduced in [2] without giving it a name.

Here is the definition. Let G be a locally compact group. Let X and X0

be two locally compact spaces endowed with a continuous action of G, and
with a G-invariant class of measures volX and volX0 . Let π and π0 be the
unitary regular representations of G in the Hilbert spaces of square-integrable
half-densities L2(X) and L2(X0).

Definition 4.2 (Domination of a G-space). We say that X is G-dominated
by X0 if for every compactly supported bounded half-density v on X, there
exists a compactly supported bounded half-density v0 on X0 such that, for
all g in G,

|〈π(g)v, v〉| ≤ 〈π0(g)v0, v0〉. (4.1)
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Remark 4.3. When both measures volX and volX0 are G-invariant, the bound
(4.1) means that, for every compact set C ⊂ X, there exists a constant λ > 0
and a compact set C0 ⊂ X0 such that, for all g in G,

vol(g C ∩ C) ≤ λ vol(g C0 ∩ C0)

This definition is very much related to our temperedness question because
of the following lemma.

Lemma 4.4. Let G be a real algebraic reductive Lie group and P be a min-
imal parabolic subgroup of G, and let X be a G-space. The regular represen-
tation of G in L2(X) is G-tempered if and only if X is G-dominated by the
flag variety X0 = G/P .

Proof. This lemma is a direct consequence of Corollary 3.9.

The following proposition gives us a nice situation where an action is
dominating another one.

Proposition 4.5. Let F = SU be a real algebraic Lie group which is a
semidirect product of a reductive subgroup S and its unipotent radical U . Let
H = SV be an algebraic subgroup of F containing S where V = U ∩H. Let
Z be the F -space Z = F/H = U/V . Let Z0 := Z endowed with another
F -action where the S-action is the same but the U-action is trivial.

Then Z is F -dominated by Z0.

Proof. This is [2, Corollary 4.6].

4.2 Inducing a dominated action

The following proposition tells us that the induction of actions
preserves the domination.

Proposition 4.6. Let G be a locally compact group, and F a closed subgroup
of G. Let Z and Z0 be two locally compact F -spaces with G-invariant class of
measures. Let X := G×F Z and X0 := G×F Z0 be the two induced G-spaces.

If Z is F -dominated by Z0 then X is G-dominated by X0.

Proof of Proposition 4.6. The proof is an adaptation of [2, Proposition 4.9]
where G was an algebraic semisimple group. We assume to simplify that
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the measures on Z and Z0 are G-invariant. This avoids to complicate the
formulas with square roots of Radon-Nikodym derivative. The projection

G→ X ′ := G/F

is a G-equivariant principal bundle with structure group F . We fix a Borel
measurable trivialization of this principal bundle

G ' X ′ × F (4.2)

which sends relatively compact subsets to relatively compact subsets. The
action of G by left multiplication through this trivialization can be read as

g (x′, f) = (gx′, σF (g, x′)f) for all g ∈ G, x′ ∈ X ′ and f ∈ F ,

where σF : G × X ′ → F is a Borel measurable cocycle. This trivialization
(4.2) induces a trivialization of the associated bundles

X = G×F Z ' X ′ × Z ,
X0 = G×F Z0 ' X ′ × Z0 .

We start with a compact set C of X. Through the first trivialization, this
compact set is included in a product of two compact sets C ′ ⊂ X ′ and D ⊂ Z

C ⊂ C ′ ×D . (4.3)

Since Z is F -dominated by Z0 there exists λ > 0 and a compact subset
D0 ⊂ Z0 such that, for all f in F ,

volZ(f D ∩D) ≤ λ volZ0(f D0 ∩D0)

We compute, for g in G,

volX(g C ∩ C) ≤
∫
gC′∩C′

volZ(σF (g, g−1x′)D ∩D) dx′

≤ λ

∫
gC′∩C′

volZ0(σF (g, g−1x′)D0 ∩D0) dx′

≤ λ volX0(g C0 ∩ C0),

where dx′ is a G-invariant measure on X ′ and C0 is a compact subset of
X0 ' X ′ × Z0 which contains C ′ ×D0.
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4.3 The converse implication

We conclude the proof of the converse implication in Theorem
3.4, by reducing it to the case where G is reductive which was
proven in [2, Theorem 3.6]

We will need the following lemma on the structure of nilpotent homoge-
neous spaces. See [2, Lemma 4.7], for a similar statement. We recall that a
unipotent Lie group is an algebraic nilpotent Lie group with no torus factor.

