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Abstract: Let G be a real reductive Lie group, L a compact
subgroup, and π an irreducible admissible representation of G.
In this article we prove a necessary and sufficient condition for
the finiteness of the multiplicities of L-types occurring in π based
on symplectic techniques. This leads us to a simple proof of the
criterion for discrete decomposability of the restriction of unitary
representations with respect to noncompact subgroups (the author,
Ann. Math. 1998), and also provides a proof of a reverse statement
which was announced in [Proc. ICM 2002, Thm. D]. A number
of examples are presented in connection with Kostant’s convexity
theorem and also with non-Riemannian locally symmetric spaces.

Keywords: reductive group, unitary representation, symmetry
breaking, admissible restriction, momentum map, Harish-Chandra
module, convexity theorem.

1. Introduction and Statement of Main Results

This article is a continuation of [13, 14, 15], where we studied the restriction

of an irreducible unitary representation π of a real reductive Lie group G

with respect to a reductive subgroup G′. There, we highlight branching laws

without continuous spectrum. As we mention in Section 1.3 below, a

key to discrete decomposability is K ′-admissibility of π ([13, Thm. 1.2]),
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that is,

(1.1) dimCHomK′(τ, π|K′) < ∞ for any τ ∈ K̂ ′,

where K ′ is a maximal compact subgroup of G′.

In this article we prove a necessary and sufficient condition for the K ′-

admissibility of irreducible (g,K)-modules X with K ′ ⊂ K.

1.1. Two closed cones ASK(X) and CK(K′)

In order to state our main results, let us fix some notation.

Let G be a connected linear reductive Lie group, K a maximal compact

subgroup of G, and T a maximal torus of K. Their Lie algebras will be

denoted by the lowercase German letters. Fix a positive system ∆+(kC, tC),

and we write t∗+ (⊂
√
−1t∗) for the dominant Weyl chamber. The set of dom-

inant weights which lift to the torus T is denoted by Λ+. It is a submonoid of

t∗+ (that is, it contains 0 and is invariant under addition). The Cartan–Weyl

highest weight theory for the group version establishes a bijection between

K̂ with Λ+. We shall denote by Vµ the irreducible representation of K with

highest weight µ ∈ Λ+.

For a subset S in a Euclidean space E, the limit cone S∞ is the set

of E consisting of all elements of the form limj→∞ εjµj for some sequence

(µj , εj) ∈ S × R+ with limj→∞ εj = 0 ([7, Def. 2.4.2]). The asymptotic K-

support ASK(X) of a K-module X is defined to be the limit cone of the

K-support of X (Kashiwara–Vergne [8]):

SuppK(X) := {µ ∈ Λ+ : HomK(Vµ, X) 6= {0}} ⊂ Λ+,(1.2)

ASK(X) := SuppK(X)∞ ⊂ t∗+.(1.3)

Let K ′ be a closed subgroup of K, and set (k′)⊥ := {λ ∈ k∗ : λ|k′ ≡ 0}.
We regard t∗ as a subspace of k∗ via a K-invariant inner product on k, and

define a closed cone in
√
−1t∗ by

(1.4) CK(K ′) := t∗+ ∩
√
−1Ad∗(K)(k′)⊥.

These two closed cones ASK(X) and CK(K ′) are a finite union of convex

polyhedral cones (Propositions 2.6 and 2.3, respectively).
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1.2. Criterion for finite multiplicities

Here is our main theorem:

Theorem 1.1. Let X be a (g,K)-module of finite length, and K ′ a closed
subgroup of K. Then the following two conditions are equivalent:

(i) X is K ′-admissible;
(ii) ASK(X) ∩ CK(K ′) = {0}.

Some remarks are in order.
(1) The main result of [14] was a discovery of the criterion (ii) in Theorem
1.1, and the implication (ii) ⇒ (i) was proved in [14, Thm. 2.8] based on
micro-local study: the asymptotic K-support ASK(X) played a role in an
estimate of the singularity spectrum of the hyperfunction character of X|K .
In this article we give a new and simple proof for the implication (ii) ⇒
(i) based on symplectic geometry: the cone CK(K ′) is interpreted as the
momentum set for the natural Hamiltonian action on the cotangent bundle
T ∗(K/K ′), see Section 2.3.
(2) In this article, we also give a proof of the reverse implication (i) ⇒
(ii). This statement was announced in the proceeding of ICM 2002 [18,
Thm. D], and a sketch of the proof was given in the lecture notes [19,
Chap. 6], however, the full proof has not been published until this article.
(3) Theorem 1.1 still holds for disconnected groups, namely, we may allow
K to have finitely many connected components. In this case, the same proof
works by using the asymptotic K0-support of X regarded as a K0-module,
where K0 is the identity component of K.

