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Abstract We consider the meromorphic continuation of an integral transform that
gives rise to a conformally covariant,symmetry breaking operatorAλ ,ν between
the natural family of representationsI(λ ) and J(ν) of the indefinite orthogonal
groupG= O(p+1,q+1) and its subgroupG′ = O(p,q+1), respectively, realized
in function spaces on the conformal compactifications of flat pseudo-Riemannian
manifoldsRp,q ⊃ Rp−1,q. In this article, we determine explicitly the image of the
renormalized operatorAλ ,ν for all (λ ,ν) ∈ C2. In particular, the complex parame-
ters(λ ,ν) for which the image ofAλ ,ν coincides with{0}, C, finite-dimensional
representations, the minimal representation, or discrete series representations for
pseudo-Riemannian space forms are explicitly classified. A graphic description of
the K-types of the image is also provided. Our results extend a part of the prior
results of Kobayashi and Speh [Memoirs of Amer. Math. Soc. 2015] in the Rieman-
nian case whereq= 0.
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1 Introduction

Let (π,Hπ) be a representation of a groupG, and(π ′,Hπ ′) the one of a subgroup
G′. A symmetry breaking operatoris a linear map

T : Hπ → Hπ ′

that intertwines the actions of the subgroupG′. Then the image ofT is a G′-
submodule ofπ ′.

In the last decade, symmetry breaking operators for infinite-dimensional repre-
sentations of reductive groupsG ⊃ G′ have been actively studied as a new line of
investigation on branching problems of representation theory [10, 12, 22, 23] and
also interacted with some other areas such as automorphic form theory or conformal
geometry among others, see [4, 11].

1.1 Conformal representationsI(λ ) andJ(ν) associated with
pseudo-Riemannian manifoldsRp,q ⊃ Rp−1,q

In this article we discuss symmetry breaking operators motivated from conformal
geometry. LetG=O(p+1,q+1) be the automorphism group of the quadratic form
onRp+q+2 of signature(p+1,q+1) defined by

Qp+1,q+1(x) = x2
0+ · · ·+x2

p−x2
p+1−·· ·−x2

p+q+1.

Let Rp,q be the(p+q)-dimensional vector spaceRp+q endowed with flat pseudo-
Riemannian structure

ds2 = dx2
1+ · · ·+dx2

p−dx2
p+1−·· ·−dx2

p+q

of signature(p,q). Then, the groupG acts isometrically onRp+1,q+1, and confor-
mally on the conformal compactification

X := (Sp×Sq)/{±1}

of Rp,q, which is the direct product ofp- and q-spheres equipped with pseudo-
Riemannian structuregSp ⊕ (−gSq), modulo the direct product of antipodal maps,
see Segal [24, Chap. II]. By the general theory of conformal groups [16, Sect. 2],
one has a natural family of representationsI(λ ) of G on C∞(X) with parameter
λ ∈ C. We normalizeI(λ ) such thatI(0) is the space of sections, andI(dimX) is
the space of densities. Via the twisted pull-backι∗λ : C∞(X) ↪→C∞(Rp,q) of the con-
formal embeddingι : Rp,q ↪→ X, we may realizeI(λ ) on the subspaceι∗λ (C

∞(X))
of C∞(Rp,q), see [18, (2.8.6)].

Similarly, another groupG′ :=O(p,q+1) acts on the conformal compactification
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Y := (Sp−1×Sq)/{±1}

of the flat pseudo-Riemannian manifoldRp−1,q, and one has a natural family of
representationsJ(ν) of G′ onC∞(Y) for ν ∈ C.

Thus we have aG-moduleI(λ ) and a moduleJ(ν) of the subgroupG′ with com-
plex parametersλ andν . The object of our study is symmetry breaking operators

I(λ )→ J(ν)

with focus on their images.

1.2 Degenerate principal series representations

The representationI(λ ) of G= O(p+1,q+1) defined in Section1.1by using con-
formal geometry may be interpreted as adegenerate principal series representation
of the real reductive Lie groupG as follows. LetP= MAN+ be a maximal parabolic
subgroup ofG with Levi part MA ≃ O(p,q)×{±1}×R. For a characterCλ of
A≃ R, we regard it as that ofP via the quotient mapP→ P/MN+ ≃ A, and form a
G-equivariant line bundle

Lλ = G×PCλ → G/P.

Then the (unnormalized) induced representation IndG
P(Cλ ) is realized in the Fŕechet

space of smooth sections for the line bundleLλ → G/P. Our parametrization is
chosen in a way that IndG

P(Cλ ) contains a finite-dimensional submodule if−λ ∈ 2N
and a finite-dimensional quotient ifλ −(p+q)∈ 2N. Then we have an isomorphism
of G-modules

I(λ )≃ IndG
P(Cλ ).

The realization onι∗λ (C
∞(X)) (⊂C∞(Rp+q)) is referred to as theN-pictureof I(λ ).

Similarly to I(λ ), we have an isomorphism asG′-modules

J(ν)≃ IndG′
P′ (Cν) ,

where IndG
′

P′ (Cν) is the (unnormalized) induced representation ofG′ from a charac-
terCν of a maximal parabolic subgroupP′ with Levi partO(p−1,q)×{±1}×R.

1.3 Construction of symmetry breaking operators

We realizeRp−1,q as a submanifold ofRp,q by lettingxp = 0. This determines the
embeddingsY ↪→ X between their conformal compactifications, andG′ = O(p,q+
1) ↪→ G= O(p+1,q+1) between conformal groups. Applying the general results
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proven in Kobayashi–Speh [22, Chap. 3] to our specific setting, we see that, for
any symmetry breaking operatorT : I(λ ) → J(ν), there exists a distributionKT ∈
D ′ (Rp+q) such that for allf ∈ I(λ )

ι∗ν (T f)(x′) = Restxp=0◦
∫
Rp+q

KT(x−y)(ι∗λ f )(y)dy, (1)

wherex′ = (x1, · · · , x̂p, · · · ,xp+q) ∈ Rp−1,q andx= (x1, · · · ,xp+q) ∈ Rp,q.
The distribution kernelKT satisfies certain covariance properties, which characterize
that T is a G′-intertwining operator (i.e., T is a symmetry breaking operator), see
[22, Thm. 3.16].

By [21, Lem. 2.22],T is adifferentialsymmetry breaking operator if Supp(KT)=
{0}. In contrast,T is called aregular symmetry breaking operator ([22, Def. 3.3])
if Supp(KT) contains an interior point, or equivalently, if Supp(KT) = Rp+q in our
setting. Differential symmetry breaking operatorsI(λ )→ J(ν) in our setting were
classified in [19], by using the F-method [7, 8], see also [13] for a generalization.
On the other hand, there exists a unique holomorphic family of symmetry breaking
operators, to be denoted byAλ ,ν , up to scalar multiplication, such thatAλ ,ν is a
regular symmetry breaking operator for an open dense subset of(λ ,ν) ∈ C2, see
Remark12below. It is constructed as follows. We set

Qp,q(x) := x2
1+ · · ·+x2

p−x2
p+1−·· ·−x2

p+q.