Lemma 4.7. Let U be a real unipotent Lie group, V a unipotent subgroup
and v ⊂ u their Lie algebra.
(1) There exists a real vector subspace m ⊂ u such that u = m ⊕ v and the
exponential map induces a polynomial bijection exp: m

∼→ U/V .
(2) Moreover, if v is invariant by a reductive subgroup S ⊂ Aut(u), one can
choose m to be S-invariant.

Proof of Lemma 4.7. We proceed by induction on dimU . Let Z be the center
of U and z its Lie algebra.

First case : z∩v 6= {0}. In this case we apply the induction assumption
to the Lie algebra u′ := u/(z ∩ v) and its Lie subalgebra v′ := v/(z ∩ v).
This gives us an S-invariant subspace m′ of u′ such that u′ = m′ ⊕ v′ and
exp: m′ → U ′/V ′ ' U/V is a bijection. We denote by π : u → u′ the
projection and choose m to be any S-invariant vector subspace of π−1m′ such
that m⊕ (z ∩ v) = π−1m′.

Second case : z ∩ v = {0}. In this case we apply the induction as-
sumption to the Lie algebra u′ := u/z and its subalgebra v′ := (v ⊕ z)/z.
This gives us an S-invariant subspace m′ of u′ such that u′ = m′ ⊕ v′ and
exp: m′ → U ′/V ′ is a bijection. We denote by π : u→ u′ the projection and
choose m := π−1m′. The identifications m′ ' m/z and U ′/V ′ ' U/V Z prove
that the exponential map exp: m→ U/V is bijective.

Proof of Proposition 4.1. We distinguish two cases.
First case : W = {0}. In this case, one has Π = L2(G/H). We denote

by U and V the unipotent radical of G and H, so that we have the equalities
G = LU and H = SV . We have the inclusion S ⊂ L, but the group V might
not be included in U . We introduce the unipotent group V ′ := V U ∩ L and
the algebraic groups F := HU and F ′ := F ∩L so that we have the equality
F ′ = SV ′ and the inclusions

H = SV ⊂ F = F ′U ⊂ G = LU .
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Let
Z := F/H

and let Z0 be the F -space Z endowed with the same S-action but with a
trivial V U -action. One can easily describe Z0. Indeed, let u, v,... be the Lie
algebras of U , V ,... By Lemma 4.7, Z0 can be identified with the S-module
W ′ := u/(u ∩ v), as is seen from the following isomorphisms:

F/H ' V U/U ' U/(U ∩ V ) ' u/(u ∩ v) .

According to Proposition 4.5, the F -space Z is dominated by Z0. We intro-
duce now the two induced G-spaces

X := G×F Z = G/H and X0 := G×F Z0 .

According to Proposition 4.6, the G-space X is dominated by X0. Hence

the L-space X = G/H is dominated by the L-space X0 = L×F ′ W ′

By assumption one has
ρl ≤ 2 ρg/h.

Since ρg/h = ρg/f + ρf/h = ρl/f′ + ρu/(u∩v) , this can be rewritten as

ρl ≤ 2 ρl/f′ + 2 ρW ′ .

Since L is reductive, we can apply [2, Theorem 3.6]. This tells us that the
representation L2(L×F ′ W ′) is L-tempered.

Therefore since the L-space X is L-dominated by X0 the representation
of L in L2(G/H) is L-tempered, as required.

Second case : W 6= {0}. In this case, one has Π = L2(G ×H W ). For
w in W , we denote by Hw the stabilizer of w in H. We write Hw = SwUw
with Sw reductive and Uw the unipotent radical. Since the action of H on
W is algebraic, there exists a Borel measurable subset T ⊂ W which meets
each of these H-orbits in exactly one point. We can assume that for each w
in T , one has Sw ⊂ S. Let µ be a probability measure on W with positive
density and ν be the probability measure on T ' S\W given as the image
of µ. One has an integral decomposition of the regular representation

L2(G×H W ) =

∫ ⊕
T

L2(G/Hw) dν(w). (4.4)
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Since the direct integral of tempered representations is tempered, we only
need to prove that, for ν-almost all w in T ,

L2(G/Hw) is L-tempered. (4.5)

We can choose w in the Zariski open set where dim Hw is minimal. According
to [2, Lemma 3.9], for such a w,

the action of Hw on W/(hw) is trivial. (4.6)

Our assumption implies that one has the inequality on sw

ρl ≤ 2 ρg/h + 2 ρW .

Thanks to (4.6), this can be rewritten as

ρl ≤ 2 ρg/h + 2 ρh/hw
= 2 ρg/hw

.