1.3. Admissible restriction to noncompact subgroups

Let π be a unitary representation of G, and G′ a subgroup. By the gen-
eral theory of unitary representations of locally compact groups [29], the
restriction π|G′ is decomposed into the direct integral of irreducible unitary
representations of G′, uniquely up to isomorphisms when G′ is reductive [5],
as follows:

(1.5) π|G′ '
∫ ⊕

Ĝ′
mπ(τ)dµ(τ) (direct integral),

where Ĝ′ denotes the unitary dual of G′, that is, the set of equivalence
classes of irreducible unitary representations of G′, dµ is a Borel measure
of Ĝ′, and mπ : Ĝ′ → N ∪ {∞} is a measurable function. The irreducible
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decomposition (1.5) is called the branching law of the restriction π|G′ , and
mπ is the multiplicity. In general the branching law may involve continuous
spectrum, and the multiplicity mπ may take infinite values. The following
definition singles out a framework in which we could expect a simple and
detailed algebraic study of the restriction π|G′ (symmetry breaking, cf. [20]).

Definition 1.2 ([13, Sect. 1]). We say a unitary representation π of G is G′-
admissible if π splits into a direct sum of irreducible unitary representations
of G′

π|G′ '
∑⊕

τ∈Ĝ′

m(τ)τ (Hilbert direct sum)

with multiplicity m(τ) < ∞ for all τ ∈ Ĝ′.

If G′ itself is compact, then the decomposition (1.5) is automatically
discrete, and thus, G′-admissibility is nothing but the finiteness of the mul-
tiplicity mπ(τ) for all τ . In the general case where G′ is noncompact, we
take a maximal compact subgroup K ′ of G′. Then K ′-admissibility implies
G′-admissibility ([13, Thm. 1.2]). Therefore, as an immediate corollary of
Theorem 1.1, we recover:

Corollary 1.3 ([14, Thm. 2.9]). Let π ∈ Ĝ, and G′ a reductive subgroup
of G. If ASK(π) ∩

√
−1Ad∗(K)(k′)⊥ = {0}, then the restriction π|G′ splits

into a discrete sum of irreducible unitary representations of G′ with finite
multiplicities.

1.4. Restriction of discrete series representations

It is plausible, see [17, Conj. D], that the converse of [13, Thm. 1.2] also
holds, namely, G′-admissibility is equivalent to K ′-admissibility if the rep-
resentation arises as the restriction of an irreducible unitary representation
of a real reductive linear Lie group G to its reductive subgroup G′ with
maximal compact subgroup K ′. If this conjecture is affirmative, then the
criterion in Theorem 1.1 will give a necessary and sufficient condition for
the restriction π|G′ to be G′-admissible. In this section we discuss such an
example.

An irreducible unitary representation π of G is called a square-integrable
representation if it is realized in a closed invariant subspace of the regu-
lar representation on the Hilbert space L2(G). The isomorphism classes of
all such irreducible, square integrable representations constitute a subset
Disc(G) ⊂ Ĝ, the discrete series of G. In this case, the conjecture is true,
see [2, 22, 37]. By Theorem 1.1, we can detect whether π is G′-admissible or
not when restricted to a reductive subgroup G′:
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Corollary 1.4. Let π be a square-integrable representation of G, and G′ a
closed reductive subgroup of G. Then the following four conditions on the
triple (G,G′, π) are equivalent:

(i) The restriction π|G′ is G′-admissible.
(i)′ There is a map m : Disc(G′) → N such that

π|G′ '
∑⊕

τ∈Disc(G′)

m(τ)τ (Hilbert direct sum).

(ii) The restriction π|K′ is K ′-admissible.
(iii) ASK(π) ∩

√
−1Ad∗(K)(k′)⊥ = {0}.

Remark 1.5. In the case where (G,G′) is an irreducible symmetric pair,
the triple (G,G′, π) satisfying the criterion (iii) was classified in Kobayashi–
Oshima [24]. We refer to [1, 12, 13, 21, 35] for some explicit formulas of
discrete branching laws. On the other hand, Duflo–Galina–Vargas [2] stud-
ied in detail the case where the subgroup G′ is isomorphic to SL(2,R) or
PSL(2,R).

The proof of Theorem 1.1 and Corollary 1.4 is given in Section 2. Ap-
plications of Theorem 1.1 are given in connection with Kostant’s convexity
theorem for momentum maps and with the boundaries of semisimple sym-
metric spaces in Sections 3 and 4, respectively.

Notation: R≥0 := {x ∈ R : x ≥ 0}, Q≥0 := Q ∩ R≥0 and N≥0 := N ∩ R≥0.

2. Proof of Main Results

In this section, we give an interpretation of the two invariants ASK(π) and
CK(K ′) from a viewpoint of symplectic geometry, and prove Theorem 1.1.

2.1. Rational convex polyhedral cones

Let E be a finite-dimensional vector space over Q, and S a finite subset of
E. The convex polyhedral cone spanned by S is the smallest convex cone in
E, that is,

Q≥0 -spanS = {
k∑

j=1

ajsj : a1, · · · , ak ∈ Q≥0, s1, · · · , sk ∈ S}.

Similarly, we can define Z≥0 -spanS (⊂ E) and R≥0 -spanS (⊂ E ⊗Q R).
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Here is an elementary observation of the intersections of two such poly-
hedral cones.

Lemma 2.1. Let S, T be finite subsets of Qn. Then the following four con-
ditions on S and T are equivalent:

(i) Z≥0-spanS ∩ Z≥0-spanT 6= {0};
(ii) Q≥0-spanS ∩Q≥0-spanT 6= {0};
(iii) R≥0-spanS ∩ R≥0-spanT 6= {0};
(iv) (δ-neighbourhood of R≥0-spanS)∩R≥0-spanT is unbounded for some

δ > 0.