Theorem 1(regular symmetry breaking operator). Suppose thatp,q≥ 1. We let

(G,G′) := (O(p+1,q+1),O(p,q+1))

as before. The linear operatorAλ ,ν : I(λ )→ J(ν), initially defined as the integral
operator(1) with locally integrable kernel function

Aλ ,ν :=
1

Γ
(

λ−ν
2

)
Γ
(

λ+ν−p−q+1
2

)
Γ
(

1−ν
2

) ∣∣xp
∣∣λ+ν−p−q |Qp,q(x)|−ν (2)

on Rp,q for Reν ≪ 0 and Re(λ + ν) ≫ 0, intertwines the action of the subgroup
G′, and extends to a family of symmetry breaking operators that depend holomor-
phically on(λ ,ν) in the entireC2.

Remark 2 The Gamma factor in(2) is chosen in an optimal way in the sense that

• Aλ ,ν depends holomorphically on(λ ,ν) ∈ C2;
• the set of the zeros ofAλ ,ν is a discrete subset inC2 (see Theorem4) below.

Remark 3 Theorem1 gives a generalization of Kobayashi–Speh [22, Thm. 1.5]
which treated theq= 0 case. We note that the normalizing Gamma factor is different
in theq= 0 case.
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1.4 Image of the symmetry breaking operatorsAλ ,ν

The goal of this article is to determine the image of the holomorphic continuation
of the regular symmetry breaking operator

Aλ ,ν : I(λ )→ J(ν)

for all (λ ,ν) ∈C2 given in Theorem1. We note thatI(λ ) is aG-module andJ(ν) is
a G′-module and thatG⫌ G′. This sort of problem was first studied in Kobayashi–
Speh [22, Chap. 13], and a complete solution was given in the Riemannian case
whereq= 0. In this article, we shall consider a more general case whereq> 0. This
means thatRp,q is of indefinite metric and the conformal groupG= O(p+1,q+1)
has real rank greater than one. For simplicity of the exposition, we confine ourselves
to the casep> 1 in this article.

Our main theorem (Theorem15) will be formulated in Section3 after preparing
some combinatorial notation. As an introduction, we avoid complicated definitions
in the general case, and focus on specific features of Theorem15 instead, giving
explicit criteria for the parameter(λ ,ν) to fulfill the following conditions:

(1) Image(Aλ ,ν) = {0}, i.e., Aλ ,ν vanishes (Theorem4);
(2) Image(Aλ ,ν) is finite-dimensional (Theorem5);
(3) Image(Aλ ,ν) is the trivial one-dimensional representation (Corollary7);
(4) Image(Aλ ,ν) is the minimal representation (Theorem8);
(5) Image(Aλ ,ν) is a discrete series for the pseudo-Riemannian space form (Theo-

rem9).

(1) Vanishing condition ofAλ ,ν .
In the theory of symmetry breaking operators, it is an important question to deter-

mine the zeros and poles of the meromorphic continuation of the regular symmetry
breaking operators. Once it is normalized as in Remark2, of particular importance is
to find precisely the parameters for which the holomorphic continuation of the nor-
malized regular symmetry breaking operator vanishes. In those places, we expect
that the representations are reducible and that the dimension of symmetry breaking
operators jumps up, see [22, Thm. 11.4] for instance.

In the caseq= 0, it is proved in [22, Thm. 8.1] that the zeros of the normalized
regular symmetry breaking operator are given by the following discrete set:

Leven:= {(λ ,ν) ∈ Z2 : λ ≤ ν ≤ 0, λ ≡ ν mod 2}. (3)

In the caseq≥ 1, the zeros ofAλ ,ν are given as follows. For simplicity, we assume
p ̸= 1.

Theorem 4.Supposep ≥ 2 and q ≥ 1. Then the following two conditions on
(λ ,ν) ∈ C2 are equivalent:

(i) Aλ ,ν = 0.
(ii) (λ ,ν) ∈ //∩ |||.
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The definition of the subsets// and ||| will be givenC2 in Section3.1. For here
we present a more concrete formula of the intersection//∩ ||| by comparing it with
Leven. For this, we consider the following discrete set inC2.

Γ := {(λ ,ν) ∈ Z2 : 0< ν andλ ≤ ν}.

Then by (12) and (14) below, one sees

//∩ |||=

{
(Leven∩ (2Z)2)⊔ (Γ ∩ (2Z)2) if q is odd,

Leven⊔ (Γ ∩ (2Z+1)2) if q is even.
(4)

(2) When is Image(Aλ ,ν) finite-dimensional?
Whereas the vanishing condition of the symmetry breaking operatorAλ ,ν de-

pends on the parity ofq in the previous theorem, see (4), it turns out that the con-
dition on (λ ,ν) ∈ C2 for Image(Aλ ,ν) to be a (nonzero) finite-dimensional vector
space is independent of the parities ofp andq as below.

Theorem 5(finite-dimensional image).Supposep≥ 2 andq≥ 1. Then the follow-
ing two conditions on(λ ,ν) ∈ C2 are equivalent.

(i) Image(Aλ ,ν : I(λ )→ J(ν)) is nonzero and finite-dimensional.
(ii) ν ∈ 2Z, ν ≤ 0 andλ satisfies one of the following:

• λ ∈ 2Z andν < λ ;
• λ ∈ C−2Z.

Graphically, Theorem5 corresponds to the colored red left corner bounded by the
“barrier A++” in Case A of Theorems20, 26, 31 and35 in later sections. We note
that if one of (therefore both of) the equivalent conditions (i) and (ii) in Theorem5
are fulfilled, then Image(Aλ ,ν) is an irreducible representation of the subgroupG′.

Remark 6 See [22, Thm. 13.1] for an analogous theorem in the caseq = 0 and
[22, Thm. 14.9] for some application.

(3) When is Image(Aλ ,ν) isomorphic to the trivial one-dimensional representa-
tion?

The trivial one-dimensional representation ofG′ occurs as a subrepresentation of
the degenerate principal series representationJ(ν) with ν = 0. Then the equivalence
(i) ⇔ (iii) in the following corollary is an immediate consequence of Theorem5
with ν = 0. The equivalence (i)⇔ (ii) follows from a trick in Kobayashi–Speh [22,
Chap. 14].

Corollary 7 Supposep≥ 2andq≥ 1. Then the following three conditions onλ ∈C
are equivalent:

(i) Image(Aλ ,0 : I(λ )→ J(0)) is the trivial one-dimensional representation ofG′.
(ii) The regular symmetry breaking operatorAλ ,0 induces a nonzeroG-intertwining

operator
I(λ )→C∞(G/G′). (5)
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(iii) λ ∈ C−{−2,−4,−6, · · ·}.

In Corollary 7, the resultingG-intertwining operator (5) is nothing but a (gener-
alized) Poisson transform to the semisimple symmetric spaceG/G′, which is the
pseudo-Riemannian space formM+

p,q+1 of signature(p,q+ 1) with positive con-
stant curvature.

(4) When is Image(Aλ ,ν) isomorphic to the minimal representation?
For p+ q odd (≥ 7), there exists an irreducible unitary representationϖ of

G′ = O(p,q+1), referred to as theminimal representation. Here by minimal rep-
resentation we mean that the annihilator of the smooth representationϖ∞ in the
enveloping algebraU(gC) is the Joseph ideal [3]. This is the unique irreducible uni-
tary representation ofG′ whose Gelfand–Kirillov dimension is equal top+q−2,
which is smaller than that of any other infinite-dimensional unitary representation of
G′. It is remarkable that our symmetry breaking operatorAλ ,ν constructs the mini-
mal representation as its image whenp+q≡ 1 mod 4 by a specific choice of(λ ,ν)
as follows.