Then the first case tells us that for such w, the representation of L in
L2(G/Hw) is tempered. This proves (4.5) as required.

4.4 Using parabolic subgroups

The aim of this section is to explain how, when dealing with
a quotient G/H of real algebraic groups, one can, using parabolic
subgroups, reduce to the case where the unipotent radical V of
H is included in the unipotent radical U of G. This reduction
method will be used in Chapter 5 for complex Lie groups.

Let G be a real algebraic Lie group and H a real algebraic subgroup of G.
We write G = LU and H = SV where U and V are the unipotent radicals
of G and H, and where S and L are reductive algebraic subgroups. We can
manage so that S ⊂ L but we cannot always assume that V is included in
U . For instance this is not possible when G is reductive and H is not. We
fix a parabolic subgroup G0 of G that contains H and which is minimal with
this property. We denote by U0 ⊃ U the unipotent radical of G0.

Lemma 4.8. One has the inclusion V ⊂ U0. Moreover, we can choose a
reductive subgroup L0 ⊂ G0 such that G0 = L0U0 and S ⊂ L0.
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Proof. The group V0 := U0 ∩H is a unipotent normal subgroup of H. The
quotient S ′ := H/V0 is an algebraic subgroup of the reductive group G0/U0

which is not contained in any proper parabolic subgroup of G0/U0. Therefore,
by [5, Sec. VIII.10] this group S ′ is reductive and the group V0 is the unipotent
radical V of H. This proves the inclusion V ⊂ U0.

Since maximal reductive subgroups L0 of G0 are U0-conjugate, one can
choose L0 containing S.

We introduce the L0-module W0 := u0/v. The following two lemmas will
be useful in our induction process.

Proposition 4.9. Keep this notation. The following are equivalent:
(i) L2(G/H) is L-tempered;
(ii) ρl ≤ 2 ρg/h as a function on s;
(iii) L2(G0/H) is L0-tempered;
(iv) ρl0 ≤ 2 ρg0/h as a function on s;
(v) L2(L0 ×S W0) is L0-tempered.

Proof of Proposition 4.9. (i)⇔ (ii) and (iii)⇔ (iv). This is Theorem 3.2.
(ii)⇔ (iv) Write u0 = u′0⊕ u where u′0 := u0 ∩ l. The equivalence follows

from the equalities ρl = ρl0 + 2 ρu′0 and ρg = ρg0 + ρu′0 .
(iv) ⇔ (v) This follows from Theorem 3.4 if one notices the equality

ρg0/h = ρl0/s + ρW0 .

The following lemma will also be useful in this reduction process.

Lemma 4.10. Keep this notation. The following are equivalent:
(i) the orbit closure AdG h contains a solvable Lie algebra;
(ii) the orbit closure AdG0 h contains a solvable Lie algebra.

Proof of Lemma 4.10. This follows from the compactness of G/G0.

5 Complex algebraic homogeneous spaces

The aim of this chapter is to prove the last remaining implication in Theorem
1.6 which is the converse of Proposition 2.7. We keep the notation of the
previous Chapters 3 and 4. We assume in this chapter that both G and H
are complex algebraic Lie group, but do not assume G to be semisimple.
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5.1 The equivalence for G algebraic

We first state the extension of Theorem 1.6, which relates temperedness to
the existence of solvable limit algebras for a general algebraic group G. This
extension will be useful because of the induction process in the proof. We
still use the notation in Section 3.1.

Theorem 5.1. Let G be a complex algebraic Lie group and H be a complex
algebraic subgroup. Then one has the equivalences,

Tem(g, h)⇐⇒ Rho(g, h)⇐⇒ Sla(g, h).

Proof of Theorem 5.1. The first equivalence follows from Theorem 3.2. We
split the proof of the second equivalence into Propositions 5.4 and 5.7.

Corollary 5.2. Let G be a complex algebraic Lie group, H be a complex
algebraic subgroup, and h′ ∈ AdG h. Then one has the equivalence,

Sla(g, h) ⇐⇒ Sla(g, h′).

This equivalence says that if a Lie subalgebra admits one solvable limit,
then all its limit Lie algebras also admit a solvable limit.

Proof of Corollary 5.2. More precisely it is a corollary of Propositions 5.4
and 5.7. Indeed, if h satisfies Sla(g, h), then by Proposition 5.7, it satisfies
Rho(g, h). Then by Proposition 5.4, all limit subalgebras h′ ∈ AdG h also
satisfy Sla(g, h′).