Proof. The implications (i) ⇔ (ii) ⇒ (iii) ⇒ (iv) are obvious. The implica-
tion (iv) ⇒ (iii) is immediate by taking the limit cone. For the remaining
implication (iii) ⇒ (ii), we observe that the condition (iii) holds if and only if
R≥0-spanS ∩R≥0-spanT contains a face of positive dimension, say W ′. We
extend W ′ to the equi-dimensional subspace W in Rn. Then W is defined
over Q, hence Q≥0-spanS ∩ Q≥0-spanT ⊃ W ′ ∩ Qn 6= {0}. Thus we have
proved (iii) ⇒ (ii).

2.2. Regular functions on affine KC-varieties

Let V be an irreducible affine KC-variety over C. Then the ring C[V] of
regular functions is finitely generated. We need some basic fact on the KC-
module structure of C[V].

Lemma 2.2. The K-support SuppK(C[V]) is a finitely generated submonoid
of Λ+, that is, there exist finitely many λ1, . . . , λk ∈ Λ+ such that

SuppK(C[V]) = Z≥0-span {λ1, . . . , λk}.

For the convenience of the reader, we review quickly its proof, see [1, 33].

Proof. We write N(KC) for the maximal unipotent subgroup of KC corre-
sponding to the positive system ∆+(kC, tC). Then the ring C[KC/N(KC)] '⊕

λ∈Λ+
Vλ is finitely generated since VλVµ = Vλ+µ. Then the left-hand side

of the isomorphism:

(C[KC/N(KC)]⊗ C[V])KC ' C[V]N(KC)

is finitely generated because KC is reductive. Thus the ring C[V]N(KC) is
finitely generated, whence the K-support SuppK(C[V]) is finitely generated
as a monoid.
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2.3. Hamiltonian actions and cotangent bundles

Let (M,ω) be a symplectic manifold, and K a Lie group acting on M as

symplectic diffeomorphisms. The action is called Hamiltonian if there exists

a momentum map Φ: M → k∗ with the property that dΦZ = ι(ZM )ω for all

Z ∈ k, where ZM denotes the vector field on M induced by Z, and ΦZ is the

function on M defined by ΦZ(m) = Φ(m)(Z). The momentum set ∆(M) is

defined by

(2.1) ∆(M) :=
√
−1Φ(M) ∩ t∗+.

Let K ′ be a connected closed subgroup of K. The cotangent bundle

T ∗(K/K ′) of the homogeneous spaceK/K ′ is given as a homogeneous vector

bundle K ×K′ (k′)⊥. Thus the symplectic manifold T ∗(K/K ′) is a Hamilto-

nian K-space with moment map

(2.2) Ψ: T ∗(K/K ′) → k∗, (k,X) 7→ Ad∗(k)X.

Let K ′
C ⊂ KC be the complexifications of K ′ ⊂ K. For the affine variety

KC/K
′
C, we take λ1, . . . , λk ∈ Λ+ as in Lemma 2.2 such that

(2.3) SuppK(C[KC/K
′
C]) = Z≥0-span {λ1, . . . , λk}.

Proposition 2.3. (1) The momentum set ∆(T ∗(K/K ′)) is equal to CK(K ′).

(2) CK(K ′) = ASK(C∞(K/K ′)). In particular, we have

CK(K ′) = R≥0-span {λ1, . . . , λk}.

Proof. (1) It follows from the definitions (2.2) and (1.4) that

(2.4) ∆(T ∗(K/K ′)) =
√
−1Ad∗(K)(k′)⊥ ∩ t∗+ = CK(K ′).

(2) By Sjamaar [33, Thms. 4.9 and 7.6], we have

∆(T ∗(K/K ′)) = ∆(KC/K
′
C) = R≥0-span {λ1, . . . , λk}.

Combining this with (2.4), we get the second statement.
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2.4. Associated varieties

The associated varieties V(X) are coarse approximation of g-modules X,
which we brought in [15] into an algebraic study of discretely decomposable
restrictions of Harish-Chandra modules. In this section we collect some im-
portant properties of associated varieties, and reduce the K ′-admissibility of
a Harish-Chandra module on V(X) to that of the space of regular functions
on V(X).

Let {Uj(gC)}j∈N be the standard increasing filtration of the universal
enveloping algebra U(gC). Suppose X is a finitely generated g-module. Let
F be a finite set of generators, and we set Xj := Uj(gC)F . The graded
algebra grU(gC) :=

⊕
j∈N Uj(gC)/Uj−1(gC) is isomorphic to the symmetric

algebra S(gC) by the Poincaré–Birkhoff–Witt theorem and we regard the
graded module grX :=

⊕
j∈NXj/Xj−1 as a S(gC)-module. Define

AnnS(gC)(grX) :={f ∈ S(gC) : fv = 0 for any v ∈ grX},
V(X) :={x ∈ g∗C : f(x) = 0 for any f ∈ AnnS(gC)(grX)}.