Theorem 8(minimal representation). Suppose thatp+q= 4k+1 for somek∈ Z
with k≥ 2. If we take

(λ ,ν) := (2k+1,2k−1),

then the underlying(g′,K′)-module ofImage(Aλ ,ν : I(λ )→ J(ν)) is isomorphic to
that of the minimal representationϖ of the subgroupG′ = O(p,q+ 1). In par-
ticular, Aλ ,ν f is a Yamabe harmonic on the pseudo-Riemannian manifoldY =
(Sp×Sq)/{±1} for any f ∈ I(λ ).

The last statement of Theorem8 follows from the geometric construction of the min-
imal representation proved in [16, Thms. 3.4.2 and 3.6.1]. See Case E in Theorem
26 for a graphic interpretation of Theorem8.

(5) When is Image(Aλ ,ν) isomorphic to a discrete series representation for a
generalized hyperboloid?

Let Mε
p,q be the(p+q)-dimensional pseudo-Riemannian space form of signature

(p,q) of constant sectional curvature+1 (ε = +) and−1 (ε = −), referred also to
as a generalized hyperboloid from its realization as hypersurfaces inRp+q+1:

M+
p,q ={x∈ Rp+1,q : Qp+1,q(x) = 1},

M−
p,q ={x∈ Rp,q+1 : Qp,q+1(x) =−1}.

For simplicity, we treat only the caseε =− here. Then the groupG′ =O(p,q+1)
acts isometrically and transitively onM−

p,q. As a homogeneous space, we have the
following diffeomorphism

M−
p,q ≃ O(p,q+1)/O(p,q).

Let □p,q be the Laplacian of the pseudo-Riemannian manifoldM−
p,q. For p> 0 and

q>0, the Laplacian□p,q is not an elliptic operator. In this case, there exist countably
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manyL2-eigenvalues of□p,q onM−
p,q, given explicitly by

{ν(ν −2ρ) : ν ∈ Z,ρ < ν}, (6)

see Faraut [1] or Strichartz [25]. Here we set

ρ :=
1
2
(p+q−1). (7)

The isometry groupG′ acts irreducibly on the Hilbert space ofL2-eigenfunctions of
□p,q for each eigenvalueν(ν −2ρ). Following the same notation as in [17, Sect. 5],

we writeπ p,q+1
−,ν−ρ for the resulting irreducible unitary representation. The represen-

tation π p,q+1
−,ν−ρ is referred to as adiscrete series representationfor the generalized

hyperboloidM−
p,q.

Theorem 9(discrete series for pseudo-Riemannian space form).Supposep ≥
2 and q ≥ 1. Let ν ∈ Z satisfy ρ < ν. Then the underlying(g,K)-module of
Image(Aλ ,ν : I(λ ) → J(ν)) is isomorphic to that of a discrete series representa-
tion for the pseudo-Riemannian space formM−

p,q if and only if ν ≡ q+ 1 mod 2
andλ satisfies the following conditions.
Case 1.q is even.

(λ ∈ 2Z andν < λ ) or (λ ∈ C−2Z).
Case 2.q is odd.

(λ ∈ 2Z+1 andν < λ ) or (λ ∈ C− (2Z+1)).

To see Theorem9, we use a realization ofπ p,q+1
−,ν−ρ as a subrepresentation ofJ(ν)

with K-typesE+−
ν given by the barrierA+−

p,q+1,−ν , see Example14. Then Theorem9
follows from a graphic description of Image(Aλ ,ν) in

Cases E, E′, and Ebis in Theorem20;

Cases G and Gbis in Theorem26with ν > ρ;

Cases C and Cbis in Theorem31with ν > ρ;

Cases B, B′, and Bbis in Theorem35.

The paper is organized as follows. In Section2 we give brief comments on
our problem from a perspective on the general problem of restrictions of repre-
sentations, in particular, for pairs of reductive groupsG ⊃ G′. In Section3, we
determine Image(Aλ ,ν : I(λ ) → J(ν)) for all (λ ,ν) ∈ C2 in Theorem15 when
(G,G′) = (O(p+1,q+1),O(p,q+1)) with p≥ 2 andq≥ 1. A graphic description
of Theorem15 is given in Sections4–7 depending on the parities ofp andq, from
which theorems in Introduction follow. A detailed proof of Theorem15will appear
elsewhere.

Notation. N := {0,1,2, · · ·}. For two subsetsA andB of a set, we writeA−B :=
{a∈ A : a /∈ B} rather than the usual notationA\B.
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2 Branching program ABC for restriction of representations

In this section, we provide some brief comments on the topic treated here from a
perspective on the general problem of restriction of (infinite-dimensional) represen-
tations of real reductive Lie groups. See [10, 11] for more details.

2.1 Finiteness criterion for multiplicities in branching of
representations

SupposeG⊃ G′ are a pair of reductive groups andπ is an irreducible representation
of G. The restriction ofπ to the subgroupG′ is no more irreducible in general as a
representation ofG′. If G is compact, then any irreducibleπ is finite-dimensional
and splits into a finite direct sum

π |G′=
⊕

π ′∈Ĝ′

m(π,π ′)π ′

of irreduciblesπ ′ of G′ with multiplicities m(π,π ′). In this case, the multiplicity
m(π,π ′) is given by

dimHomG′(π ′,π|G′) = dimHomG′(π|G′ ,π ′). (8)

However, for noncompactG′ and for infinite-dimensionalπ, the restrictionπ|G′

is not always a direct sum of irreducible representations, even ifπ is a unitary repre-
sentation ofG. In general, we need the notion of direct integral of Hilbert spaces to
give an irreducible decomposition of the restrictionπ|G′ . Sometimes there is no con-
tinuous spectrum in the irreducible decomposition of the restrictionπ|G′ , even when
G′ is noncompact. See [5, 6] for the condition that the restrictionπ|G′ is discretely
decomposable.

For the more general case whereπ is nonunitary, the equality (8) does not hold:
both of the spaces HomG′(·, ·) depend on the underlying topologies on the represen-
tation spaces ofπ andπ ′.

To clarify our formulation, we recall that, associated to a continuous represen-
tation π of a Lie group on a Banach spaceH , a continuous representationπ∞ is
defined on the Fŕechet spaceH ∞ of C∞-vectors of the Banach representation on
H . Given another representationπ ′ of the subgroupG′, we consider the space of
continuousG′-intertwining operators (symmetry breaking operators)

HomG′
(
π∞ |G′ ,

(
π ′)∞)

. (9)

If both π and π ′ are admissible representations of finite length of reductive Lie
groupsG andG′, respectively, then the dimension of the space (9) is determined
by the underlying(g,K)-moduleπK of π and the(g′,K′)-moduleπ ′

K′ of π ′, and is
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independent of the choice of Banach globalizations becauseπ∞ and(π ′)∞ are deter-
mined uniquely byπK andπ ′

K′ , respectively, by the Casselman–Wallach theory [27,
Chap. 11]. We denote bym(π,π ′) the dimension of (9), and call it themultiplicity
of π ′ in the restrictionπ |G′ .

In general, the multiplicitym(π,π ′) may be infinite, even whenG′ is a maximal
reductive subgroup ofG andπ is irreducible. This happens even when(G,G′) is a
symmetric pair. By using the theory of real spherical spaces initiated in Kobayashi–
Oshima [20], the criterion for finite-multiplicities is discovered in [9, 20] as follows.

