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Abstract. The analysis of branching problems for restriction of representations
brings the concept of symmetry breaking transform and holographic transform.
Symmetry breaking operators decrease the number of variables in geometric mod-
els, whereas holographic operators increase it. Various expansions in classical anal-
ysis can be interpreted as particular occurrences of these transforms. From this
perspective we investigate two remarkable families of differential operators: the
Rankin–Cohen operators and the holomorphic Juhl conformally covariant opera-
tors. Then we establish for the corresponding symmetry breaking transforms the
Parseval–Plancherel type theorems and find explicit inversion formulæ with integral
expression of holographic operators.

The proof uses the F-method which provides a duality between symmetry break-
ing operators in the holomorphic model and holographic operators in the L2-model,
leading us to deep links between special orthogonal polynomials and branching laws
for infinite-dimensional representations of real reductive Lie groups.
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1. Introduction

Let π be an irreducible representation of a group G on a vector space V , and G′

a subgroup. The G-module (π, V ) may be seen as a G′-module by restriction, for
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which we write π|G′ . For an irreducible representation (ρ,W ) of the subgroup G′, a
symmetry breaking operator is a (continuous) linear map V → W which intertwines
π|G′ and ρ. In recent years individual symmetry breaking operators have been studied
intensively in different settings ranging from automorphic form theory to conformal
geometry, see [2, 3, 6, 9, 16, 19, 20, 25] and references therein.

In this article, we investigate a collection of symmetry breaking operators,

R` : V −→ W`, ` ∈ Λ,

referred to as a symmetry breaking transform, for a family of irreducible representa-
tions ρ` of the subgroup G′ on vector spaces W` with parameter ` ∈ Λ.

Various expansions in classical analysis can be interpreted through this paradigm:

Example 1.1 (GLn ↓ GLn−1). Arranging homogeneous polynomials of x = (x1, · · · , xn)
in descending order with respect to the power of xn is an example of symmetry break-
ing transform for (G,G′) = (GLn, GLn−1). In fact, taking the `-th component in the
expansion

f(x) =
k∑
`=0

f`(x
′)xk−`n , for x′ = (x1, · · · , xn−1)

defines a G′-homomorphism from V := Polk[x] to W` := Pol`[x′] on which G and G′,
respectively, act irreducibly.

Traditional representation-theoretic viewpoint tells that the Fourier series expan-
sion or Fourier transform is the irreducible decomposition of the regular representa-
tion of the abelian group G′ = S1 or R, whereas we make use of a hidden symmetry
of the noncommutative group G = SL(2,R) in the sense that G contains G′ as a
subgroup and that G acts on the space of functions on S1 or R. The latter viewpoint
brings us a new interpretation of the (classical) Fourier series or Fourier transform
in the framework of “symmetry breaking” as follows.

Example 1.2. A spherical principal series representation πλ of G = SL(2,R) is
realized on the vector space of homogeneous functions

Vλ :=
{
f ∈ C∞(R2 \ {(0, 0)}) : f(ax, ay) = |a|λf(x) for all a ∈ R×

}
.

This representation is irreducible for all λ ∈ C \ Z.
• (Fourier series) The representation πλ of SL(2,R) can be realized in C∞(S1) via

the identification Vλ
∼→ C∞(S1), f(x, y) 7→ h(θ) := f(cos θ, sin θ), because any ho-

mogeneous function is determined by its restriction to the unit circle S1. Since S1 is
preserved by the subgroup G′ := SO(2), the collection of the Fourier coefficients

Vλ
∼−→ C∞(S1) −→ Map(Z,C), f 7→ h 7→ ĥ(`) :=

1

2π

∫ 2π

0

h(θ)e−i`θdθ, ` ∈ Z
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gives a symmetry breaking transform from the infinite-dimensional representation
(πλ, Vλ) of G = SL(2,R) to the collection of one-dimensional representations χ` of
the abelian subgroup G′ = SO(2) ' S1 indexed by ` ∈ Z.
• (Fourier transform) Similarly, any function f(x, y) ∈ Vλ is determined by its
restriction to the real line y = 1, which is preserved by the unipotent subgroup

G′′ :=

{(
1 ξ
0 1

)
: ξ ∈ R

}
(' R). Thus the Fourier transform

L1(R) −→ C(R), F 7→ (FF )(ξ) :=

∫
R
F (x)e−ixξdx,

induces another symmetry breaking transform for the pair (G,G′′) = (SL(2,R),R).

Example 1.3 (spherical harmonics). Expansion of functions on Sn by eigenfunctions
of the Laplacian ∆Sn corresponds to a symmetry breaking transform from a spherical
principal series representation π of G = SO(n + 1, 1) to a collection of irreducible
finite-dimensional representations of the compact subgroup G′ = O(n+ 1).

Reversing the arrows in the definition of a symmetry breaking operator R` : V →
W`, we consider a G′-homomorphism Ψ` : W` → V , going from smaller to larger
representation space, and thus referred to as a holographic operator. As in the case
of symmetry breaking, the collection of holographic operators {Ψ`} is said to be a
holographic transform.

Gy V
R` // W`
Ψ`

oo x G′.

To illustrate a holographic transform by an example with both V and W` being
infinite-dimensional, we recall that the classical Poisson integral (see e.g. [10, Sec.
0])

Pν : Cc(R) −→ C∞(Π), h(t) 7→ (Pνh)(x, y) =

∫ ∞
−∞

yν

((x− t)2 + y2)ν
h(t)dt

constructs eigenfunctions of the Laplace–Beltrami operator ∆ = y2
(
∂2

∂x2 + ∂2

∂y2

)
for

the eigenvalue ν(ν−2) on the upper-half plane Π endowed with Poincaré metric. The
group SL(2,R) acts isometrically on Π and conformally on its boundary. Tradition-
ally, the Poisson integral was treated in the context of representations of SL(2,R),
however, we highlight the fact that the totality of functions on Π admits a larger sym-
metry because the group SL(2,C) acts on the conformal compactification of Π. Thus
the Poisson integral can be interpreted as a particular occurrence of a holographic
operator for the pair (G,G′) = (SL(2,C), SL(2,R)) as below.



4 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Example 1.4 (Poisson integral). A generic symmetry breaking operator Aλ,ν from
the spherical principal series representation πλ of G = SL(2,C) on C∞(S2) to the
one $ν of the subgroup G′ = SL(2,R) on C∞(S1) takes the following form (see [20,
(7.2)]):

Aλ,ν : C∞c (R2) −→ C∞(R), f(x, y) 7→ (Aλ,νf)(x) =

∫
R2

f(t, y)Kλ,ν(x− t, y)dtdy

in the flat coordinates where Kλ,ν is a distributional kernel given by

(1.1) Kλ,ν(x, y) = (x2 + y2)−ν |y|λ+ν−2.

Then the dual map of Aλ,ν yields a holographic operator Ψλ,ν with the formula

g(t) 7→ (Ψλ,νg) (x, y) :=

∫
R
g(t)Kλ,ν(x− t, y)dt.

Thus the (classical) Poisson integral Pν can be viewed as the restriction of the holo-
graphic operator Ψλ,ν with λ = 2, namely, Pν = RestΠ ◦Ψ2,ν .

With these interpretations of classical examples in mind, we raise the following
two general problems for a symmetry breaking transform R = {R`(v)}`∈Λ, where
R` : V −→ W` (` ∈ Λ), are symmetry breaking operators:

Problem A. Can we recover an element v of V from its symmetry breaking trans-
form R(v) = {R`(v)}`∈Λ?

Problem A includes the following subproblems:

A.0. Tell a priori if Λ is sufficiently large for R to be injective.
A.1. Construct a “holographic transform”.
A.2. Find an explicit inversion of the symmetry breaking transform R.

When V is a Hilbert space on which G acts unitarily, we also ask for a Parseval–
Plancherel type theorem for the symmetry breaking transform:

Problem B. Find a closed formula for the norm of an element v in V in terms of
its symmetry breaking transform {R`(v)}`∈Λ.

In this article, we investigate Problems A and B in the following two cases:

• Rankin–Cohen transform (Section 2);
• Holomorphic Juhl transform (Section 3).

In both cases, the transform is a collection of holomorphic differential operators
between complex manifolds: the first case is associated with the family of the Rankin–
Cohen operators that appeared in the theory of holomorphic modular forms [3],
whereas the second case originated from Juhl’s conformally covariant operators [9].

These transforms can be analyzed in the framework of infinite-dimensional rep-
resentations of Lie groups, namely, the decomposition of the tensor product of two
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holomorphic discrete series representations of SL(2,R) in the first case, and the
branching laws of holomorphic discrete series representations of the conformal Lie
group G = SOo(2, n) when restricted to a subgroup G′ = SOo(2, n−1), in the second
case.

The main goal here is to give a solution to Problems A and B for the above two
transforms. We provide two types of integral expressions as a solution to Problem
A1, see Theorems 2.2 and 3.10. The main results are summarized as below.

Problem A1 Problem A2 Problem B
G ⊃ G′ construction of inversion of symmetry L2-theory for

holographic transform breaking transform symmetry breaking

SL2 × SL2 ⊃ SL2 Theorem 2.2 Theorem 2.5 Theorems 2.7

SO(2, n) ⊃ SO(2, n− 1) Theorem 3.10 Theorem 3.2 Theorem 3.2

The key idea of our approach is to introduce “special orthogonal polynomials”
{P`} associated to symmetry breaking operators. This can be done via the F-
method, which we developed in [18, 19], that analyzes the representations through
the Fourier transform of their geometric realizations. In this article, we show for the
Rankin–Cohen bidifferential operators {R`} that the polynomials {P`} are the Jacobi
polynomials and that the holographic operators are given by the Jacobi transforms
along the transversal direction to a codimension-one foliation of the symmetric cone
(Section 2); for the holomorphic Juhl operators {R`}, the holographic operators are
associated to the Gegenbauer polynomials {P`} (Section 3). Thus Problems A and B
for symmetry breaking transforms can be studied as questions on special orthogonal
polynomials via the F-method.

The table below shows some new links which the F-method provides between
representations and special functions in this setting.

Analogously to the classical Poisson transform (Example 1.4), the holographic
transform provides an integral expression of eigenfunctions of certain holomorphic
differential operator. We illustrate this idea with the example of the Rankin–Cohen
operators, see Theorem 2.30 which is proved as a byproduct of the main results.