Then V(X) does not depend on the choice of F , and is called the associated
variety of X. If X is a Harish-Chandra module, that is, a (g,K)-module of
finite length, then the associated variety V(X) is a KC-stable closed subva-
riety of N (p∗C), see [36].

For two K-modules X1, X2, we use the notation from [13], and write
X1 ≤K X2 if

dimCHomK(τ,X1) ≤ dimCHomK(τ,X2) for any τ ∈ K̂.

Lemma 2.4 ([25, Prop. 3.3]). Let X be a (g,K)-module of finite length, and
V(X) the associated variety. We write V(X) = O1 ∪ · · · ∪ ON for the de-
composition into irreducible components. Then there exist finite-dimensional
representations Fj (1 ≤ j ≤ N) of K such that

X ≤K

N⊕
j=1

C[Oj ]⊗ Fj ,(2.5)

X ⊗ F ∗
j ≥K C[Oj ] for any j (1 ≤ j ≤ N).(2.6)

2.5. Basic properties of asymptotic K-support

We recall some basic properties of asymptotic K-support defined in (1.3).
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Lemma 2.5. Let X and Y be K-modules.

(1) If Y ≤K X then ASK(Y ) ⊂ ASK(X).

(2) ASK(X) = ASK(X ⊗ F ) for any finite-dimensional representation

F of K.

(3) ASK(X ⊕ Y ) = ASK(X) ∪ASK(Y ).

Proof. (1) Clear from SuppK(Y ) ⊂ SuppK(X).

(2) See [14, Lem. 3.1].

(3) Immediate from (S∪T )∞ = S∞∪T∞ for any subsets S and T .

2.6. Asymptotic K-supports of Harish-Chandra modules

The asymptotic K-support ASK(X) of a Harish-Chandra module X is de-

termined by its associated variety V(X), and is a finite union of convex

polyhedral cones. These properties will be used in the proof of Theorem 1.1.

Suppose we are in the setting of Lemma 2.4. For each irreducible compo-

nentOj of the associated variety V(X), we take a finite set Sj := {β1, . . . , βkj
}

so that SuppK(C[Oj ]) = Z≥0-spanSj as in Lemma 2.2. Taking the limit

cone, we have:

(2.7) ASK(C[Oj ]) = R≥0-spanSj .

Proposition 2.6. Let X be a (g,K)-module of finite length, and Sj (1 ≤
j ≤ N) finite subsets of Λ+ as above. Then, ASK(X) = ASK(C[V(X)]) =⋃N

j=1R≥0-spanSj.

Proof. By Lemmas 2.4 and 2.5, we have

ASK(X) ⊂
N⋃
j=1

ASK(C[Oj ]⊗ Fj) =

N⋃
j=1

ASK(C[Oj ]).

Again, by Lemmas 2.4 and 2.5, we get the reverse inclusion:

ASK(X) = ASK(X ⊗ F ∗
j ) ⊃ ASK(C[Oj ]).

By (2.7), we obtain Proposition 2.6.

We note that ASK(X) = {0} if and only if SuppK(X) is a finite set.

WhenX is a (g,K)-module of finite length, this is equivalent to the condition

V(X) = {0}, or equivalently, dimCX < ∞.
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2.7. Transversality of the K-supports of two K-modules

In this section we formulate the “stability of the transversality” of the K-
supports of two K-modules under taking the tensor product with finite-
dimensional representations. For given set S, we denote by ♯S the cardinality
of S.

Lemma 2.7. Let X and Y be K-modules.
(1) For any finite-dimensional K-module F , we have

♯ (SuppK(X) ∩ SuppK(Y ⊗ F )) ≤ dimC F ♯ (SuppK(X ⊗ F ∗) ∩ SuppK(Y )) .

(2) The following two conditions are equivalent:
(i) ♯ (SuppK(X ⊗ F ∗) ∩ SuppK(Y )) < ∞ for any finite-dimensional

representation F of K.
(ii) ♯ (SuppK(X ⊗ F1) ∩ SuppK(Y ⊗ F2)) < ∞ for any finite di-

mensional representations F1 and F2 of K.

Proof. (1) Suppose µ ∈ SuppK(X) ∩ SuppK(Y ⊗ F ). Since Vµ occurs in
Vν ⊗ F for some ν ∈ SuppK(Y ), one finds a weight v of F such that

(2.8) µ = ν + v.

Then we have HomK(Vν , X ⊗ F ∗) = HomK(Vν ⊗ F,X) ⊃ HomK(Vµ, Vµ) 6=
{0}. Hence ν ∈ SuppK(X ⊗ F ∗). The above consideration yields to a (non-
canonical) map
(2.9)

SuppK(X) ∩ SuppK(Y ⊗ F ) → SuppK(X ⊗ F ∗) ∩ SuppK(Y ), µ 7→ ν

with constraints (2.8). The cardinality of each fiber of the map (2.9) bounded
by dimF . Hence (1) is proved.

(2) The second assertion is a direct consequence of (1) by setting F =
F1 ⊗ F ∗

2 .