Fact 10 Let (G,G′) be a pair of real reductive Lie groups, and(GC,G′
C) its com-

plexification.

(1) The multiplicitym(π,π ′) is finite for all irreducible representationsπ of G and
all irreducible representationsπ ′ of G′ if and only if a minimal parabolic sub-
group ofG′ has an open orbit on the real flag variety ofG.

(2) The multiplicitym(π,π ′) is uniformly bounded if and only if a Borel subgroup
of G′

C has an open orbit on the complex flag variety ofGC.

The complete classification of symmetric pairs(G,G′) satisfying the above geo-
metric criteria was accomplished in Kobayashi–Matsuki [15]. The(G,G) = (O(p+
1,q+1),O(p,q+1)) satisfies the criterion in (2) (and in particular, the criterion in
(1), too), and therefore,m(π,π ′) is uniformly bounded. Furthermore, Sun–Zhu [26]
proved thatm(π,π ′)≤ 1.

In the theory of symmetry breaking operators, we consider “quotient map” from
a representation of a groupG to that of the subgroupG′. On the other hand, one may
reverse arrows and consider “embedding map” from a representation of a subgroup
G′ to that ofG, e.g., consider the following spaces:

HomG′
((

π ′)∞
,π∞|G′

)
or Homg′,K′

(
π ′

K′ ,πK|g′,K′
)
.

We observe that there are canonical injective maps:

HomG′

(((
π ′)∨)∞

,
(
π∨)∞|G′

)
⊂ HomG′

(
π∞|G′ ,π ′∞) ,

Homg′,K′
(
(π ′)∨K′ ,(π∨)K|g′,K′

)
⊂ Homg′,K′

(
πK|g′,K′ ,π ′

K′
)
,

where the symbol∨ stands for the contragredient representation. The study of these
objects in the left-hand sides is closely related to the theory of discretely decompos-
able restrictions, [5, 6], which we do not discuss here. Concerning the right-hand
sides for symmetry breaking operators in the category of(g,K)-modules and in
the category of admissible smooth representations of moderate growth, we raised a
question in [9, Sect. 10] about automatic continuity property for symmetry breaking
operators as a generalization of the theory of Casselman–Wallach (G=G′ case): it is
plausible that if(G,G′) satisfies one of (therefore any of) the equivalent conditions
in Fact10 (1), then the natural injection map below is surjective

HomG′
(
π∞|G′ ,π ′∞) ↪→ Homg′,K′

(
πK|g′,K′ ,π ′

K′
)
,
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see [9, Rem. 10.2 (4)].

2.2 Program ABC for branching

The study of restriction of representations (branching problem) is an important but
involves different types of difficult problems even in very special cases. The first
author analysed various (in fact,wild) features and phenomena about restrictions
for reductive Lie groups, and proposed in [10] a program for studying the restriction
of representations of reductive groups, which may be summarized as follows:

Stage A. Abstract features of the restriction;
Stage B. Branching law ofπ |G′ ;
Stage C. Construction of symmetry breaking operators.

Fact10 is an example for Stage A in branching problems. Stage A aims for devel-
oping the general theory of the restrictionsπ |G′ (e.g., spectrum, multiplicity), which
would single out thegoodtriples (G,G′,π). In turn, we could expect concrete and
detailed study of those restrictionsπ |G′ in Stages B and C.

For instance, Fact10assures the followinga priori estimate:

m(π,π ′) is uniformly bounded

if the pair of Lie algebras(g,g′) is a real form of(sl(n+1,C),gl(n,C)) or (o(n+
1,C),o(n,C)), in particular, if(G,G′) is of the form

(G,G′) = (O(p+1,q+1),O(p,q+1)) . (10)

“Stage B” is a traditional question, however, it is often very difficult to compute
explicitly branching laws of infinite-dimensional representations of (noncompact)
reductive groups. The first systematic study of “Stage C” is given by a monograph
by Kobayashi–Speh [22], which corresponds to the caseq= 0, more precisely, the
case

π: spherical principal series representations ofG= O(n+1,1),

π ′: spherical principal series representations ofG′ = O(n,1),

Stage C includes the following subproblems.

(C1) construct symmetry breaking operators explicitly;
(C2) classify all symmetry breaking operators;
(C3) find residue formulæ for symmetry breaking operators;
(C4) study functional equations among symmetry breaking operators;
(C5) determine the images of subquotients by symmetry breaking operators.



12 Toshiyuki Kobayashi and Alex Leontiev

The subprogram (C1)–(C5) was considered by Kobayashi–Speh [22] with a com-
plete answer for the pair(G,G′) = (O(n+ 1,1),O(n,1)) of real rank one groups
(10).

In [14], we discussed the subprograms (C1)–(C4) for degenerate spherical prin-
cipal series representationsπ = I(λ ) of G andπ ′ = J(ν) of G′ for the pair of higher
real rank groups. The (C5) is the main issue of this article.

3 Main theorem

In this section we determine the image of the meromorphic continuation of the reg-
ular symmetry breaking operator

Aλ ,ν : I(λ )→ J(ν)

for all (λ ,ν) ∈ C2. The statement of the main results uses the following notation:

(1) subsets//, \\, |||, X andX+ (see Section3.1),
(2) description ofG′-submodules of the target spaceJ(ν) (see Section3.2).

Theorems4–9 are special cases of the main theorem of this section (Theorem15).

3.1 Subsets//, |||, \\ andX in C2

We introduce some subsets ofC2. It should be noted that the symbols//, \\, ||, and
||| below are defined as subsets ofC2, and are not as binary relations.

Definition 11 We let

\\ := {(λ ,ν) ∈ C2 : p+q−1−λ −ν ∈ 2N}, (11)

// := {(λ ,ν) ∈ C2 : ν −λ ∈ 2N}, (12)

X := //∩\\, (13)

||| := {(λ ,ν) ∈ C2 : ν ∈ −2N∪ (q+1+2Z)}. (14)

For the sets//, \\, andX, we have adopted the same notation with the one intro-
duced in [22] which dealt with theq= 0 case. It is easy to see

X∩{(λ ,ν) ∈ C2 : ν ∈ Z}= /0 if and only if p+q is even. (15)

As in [22], we defineℓ ∈ N and andk∈ N by

2ℓ=ν −λ for (λ ,ν) ∈ //, (16)

2k=p+q−1−λ −ν for (λ ,ν) ∈ \\. (17)
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We define two subsets ofX= \\∩// by

X+ := {(λ ,ν) ∈ X : ρ ≤ ν}= {(ρ − ℓ−k,ρ + ℓ−k) : ℓ,k∈ N, ℓ≥ k} ,
X− := {(λ ,ν) ∈ X : ρ > ν}= {(ρ − ℓ−k,ρ + ℓ−k) : ℓ,k∈ N, ℓ < k} .

Here we recall from (7) thatρ = 1
2(p+q−1).

We decompose the set//∪\\ into a disjoint union

//∪\\= //⊔ (\\−X) ,

and further decompose the set// into three subsets

//= (//− (X+∪ |||))⊔ (//∩ |||)⊔ (X+− |||) ,

where we have usedX+ ⊂ //. Combining these decompositions together, we have a
decomposition of the parameter setC2 of (λ ,ν) into a disjoint union of five subsets
as follows

C2 = (//∪\\)c⊔ (//− (X+∪ |||))⊔ (//∩ |||)⊔ (X+− |||)⊔ (\\−X) . (18)

Here we set(//∪\\)c := C2 − (//∪\\). Then the image of the regular symme-
try breaking operator is described according to which subset the parameter(λ ,ν)
belongs to.