In Section 4 we discuss the background of Problems A and B from a viewpoint of
the representation theory of real reductive Lie groups.
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Symmetry breaking operators {R`} Special orthogonal polynomials {P`}

G′-intertwining property hypergeometric differential equations

operator norm of R` L2-norm of P`

branching law π|G′ L2-completeness of {P`}

holographic transform (L2-model) integral transform associated to {P`}

Notation: N = {0, 1, 2, · · · }, i =
√
−1 (imaginary unit), (x)k = x(x + 1)(x +

2) · · · (x+ k− 1) for k ∈ N (Pochhammer symbol), and [x] is the largest integer that
does not exceed x ∈ R.

Acknowledgments. The first author was partially supported by the JSPS under
the Grant-in-Aid for Scientific Research (A) (JP18H03669). Both authors were par-
tially supported by the CNRS grant PICS-7270 and they are grateful to Institut
des Hautes Études Scientifiques (Bures-sur-Yvette, France), Institut Henri Poincaré
(Paris, France) and Centre International de Rencontres Mathématiques (Luminy,
France) where an important part of this work was done.

2. Rankin–Cohen transform and its holographic transform

The Rankin–Cohen bidifferential operators map functions of two variables to those
of one variable, respecting twisted actions of SL(2,R). In this section, we solve
Problems A and B stated in Section 1 for the Rankin–Cohen transform (Definition
2.4), a collection of such operators.

2.1. Rankin–Cohen bidifferential operators.
We begin with a quick review of the Rankin–Cohen bidifferential operators.

2.1.1. Holomorphic discrete series representations of SL(2,R) .̃
Let Π = {z = x + iy ∈ C : x ∈ R, y > 0} be the upper half-plane, and O(Π)

the space of holomorphic functions on Π. For λ ∈ Z we define a representation πλ of



INVERSION OF RANKIN–COHEN OPERATORS VIA HOLOGRAPHIC TRANSFORM 7

SL(2,R) on O(Π) by

πλ(g)f(z) = (cz + d)−λf

(
az + b

cz + d

)
for g−1 =

(
a b
c d

)
.

Viewed as a representation of the universal covering group SL(2,R) ,̃ the represen-
tation πλ is well-defined for all λ ∈ C. There is a canonical perfect pairing between
(πλ,O(Π)) and the Verma module

M−λ := U(gC)⊗U(b) C−λ,

where U(gC) denotes the universal enveloping algebra of gC = sl(2,C) and b is a
Borel subalgebra containing kC = so(2,C). Therefore, (πλ,O(Π)) is irreducible if
and only if λ ∈ C \ (−N) because the g-module Mν is reducible if and only if ν ∈ N.

Let p : SL(2,R)˜→ SL(2,R) be the covering homomorphism, and set SO(2)˜=
p−1(SO(2)). For every λ ∈ C, we can form a homogeneous holomorphic line bundle
Lλ over Π ' SL(2,R) /̃SO(2)˜ associated to a character Cλ of SO(2) ,̃ and the
multiplier representation (πλ,O(Π)) is equivalent to the natural action of SL(2,R)˜
on the space O(Π,Lλ) of holomorphic sections of Lλ.

2.1.2. Holomorphic model H2(Π)λ.
For λ > 1 the weighted Bergman space H2(Π)λ := (O ∩ L2)(Π, yλ−2dxdy) is

nonzero, and the Hilbert space H2(Π)λ admits a reproducing kernel Kλ(z, w) =
λ−1
4π

(
z−w̄

2i

)−λ
, see [5, Prop. XIII.1.2]. The representation (πλ,O(Π)) yields an irre-

ducible unitary representation of SL(2,R)˜ on H2(Π)λ, which descends to SL(2,R)
when λ ∈ Z. The set of equivalence classes of irreducible unitary representations
(unitary dual) of SL(2,R) contains a family of those with continuous parameter (e.g.
principal series representations, complementary series representations), whereas πλ
(λ = 2, 3, · · · ) form a countable family of irreducible unitary representations re-
alized in the kernel of the Cauchy–Riemann operator. Thus πλ (λ = 2, 3, · · · ) is
referred to as a holomorphic discrete series representations of SL(2,R), and πλ
(λ > 1) as a relative holomorphic discrete series representation of the covering
group SL(2,R) .̃ We call the realization on H2(Π)λ holomorphic model of the rep-
resentation πλ. Similarly, the direct product group SL(2,R)˜× SL(2,R)˜ acts on
H2(Π × Π)(λ′,λ′′) ' H2(Π)λ′⊗̂H2(Π)λ′′ as an irreducible unitary representation if

λ′, λ′′ > 1, where ⊗̂ stands for the completion of the algebraic tensor product.
We shall deal with another realization (L2-model) of the same representation πλ

in Section 2.6.2.
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2.1.3. Rankin–Cohen bidifferential operators.
Consider λ′, λ′′, λ′′′ ∈ C such that ` := 1

2
(λ′′′−λ′−λ′′) ∈ N and define a differential

operator Rλ′′′

λ′,λ′′ : O(Π× Π) −→ O(Π× Π) by

(2.1) Rλ′′′

λ′,λ′′(f)(ζ1, ζ2) :=
∑̀
j=0

(−1)j
(λ′ + `− j)j (λ′′ + j)`−j

j!(`− j)!
∂`f

∂ζ`−j1 ∂ζj2
(ζ1, ζ2).

The Rankin–Cohen bidifferential operator is a linear map

RCλ′′′λ′,λ′′ : O(Π× Π) −→ O(Π),

defined by RCλ′′′λ′,λ′′ := Rest ◦ Rλ′′′

λ′,λ′′ , where Rest stands for the restriction map
f(ζ1, ζ2) 7→ f(ζ, ζ) to the diagonal.

The Rankin–Cohen bidifferential operatorRCλ′′′λ′,λ′′ is a symmetry breaking operator

from the tensor product representation πλ′⊗̂πλ′′ to πλ′′′ with respect to the diago-
nal embedding SL(2,R)˜↪→ SL(2,R)˜× SL(2,R) ,̃ and such a symmetry breaking
operator is unique up to scalar multiplication for generic parameters (see [19, Cor.

9.3] for the precise condition). Moreover, RCλ′′′λ′,λ′′ induces a continuous map from the

weighted Bergman space H2(Π×Π)(λ′,λ′′) to H2(Π)λ′′′ if λ′, λ′′ > 1 ([18, Thm. 5.13],
see also Proposition 2.27 below for an explicit formula of its operator norm).

2.2. Notations and two constants c`(λ
′, λ′′) and r`(λ

′, λ′′).
The parameter set in Section 2 is (λ′, λ′′, λ′′′) ∈ C3 with λ′′′ − λ′ − λ′′ ∈ 2N.

Throughout this section, we use the following notation:

(2.2) α = λ′ − 1, β = λ′′ − 1, 2` = λ′′′ − λ′ − λ′′.
The main results involve the following two constants

c ≡ c`(λ
′, λ′′) :=

1

2α+β+1

∫ 1

−1

|Pα,β
` (v)|2(1− v)α(1 + v)βdv

=
Γ(λ′ + `)Γ(λ′′ + `)

(λ′ + λ′′ + 2`− 1)Γ(λ′ + λ′′ + `− 1)`!
,(2.3)

r ≡ r`(λ
′, λ′′) :=

b(λ′′′)

b(λ′)b(λ′′)

=
Γ(λ′ + λ′′ + 2`− 1)

22`+2πΓ(λ′ − 1)Γ(λ′′ − 1)
,(2.4)

where Pα,β
` (v) is the Jacobi polynomial (see (5.4) in Appendix), and b(λ) = 22−λπΓ(λ−

1) is a Plancherel density (see Fact 2.9 below). We note that c`(λ
′, λ′′) 6= 0 if

Reλ′,Reλ′′ > 0 and ` ∈ N.
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2.3. Integral formula for holographic operators.
In this section, we introduce integral transforms Ψλ′′′

λ′,λ′′ (holographic operator) that

realize irreducible summands in the tensor product representations πλ′⊗̂πλ′′ .

2.3.1. Construction of holographic operators for the tensor product.

Definition 2.1 (holographic operators). For λ′, λ′′, λ′′′ ∈ C we set ` := 1
2
(λ′′′ − λ′ −

λ′′). Assume that

(2.5) Re(λ′ + `) > 0, Re(λ′′ + `) > 0, and ` ∈ N.

For a holomorphic function g on the upper half plane Π, we define a holomorphic
function on Π× Π by the line integral:
(2.6)(

Ψλ′′′

λ′,λ′′g
)

(ζ1, ζ2) :=
(ζ1 − ζ2)`

2λ′+λ′′+2`−1`!

∫ 1

−1

g

(
(ζ2 − ζ1)v + (ζ1 + ζ2)

2

)
(1−v)λ

′+`−1(1+v)λ
′′+`−1dv.

We note that the set
{

(ζ2−ζ1)v+(ζ1+ζ2)
2

: −1 ≤ v ≤ 1
}

is the line segment connecting

the two points ζ1 and ζ2 in Π.

2.3.2. Basic properties of Ψλ′′′

λ′,λ′′.

The integral transform Ψλ′′′

λ′,λ′′ in (2.6) provides a holographic operator in the fol-
lowing sense:

Theorem 2.2 (holographic operator in the upper half plane). Suppose λ′, λ′′, λ′′′ ∈ C
satisfy (2.5).

(1) The map Ψλ′′′

λ′,λ′′ : O(Π) −→ O(Π × Π) intertwines the action of SL(2,R)˜
from πλ′′′ to the tensor product representation πλ′⊗̂πλ′′.

(2) Moreover, if both λ′ and λ′′ are real and greater than 1, then the linear
map Ψλ′′′

λ′,λ′′ induces an isometric embedding (up to rescaling) of the weighted
Bergman space:

H2(Π)λ′′′ −→ H2(Π× Π)(λ′,λ′′).