2.8. Admissible restriction and regular functions on KC/K
′
C

Let K ′ be a closed subgroup of a compact Lie group K, and K ′
C ⊂ KC

be their complexifications. In this section we relate K ′-admissibility of the
restriction of a K-module with the K-support of the space C[KC/K

′
C] of

regular functions on KC/K
′
C.
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Lemma 2.8. The following three conditions on a K-module X are equiva-
lent:

(i) X is K ′-admissible.
(ii) X ⊗ F ′ is K ′-admissible for any finite-dimensional representation

F ′ of K ′.
(iii) X is K-admissible, and for any finite-dimensional representation

F of K,

(2.10) ♯
(
SuppK(X ⊗ F ) ∩ SuppK(C[KC/K

′
C])

)
< ∞.

Proof. The implication (i) ⇐ (ii) is obvious.

(i) ⇒ (ii): Suppose (i) holds. Then for any τ ∈ K̂ ′, we have

dimCHomK′(τ,X ⊗ F ′) = dimCHomK′(τ ⊗ (F ′)∗, X) < ∞

because τ ⊗ (F ′)∗ is a finite direct sum of irreducible K ′-modules. Hence (ii)
is proved.
(ii) ⇒ (iii): The K-admissibility is obvious from the K ′-admissibility. Let
us verify (2.10). Let 1 denote the one-dimensional trivial representation of
K. Then we have

♯{µ ∈ SuppK(X ⊗ F ) : HomK′(1, µ|K′) 6= {0}} ≤ dimCHomK′(1, X ⊗ F ),

which is finite by the condition (ii). Hence (2.10) holds.

(iii) ⇒ (ii): Fix any τ ∈ K̂ ′, and any finite-dimensional representation F
of K. Let IndKK′τ be an (algebraically) induced representation. We define a
subset of K̂ by

(2.11) P := SuppK(IndKK′τ) ∩ SuppK(X ⊗ F ).

We claim P is a finite set. To see this, we take a finite-dimensional K-module
F1 such that HomK′(τ, F1|K′) 6= {0}. Then, we have

IndKK′τ ≤K IndKK′(F1|K′) ' C[KC/K
′
C]⊗ F1

as K-modules. In particular, we have

(2.12) P ⊂ SuppK(C[KC/K
′
C]⊗ F1) ∩ SuppK(X ⊗ F ).

The right-hand side of (2.12) is a finite set by the assumption (iii) and
Lemma 2.7 (2). Therefore, P is a finite set.
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Next, let us consider the following equation:
(2.13)

dimCHomK′(τ,X ⊗ F ) =
∑
µ∈K̂

dimCHomK′(τ, µ) dimCHomK(µ,X ⊗ F ).

The summation in (2.13) is actually taken over the finite set P. Furthermore,
each summand is finite because X ⊗ F is K-admissible. Hence, (2.13) is
finite. This means that X ⊗ F is K ′-admissible. Since F is an arbitrary
finite-dimensional representation of K, (ii) follows.

2.9. Proof of Theorem 1.1

We are ready to complete the proof of the main result of this article.

Proof of Theorem 1.1. Let V(X) be the associated variety of a (g,K)-module
X, and V(X) = O1 ∪ · · · ∪ ON the decomposition into irreducible compo-
nents (cf. [28]). By Lemma 2.2, there are finite subsets S1, · · · , SN and T
such that {

SuppK(C[Oj ]) = Z≥0-spanSj (1 ≤ j ≤ N),

SuppK(C[KC/K
′
C]) = Z≥0-spanT.

In place of the conditions (i) and (ii) in Theorem 1.1, we consider the fol-
lowing conditions:
(i)′: ♯ (SuppK(X ⊗ F ) ∩ SuppK(C[KC/K

′
C])) < ∞ for any finite-dimensional

representation F of K.
(ii)′: R≥0-spanSj ∩ R≥0-spanT = {0} for any j = 1, . . . , N .

We already know the equivalence (i) ⇔ (i)′ from Lemma 2.8, and the
equivalence (ii) ⇔ (ii)′′ from Propositions 2.3 and 2.6. Thus, the proof of
Theorem 1.1 will be completed if we show the equivalence (i)′ ⇔ (ii)′.
(i)′ ⇒ (ii)′: If (i)′ holds, then Lemma 2.4 implies

♯
(
SuppK(C[Oj ]) ∩ SuppK(C[KC/K

′
C])

)
< ∞,

or equivalently, ♯ (Z≥0-spanSj ∩ Z≥0-spanT ) < ∞, whence the condition
(ii)′ follows from Lemma 2.1.
(ii)′ ⇒ (i)′: Let Fj be as in Lemma 2.4. It follows from (2.5) that

SuppK(X ⊗ F ) ⊂
N⋃
j=1

SuppK(C[Oj ]⊗ Fj ⊗ F ).
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Take δ := max{‖ν‖ : ν is a weight of Fj ⊗ F for some j}. Then,

N⋃
j=1

SuppK(C[Oj ]⊗ Fj ⊗ F ) ⊂
N⋃
j=1

δ-neighborhood of SuppK(C[Oj ])

⊂
N⋃
j=1

δ-neighborhood of R≥0-spanSj .

Since the condition (ii)′ implies that the intersection of R≥0-spanT with any
δ-neighborhood of R≥0-spanSj is relatively compact (Lemma 2.1), we get

♯ (SuppK(X ⊗ F ) ∩ Z≥0-spanT ) < ∞.