Remark 12 The support of the distribution kernelAλ ,ν of the symmetry breaking
operatorAλ ,ν does not contain an interior point, if(λ ,ν)∈ //, \\, or if ν ∈ 1+2N,
respectively, whenp,q≥ 1 ([14, Thm. 6.3]).

3.2 Description of submodules of the principal seriesJ(ν)

The degenerate spherical principal series representationJ(ν) of the groupG′ =
O(p,q+ 1) has at most four irreducible subquotients. The number of irreducible
subquotients depends onν ∈ C and on the parities ofp andq. In this section, we
give a quick review of the socle filtration ofJ(ν) from Howe and Tan [2]. We note
that our group isG′ = O(p,q+1) whereas their group in [2] is O(p,q).

Let K′ = O(p)× O(q+ 1). Then K′ is a maximal compact subgroupG′ =
O(p,q+ 1), and theG′-module J(ν) is multiplicity-free asK′-modules for any
ν ∈ C. To describe itsK′-types, it is convenient to use the notion of spherical har-
monics, which we recall now. The space of spherical harmonics of degreea∈ N is
defined by

H a(Rp) :={F ∈ Pol[x1, · · · ,xp] :
p

∑
j=1

∂ 2F

∂x2
j

= 0,
p

∑
j=1

x j
∂F
∂x j

= aF}

≃{ f ∈C∞(Sp−1) : ∆Sp−1 f =−a(a+ p−2) f},
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where the second isomorphism is induced by the restriction mapF 7→ f = F |Sp−1.
ThenH a(Rp) ̸= {0} if p≥ 2 or if p= 1 anda∈ {0,1}, and the orthogonal group
O(p) acts irreducibly onH a(Rp).

With this notation, the spaceJ(ν)K′ of K′-finite vectors is decomposed into the
multiplicity-free direct sum of irreducibleK′-modules as follows.

J(ν)K′ ≃
⊕

(a,b)∈N2
even

H a(Rp)⊠H b(Rq+1), (19)

where we set
N2

even:= {(a,b) ∈ N2 : a≡ b mod 2}.

Therefore, anyG′-submodule is characterized by itsK′-types, which, in turn, is
parametrized as a subset ofN2

evenvia (19). We introduce the following notation.

Definition 13 We set

E++
ν :=

{
{(a,b) ∈ N2

even: a+b≤−ν}
N2

even

if ν ∈ −2N,
if ν ̸∈ −2N,

E+−
ν :=

{
{(a,b) ∈ N2

even: a−b≤−ν +q−1}
N2

even

if 1−ν +q∈ 2Z,
if 1−ν +q ̸∈ 2Z,

E−+
ν :=

{
{(a,b) ∈ N2

even: a−b≥ ν − p+2}
N2

even

if ν − p∈ 2Z,
if ν − p ̸∈ 2Z,

E−−
ν :=

{
{(a,b) ∈ N2

even: a+b≥ ν +3− p−q}
N2

even

if p+q−1−ν ∈ −2N,
if p+q−1−ν ̸∈ −2N.

Then theK′-types of any nonzeroG′-submodules ofJ(ν) are given by the inter-
section of someEδ ,ε

ν (δ ,ε =±).

Example 14 In Section1.4, we discussed discrete series representationsπ p,q+1
−,ν−ρ

(ν ∈Z andν > ρ) for the pseudo-Riemannian space formM−
p,q=O(p,q+1)/O(p,q).

Then, ifν ≡ q+1 mod 2, then the smooth representation(π p,q+1
−,ν−ρ)

∞ of π p,q+1
−,ν−ρ is

isomorphic to the subrepresentation ofJ(ν) with K-types given byE+−
ν , see [17,

Sect. 5].

As in [2], we define functions ofR2 by

A++
p,q,c(a,b) := c−a−b,

A+−
p,q,c(a,b) := c−a+b+q−2,

A−+
p,q,c(a,b) := c+a−b+ p−2,

A−−
p,q,c(a,b) := c+a+b+ p+q−4.

Then we may characterizeE±±
ν by the “barriers” as follows:

• whenν ∈ 2Z,

E++
ν = {(a,b) ∈ N2

even: A++
p,q+1,−ν(a,b)⩾ 0};
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• when 1−ν +q∈ 2Z,

E+−
ν = {(a,b) ∈ N2

even: A+−
p,q+1,−ν(a,b)⩾ 0};

• whenν − p∈ 2Z,

E−+
ν = {(a,b) ∈ N2

even: A−+
p,q+1,−ν(a,b)⩾ 0};

• whenp+q−1−ν ∈ 2Z,

E−−
ν = {(a,b) ∈ N2

even: A−−
p,q+1,−ν(a,b)⩾ 0}.

In later sections, we use the symbolA±± to refer to the line (or “barrier”) de-
fined by the zero locus of the functionsA±±(x,y), indicating that the submodules
graphically given by the barrier.

3.3 Main theorem: image ofAλ ,ν

As we mentioned, sinceJ(ν) is multiplicity-free as aK′-module, anyG′-submodule
of J(ν) is characterized by itsK′-types, or equivalently, the corresponding subset of
N2

evenvia (19).

Theorem 15.Supposep≥ 2 andq≥ 1. ThenImage
(
Aλ ,ν : I(λ )→ J(ν)

)
is a G′-

submodule ofJ(ν) which is characterized by itsK′-types according to the decom-
position(18) of the parameter space as follows:

E++
ν ∩E+−

ν if (λ ,ν) ∈ C2− (//∪\\) ,
E++

ν ∩E+−
ν if (λ ,ν) ∈ //− (X+∪ |||) ,

/0 if (λ ,ν) ∈ //∩ |||,
E++

ν ∩E+−
ν ∩E−+

ν ∩E−−
ν if (λ ,ν) ∈ X+− |||,

E++
ν ∩E+−

ν ∩E−+
ν ∩E−−

ν if (λ ,ν) ∈ \\−X.

3.4 Restatement of Theorem15

The conditions on the parameter(λ ,ν) in Theorem15 may look somewhat com-
plicated, however, the subsets ofC2 given in (18) are of simpler forms when we
specify the parities ofp,q andν as follows.

Proposition 16 Let ρ = 1
2(p+q−1) as in(7). Supposeν ∈ Z. Then the subsets in

(18) reduce to the following sets in Table1 when we impose conditions onp,q and
ν in the left two columns in the table.