Remark 5.3. The set of Lie subalgebras h in g satisfying Sla(g, h) is closed.
Indeed, this follows from the Rho-condition in Theorem 5.1.

5.2 Rho and Sla

We extend Proposition 2.7 to general algebraic groups G.

Proposition 5.4. Let g be an algebraic complex Lie algebra and h ⊂ g be a
complex Lie subalgebra. Then, one has the implication

Rho(g, h) =⇒ Sla(g, h) .

More precisely, if h satisfies Rho(g, h), then every Lie algebra h′ in AdGh
satisfies Sla(g, h).
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Remark 5.5. In Propositions 5.4 and 5.7, the assumption that g is algebraic,
i.e. is the Lie algebra of a complex algebraic Lie group can easily be removed.
We will not need it.

Proof of Proposition 5.4. This follows from Lemma 5.6 below and from the
fact that the orbit closure always contains a closed G-orbit.

We denote again by Lrho the set of Lie subalgebras h of g that satisfy
Rho(g, h).

Lemma 5.6. Let g be an algebraic complex Lie algebra. Then,
(i) Lrho is closed in L.
(ii) Let h ⊂ g be a complex Lie subalgebra with AdG h closed. Then,

h is solvable ⇐⇒ Rho(g, h) .

Proof of Lemma 5.6. This is a straightforward extension of Lemma 2.9. We
write g = l⊕ u with l reductive and u the unipotent radical.

(i) Same as for Lemma 2.9.
(ii) =⇒ Same as for Lemma 2.9, but note that for h = b ⊕ u with b a

Borel subalgebra of l, one has ρl = 2 ρl/b = 2 ρg/h.
(ii)⇐= We may assume that h = [h, h]. Let q be the normalizer of h. By

assumption q is a parabolic Lie subalgebra of g and h is an ideal of q. Let g0
be a parabolic subalgebra of q containing h and which is minimal with this
property. We can write g0 = l0 ⊕ u0 and h = s ⊕ v, where l0 is a reductive
Lie algebra, where u0 is the unipotent radical of g0, where s := h ∩ l0 is an
ideal of l0 and where v := h ∩ u0. By assumption one has Rho(g, h). Then,
by the equivalence (ii)⇔ (iv) in Proposition 4.9 one also has Rho(g0, h) i.e.

ρl0 ≤ 2 ρg0/h as a function on s.

But since h is an ideal in g0, the right hand side is null and this inequality can
be rewritten as ρs ≤ 0. This tells us that s is abelian and h is solvable.

5.3 Sla and Rho

We are now able to prove the last remaining implication (1.10) by proving
the following stronger Proposition 5.7 which is the converse to Proposition
5.4.
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Proposition 5.7. Let g be a complex algebraic Lie algebra and h ⊂ g be a
complex Lie subalgebra. Then, one has the implication

Sla(g, h) =⇒ Rho(g, h) .

Beginning of proof of Proposition 5.7. The proof of Proposition 5.7 will be
by induction on the dimension of g, reducing to the case where both g and h
are semisimple that we discussed in Proposition 2.10. Using Lemma 3.6 and
Theorem 3.2, we can assume that h = [h, h]. In Proposition 4.9 and Lemma
4.10, we have introduced an intermediate algebraic complex Lie algebra h ⊂
g0 ⊂ g such that the unipotent radical v of h is included in the unipotent
radical u0 of g0, and for which we have the equivalences :

Rho(g, h)⇐⇒ Rho(g0, h) and Sla(g, h)⇐⇒ Sla(g0, h).

The proof will go on for two more sections.

5.4 Pushing down the Sla condition

We sum up the previous notation.

Notation
Let G0 = L0U0 be an algebraic complex Lie group,
where L0 is reductive and U0 is the unipotent radical of G0.
Let H = SV be a connected algebraic complex Lie subgroup,
where S is reductive and V is the unipotent radical of H.
Assume that S ⊂ L0 and V ⊂ U0, and let W0 := U0/V .
For w in W0, we denote by Sw the stabilizer of w in S.
Let g0, h,..., sw be the corresponding Lie algebras.

Lemma 5.8. Keep this notation. If h satisfies Sla(g0, h), then there exists a
non-empty Zariski open set W ′

0 ⊂ W0 such that for all w in W ′
0, sw satisfies

Sla(l0, sw)

Proof of Lemma 5.8. By Lemma 4.7, there exists an S-invariant vector sub-
space m ⊂ u0 such that u0 = m⊕ v and the map exp: m→ W0 = U0/V is a
bijection.