This shows the implication (ii)′ ⇒ (i)′. Hence Theorem 1.1 is proved.

2.10. Proof of Corollary 1.4

Proof of Corollary 1.4. The implication (i)′ ⇒ (i) is obvious, and the reverse
implication (i) ⇒ (i)′ follows from the fact that any discrete summand in
the restriction π|G′ for π ∈ Disc(G) belongs to Disc(G′), see [16, Cor. 8.7].

Then the implication (i)′ ⇒ (ii) follows from the fact that for every µ ∈ K̂ ′

there are at most finitely many elements in Disc(G′) having µ as a K ′-type,
whereas the implication (ii) ⇒ (i) is proved in [13, Thm. 1.2]. Since the
equivalence (ii) ⇔ (iii) holds by Theorem 1.1, Corollary 1.4 is proved.

3. (g,K)-modules with finite weight multiplicities

In this section, we relate weight multiplicities for (g,K)-modules with cele-
brated Kostant’s convexity theorem [27].

3.1. Simple Lie groups of (non)Hermitian type

Let G be a real reductive linear Lie group, K a maximal compact subgroup,
ZK the center of K, and T s a maximal torus of the derived group Ks :=
[K,K]. Then T := T sZK is a maximal torus of K. When G is a simple Lie
group, ZK is at most one-dimensional.

A simple Lie group G (or its Lie algebra g) is called of Hermitian type,
if ZK is one-dimensional, or equivalently, if the associated Riemannian sym-
metric space G/K is a Hermitian symmetric space. It is the case when the
Lie algebra g is su(p, q), so(2n), so∗(2n), sp(n,R), e6(−14), or e7(−25), whereas
g = sl(n,R) (n 6= 2), so(p, q) (p, q 6= 2), su∗(2n), sp(p, q), sl(n,C), so(n,C),
or sp(n,C) are not of Hermitian type.
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3.2. Admissibility for the restriction to toral subgroups

In contrast to g-modules in the BGG category O, there are not many (g,K)-

modules with finite weight multiplicities. We formulate this feature as fol-

lows.

Theorem 3.1. Suppose that X is (g,K)-module of finite length. If dimCX =

∞ then dimCHomT s(χ,X) = ∞ for some χ ∈ T̂ s.

We shall see that Theorem 3.1 is derived from Kostant’s convexity the-

orem (Fact 3.6) and from Theorem 1.1. The following two corollaries for

simple Lie groups G are immediate consequence of Theorem 3.1 and its

proof (Section 3.3).

Corollary 3.2. Suppose that G is not of Hermitian type. Then for any

infinite-dimensional irreducible (g,K)-module X, there exists χ ∈ T̂ such

that dimCHomT (χ,X) = ∞.

Corollary 3.3. Suppose that G is of Hermitian type, and X a (g,K)-module

of finite length. Then X is T -admissible if and only if X is ZK-admissible.

Remark 3.4. An irreducible (g,K)-module X is called a highest weight mod-

ule if X is b-finite for some Borel subalgebra b of gC = g⊗R C. There exist

infinite-dimensional irreducible highest weight (g,K)-modules if and only if

G is of Hermitian type. In this case any such X is ZK-admissible (see [14,

Rem. 3.5 (3)]), hence X is also T -admissible.

Corollary 3.3 fits well into the Kirillov–Kostant–Duflo orbit philosophy

(see [3, 11, 23, 26, 30, 31] for instance):

Proposition 3.5. Suppose G is a simple Lie group of Hermitian type, and

O a coadjoint orbit in g∗. Then the following two conditions are equivalent:

(i) The momentum map O → t∗ is proper.

(ii) The momentum map O → z∗k is proper.

3.3. An application of Kostant’s convexity theorem

Suppose K is a connected compact Lie group, and T is a maximal torus

of K. Let WK be the Weyl group for the root system ∆(kC, tC). By a K-

invariant inner product 〈 , 〉 on k, we identify t⊥ (⊂ k∗) with the orthogonal

complementary subspace of k, and write prk→t : k → t for the projection with

respect to the direct sum decomposition k = t⊕ t⊥.
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For a finite subset S = {s1, · · · , sk} of t, the convex hull of S is the
smallest convex set containing S, which is expressed as:

Conv(S) :=

{
k∑

i=1

aisi : a1, · · · , ak ≥ 0, a1 + · · ·+ ak = 1

}
.

We recall Kostant’s convexity theorem:

Fact 3.6 ([27, Thm. 8.2]). For any Y ∈ t, we have prk→t(Ad(K)Y ) =
Conv(WKY ).

Fact 3.6 determines the momentum set ∆(T ∗(K/T )) of the cotangent
bundle of the flag manifold K/T as follows:

Proposition 3.7. Suppose that K is a connected semisimple compact Lie
group. Then

∆(T ∗(K/T )) = CK(T ) = t∗+.

Proof. Fix a nonzero element Y ∈ t. Then Kostant’s convexity theorem
shows that prk→t(Ad(K)Y ) contains the origin 0. In particular, there exists
k ∈ K such that Y ′ := Ad(k)Y ∈ t⊥. This means that Y ∈ Ad(K)t⊥, hence
prk→t(Ad(K)t⊥) = t. By (2.4), we get Proposition 3.7.