To be precise about Table1, we use the following convention. Under the conditions
on p,q andν described in the left two columns, the symbol in each box gives the
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//− (X+∪ |||) //∩ ||| X+− ||| \\−X

p even
q even

ν even
ν ≤ 0

/0 // /0 \\

ν even
ν > 0

// /0 /0 \\

ν odd /0 // /0 \\

p odd
q even

ν even
ν ≤ 0

/0 // /0 \\−X

ν even
0< ν < ρ // /0 X+ \\−X

ν even
ρ ≤ ν //−X+ /0 X+ /0

ν odd /0 // /0 \\−X

p even
q odd

ν even
ν < ρ /0 // /0 \\−X

ν even
ρ ≤ ν /0 // /0 /0

p odd
q odd

ν odd // /0 /0 \\
ν even /0 // /0 \\

Table 1: Decomposition ofC2− (//∪\\) in (18)

same subset of(λ ,ν) with that of the 0-th row above the box. For example,//−X+

in the sixth row in the left column means that ifp is odd andq is even, then

(//−X+)∩V = (//− (X∪ |||))∩V,

whereV := {(λ ,ν) ∈ C×2Z : ρ ≤ ν}. Proposition16 is a set-theoretic assertion,
and is easy to be verified. For the sake of completeness, we provide a quick proof for
Proposition16 in Sections4–7, depending on the parities ofp andq. We shall give
graphic description of Theorem15in Sections4–7, from which we can easily derive
Theorems4–9 in Section1. The proof of Theorem15will be given elsewhere.

4 Graphic description of the image of the regular symmetry
breaking operators: Casep even andq even

In Sections4–7, we give a graphic description of Theorem15 according to the
parities ofp andq. In this section, we treat the case where bothp andq are even.

4.1 Socle filtration of the target spaceJ(ν)

The image of the symmetry breaking operatorAλ ,ν : I(λ )→ J(ν) is aG′-submodule
of the (degenerate) principal series representationJ(ν) of G′ = O(p,q+1). Since



Image of conformally covariant, symmetry breaking operators forRp,q 17

the G′-moduleJ(ν) is of finite length, there are at most finitely many candidates
for Image

(
Aλ ,ν

)
. In our setting, the structure ofG′-submodules (socle filtration) of

J(ν) is known for allν ∈ C, see [2]. Although we do not need the results of [2] for
the proof of Theorem15, it is helpful to use the socle filtration of theG′-module
J(ν) when we “visualize” Theorem15.

SinceJ(ν) is K′-multiplicity free, anyG′-submodule ofJ(ν) is characterized by
its K′-types. By abuse of notation, we use the symbolsEδε

ν (δ ,ε =±), see Definition
13, to denote theG′-submodule of the principal series representationJ(ν) of G′ =
O(p,q+1) havingK′-types parametrized by the subsetEδε

ν of N2
even. However, we

keep the notation{0} andJ(ν) instead of /0 andN2
even, respectively.

We review from [2] the socle filtration of the principal series representationsJ(ν)
of G′ with p even andq even.

Fact 17 Supposep andq are even. Letρ = 1
2(p+q−1) as in(7).

(1) TheG′-moduleJ(ν) is irreducible if and only ifν ∈ C−Z.
(2) Supposeν ∈ Z. ThenG′-submodules ofJ(ν) are classified by theirK′-types as

follows.

• For ν even,

{0}⫋ E++
ν ⫋ E−+

ν ⫋ J(ν) if ν ≤ 0,

{0}⫋ E−+
ν ⫋ J(ν) if ν > 0.

• For ν odd,

{0}⫋ E+−
ν ⫋ J(ν) if ν < 2ρ,

{0}⫋ E+−
ν ⫋ E−−

ν ⫋ J(ν) if ν ≥ 2ρ.

The following lemma is readily seen from Definition13 set theoretically, and fits
well with Fact17.

Lemma 18 Suppose thatp andq are even. Forν ∈ Z, theG′-modules with theK′-
types

∩
ε∈{±} E+ε

ν or
∩

δ ,ε∈{±} Eδε
ν are given as follows. By abuse of notation, we

identifyG′-modules ofJ(ν) with theirK′-types parametrized by subsets ofN2
even.

E++
ν ∩E+−

ν E++
ν ∩E+−

ν ∩E−+
ν ∩E−−

ν

ν even
ν ≤ 0 E++

ν E++
ν

ν > 0 J(ν) E−+
ν

ν odd E+−
ν E+−

ν

4.2 Reduction of the parameter set for(λ ,ν)

In this section we discuss the parameter spaceC2 of (λ ,ν). We recall the disjoint
union (18) of C2 and analyze its main part, namely, the following disjoint decom-
position.
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//∪\\= (//− (X+∪ |||))⊔ (//∩ |||)⊔ (X+− |||)⊔ (\\−X) . (20)

Lemma 19 For p andq both even, Proposition16holds.

Proof. By (15), X∩ (C×Z) = /0 becausep+q is even. Hence, under the condition
that ν ∈ Z, the four sets in the right-hand side of (20) amount to the sets in the
second row of the table (21) below. Here we have used the same convention as in
Proposition16.

//− (X+∪ |||) //∩ ||| X+− ||| \\−X
//− ||| //∩ ||| /0 \\ (21)

Sinceq is even, the definition of||| (see (14)) shows:

(λ ,ν) ∈||| if and only if ν ≤ 0 whenν is even;
(λ ,ν) ∈||| for any odd integerν .

Therefore the first two sets//− ||| and//∩ ||| in the second row of (21) reduce to
the sets in the following table according to conditions onν ∈ Z.

//− ||| //∩ |||

ν even
ν ≤ 0 /0 //
ν > 0 // /0

ν odd /0 //

Thus Lemma19 is proved. ⊓⊔

4.3 Description of the image of symmetry breaking operators (p
even,q even)

For p andq both even, the critical cases are when(λ ,ν) ∈ Z2. We divide the pa-
rameter spaceZ2 into the following regions (see Theorem20 below for the precise
definition). Here, we follow the convention of Kobayashi–Speh [22] thatν is for the
x-axis andλ is for they-axis.

ν ∈ 2Z ν ∈ 2Z+1

λ ∈ 2Z E

λ ∈ 2Z+1
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We are ready to describe graphically the image of the regular symmetry breaking
operators forp andq both even as follows.

Theorem 20.Let p andq be both even.

(1) Supposeν /∈ Z. Then the regular symmetry breaking operatorAλ ,ν : I(λ ) →
J(ν) is surjective for anyλ ∈ C.

(2) Supposeν ∈ 2Z.

(2-a)For λ ∈ 2Z, theK′-types of the image ofAλ ,ν are given by the subsets of
N2

even in the following colored red regions via(19).

Case A:{
ν ≤ 0,
ν < λ .

Case B:
0< ν.

Case C:{
ν ≤ 0,
λ ≤ ν.

(2-b) For λ ∈ 2Z+1, we divide the parameter set(λ ,ν) ∈ (2Z+1)× (2Z) into
the following three cases.

Case A′: ν ≤ 0,
Case B′: 0< ν ,λ +ν > p+q−1,
Case D: 0< ν ,λ +ν ≤ p+q−1.

Then the image ofAλ ,ν in Cases A′ or B′ is described graphically by the
same diagram with the one in Cases A or B, respectively, whereas the one
in Case D is given as follows.

Case D:

(2-c) For λ /∈ Z, we divide the parameter space(C−Z)×2Z into two cases.
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Case Abis: ν ≤ 0,
Case Bbis: 0< ν.

Then the image of the regular symmetry breaking operatorAλ ,ν in Cases
Abis or Bbis is described graphically by the same diagram with the one in
Cases A or B, respectively.

(3) Supposeν ∈ 2Z+1. We divide the parameter spaceC× (2Z+1) into the fol-
lowing four cases:

Case E: λ ∈ 2Z,
Case E′: λ ∈ 2Z+1, ν < λ ,
Case F: λ ∈ 2Z+1, ν ≥ λ ,
Case Ebis: λ ∈ C−Z.