By assumption, there exists a sequence gn ∈ G0 such that the limit

h∞ := lim
n→∞

Adgn h (5.1)
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exists and is a solvable Lie subalgebra of g0.
Since V normalizes h, we can assume that

gn = `ne
Xn with `n ∈ L0 and Xn ∈ m. (5.2)

We denote by wn ∈ W0 the image wn := exp(Xn). The stabilizer swn of wn
in s is also the centralizer of Xn in s. Therefore, one has the equality

AdeXn swn = swn . (5.3)

Therefore, after extraction the limit s∞ := lim
n→∞

Ad`n swn exists and is a Lie

subalgebra of h∞. In particular, this limit s∞ is solvable. Therefore there
exists a maximal unipotent Lie algebra n0 of l0 such that

s∞ ∩ n0 = {0},

and, for n large, one also has Ad`nswn∩n0 = {0}. We have found at least one
point w0 in W0 whose stabilizer sw0 is transversal to a maximal unipotent
subalgebra n of l0. For such a subalgebra n the set

W ′
0 := {w ∈ W0 | sw ∩ n = {0}}

is a non-empty Zariski open subset of W0.
By the equivalence of Sla and Tmu proven in Proposition 2.1, and since

l0 is reductive, for all w in W ′
0, the stabilizer sw satisfies Sla(l0, sw).

5.5 Pushing up the Rho condition

We now explain how a disintegration argument allows us to
push the Rho-condition from (l0, sw) up to (g0, h). It is very
surprising that we need this analytic argument to relate these
two algebraic conditions.

End of proof of Proposition 5.7. We keep the notation of Sections 4.4 and
5.4, and we go on the proof by induction on the dimension of G.

First case : L0 6= G. We want to prove the condition Rho(g, h). We
first check that the regular representation of L0 in L2(L0×SW0) is tempered.
We argue as in the second case of Section 4.3. As in (4.4), we write the
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representation L2(L0 ×S W0) as an integral of L2(L0/Sw) so that we only
need to prove that, for Lebesgue almost all w in W0, the representation

L2(L0/Sw) is L0-tempered. (5.4)

Note that the non-empty Zariski open set W ′
0 introduced in Lemma 5.8 has

full Lebesgue measure. We have seen in Lemma 5.8 that

sw satisfies Sla(l0, sw), for all w in W ′
0.

Since dimL0 < dimG, our induction assumption implies that

sw satisfies Rho(l0, sw), for all w in W ′
0.

And therefore by Theorem 3.2,

sw satisfies Tem(l0, sw), for all w in W ′
0.

This proves (5.4) and the representation of L0 in L2(L0×SW0) is tempered.
Finally, using Proposition 4.9, one deduces that L2(G/H) is L0-tempered,

or equivalently h satisfies Rho(g, h).

Second case : L0 = G. In this case both G and H must be reductive.
As we have seen in Lemma 3.6, we can assume that h = [h, h]. We can also
assume that g = [g, g]. Therefore one is reduced to the case where both g
and h are semisimple which was settled in Proposition 2.10. This ends the
proof of Proposition 5.7.

This also ends simultaneously the proofs of Theorems 1.2, 1.6 and 5.1.

5.6 Comments and perspectives

We conclude by a few remaining questions

5.6.1 Openness of the Sla condition

Question 5.9. Let g be a complex Lie algebra. Is the set of Lie subalgebras
h satisfying Sla(g, h) an open set?

We have seen that this set is closed in Remark 5.3 and we have seen that
this set is open when g is semisimple in Corollary 1.7.
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5.6.2 Regular finite-dimensional representation

Let g be a complex semisimple Lie algebra and h be a complex Lie subalgebra.
We denote by Irr(g)reg the set of finite-dimensional irreducible represen-
tations V of g whose highest weight is regular. We now consider the condition

Rep(g, h) : there exists V ∈ Irr(g)reg such that P(V )h 6= ∅.

Question 5.10. Does one have the equivalence Rep(g, h)⇔ Orb(g, h) ?

We know that the implication =⇒ is true.
We also know that the converse ⇐= is true when h is reductive.

5.6.3 Parabolic induction of tempered representation

The strategy we followed in this series of paper could be simplified if we knew
the answer to the following

Conjecture 5.11. Let G be a real algebraic semisimple group, Q = LU be a
parabolic subgroup, and π be a unitary representation of Q. Does one have

π is L-tempered⇐⇒ IndGQπ is G-tempered.

We know that the implication ⇐= is true.
We have seen the implication =⇒ when π|U is trivial in Lemma 3.7.
We know the implication =⇒ when G = SL(n,R) and SL(n,C).
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