The image of the holographic operator Ψλ′′′

λ′,λ′′ is characterized by a differential
equation of second order on Π×Π associated to the Casimir element under the diag-
onal action, see Theorem 2.30. For λ′, λ′′ > 1, the operator Ψλ′′′

λ′,λ′′ is a scalar multiple

of the adjoint
(
RCλ′′′λ′,λ′′

)∗
of the Rankin–Cohen bidifferential operator RCλ′′′λ′,λ′′ (see

Proposition 2.22), and its operator norm is given in Theorem 2.7 (2).
Theorem 2.2 will be proved in Section 2.7.6.
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Remark 2.3. In Section 3, we introduce relative reproducing kernels to construct irre-
ducible summands in the holomorphic model. The integral formula given there (see
Theorem 3.10) is different from the one introduced in Definition 2.1. The advantage
of the definition (2.6) is that the holographic operator Ψλ′′′

λ′,λ′′ is defined also for the
nonunitary case, see Theorem 2.2 (1).

2.4. The Rankin–Cohen transform and its inversion.
In this section we introduce the Rankin–Cohen transform RCλ′,λ′′ as the collection

of individual operators RCλ′′′λ′,λ′′ for fixed λ′ and λ′′. Its inversion formula is proved in
Theorem 2.5 by using the holographic operators, giving a solution to Problem A in
Section 1.

Definition 2.4 (Rankin–Cohen transform). For λ′, λ′′ ∈ C, the Rankin–Cohen trans-
form RCλ′,λ′′ is a linear map

(2.7) RCλ′,λ′′ : O(Π× Π) −→ Map(N,O(Π)), f 7→ (` 7→ RCλ′,λ′′(f)`)

defined by (RCλ′,λ′′(f))` := RCλ′+λ′′+2`
λ′,λ′′ f for ` ∈ N.

The Rankin–Cohen transform RCλ′,λ′′ intertwines (πλ′⊗̂πλ′′ ,O(Π × Π)) with the

formal direct sum
⊕̂

`∈N(πλ′+λ′′+2`,O(Π)), and can be inverted by using the integral

operators Ψλ′′′

λ′,λ′′ as follows.

Theorem 2.5 (inversion of the Rankin–Cohen transform). Suppose λ′, λ′′ > 1. Then
for any f ∈ H2(Π)λ′⊗̂H2(Π)λ′′ one has

f =
∞∑
`=0

1

c`(λ′, λ′′)
Ψλ′+λ′′+2`
λ′,λ′′ (RCλ′,λ′′(f))` .

Theorem 2.5 will be proved in Section 2.8.6.

2.5. Parseval–Plancherel type theorem for the Rankin–Cohen transform
and its holographic transform.

In this section we develop an L2-theory for the Rankin–Cohen transform (Defi-
nition 2.4) and for the holographic transform (Theorem 2.7 (2)), thus providing an
answer to Problem B for these two transforms.

2.5.1. Weighted Hilbert sums.
In order to formulate the Parseval–Plancherel type theorem, we fix some notations

for the Hilbert direct sum.
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Definition 2.6 (weighted Hilbert sum). Let{V`}`∈N be a family of Hilbert spaces

and {a`}`∈N a sequence of positive numbers. The Hilbert sum
∑
`∈N

⊕
V` associated

to the weights {a`}`∈N is the Hilbert completion of the algebraic direct sum
⊕
`∈N

V`

equipped with the pre-Hilbert structure given by

(v, v′) :=
∞∑
`=0

a`(v`, v
′
`)V` for v = (v`)`∈N and v′ = (v′`)`∈N.

2.5.2. Parseval–Plancherel type theorem.
For λ′, λ′′ > 1 the bidifferential operators RCλ′′′λ′,λ′′ extend to a continuous map

between Hilbert spaces. Now, we formulate a Parseval–Plancherel type theorem for
the Rankin–Cohen transform as well as the “holographic transform”, hence answer
Problem B for these transforms.

Theorem 2.7 (Parseval–Plancherel theorem). Suppose λ′, λ′′ > 1.

(1) The Rankin–Cohen transform RCλ′,λ′′ (Definition 2.4) induces an SL(2,R) -̃
equivariant unitary operator

H2(Π)λ′⊗̂H2(Π)λ′′
∼−→
∑
`∈N

⊕
H2(Π)λ′+λ′′+2`

to the Hilbert sum associated to weights
{

1
r`(λ′,λ′′)c`(λ′,λ′′)

}
`∈N

. Thus, for every

f ∈ H2(Π)λ′⊗̂H2(Π)λ′′,

‖f‖2
H2(Π)λ′ ⊗̂H2(Π)λ′′

=
∞∑
`=0

1

r`(λ′, λ′′)c`(λ′, λ′′)
‖ (RCλ′,λ′′(f))` ‖

2
H2(Π)λ′+λ′′+2`

.

(2) Collecting the holographic operators Ψλ′′′

λ′,λ′′, we define the holographic trans-
form

Ψλ′,λ′′ :
⊕
`∈N

H2(Π)λ′+λ′′+2`−→H2(Π)λ′⊗̂H2(Π)λ′′

by

Ψλ′,λ′′ :=
∞⊕
`=0

Ψλ′+λ′′+2`
λ′,λ′′ .

Then Ψλ′,λ′′ induces an SL(2,R) -̃equivariant unitary operator

∞∑
`=0

⊕H2(Π)λ′+λ′′+2`
∼−→ H2(Π)λ′⊗̂H2(Π)λ′′
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from the Hilbert sum associated to the weights
{
c`(λ

′,λ′′)
r`(λ′,λ′′)

}
`∈N

. Thus,

‖Ψλ′,λ′′g‖2
H2(Π)λ′ ⊗̂H2(Π)λ′′

=
∞∑
`=0

c`(λ
′, λ′′)

r`(λ′, λ′′)
‖g`‖2

H2(Π)λ′+λ′′+2`

for g = (g`)`∈N.

Theorem 2.7 will be proved in Section 2.8.5. It gives quantitative information on
the classical branching law (fusion rule) of the tensor product of two holomorphic
discrete series representations πλ′ and πλ′′ that decomposes into a multiplicity-free
direct Hilbert sum of irreducible unitary representations when λ′, λ′′ > 1 [22, 23]:

(2.8) πλ′⊗̂πλ′′ '
∑
`∈N

⊕
πλ′+λ′′+2`.

The projection to each irreducible summand in the decomposition (2.8) is given as
the composition of the corresponding Rankin–Cohen operator and the holographic
operator in the holomorphic model. Thus Theorem 2.5 (and Proposition 2.22 below)
shows the following corollary.

Corollary 2.8 (projection operator). Suppose λ′, λ′′, λ′′′ > 1 and ` := 1
2
(λ′′′ − λ′ −

λ′′) ∈ N. Then

1

c`(λ′, λ′′)
Ψλ′′′

λ′,λ′′ ◦ RCλ
′′′

λ′,λ′′ =
1

r`(λ′, λ′′)c`(λ′, λ′′)
(RCλ′′′λ′,λ′′)

∗ ◦ RCλ′′′λ′,λ′′

is the projection operator of the Hilbert space H2(Π)λ′⊗̂H2(Π)λ′′ onto the irreducible
summand which is isomorphic to H2(Π)λ′′′, see (2.8).

2.6. Holographic transform in the L2-model.
By the Fourier–Laplace transform, the weighted Bergman space H2(Π)λ realized

in the space of holomorphic functions on the upper half plane Π is mapped into the
space of functions supported on the positive axis R+, more precisely, onto the Hilbert
space L2(R+, x

1−λdx), giving thus rise to an L2-model of the same representation
of SL(2,R)˜ (Fact 2.9). We shall find closed formulæ for the symmetry breaking
transform and the holographic transform also in this model and give an answer to
Problems A and B, see Theorems 2.11, 2.14 and 2.16. The results in the L2-model
give a new interpretation of the classical theory of the Jacobi transform, and also
play a key role in proving the theorems for the holomorphic model, see Section 2.7.
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2.6.1. L2-model of holomorphic discrete series.
For λ > 1 we consider the Hilbert space L2(R+)λ := L2(R+, x

1−λdx).

Fact 2.9. Suppose λ > 1. The Fourier–Laplace transform

F : F 7→ FF (ζ) :=

∫ ∞
0

F (z)eiζzdz,

is an isometry from L2(R+)λ onto the weighted Bergman space H2(Π)λ up to scalar
multiplication. To be precise, we have (see e.g. [5, Thm. XIII.1.1.])

‖FF‖2
H2(Π)λ

= b(λ)‖F‖2
L2(R+)λ

for all F ∈ L2(R+)λ, where

b(λ) := 22−λπΓ(λ− 1).

For λ > 1, via the unitary (up to scaling) map F : L2(R+)λ
∼−→ H2(Π)λ, we define

an irreducible unitary representation of SL(2,R)˜on L2(R+)λ, which is referred to
as the L2-model of the holomorphic discrete series representation πλ.

We shall write

F1 ≡ F and F2 := F ⊗ F

in order to distinguish the framework of functions of one or two variables, respectively,
and we write, by abuse of notations,

(2.9) L2(R2
+)λ′,λ′′ := L2(R+ × R+, x

1−λ′y1−λ′′dx dy) ' L2(R+)λ′⊗̂L2(R+)λ′′ .

2.6.2. Construction of discrete summands in the L2-model.
Via the Fourier–Laplace transform, we can define the counterpart for the L2-model

of the Rankin–Cohen bidifferential operator RCλ′′′λ′,λ′′ and the holographic integral

operator Ψλ′′′

λ′,λ′′ (2.6) by

(2.10) R̂C
λ′′′

λ′,λ′′ := F−1
1 ◦ RCλ

′′′

λ′,λ′′ ◦ F2.

(2.11) Ψ̂λ′′′

λ′,λ′′ := F−1
2 ◦Ψλ′′′

λ′,λ′′ ◦ F1.

We know from [18] that RCλ′′′λ′,λ′′ is continuous between the weighted Bergman spaces,

and so is R̂C
λ′′′

λ′,λ′′ . In turn, Ψ̂λ′′′

λ′,λ′′ is continuous between the Hilbert spaces by (2.12)

below, hence so is Ψλ′′′

λ′,λ′′ . Alternatively, the continuity of Ψλ′′′

λ′,λ′′ is also given by that

of another holographic operator Φλ′′′

λ′,λ′′ introduced in Definition 2.10 (Proposition
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2.25). The following commutative diagrams summarize these definitions:

L2(R+, x
1−λ′dx)⊗̂L2(R+, y

1−λ′′dy)

F2

��

//

R̂C
λ′′′
λ′,λ′′

,,

�

L2(R+, x
1−λ′dx)⊗̂L2(R+, y

1−λ′′dy)

F2

��

//

�

L2(R+, z
1−λ′′′dz)

F1

��
H2
λ′(Π)⊗̂H2

λ′′(Π)
Rλ′′′
λ′,λ′′ //

RCλ
′′′
λ′,λ′′

33H2
λ′(Π)⊗̂H2

λ′′(Π)
Rest // H2

λ′′′(Π)

Diagram 2.1. Symmetry breaking operators πλ′⊗̂πλ′′ � πλ′′′ for holomorphic and L2-models.