Then the image ofAλ ,ν is described graphically by the following diagram.

Cases E, E′ and Ebis Case F

Remark 21 In each case, the arrangement of the barriersA±± may vary.

Assuming Theorem15, we complete the proof of Theorem20.
Proof of Theorem20. By Lemmas18 and19, Theorem20 follows readily from
Theorem15. ⊓⊔

5 Graphic description of the image of the regular symmetry
breaking operator: Casep odd (≥ 3) and q even

In this section we give a graphic description of Theorem15 in the case wherep is
odd (≥ 3) andq is even.

5.1 Socle filtration of the target spaceJ(ν)

In this section we give a graphic description of Theorem15 in the case wherep
is odd (≥ 3) andq is even. We review from [2] the socle filtration of the principal
series representationsJ(ν) of G′ = O(p,q+1) with p odd (≥ 3) andq even as in
Fact17. We keep the notation from (7) thatρ = 1

2(p+q−1).

Fact 22 Supposep is odd(≥ 3) andq is even.
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(1) The G′-moduleJ(ν) is irreducible if and only ifν ∈ C−Z or ν is an even
integer satisfying0< ν < 2ρ.

(2) For ν ∈ Z, G′-submodules ofJ(ν) are classified by theirK′-types as follows:

• For ν even,

{0}⫋ E++
ν ⫋ J(ν) if ν ≤ 0,

{0}⫋ J(ν) if 0< ν < 2ρ,
{0}⫋ E−−

ν ⫋ J(ν) if 2ρ ≤ ν .

• For ν odd,

{0}⫋ E+−
ν ∩E−+

ν ⫋ E+−
ν ,E−+

ν ⫋ J(ν) if ν < ρ,
{0}⫋ E+−

ν ,E−+
ν ⫋ J(ν) if ν = ρ,

{0}⫋ E+−
ν ,E−+

ν ⫋ E+−
ν ⊕E−+

ν ⫋ J(ν) if ρ < ν.

The following lemma formulated with the same convention as in Lemma18is read-
ily seen from Definition13set theoretically, and fits well with Fact22.

Lemma 23 Suppose thatp is odd (≥ 3) and q is even. We retain the notation
that ρ = 1

2(p+ q− 1). For ν ∈ Z, the G′-modules with theK′-types
∩

ε∈{±} E+ε
ν

or
∩

δ ,ε∈{±} Eδε
ν are given in the following table.

E++
ν ∩E+−

ν E++
ν ∩E+−

ν ∩E−+
ν ∩E−−

ν

ν even
ν ≤ 0 E++

ν E++
ν

0< ν < 2ρ J(ν) J(ν)
2ρ ≤ ν J(ν) E−−

ν

ν odd
ν < ρ E+−

ν E+−
ν ∩E−+

ν
ν = ρ E+−

ν {0}
ρ < ν E+−

ν {0}

5.2 Reduction of the parameter set for(λ ,ν)

For p+q odd, we use the following observation:

Lemma 24 Supposep+q is odd.

(1) If 2ν ≥ p+q−1, then(λ ,ν) ∈ \\ implies(λ ,ν) ∈ //.
(2) If 2ν ≤ p+q−1, then(λ ,ν) ∈ // implies(λ ,ν) ∈ \\.

Proof. Clear from the definition. ⊓⊔
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Then the four sets in the decomposition (20) have a simpler form as follows.

Lemma 25 For p odd (≥ 3) andq even, Proposition16holds.

Proof. As in the proof of Lemma19, we have

(λ ,ν) ∈||| if and only if ν ≤ 0 whenν is even;
(λ ,ν) ∈||| for any odd integerν ,

becauseq is even. We also note thatX+∩{(λ ,ν) : ν < ρ} = /0 by definition. Now
Lemma25 is clear from Lemma24. ⊓⊔

5.3 Description of the image of symmetry breaking operators (p
odd≥ 3, q even)

For p odd andq even, the critical cases are when(λ ,ν) ∈ (2Z)2 or (2Z+1)2. In
each case, we divide the parameter space into the following four regions (see The-
orem26 below for the precise definition). We remind again thatν is for thex-axis,
andλ is for they-axis, as in Section4.3.

(λ ,ν) ∈ (2Z)2 (λ ,ν) ∈ (2Z+1)2

We are ready to describe the image of the regular symmetry breaking operators
for p odd (≥ 3) andq even.

Theorem 26.Let p be odd(≥ 3) andq be even.

(1) Supposeν /∈ Z. Then the regular symmetry breaking operatorAλ ,ν : I(λ ) →
J(ν) is surjective for anyλ ∈ C.

(2) Supposeν ∈ 2Z. For λ ∈ 2Z, theK′-types of the image ofAλ ,ν are given by the
subsets ofN2

even in the following colored red regions via(19).
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Case A:{
ν ≤ 0,
ν < λ .

Case B:
0< ν < p+q−1.

Case C:
p+q−1≤ ν .

Case D:{
ν ≤ 0,
λ ≤ ν .

For λ /∈ 2Z, we divide of the parameter set(C−2Z)×2Z into three cases.
Case Abis: ν ≤ 0,
Case Bbis: 0< ν < 1

2(p+q−1),
Case Cbis:

1
2(p+q−1)≤ ν .

Then the image of the regular symmetry breaking operatorAλ ,ν in Case Tbis

(T=A, B, or C) is described graphically by the same diagram with the one in
Case T (T = A, B, or C, respectively).

(3) Supposeν ∈ 2Z+ 1. For λ ∈ 2Z+ 1, the K′-types of the image ofAλ ,ν are
described graphically as follows.
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Case E:{
λ +ν ≤ p+q−1,
ν < λ .

Case F:{
ν < 1

2(p+q−1),
λ +ν > p+q−1.

Case G:{
1
2(p+q−1)≤ ν,
ν < λ .

Case H:
λ ≤ ν .

For λ /∈ 2Z+1, we divide the parameter set(C− (2Z+1))× (2Z+1) into the two
cases.

Case Fbis: ν < 1
2(p+q−1),

Case Gbis:
1
2(p+q−1)≤ ν .

Then the image of the regular symmetry breaking operatorAλ ,ν in Cases Fbis or
Gbis is described graphically by the same diagram with the one in Cases F or G,
respectively.

Remark 27 The arrangement of the barriersA+− andA−+ may vary in Case H.

Proof of Theorem26. By Lemmas23 and25, Theorem26 follows readily from
Theorem15. ⊓⊔
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6 Graphic description of the image of regular symmetry
breaking operators: Casep even andq odd

In this section we give a graphic description of Theorem15 in the case wherep is
even andq is odd.

6.1 Socle filtration of the target spaceJ(ν)

We review from [2] the socle filtration of the (degenerate) principal series repre-
sentationsJ(ν) of G′ = O(p,q+1) with p even andq odd as in Facts17 and22.

Fact 28 Supposep is even andq is odd. We recallρ = 1
2(p+q−1).