Proof of Theorem 3.1. Applying Proposition 3.7 to Ks/T s, we obtain

CK(T s) = t∗+

because K = KsZK . In turn, Theorem 1.1 tells that X is T s-admissible if
and only if ASK(X) = {0}, or equivalently, dimX < ∞.

Proof of Corollary 3.2. Immediate from Theorem 3.1 because T = T s.

Proof of Corollary 3.3. We regard (ts)∗ as a subspace of t∗ via the direct sum
decomposition t = ts⊕ zk. By Proposition 3.7, we have CK(T ) = t∗+∩ (ts)∗ =
CK(ZK), whence Corollary 3.3.

4. Admissible restriction of degenerate principal series
representations

In the orbit philosophy due to Kirillov–Kostant, the Zuckerman derived func-
tor modules Aq(λ) are supposed to be attached to elliptic coadjoint orbits,
whereas parabolically induced representations IndGQ(Cλ) are to hyperbolic
coadjoint orbits. Classification theory of admissible restrictions has been de-
veloped mainly for Aq(λ), see [2, 13, 15, 19, 24, 25] for example. In this
section we apply Theorem 1.1 to induced representations from a parabolic
subgroup Q of G and to their subquotient modules (Q-series).
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4.1. Irreducible representations in the Q-series

Suppose that Q is a parabolic subgroup of a reductive Lie group G.

Definition 4.1. An irreducible admissible representation π of G is said to
be in the Q-series if π occurs as a subquotient of the induced representation
IndGQ τ from a finite-dimensional representation τ of Q.

Example 4.2. When Q = G, π is in the Q-series if and only if dimC π < ∞.

Example 4.3. When Q is a minimal parabolic subgroup P , any irreducible
admissible representation of G belongs to the Q-series by Harish-Chandra’s
subquotient theorem.

The next example is a generalization of Example 4.3.

Example 4.4. Let G/H be a reductive symmetric space, that is, H is an
open subgroup of Gσ = {g ∈ G : σg = g} for some involutive automorphism
σ of a real reductive Lie groupG. Take a Cartan involution θ ofG commuting
with σ, and a maximal abelian subspace a in g−σ,−θ = {X ∈ g : σX = θX =
−X}. Let Q be a parabolic subgroup of G defined by a generic element
X ∈ a, that is, Q is the normalizer of the real parabolic subalgebra:

q = the sum of the eigenspaces of ad(X) with nonnegative eigenvalues.

Such Q is uniquely determined up to conjugation by an element of G. We
say that Q is a minimal parabolic subgroup for G/H.

Remark 4.5. Let G/H be a reductive symmetric space, and Q a minimal
parabolic subgroup for G/H. Then any irreducible representation that can
be realized as a subquotient in the regular representation on C∞(G/H)
belongs to the Q-series.

4.2. Restriction of representations in the Q-series

We give a necessary and sufficient condition for all irreducible representa-
tions in the Q-series to be K ′-admissible where K ′ is a (not necessarily,
maximal) compact subgroup.

Theorem 4.6. Let G be a real reductive linear Lie group, K a maximal
compact subgroup, K ′ a closed subgroup of K, and Q a parabolic subgroup
of G. Then the following two conditions are equivalent:

(i) for any irreducible representation π of G in the Q-series, π|K′ is
K ′-admissible;

(ii) CK(Q ∩K) ∩ CK(K ′) = {0}.
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Proof. Since the induced representation IndGQ(τ) is of finite length as a G-
module, the condition (i) is equivalent to the following condition:
(i)′ IndGQ(τ) is K ′-admissible for any finite-dimensional representation τ of
Q.
By Proposition 2.3 and Lemma 2.5, the asymptotic K-support of IndGQ(τ)
is given by
(4.1)
ASK(IndGQ(τ)) = ASK(IndKQ∩K(τ |Q∩K)) = ASK(IndKQ∩K(1)) = CK(Q∩K).

Hence Theorem 4.6 is derived from Theorem 1.1.

Let P = MAN be a minimal parabolic subgroup of G. Applying Theo-
rem 4.6 to the case Q = P , we obtain from Example 4.3 the following:

Corollary 4.7. Let K ′ be a closed subgroup of K. Then the following two
conditions are equivalent:

(i) any irreducible admissible representation of G is K ′-admissible;
(ii) CK(M) ∩ CK(K ′) = {0}.

Remark 4.8. When G is of real rank one, then K/M is isomorphic to a
sphere. In this case, Vargas [34] classified all subgroups K ′ satisfying the
condition in Corollary 4.7.

Example 4.9. Let G = SO(2p, 2q), and K ′ = U(p) × U(q). Suppose Q is
a parabolic subgroup of G with Levi subgroup L ' SO(2p − 1, 2q − 1) ×
GL(1,R). Then Q ∩K = L ∩K, and via the standard basis of t∗ ' Rp+q,

CK(Q ∩K) ={(a, 0, · · · , 0; b, 0, · · · , 0) : a, b ≥ 0},
CK(K ′) ={(x1, x1, · · · , x[ p

2
], x[ p

2
], (0); y1, y1, · · · , y[ q

2
], y q

2
, (0)) :

x1 ≥ x2 ≥ · · · , y1 ≥ y2 ≥ · · · }.