L2(R+, x
1−λ′dx)⊗̂L2(R+, y

1−λ′′dy)

F2

��
�

L2(R+, z
1−λ′′′dz)

F1

��

Ψ̂λ
′′′
λ′,λ′′=(c′Φλ

′′′
λ′,λ′′ )oo

H2
λ′(Π)⊗̂H2

λ′′(Π) H2
λ′′′(Π)

Ψλ
′′′
λ′,λ′′ (=c

′′(RCλ
′′′
λ′,λ′′ )

∗)

oo

Diagram 2.2. Holographic operators πλ′′′ ↪→ πλ′⊗̂πλ′′ for holomorphic and L2-models.

We shall give an explicit integral formula of the symmetry breaking operator

R̂C
λ′′′

λ′,λ′′ in the L2-model in Proposition 2.13. On the other hand, we observe the

holographic operator in the L2-model has the following three important characteris-
tics:

(1) the Fourier transform Ψ̂λ′′′

λ′,λ′′ of the holographic operator Ψλ′′′

λ′,λ′′ , see (2.11);

(2) the adjoint of R̂C
λ′′′

λ′,λ′′ (Proposition 2.19);

(3) the multiplication operator Φλ′′′

λ′,λ′′ , see (2.13) below for definition.

These three approaches may be summarized as the following identities:

(2.12) Ψ̂λ′′′

λ′,λ′′ =

(
R̂C

λ′′′

λ′,λ′′

)∗
= i`Φλ′′′

λ′,λ′′ ,

see Propositions 2.19 and 2.20. The third characteristic is remarkable as it does
not involve any integration or differentiation. For this reason, we adopt it as our
definition of holographic transform in the L2-model, see Definition 2.10 below.

For α, β ∈ C and ` ∈ N, let Pα,β
` (x) be the Jacobi polynomial of degree `, see (5.3)

in Appendix.
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Definition 2.10. Retain the setting that λ′, λ′′, λ′′′ ∈ C with ` := 1
2
(λ′′′−λ′−λ′′) ∈ N.

For a function h(z) of one variable z (z > 0), we define a function of two variables
x, y (x, y > 0) by

(2.13)
(

Φλ′′′

λ′,λ′′h
)

(x, y) :=
xλ
′−1yλ

′′−1

(x+ y)λ′+λ′′+`−1
P λ′−1,λ′′−1
`

(
y − x
x+ y

)
· h(x+ y).

Theorem 2.11 (holographic operator in the L2-model). Suppose λ′, λ′′, λ′′′ > 1
such that ` := 1

2
(λ′′′ − λ′ − λ′′) ∈ N. Then, Φλ′′′

λ′,λ′′ induces an SL(2,R) -̃equivariant
continuous homomorphism between the Hilbert spaces:

Φλ′′′

λ′,λ′′ : L
2(R+, z

1−λ′′′dz) −→ L2(R+, x
1−λ′dx)⊗̂L2(R+, y

1−λ′′dy).

Theorem 2.11 will be proved in Section 2.7.5.

Remark 2.12. Using the notation (2.18) below, we may also write:

(Φλ′′′

λ′,λ′′h)(x, y) = (−1)`
xλ
′−1yλ

′′−1

(x+ y)λ′′′−1
P̃ λ′−1,λ′′−1
` (x, y) · h(x+ y).

2.6.3. Symmetry breaking transform in the L2-model and its inversion.
In this subsection, we give an inversion formula of the symmetry breaking oper-

ator R̂C
λ′′′

λ′,λ′′ in the L2-model by using the holographic operators Φλ′′′

λ′,λ′′ (Definition

2.10). The symmetry breaking operator R̂C
λ′′′

λ′,λ′′ was defined originally as the Fourier

transform of the Rankin–Cohen bidifferential operator RCλ′′′λ′,λ′′ (see (2.10)) but we
give a simpler expression as an integral operator (Jacobi transform).

Proposition 2.13. Suppose λ′, λ′′ > 1 and ` ∈ N. Then for any F ∈ Cc(R+ ×R+),
the following identity holds:(

R̂C
λ′+λ′′+2`

λ′,λ′′ F

)
(z) =

z`+1

2i`

∫ 1

−1

P λ′−1,λ′′−1
` (v)F

(z
2

(1− v),
z

2
(1 + v)

)
dv.

See Section 2.7.3 for a proof.

Collecting the operators R̂C
λ′′′

λ′,λ′′ , we define a symmetry breaking transform

(2.14) R̂Cλ′,λ′′ : L2(R+)λ′⊗̂L2(R+)λ′′ −→
∑
`∈N

⊕L2(R+)λ′+λ′′+2`

by
(
R̂Cλ′,λ′′(F )

)
`

:= R̂C
λ′+λ′′+2`

λ′,λ′′ (F ) for ` ∈ N. Then it can be inverted by using

the holographic operators Φλ′′′

λ′,λ′′ (Definition 2.10) as follows.
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Theorem 2.14. Suppose λ′, λ′′ > 0. Then for any F ∈ L2(R+)λ′⊗̂L2(R+)λ′′, one
has

F =
∞∑
`=0

i`

c`(λ′, λ′′)
Φλ′+λ′′+2`
λ′,λ′′

(
R̂Cλ′,λ′′(F )

)
`
,

and

‖F‖2
L2(R+)λ′ ⊗̂L2(R+)λ′′

=
∞∑
`=0

1

c`(λ′, λ′′)

∥∥∥(R̂Cλ′,λ′′(F )
)
`

∥∥∥2

L2(R+)λ′+λ′′+2`

.

Theorem 2.14 will be proved in Section 2.8.7. It gives an answer to Problem A.2
and Problem B in the L2-model.

Remark 2.15. The Jacobi transform (see e.g. [4, Chap. 15]) defined by

H(v) 7→
(
Jα,β(H)

)
`

:=

∫ 1

−1

H(v)Pα,β
` (v)(1− v)α(1 + v)βdv

is inverted by the following formula:

(2.15) H(v) =
∞∑
`=0

d`(α, β)
(
Jα,β(H)

)
`
Pα,β
` (v),

where we set

d`(α, β) :=
`!(α + β + 2`+ 1)Γ(α + β + `+ 1)

2α+β+1Γ(α + `+ 1)Γ(β + `+ 1)

(
=

1

2α+β+1c`(α + 1, β + 1)

)
.

By a change of variables, we can see that Theorem 2.14 is equivalent to (2.15) applied
to

H(v) = (1− v)−α(1 + v)−βF
(z

2
(1− v),

z

2
(1 + v)

)
with α = λ′ − 1 and β = λ′′ − 1.

2.6.4. Parseval–Plancherel type theorem for the holographic transform in the L2-
model.

Collecting the holographic operators Φλ′′′

λ′,λ′′ , we define the holographic transform

(2.16) Φλ′,λ′′ :
⊕
`∈N

L2(R+)λ′+λ′′+2` −→ L2(R+)λ′⊗̂L2(R+)λ′′

by

Φλ′,λ′′ :=
∞⊕
`=0

Φλ′+λ′′+2`
λ′,λ′′ .
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This transform is the counterpart in the L2-model of the holographic transform
Ψλ′,λ′′ (see Theorem 2.7 (2)) defined in the holomorphic model.

Theorem 2.16. Suppose λ′, λ′′ > 0 and ` ∈ N. Then, the holographic transform
Φλ′,λ′′ induces an SL(2,R) -̃equivariant unitary operator

∞∑
`=0

⊕L2(R+)λ′+λ′′+2`
∼−→ L2(R+)λ′⊗̂L2(R+)λ′′

subject to the following Parseval–Plancherel type formula:

‖Φλ′,λ′′h‖2
L2(R2

+)λ′,λ′′
=
∞∑
`=0

c`(λ
′, λ′′)‖h`‖2

L2(R+)λ′+λ′′+2`
,

for h = (h`)`∈N with h` ∈ L2(R+)λ′+λ′′+2`.

Theorem 2.16 will be proved in Section 2.8.2.

2.6.5. Representation theoretic interpretation of the Plancherel density.
The weights c`(λ

′, λ′′) in the Plancherel formula (Theorem 2.16) are obviously
positive when λ′, λ′′ > 1. We discuss the zeros of the meromorphic continuation of
c`(λ

′, λ′′) when we allow λ′ and λ′′ to wander outside the region λ′, λ′′ > 1, so that
πλ′ and πλ′′ may not be (relative) holomorphic discrete series representations.

Assume furthermore that λ′, λ′′, λ′′′ ∈ Z such that ` := 1
2
(λ′′′−λ′−λ′′) ∈ N. Then

the following four conditions on (λ′, λ′′, λ′′′) are equivalent (see [19, Thm. 9.1]):

(i) c`(λ
′, λ′′) = 0;

(ii) 2 ≥ λ′ + λ′′ + λ′′′ and λ′′′ ≥ |λ′ − λ′′|+ 2;

(iii) the Rankin–Cohen bilinear operator RCλ′′′λ′,λ′′ vanishes;
(iv) dim HomSL(2,R)˜(O(Π× Π,Lλ′ � Lλ′′),O(Π,Lλ′′′)) = 2.

2.7. Proof of Theorems 2.2 and 2.11.
In this section, we derive from the Rankin–Cohen bidifferential operators RCλ′′′λ′,λ′′

the integral intertwining operators that embed irreducible representations of SL(2,R)˜
into the tensor product representations, and give a proof of Theorems 2.2 and 2.11.

The key idea is to use symmetry breaking operators R̂C
λ′′′

λ′,λ′′ in the L2 model, which
fits well into the F-method connecting the Rankin–Cohen operators with the Jacobi
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polynomials. The scheme of the proof is summarized in the following diagram:

(2.17) RCλ′′′λ′,λ′′

Proposition 2.13
��

Ψλ′′′

λ′,λ′′
Proposition 2.22oo (Theorem 2.2)

R̂C
λ′′′

λ′,λ′′Proposition 2.19
// Φλ′′′

λ′,λ′′

Proposition 2.20

OO

(Theorem 2.11)

2.7.1. Jacobi polynomials and Rankin–Cohen bidifferential operators.
We retain the notation and assumption that ` := 1

2
(λ′′′ − λ′ − λ′′) ∈ N.