(1) TheG′-moduleJ(ν) is irreducible if and only ifν ∈ C−2Z.
(2) For ν ∈ 2Z, G′-submodules ofJ(ν) are classified by theirK′-types as follows:

{0}⫋ E++
ν ⫋ E+−

ν ∩E−+
ν ⫋ E+−

ν ,E−+
ν ⫋ J(ν) if ν ≤ 0,

{0}⫋ E+−
ν ∩E−+

ν ⫋ E+−
ν ,E−+

ν ⫋ J(ν) if 0< ν < ρ,
{0}⫋ E+−

ν ,E−+
ν ⫋ J(ν) if ν = ρ,

{0}⫋ E+−
ν ,E−+

ν ⫋ E+−
ν ⊕E−+

ν ⫋ J(ν) if ρ < ν < 2ρ,
{0}⫋ E+−

ν ,E−+
ν ⫋ E+−

ν ⊕E−+
ν ⫋ E−−

ν ⫋ J(ν) if 2ρ ≤ ν.

The following lemma is readily seen from Definition13 set theoretically, and fits
well with Fact28.

Lemma 29 Suppose thatp is even andq is odd. Forν ∈ 2Z, theG′-modules with
the K′-types

∩
ε∈{±} E+ε

ν or
∩

δ ,ε∈{±} Eδε
ν are given in the following table. Here

we identify, as before,G′-submodules ofJ(ν) with their K-types parametrized by
subsets ofN2

even.

E++
ν ∩E+−

ν E++
ν ∩E+−

ν ∩E−+
ν ∩E−−

ν
ν ≤ 0 E++

ν E++
ν

0< ν < ρ E+−
ν E+−

ν ∩E−+
ν

ρ ≤ ν E+−
ν {0}

6.2 Reduction of the parameter set for(λ ,ν)

The four sets in the decomposition (20) have a simpler form as follows.

Lemma 30 For p even andq odd, Proposition16holds.
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Proof. Since we are dealing withν ∈ 2Z, (λ ,ν) belongs automatically to||| by
definition (11) for everyλ ∈ C. Now Lemma30 is clear from Lemma24. ⊓⊔

6.3 Description of the image of symmetry breaking operators (p
even,q odd)

For p even andq odd, the critical case is when(λ ,ν) ∈ (2Z)2. We divide the pa-
rameter space(2Z)2 into the following five regions (see Theorem31 below for the
precise definition). We remind thatν is for thex-axis andλ is for they-axis as in
[22].

(λ ,ν) ∈ (2Z)2

We are ready to describe the image of the regular symmetry breaking operators
for p even andq odd.

Theorem 31.Let p be even andq odd.

(1) Supposeν /∈ 2Z. Then the symmetry breaking operatorAλ ,ν : I(λ ) → J(ν) is
surjective for anyλ ∈ C.
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(2) Suppose(λ ,ν) ∈ (2Z)2. Then theK′-types of the image ofAλ ,ν are given by the
subsets ofN2

even in the following colored regions via(19).

Case A:{
ν ≤ 0,
ν < λ .

Case B:{
0< ν < 1

2(p+q−1),
λ +ν > p+q−1.

Case C:{
1
2(p+q−1)≤ ν ,
ν < λ .

Case D:0< ν ,
ν < λ ,
λ +ν ≤ p+q−1.

Case E:
λ ≤ ν .

(3) Supposeν ∈ 2Z andλ ∈ C−2Z.

Case Abis: ν ≤ 0;
Case Bbis: 0< ν < 1

2(p+q−1);
Case Cbis:

1
2(p+q−1)≤ ν .
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The image of the regular symmetry breaking operator for Case Tbis (T=A, B
or C) is described graphically by the same diagram for Case T (T=A, B, or C,
respectively).

Remark 32 The arrangement of the barrierA−− in Case C and also that of the
barriersA+−, A−−, andA−+ may vary in caseE according to the value ofν.

Proof of Theorem31. By Lemmas29 and30, Theorem31 follows readily from
Theorem15. ⊓⊔

7 Graphic description of the image of regular symmetry
breaking operators: Casep odd (≥ 3) and q odd

In this section we give a graphic description of Theorem15 in the case wherep is
odd (≥ 3) andq is odd.

7.1 Socle filtration of the target spaceJ(ν)

We review from [2] the socle filtration of the principal series representationsJ(ν)
of G′ = O(p,q+1) with p odd(≥ 3) andq odd as in Facts17, 22, and28.

Fact 33 Supposep is odd(≥ 3) andq is odd. We recallρ = 1
2(p+q−1).

(1) TheG′-moduleJ(ν) is irreducible if and only ifν ∈ C−Z.
(2) For ν ∈ Z, G′-submodules ofJ(ν) are classified by theirK′-types as follows:

• For ν even,

{0}⫋ E++
ν ⫋ E+−

ν ⫋ J(ν) if ν ≤ 0,

{0}⫋ E+−
ν ⫋ J(ν) if 0< ν .

• For ν odd,

{0}⫋ E−+
ν ⫋ J(ν) if ν < 2ρ,

{0}⫋ E−+
ν ⫋ E−−

ν ⫋ J(ν) if 2ρ ≤ ν .
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7.2 Reduction of the parameter set for(λ ,ν)

The four sets in the decomposition (20) have a simpler form as follows.

Lemma 34 For p odd andq odd, Proposition16holds.

Proof. By (15), X∩ (C×Z) = /0 becausep+q is even. Hence, we have the same
table with (21) in this case. Sinceq is odd, it follows from the definition (14) of |||
that(λ ,ν) ∈||| ⇐⇒ ν ∈ 2Z. Now Lemma34 is clear from (21). ⊓⊔

7.3 Description of the image of the symmetry breaking operators
Aλ ,ν (p odd≥ 3, q odd)

For p andq both odd, the interesting cases are when(λ ,ν) ∈ Z2. We divide the
parameter spaceZ2 into the following regions (see Theorem35below for the precise
definition).

ν ∈ 2Z ν ∈ 2Z+1

λ ∈ 2Z

λ ∈ 2Z+1 D′

Theorem 35.Let p be odd (≥ 3) andq odd.

(1) Supposeν /∈ Z. Then the regular symmetry breaking operatorAλ ,ν : I(λ ) →
J(ν) is surjective for anyλ ∈ C.

(2) Supposeν ∈ 2Z.

(2-a)For λ ∈ 2Z, theK′-types of the image ofAλ ,ν are given by the subsets of
N2

even in the following red regions via(19).
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Case A:{
ν ≤ 0,
ν < λ .

Case B:{
0< ν ,
ν < λ .

Case C:
ν ≥ λ .

In Case C, the barrierA++ does not appear whenν > 0.
(2-b) For λ ∈ (2Z+1)∪ (C−Z) = C−2Z, we use the following decomposition

of the parameter set(λ ,ν) ∈ (C−2Z)× (2Z).
Case A′∪Abis: ν ≤ 0,
Case B′∪Bbis: 0< ν .

Then the image ofAλ ,ν in Case T′∪Tbis (T=A or B) is described graphically
by the same diagram with the one in Case A or Case B, respectively.

(3) Supposeν ∈ 2Z+1.

(3-a)For λ ∈ 2Z, the image ofAλ ,ν is described graphically as follows.

Case D:
λ +ν > p+q−1.

Case E:
λ +ν ≤ p+q−1.

In each case the barrierA−− does not appear whenν < p+q−1.
(3-b) The remaining case forν ∈ 2Z+1 is the following.

Case D′: λ ∈ 2Z+1.
Case Dbis: λ ∈ C−Z.
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In both cases, the image ofAλ ,ν is the same as in Case D, that is,Aλ ,ν : I(λ )→
J(ν) is surjective. Again the barrierA−− does not appear whenν <
p+q−1.
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