Hence CK(Q ∩K) ∩ CK(K ′) = {0}. Thus the criterion (ii) in Theorem 4.6
is fulfilled. Let G′ = U(p, q) be the natural subgroup of G containing K ′.
Then for any irreducible unitary representation π of G in the Q-series is G′-
admissible when restricted to the subgroup G′ because it is K ′-admissible.
See [6] and [13] for branching laws of representations π in the Q-series with
respect to the pair (G,G′) = (SO(2p, 2q), U(p, q)).

In Example 4.9, the two polyhedral cones CK(Q ∩K) and CK(K ′) are
easy to compute, in particular, because both (K,Q ∩ K) and (K,K ′) are
symmetric pairs. In the next section, we recall some useful general facts for
this.
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4.3. Momentum set ∆(T ∗(K/K′)) for symmetric pair

Suppose that σ is an involutive automorphism of a connected compact Lie
group K. We use the same letter σ to denote its differential, and write
k = kσ + k−σ for the eigenspace decomposition of σ with eigenvalues +1
and −1. We take a σ-stable Cartan subalgebra j of k such that j−σ is a
maximal abelian subspace of k−σ, and fix a positive system Σ+(kC, j

−σ
C ) of

the restricted root system Σ(kC, j
−σ
C ). Choose a positive system ∆+(kC, jC)

compatible with Σ+(kC, j
−σ
C ) in the following sense:

{α|j−σ
C

: α ∈ ∆+(kC, jC)} \ {0} = Σ+(kC, j
−σ
C ).

Let (j−σ)∗+ and j∗+ be the dominant chamber for Σ+(kC, j
−σ
C ) and ∆+(kC, jC),

respectively. We may regard (j−σ)∗+ ⊂ j∗+ according to the direct decomposi-
tion j = jσ ⊕ j−σ. When a positive system ∆+(kC, tC) is given independently
of σ, we choose an inner automorphism of k which induces bijections ι : t

∼→ j
and ι∗ : ∆+(kC, jC)

∼→ ∆+(kC, tC), and set

(t−σ)∗+ := ι∗((j−σ)∗+) ⊂
√
−1t∗.

Proposition 4.10. Suppose (K,K ′) is a symmetric pair defined by an in-
volutive automorphism σ. Then ∆(T ∗(K/K ′)) = CK(K ′) = (t−σ)∗+.

Remark 4.11. SupposeK is a maximal compact subgroup of a connected real
reductive Lie group, and Q a standard parabolic subgroup. If the unipotent
radical ofQ is abelian, then (K,Q∩K) forms a symmetric pair, and therefore
we can apply also Proposition 4.10 to the computation of CK(Q ∩ K) in
Theorem 4.6.

4.4. Boundaries of spherical varieties with hidden symmetries

As typical examples of Theorem 4.6, we formulate the following theorem
motivated by analysis on standard pseudo-Riemannian locally symmetric
spaces Γ\G/H ([9, 10]):

Theorem 4.12. Let G/H be a symmetric space with G simple Lie group,
and Q a minimal parabolic subgroup for the symmetric space G/H. Let G′

be a reductive subgroup of G acting properly on G/H, such that GC/HC is
G′

C-spherical. Then any irreducible admissible representation π of G in the
Q-series is K ′-admissible. In particular, the restriction π|G′ is infinitesimally
discretely decomposable in the sense of [19, Def. 4.2.3].
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This theorem is a counterpart of [21, Thm. 5.1] where π was assumed to
be a subquotient of the regular representation of G in the space D′(G/H)
of distributions on G/H.

In the setting of Theorem 4.12, the symmetric space G/H admits a com-
pact Clifford–Klein form Γ\G/H as the quotient by a torsion-free cocompact
subgroup Γ in G′. The classification of the triples (G,H,G′) in Theorem 4.12
is given in [10]. Applications of Theorem 4.12 will be discussed in subsequent
papers. In this article, we illustrate Theorem 4.12 only by some examples:

Example 4.13. The triple (G,H,G′) = (SO(2p, 2q), SO(2p−1, 2q), U(p, q))
satisfies the assumptions of Theorem 4.6. In this case, Example 4.9 is recov-
ered.

Example 4.14. The triple (G,H,G′) = (SO(8, 8), SO(7, 8), Spin(1, 8)) sat-
isfies the assumption of Theorem 4.6. Via the standard basis of t∗ ' R8, we
may write as

CK(Q ∩K) = {(a, 0, 0, 0; b, 0, 0, 0) : a, b ≥ 0},
CK(K ′) = {((x1, x2, x3, x4), ζ(x1, x2, x3,−x4)) : x1 ≥ x2 ≥ x3 ≥ |x4|},

where ζ is an outer automorphism of order 3 for the root systemD4. Thus the
criterion (ii) in Theorem 4.6 is fulfilled, and Theorem 4.12 is verified in this
case. Explicit branching laws of irreducible square-integrable representations
in the Q-series with respect to (G,G′) = (SO(8, 8), Spin(1, 8)) are obtained
in [21, Thm. 5.5] and in [32].
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