The nature of the bidifferential symmetry breaking operator RCλ′′′λ′,λ′′ is explained
in [19, Thm. 8.1] by the F-method, which we recall now. We inflate the Jacobi

polynomial Pα,β
` (t) (see (5.3)) into a homogeneous polynomial of degree ` by

P̃α,β
` (x, y) := (−1)`(x+ y)`Pα,β

`

(
y − x
x+ y

)
=

∑̀
j=0

(−1)`−j(α + β + `+ 1)j(α + j + 1)`−j
(`− j)!j!

(x+ y)`−jxj.(2.18)

Then we have the following

Proposition 2.17. Suppose ` := 1
2
(λ′′′ − λ′ − λ′′) ∈ N. Then the Rankin–Cohen

bidifferential operator RCλ′′′λ′,λ′′ (see (2.1)) is given by RCλ′′′λ′,λ′′ = Rest ◦ Rλ′′′

λ′,λ′′ with

(2.19) Rλ′′′

λ′,λ′′ = P̃ λ′−1,λ′′−1
`

(
∂

∂ζ1

,
∂

∂ζ2

)
.

Remark 2.18. In [19, (9.9)], we gave a similar formula

(2.20) Rλ′′′

λ′,λ′′ = P λ′−1,1−λ′′′
`

(
∂

∂ζ1

,
∂

∂ζ2

)
by using another two-variable function Pα,β

` (x, y) := y`Pα,β
`

(
1 + 2x

y

)
. Our expression

(2.19) is symmetric with respect to the first and second variables.

Proof of Proposition 2.17. According to the first Kummer’s relation for the hyper-
geometric function we get (see for instance [7, 8.962]):

Pα,β
` (x) =

(
1 + x

2

)`
Pα,−α−β−2`−1
`

(
3− x
1 + x

)
,

and therefore

P λ′−1,1−λ′′′
` (1− 2s) = (1− s)`P λ′−1,λ′′−1

`

(
1 + s

1− s

)
.
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Hence the right-hand sides of (2.19) and (2.20) are equal to each other. �

2.7.2. Coordinate change in the L2-model.
For the study of symmetry breaking in the L2-model, we introduce the following

coordinates:

(2.21) ι : R+ × (−1, 1)
∼−→ R2

+, (z, v) 7→ (x, y) :=
(z

2
(1− v),

z

2
(1 + v)

)
.

Then, ι is a diffeomorphism with dxdy = z
2
dzdv. With the convention (2.2) in

Section 2.2, we set

(2.22) M(z, v) ≡Mλ′,λ′′,λ′′′(z, v) := 2α+βz`+1(1− v)−α(1 + v)−β.

If (x, y) = ι(z, v), then we have

(2.23)
z1−λ′′′

x1−λ′y1−λ′′M(z, v) = z−`,

(2.24) x1−λ′y1−λ′′dxdy = M(z, v)2z−α−β−λ
′′′

(1− v)α(1 + v)βdzdv,

whereas the holographic operator Φλ′′′

λ′,λ′′ (see (2.13)) takes the form

(2.25)
(

Φλ′′′

λ′,λ′′h
)
◦ ι(z, v) = M(z, v)−1Pα,β

` (v)h(z).

2.7.3. Fourier transform of the Rankin–Cohen bidifferential operators.
We are ready to prove Proposition 2.13 for an integral expression of the symmetry

breaking operator R̂C
λ′′′

λ′,λ′′ (see (2.10)).

Proof of Proposition 2.13. For a function F ∈ L2(R2
+)λ′,λ′′ we set

G(x, y) := P̃ λ′−1,λ′′−1
` (x, y)F (x, y).

By Proposition 2.17 the F-method shows that the Rankin–Cohen bidifferential oper-

ator is induced from the multiplication by the polynomial P̃ λ′−1,λ′′−1
` (x, y), namely,

(2.26) (RCλ′′′λ′,λ′′F2F )(ζ) = i`(Rest ◦ F2G)(ζ).

The left-hand side of (2.26) equals

(
F1R̂C

λ′′′

λ′,λ′′F

)
(ζ) by the definition (2.10). We

compute the right-hand side of (2.26). Via the diffeomorphism (2.21), we have
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P̃α,β
` ◦ ι(z, v) = (−1)`z`Pα,β

` (v). Thus we get

(Rest ◦ F2)G(ζ) =

∫ ∞
0

∫ ∞
0

G(x, y)ei(x+y)ζdxdy

=
1

2

∫ ∞
0

∫ 1

−1

G ◦ ι(z, v)eizζzdzdv

=
1

2
F1(JF )(ζ),

where

JF (z) := z

∫ 1

−1

G ◦ ι(z, v)dv

= (−1)`z`+1

∫ 1

−1

P λ′−1,λ′′−1
` (v)F ◦ ι(z, v)dv.

Hence Proposition 2.13 is proved. �

2.7.4. Three characteristics of holographic operators in the L2-model.
In Section 2.6.2, we discussed the three characteristics (1), (2), and (3) of holo-

graphic operators in the L2-model. These three characteristics play a key role in the
proof of main theorems. In this subsection we explicate the relationship between

(2) and (3) in Proposition 2.19, and
(1) and (3) in Proposition 2.20,

and prove the formula (2.12).

Proposition 2.19. The adjoint of the holographic operator Φλ′′′

λ′,λ′′ (Definition 2.10)

is proportional to the Fourier transform of the Rankin–Cohen operator RCλ′′′λ′,λ′′:(
Φλ′′′

λ′,λ′′

)∗
= i`R̂C

λ′′′

λ′,λ′′ .

Proof. We have already seen in Section 2.6.2 that R̂C
λ′′′

λ′,λ′′ is a continuous map
between the Hilbert spaces. Hence we shall work with dense subspaces Cc(R+)
and Cc(R2

+) in L2(R+)λ′′′ and L2(R2
+)λ′,λ′′ , respectively. Take h ∈ Cc(R+) and

F ∈ Cc(R2
+). By the integral expression of R̂C

λ′′′

λ′,λ′′ given in Proposition 2.13, we
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have

(h, R̂C
λ′′′

λ′,λ′′F )L2(R+,z1−λ′′′dz) =
i`

2

∫ ∞
0

h(z)z`+1

∫ 1

−1

P λ′−1,λ′′−1
` (v)F ◦ ι(z, v)dvz1−λ′′′dz

= i`
∫ ∞

0

∫ ∞
0

(Φλ′′′

λ′,λ′′h)(x, y)F (x, y)x1−λ′y1−λ′′dxdy

= i`(Φλ′′′

λ′,λ′′h, F )L2(R2
+,x

1−λ′y1−λ′′dxdy).

Here, in the second equality we have used (2.24) and (2.25). Thus Proposition 2.19
is proved. �

Proposition 2.20. With the notation (2.11), we have

Ψ̂λ′′′

λ′,λ′′ = i`Φλ′′′

λ′,λ′′ .

Before giving a proof of Proposition 2.20, we need the following.

Lemma 2.21. For any g ∈ H2(Π)λ, we have(
d

dt

)` ∫ ∞
0

z−`(F−1
1 g)(z)eiztdz = i`g(t).

Proof. The statement follows from the (classical) Fourier inversion formula and the
Paley–Wiener theorem for g. �

Proof of Proposition 2.20. It suffices to show

F2 ◦ Φλ′′′

λ′,λ′′ ◦ F−1
1 = (−i)`Ψλ′′′

λ′,λ′′ .

We set

t(v) :=
1

2
((ζ2 − ζ1)v + (ζ1 + ζ2)) .

By the definitions (2.22) and (2.25) of M and Φλ′′′

λ′,λ′′ , we have,

(F2 ◦ Φλ′′′

λ′,λ′′h)(ζ1, ζ2)

=
1

2α+β+1

∫ ∞
0

∫ 1

−1

z−`(1− v)α(1 + v)βPα,β
` (v)h(z)eizt(v)dvdz

=
(−1)`

2α+β+`+1`!

∫ ∞
0

∫ 1

−1

z−`h(z)eizt(v)

(
d

dv

)` (
(1− v)α+`(1 + v)β+`

)
dvdz

=
1

2α+β+`+1`!

∫ 1

−1

(1− v)α+`(1 + v)β+`

(
dt(v)

dv

)`(
d

dt

)` ∫ ∞
0

z−`h(z)eiztdz
∣∣∣
t=t(v)

dv,

where the second equality follows from the Rodrigues formula (5.2) for the Jacobi
polynomials.
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Applying Lemma 2.21, we obtain

(F2 ◦ Φλ′′′

λ′,λ′′ ◦ F−1
1 g)(ζ1, ζ2) =

(ζ1 − ζ2)`(−i)`

2α+β+2`+1`!

∫ 1

−1

g(t(v))(1− v)α+`(1 + v)β+`dv

= (−i)`
(

Ψλ′′′

λ′,λ′′g
)

(ζ1, ζ2).

Hence Proposition 2.20 is proved. �

2.7.5. Proof of Theorem 2.11.
In this subsection we give a proof of Theorem 2.11.

Proof of Theorem 2.11. As the Rankin–Cohen bidifferential operator RCλ′′′λ′,λ′′ inter-

twines the tensor product πλ′⊗̂πλ′′ and πλ′′′ , so does its Fourier transform R̂C
λ′′′

λ′,λ′′

(see (2.10)), and in turn its adjoint operator

(
R̂C

λ′′′

λ′,λ′′

)∗
because πλ′ , πλ′′ , and πλ′′′

are unitary representations. Hence Theorem 2.11 follows from Proposition 2.19. �

2.7.6. Proof of Theorem 2.2.
Theorem 2.11 together with an argument of holomorphic continuation on param-

eters completes the proof of Theorem 2.2 as follows.

Proof of Theorem 2.2. The second assertion follows from Proposition 2.20 because
Φλ′′′

λ′,λ′′ is an intertwining operator as it was shown in Theorem 2.11.

Let ` ∈ N and λ′′′ = λ′ + λ′′ + 2`. If (λ′, λ′′) ∈ C2 satisfies (2.5) then the integral
(2.6) converges for all g ∈ O(Π), and Ψλ′′′

λ′,λ′′ is continuous viewed as a map from the
Montel space O(Π) to the one O(Π× Π).

On the other hand, if furthermore λ′, λ′′ are real and λ′, λ′′ > 1, then Ψλ′′′

λ′,λ′′ is

a G-homomorphism on H2(Π)λ′′′ by the first statement. Since H2(Π)λ′′′ is dense
in the Montel space O(Π) as its subspace of K-finite functions is already dense in
O(Π), the continuous map Ψλ′′′

λ′,λ′′ : O(Π) −→ O(Π × Π) intertwines πλ′′′ and the

tensor product representation πλ′⊗̂πλ′′ if λ′, λ′′ > 1. Since Ψλ′′′

λ′,λ′′g ∈ O(Π × Π)

depends holomorphically on (λ′, λ′′) ∈ C2 subject to (2.5) and since the actions
πλ′ , πλ′′ and πλ′+λ′′+2` of SL(2,R)˜also depend holomorphically on (λ′, λ′′) ∈ C2, the
first statement is shown. �
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2.7.7. Adjoint of the Rankin–Cohen operator.
As the last part of the diagram 2.17, we show that Ψλ′′′

λ′,λ′′ is the adjoint of the

Rankin–Cohen operator RCλ′′′λ′,λ′′ up to scalar multiplication.
Suppose λ′, λ′′, λ′′′ > 1 and λ′′′ − λ′ − λ′′ ∈ 2N. We regard the Rankin–Cohen

operator RCλ′′′λ′,λ′′ as a continuous map between Hilbert spaces

RCλ′′′λ′,λ′′ : H2(Π)λ′⊗̂H2(Π)λ′′ −→ H2(Π)λ′′′ .

By (2.12) and Lemma 2.24 below, we obtain

Proposition 2.22. Let ` := 1
2
(λ′′′−λ′−λ′′) ∈ N. The adjoint of RCλ′′′λ′,λ′′ is given by(
RCλ′′′λ′,λ′′

)∗
= r`(λ

′, λ′′)Ψλ′′′

λ′,λ′′ .

2.8. Proof of the Parseval–Plancherel type theorem for the symmetry
breaking transform and the holographic transform.

In this section we complete the proof of Theorems 2.5 and 2.7 in the holomorphic
model and Theorems 2.14 and 2.16 in the L2-model for the Parseval–Plancherel type
results for the symmetry breaking and holographic transforms. Our strategy consists
in applying the F -method, and then in reducing the proof of these theorems to the

fact that the Jacobi polynomials
{
Pα,β
`

}
`∈N

form an orthogonal basis of the Hilbert

space L2([−1, 1], (1− v)α(1 + v)βdv), see (5.4) in Appendix.

2.8.1. Some properties of operators on Hilbert spaces.
We review a general fact on operators on Hilbert spaces. Suppose a Hilbert space

V is decomposed into a Hilbert direct sum of closed subspaces {V`}`∈N, that is, V '∑⊕
`∈N V`, where the inner product on V` is induced from that of V . Let prV→V` : V −→

V` be the projection operator. Let {W`}`∈N be another family of Hilbert spaces.
Suppose that we are given a continuous map R` : V −→ W` such that the restriction
R`|V` : V` −→ W` is a unitary operator up to scalar multiplication and R`|V ⊥` ≡ 0 for

every ` ∈ N. Then the adjoint operator R∗` : W` −→ V is an isometry (up to scalar)
onto V`. We write ‖R`‖op for the operator norm of R` and set

C` := ‖R`‖2
op.

The following two lemmas are elementary.

Lemma 2.23. (1) The linear map R :=
⊕
`∈N

R` : V →
⊕
`∈N

W` satisfies

R∗`R` = C`prV→V` ,(2.27)

‖F‖2
V =

∑
`∈N

1

C`
‖R`F‖2

W`
for all F ∈ V.(2.28)
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In particular, we have the following inversion formula and the unitarity of
the map R:

(inversion) F =
∑

`∈N
1
C`
R∗` (R`F ),

(unitarity) R extends to a unitary operator V
∼−→
∑
`∈N

⊕
W`, where

∑
`∈N
⊕W` is

the Hilbert sum associated to the weights {C−1
` }`∈N (see Definition 2.6).

(2) The linear map R∗ :=
⊕̀
∈N
R∗` :

⊕̀
∈N
W` → V satisfies

R`R
∗
` = C`idW`

,(2.29)

‖R∗`w`‖2
V = C`‖w`‖2

W`
for all w` ∈ W`.

In particular R∗ extends to a unitary operator
∑
`∈N

⊕
W`

∼−→ V , where
∑

`∈N
⊕W`

is the Hilbert sum associated to the weights {C`}`∈N.

Lemma 2.24. Suppose that Hj and Lj (j = 1, 2) are Hilbert spaces and that
Fj : Lj −→ Hj are unitary operators up to scalar multiple. Let bj be positive numbers
such that

‖Fj(F )‖2
Hj

= bj‖F‖2
Lj

for all F ∈ Lj.
Let Ψ: H1 −→ H2 and D : H2 −→ H1 be continuous linear maps, and we define

Ψ̂ : L1 −→ L2 and D̂ : L2 −→ L1 by

Ψ̂ := F−1
2 ◦Ψ ◦ F1, D̂ := F−1

1 ◦D ◦ F2.

We set r := b1
b2

. Then,

(1) the operator norms of these operators satisfy

‖D̂‖2
op =

1

r
‖D‖2

op, ‖Ψ̂‖2
op = r‖Ψ‖2

op;

(2) the adjoint operators of D and D̂ are related as

D̂∗ = r
(
D̂
)∗
.

2.8.2. Parseval–Plancherel type theorem for Φλ′′′

λ′,λ′′.
In this subsection, we prove Theorem 2.16. By the (abstract) branching law (2.8),

Theorem 2.16 is deduced from the following proposition.

Proposition 2.25. Suppose λ′, λ′′, λ′′′ > 1 satisfy ` := 1
2
(λ′′′ − λ′ − λ′′) ∈ N. Then,

‖Φλ′′′

λ′,λ′′h‖2
L2(R2

+)λ′,λ′′
= c`(λ

′, λ′′)‖h‖2
L2(R+)λ′′′

,

for all h ∈ L2(R+)λ′′′. Here we recall (2.3) for the definition of c`(λ
′, λ′′).
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We reduce Proposition 2.25 to the fact that the Jacobi polynomials are orthogonal
polynomials, see (5.4) in Appendix.

Proof of Proposition 2.25. Via the diffeomorphism (2.21), we get from the formulæ
(2.24) for the measure and (2.25) for the holographic operator Φλ′′′

λ′,λ′′ :

‖Φλ′′′

λ′,λ′′h‖2
L2(R2

+)λ′,λ′′

=
1

2λ′+λ′′−1

∫ ∞
0

∫ 1

−1

|h(z)|2
∣∣∣P λ′−1,λ′′−1

` (v)
∣∣∣2 z1−λ′′′ (1− v)λ

′−1 (1 + v)λ
′′−1 dvdz.

By the L2-norm (5.4) of the Jacobi polynomials, we conclude the proposition. �

2.8.3. Operator norm of the holographic operator Ψλ′′′

λ′,λ′′ in the holomorphic model.

Proposition 2.26. Suppose λ′, λ′′, λ′′′ > 1 and ` := 1
2
(λ′′′ − λ′ − λ′′) ∈ N. Then

‖Ψλ′′′

λ′,λ′′g‖2
H2(Π)λ′ ⊗̂H2(Π)λ′′

=
c`(λ

′, λ′′)

r`(λ′, λ′′)
‖g‖2

H2(Π)λ′′′
for all g ∈ H2(Π)λ′⊗̂H2(Π)λ′′ .

Proof of Proposition 2.26. By Proposition 2.20 and Fact 2.9, we have

‖Ψλ′′′

λ′,λ′′g‖2
H2(Π)λ′ ⊗̂H2(Π)λ′′

= b(λ′)b(λ′′)‖Φλ′′′

λ′,λ′′F−1
1 g‖2

L2(R2
+)λ′,λ′′

.

By Proposition 2.25 and Fact 2.9 again, the right-hand side of the above equality
amounts to

b(λ′)b(λ′′)

b(λ′′′)
c`(λ

′, λ′′)‖g‖2
H2(Π)λ′′′

.

Now the proposition follows from the definition (2.4) of r`(λ
′, λ′′). �

2.8.4. Norm of the Rankin–Cohen bidifferential operators.
We find the operator norm of RCλ′′′λ′,λ′′ as below.

Proposition 2.27. Suppose that λ′, λ′′ > 1 and λ′′′ = λ′ + λ′′ + 2` (` ∈ N). Then

the operator norm of the Rankin–Cohen bidifferential operator RCλ′′′λ′,λ′′ seen as a map

from the weighted Bergman space H2(Π)λ′⊗̂H2(Π)λ′′ to H2(Π)λ′′′ is given by

‖RCλ′′′λ′,λ′′‖2
op = r`(λ

′, λ′′)c`(λ
′, λ′′).

Proof. By Lemma 2.24 (1), we have

‖RCλ′′′λ′,λ′′‖2
op = r`(λ

′, λ′′)‖R̂C
λ′′′

λ′,λ′′‖2
op,

which equals r`(λ
′, λ′′)c`(λ

′, λ′′) by Propositions 2.19 and 2.25. �
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2.8.5. Proof of Theorem 2.7.
Let us complete the proof of the Parseval–Plancherel type theorem for the Rankin–

Cohen transform RCλ′,λ′′ and the holographic transform Ψλ′,λ′′ .

Proof of Theorem 2.7. (1) We apply Lemma 2.23 with R` = RCλ′+λ′′+2`
λ′,λ′′ . By Propo-

sition 2.27, we have

‖R`‖2
op = r`(λ

′, λ′′)c`(λ
′, λ′′),

hence the first statement follows from Lemma 2.23 (1).

(2) We apply Lemma 2.23 with R` = 1
r`(λ′,λ′′)

RCλ′+λ′′+2`
λ′,λ′′ . By Proposition 2.27, we

have

‖R`‖2
op =

c`(λ
′, λ′′)

r`(λ′, λ′′)
.

Since Ψλ′+λ′′+2`
λ′,λ′′ = R∗` (see Proposition 2.22), we get the second statement by Lemma

2.23 (2). �

2.8.6. Proof of Theorem 2.5.
We are ready to complete the proof of Theorem 2.5.

Proof of Theorem 2.5. By Lemma 2.23 (1) applied to R` = RCλ′+λ′′+2`
λ′,λ′′ , the above

proof of Theorem 2.7 (1) implies

f =
∞∑
`=0

1

r`(λ′, λ′′)c`(λ′, λ′′)
R∗`R`f

for any f ∈ H2(Π)λ′⊗̂H2(Π)λ′′ . Now Theorem 2.5 follows from the equation R∗` =

r`(λ
′, λ′′)Ψλ′+λ′′+2`

λ′,λ′′ (see Proposition 2.22). �

2.8.7. Proof of Theorem 2.14.
Finally, we show Theorem 2.14.

Proof of Theorem 2.14. We apply Lemma 2.23 (1) with R` = R̂C
λ′+λ′′+2`

λ′,λ′′ . By Lemma
2.24 and Proposition 2.27, we obtain

‖R`‖2
op =

1

r`(λ′, λ′′)

∥∥∥RCλ′+λ′′+2`
λ′,λ′′

∥∥∥2

op
= c`(λ

′, λ′′).

Hence Theorem 2.14 follows from Lemma 2.23 (1) because R∗` = i` Φλ′+λ′′+2`
λ′,λ′′ as was

shown in Proposition 2.19. �
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2.9. Some applications of symmetry breaking and holographic transforms.

We point out two applications of the symmetry breaking and holographic trans-
forms introduced in the previous section. First, we provide explicit description of
the minimal K-types of the SL(2,R) -̃module (πλ,O(Π)) in both holomorphic model
πλ′⊗̂πλ′′ and L2-model L2(R2

+)λ′,λ′′ (see Propositions 2.28 and 2.29). Second, we find
in Theorem 2.30 an integral expression of any eigenfunction for a specific second-
order holomorphic partial differential operator arising from the diagonal action of
the Casimir in the enveloping algebra.
2.9.1. Minimal K-types.

The minimal K-type of the SL(2,R) -̃module (πλ,O(Π)) is given by C(ζ + i)−λ,
see (2.32) for the whole set of K-types. As an application of the integral formula
(2.6) we find an explicit expression for the minimal K-types of submodules in the
tensor product πλ′⊗̂πλ′′ as follows.

Proposition 2.28. Suppose Re λ′,Re λ′′ > 0 and λ′′′ = λ′ + λ′′ + 2` (` ∈ N). Then
the holomorphic function

(ζ1, ζ2) 7→ (ζ1 − ζ2)`(ζ1 + i)−λ
′−`(ζ2 + i)−λ

′′−`

is a minimal K-type in the submodule Ψλ′′′

λ′,λ′′(O(Π)) in πλ′⊗̂πλ′′.

Proof. We set g(ζ) := (ζ + i)−λ
′′′

. By the change of variables t = 1
2
(1 + v), the

definition (2.6) shows(
Ψλ′′′

λ′,λ′′g
)

(ζ1, ζ2) =
1

`!
(ζ1 − ζ2)`(ζ1 + i)−λ

′′′
∫ 1

0

ta−1(1− t)c−a−1(1− tz)−bdt,

where a = λ′′ + `, b = c = λ′′′, and z = ζ1−ζ2
ζ1+i

.

By the Euler integral representation of the hypergeometric function 2F1, and by
the fact that 2F1(a, b; b; z) = (1− z)−a, we obtain

(2.30)
(

Ψλ′′′

λ′,λ′′g
)

(ζ1, ζ2) =
1

`!
B(λ′ + `, λ′′ + `)(ζ1 − ζ2)`(ζ1 + i)−λ

′−`(ζ2 + i)−λ
′′−`,

where B(·, ·) stands for the Euler beta function. �

Proposition 2.29. Suppose λ′, λ′′ > 1 and ` ∈ N. Then the function

(x, y) 7→ (xλ
′−1e−x)(yλ

′′−1e−y)(x+ y)`P λ′−1,λ′′−1
`

(
y − x
x+ y

)
belongs to L2(R2

+)λ′,λ′′, and gives a minimal K-type in the image of the holographic

operator Φλ′+λ′′+2`
λ′,λ′′ .
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Proof. Since zλ
′′′−1e−z belongs to the minimalK-type in the irreducible representation

L2(R+)λ′′′ , so does Φλ′′′

λ′,λ′′(z
λ′′′−1e−z) in the irreducible representation Φλ′′′

λ′,λ′′(L
2(R2

+)λ′,λ′′).

Then the formula (2.13) of the holographic operator Φλ′′′

λ′,λ′′ with λ′′′ = λ′ + λ′′ + 2`
shows Proposition 2.29. �

2.9.2. An application of the integral formula.
Fix λ′, λ′′ ∈ C and consider eigenfunctions of the following holomorphic differential

operator on Π× Π:

(2.31) Pλ′,λ′′ := (ζ1 − ζ2)2 ∂2

∂ζ1∂ζ2

+ (λ′′ζ2 + λ′ − λ′′)ζ1
∂

∂ζ1

+ (λ′ζ1 − λ′ + λ′′)ζ2
∂

∂ζ2

,

and define for µ ∈ C
So`(Π× Π,Mλ′,λ′′,µ) := {f ∈ O(Π× Π): Pλ′,λ′′f = µf} .

The integral transform (2.6) constructs all eigenfunctions of Pλ′,λ′′ as follows.

Theorem 2.30. Suppose λ′, λ′′ ∈ C. Then,

(1) So`(Π× Π,Mλ′,λ′′, µ) 6= {0} if and only if µ is of the form

µ = −`(λ′ + λ′′ + `− 1) for some ` ∈ N.
(2) For any λ′, λ′′ ∈ C and ` ∈ N,

(ζ1 − ζ2)`(ζ1 + i)−λ
′−`(ζ2 + i)−λ

′′−` ∈ So`(Π× Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)).

(3) If Re λ′,Re λ′′ > 0 and ` ∈ N, then the integral transform (2.6) gives a
bijection

Ψλ′+λ′′+2`
λ′,λ′′ : O(Π)

∼−→ So`(Π× Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)).

The inverse map is proportional to the Rankin–Cohen bidifferential operator,
namely,

RCλ′+λ′′+2`
λ′,λ′′ ◦Ψλ′+λ′′+2`

λ′,λ′′ = c`(λ
′, λ′′)id on O(Π),

where c`(λ
′, λ′′) is defined as in (2.3).

2.9.3. Quick review of representations of the universal covering group SL(2,R) .̃
In order to prove Theorem 2.30 we recall some properties of representations of

SL(2,R) .̃ The universal covering group SO(2)˜of the maximal compact subgroup
K = SO(2) is isomorphic to R. We parametrize its characters χλ by λ ∈ C as an
extension of the following group homomorphisms originally defined for λ ∈ Z:

R ' SO(2)˜−→ SO(2) −→ C×, θ 7→
(

cos θ − sin θ
sin θ cos θ

)
7→ eiλθ.
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The representation πλ on O(Π) given in Section 2.1.1 is a highest weight module
with highest weight −λ because it has the following K-types:

(2.32) − λ,−λ− 2,−λ− 4, · · · .

Choose the standard basis of the Lie algebra sl(2,R):

H :=

(
1 0
0 −1

)
, X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
.

Then the Casimir element C is expressed as C = 1
8
(H2 + 2XY + 2Y X).

The infinitesimal action dπλ is given by holomorphic differential operators:

(2.33) dπλ(H) = −λ− 2z
d

dz
, dπλ(X) = − d

dz
, dπλ(Y ) = λz + z2 d

2

dz2
,

and the Casimir element C acts on (dπλ,O(Π)) as dπλ(C) = 1
8
λ(λ−2)id. In general,

if π is a highest weight module of SL(2,R)˜ with highest weight ν (ν ∈ C), then the
Casimir element is given via dπ as the scalar multiplication 1

8
ν(ν + 2)id.

2.9.4. Proof of Theorem 2.30.

Lemma 2.31. The Casimir element C of sl(2,R) acts on O(Π×Π) via dπλ′ ⊗ dπλ′′
by

(dπλ′ ⊗ dπλ′′) (diag(C)) = −1

2
Pλ′,λ′′ +

1

8
(λ′ + λ′′)(λ′ + λ′′ − 2),

where the holomorphic differential operator Pλ′,λ′′ is defined in (2.31).

Proof. By (2.33) and the Leibniz rule, we have

(dπλ′ ⊗ dπλ′′) (diag(H)) = −λ′ − λ′′ − 2

(
ζ1

∂

∂ζ1

+ ζ2
∂

∂ζ2

)
,

(dπλ′ ⊗ dπλ′′) (diag(X)) = − ∂

∂ζ1

− ∂

∂ζ2

,

(dπλ′ ⊗ dπλ′′) (diag(Y)) = λ′ζ1 + λ′′ζ2 +

(
ζ2

1

∂2

∂ζ2
1

+ ζ2
2

∂2

∂ζ2
2

)
.

Now the lemma follows by a direct computation. �

The tensor product representation πλ′⊗̂πλ′′ does not always split into a direct sum
of irreducible representations in the nonunitary case when λ′, λ′′ ∈ C, see [19] for
instance. We determine the set of possible infinitesimal characters of subrepresenta-
tions of the tensor product πλ′⊗̂πλ′′ in this case.
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Lemma 2.32. Let λ′, λ′′ ∈ C. Suppose π is a subrepresentation of πλ′⊗̂πλ′′ such that
the Casimir element C acts as scalar multiplication via dπ. Then this scalar must
be of the form

1

8
(λ′ + λ′′ + 2`)(λ′ + λ′′ + 2`− 2) for some ` ∈ N.

Proof. We use the general theory of discretely decomposable restrictions of (nonuni-
tary) representations [11]. First we observe from (2.32) that the K-types of the
tensor product representation πλ′⊗̂πλ′′ are of the form

−λ′ − λ′′ − 2(`′ + `′′) for some `′, `′′ ∈ N.
Thus the tensor product representation πλ′⊗̂πλ′′ on O(Π × Π) contains the direct
sum of K-isotypic spaces

(2.34)
⊕
`∈N

(`+ 1)χ−λ′−λ′′−2`

as a dense subset, where (`+ 1) stands for the multiplicity.
In particular, each K-type occurs in πλ′⊗̂πλ′′ with at most finite multiplicities.

Hence, any subrepresentation π is admissible, and of highest weight −λ′ − λ′′ − 2`
for some ` ∈ N. Therefore, if the Casimir element acts as a scalar via dπ, then this
scalar must coincide with 1

8
(λ′ + λ′′ + 2`)(λ′ + λ′′ + 2`− 2). �

Proof of Theorem 2.30. (1) By Lemma 2.31, So`(Π×Π,Mλ′,λ′′,µ) is characterized as
the eigenspace of the Casimir operator C as follows:
(2.35)
So`(Π× Π,Mλ′,λ′′,µ) = {f ∈ O(Π× Π): (dπλ′ ⊗ dπλ′′) (diag(C)) = e(λ′, λ′′, µ)f},

where we set e(λ′, λ′′, µ) = −1
2
µ+ 1

8
(λ′ + λ′′)(λ′ + λ′′ − 2).

On the other hand, Lemma 2.32 tells that e(λ′, λ′′, µ) = 1
8
(λ′ + λ′′ + 2`)(λ′ + λ′′ +

2`− 2) for some ` ∈ N. This gives the desired formula for µ, showing the “if ” part
of the first statement. The “only if ” part follows from the second statement.

(2) By the assumption Reλ′,Reλ′′ > 0, the integral (2.6) converges for any
` ∈ N. Since the Casimir element C acts on O(Π) as the scalar 1

8
λ′′′(λ′′′ − 2) via

dπλ′′′ , and since Ψλ′′′

λ′,λ′′ is an intertwining operator, the Casimir element C acts on

the image of Ψλ′′′

λ′,λ′′ by the same scalar. Therefore Ψλ′+λ′′+2`
λ′,λ′′ (O(Π)) ⊂ So`(Π ×

Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)) by (2.35). In turn, Proposition 2.28 and Lemma 2.31 imply
that

(Pλ′,λ′′ + `(λ′ + λ′′ + `− 1))
(

(ζ1 − ζ2)`(ζ1 + i)−λ
′−`(ζ2 + i)−λ

′′−`
)

= 0

as far as Reλ′,Reλ′′ > 0. By the analytic continuation, the equation holds for all
λ′, λ′′ ∈ C.
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(3) We begin with the case where λ′ and λ′′ are real and λ′, λ′′ > 1. Then it follows
from Proposition 2.27, Lemma 2.23 (2) and Proposition 2.22 that

RCλ′′′λ′,λ′′ ◦Ψλ′′′

λ′,λ′′ = c`(λ
′, λ′′)id on H2(Π)λ′′′ .

Since H2(Π)λ′′′ is dense in O(Π), the equality holds on the whole O(Π) by continuity.

Moreover, since the operatorsRCλ′′′λ′,λ′′ and Ψλ′′′

λ′,λ′′ depend holomorphically on (λ′, λ′′) ∈
C2 satisfying (2.5), we conclude that

(2.36) RCλ′′′λ′,λ′′ ◦Ψλ′′′

λ′,λ′′ = c`(λ
′, λ′′)id on O(Π)

for any (λ′, λ′′, λ′′′) subject to (2.5) by analytic continuation. In particular, Ψλ′′′

λ′,λ′′ is

injective and RCλ′′′λ′,λ′′ is surjective because c`(λ
′, λ′′) 6= 0 in this case.

Let us prove that Ψλ′′′

λ′,λ′′ : O(Π) −→ So`(Π× Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)) is surjective.
Since the map N −→ C, ` 7→ −`(λ′ + λ′′ + ` − 1) is injective if Reλ′,Reλ′′ > 0, we
have the following inclusion of SL(2,R) -̃modules:⊕

`∈N

Ψλ′+λ′′+2`
λ′,λ′′ (O(Π)) ⊂

⊕
`∈N

So`(Π× Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)) ⊂ O(Π× Π).

Here SL(2,R)˜acts on O(Π × Π) via πλ′⊗̂πλ′′ . We observe that K-multiplicities

coincide by (2.34) because the holographic operator Ψλ′+λ′′+2`
λ′,λ′′ is injective for any

` ∈ N. Therefore, Ψλ′+λ′′+2`
λ′,λ′′ : O(Π) −→ So`(Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)) is surjective

on the level of (g, K)-modules.

Since c`(λ
′, λ′′) 6= 0, the map RCλ′′′λ′,λ′′ is injective on Ψλ′+λ′′+2`

λ′,λ′′ (O(Π)) by (2.36),

hence the underlying (g, K)-module of Ker
(
RCλ′′′λ′,λ′′

)
∩So`(Π×Π,Mλ′,λ′′,−`(λ′+λ′′+`−1))

must be zero for any λ′′′ = λ′ + λ′′ + 2` (` ∈ N). Hence RCλ′′′λ′,λ′′ is injective when

restricted to So`(Π × Π,Mλ′,λ′′,−`(λ′+λ′′+`−1)). Now we conclude that Ψλ′′′

λ′,λ′′ is sur-
jective. Thus the theorem is proved. �

3. Holomorphic Juhl transform and its holographic transform

Another remarkable family of differential operators is provided by conformally
covariant differential operators for the pair Sn ⊃ Sn−1 of Riemannian manifolds,
introduced by Juhl [9]. These operators are symmetry breaking operators from
spherical principal series representations of the Lorentz group O(1, n + 1) to those
of the subgroup O(1, n). This setting is intimately related to the holographic or
AdS/CFT correspondence in string theory (see e.g. [21, 24]).

The holomorphic Juhl operators are the holomorphic continuation of Juhl’s opera-
tors, which map holomorphic functions on the n-dimensional Lie ball to those on the
(n− 1)-dimensional Lie ball, intertwining (relative) discrete series representations of
G = SOo(2, n) with those of the subgroup G′ = SOo(2, n− 1), see [19].
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In this section we solve Problems A and B stated in Section 1 for the symme-
try breaking transform associated with the holomorphic Juhl operators. We assume
n ≥ 3 throughout this section. The case n = 2 can be recovered from the previous
section with an appropriate change of parameters.

3.1. Holomorphic Juhl operators.
3.1.1. Holomorphic discrete series of SOo(2, n).

Let Qp,q be the standard quadratic form of signature (p, q) on Rp+q. The indefinite
orthogonal group

O(p, q) :=
{
g ∈ GL(p+ q,R) : Qp,q(gx) = Qp,q(x) for allx ∈ Rp+q

}
has four connected components when p, q > 0. Let G = SOo(2, n) be the identity
component of O(2, n) and K a maximal compact subgroup of G. We write c(k) for
the first factor of the Lie algebra k ' R ⊕ so(n), and fix a characteristic element
H0 ∈ c(k) such that ad(H0) gives the eigenspace decomposition of gC = Lie(G)⊗R C
as

(3.1) gC = kC + n+ + n−

for eigenvalues 0,−i and i, respectively. The complex structure of the homogeneous
space G/K is given by the G-translation of exp

(
ad
(
π
2
H0

))
∈ GLR(To(G/K)), or

equivalently, induced from the Borel embedding G/K ⊂ GC/KC exp n+.

Let G̃ be the universal covering of G = SOo(2, n), p : G̃ −→ G the covering

homomorphism, and set K̃ := p−1(K). For λ ∈ C, we define a character of c(k) by

tH0 7→ λt, which lifts to a character Cλ of K̃.

Then one can define a G̃-equivariant holomorphic line bundle Lλ = G̃×K̃ Cλ over

X := G̃/K̃ ' G/K for all λ ∈ C, and obtain representations π
(n)
λ of G̃ on the space

O(X,Lλ) of holomorphic sections. The representation π
(n)
λ descends to G if λ ∈ Z.

If λ ∈ R, then the line bundle Lλ −→ X carries a G̃-invariant Hermitian metric,
and therefore we can define a Hilbert space (O ∩ L2) (X,Lλ). This Hilbert space is

nonzero if and only if λ > n− 1, and the resulting unitary representation of G̃, to be

denoted by the same symbol π
(n)
λ , is called a (relative) holomorphic discrete series

representation of G̃. For actual computations we use its realization in the weighted
Bergman space as below.

We define the tube domain

TΩ ≡ TΩ(n) := Rn + iΩ(n)

by taking Ω(n) to be the time-like cone in the Minkowski space R1,n−1, namely,

Ω(n) := {η ∈ Rn : Q1,n−1(η) > 0, η1 > 0} .
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Then the tube domain TΩ is biholomorphic to the bounded symmetric domain of
type IVn, sometimes referred to as the Lie ball. From a group-theoretic viewpoint,
TΩ is isomorphic to the Hermitian symmetric space X = G/K, which is realized as
an open subset of n−(' Cn) via the following maps

(3.2) n− ↪→
open

GC/KC exp(n+) ⊃
open

G/K.

The homogeneous holomorphic line bundle Lλ −→ X is trivialized via the Bruhat
decomposition, and the Hilbert space (O ∩ L2)(X,Lλ) is then identified with the
weighted Bergman space

H2(TΩ(n))λ := O(TΩ(n)) ∩ L2(TΩ(n), Q1,n−1(η)λ−ndξdη),

on which G acts as a multiplier representation by

f(ζ) 7→ bλ(g, ζ)f(g−1.ζ)

for g ∈ G and f(ζ) ∈ O(TΩ(n)). Here the multiplier

bλ : G× TΩ(n) −→ C×

is a 1-cocycle defined by bλ(g, ζ) := χ−λ(k(g, ζ)), where χλ : KC −→ C× is the
holomorphic extension of the character Cλ of K and k(g, ζ) is an element of KC
determined by

g−1 exp(ζ) ∈ exp(g−1.ζ)k(g, ζ) exp(n+),

see (3.2).
For λ > n− 1 this Hilbert space admits a reproducing kernel Kλ(ζ, τ) given by:

(3.3) Kλ(ζ, τ) = kλ,nQ1,n−1 (ζ − τ)−λ ,

where Q1,n−1(ζ) stands for the holomorphic extension of Q1,n−1, and we set

kλ,n :=
(2i)2λ

(4π)n

(
λ− n

2

)
Γ(λ)

Γ(λ− n+ 1)
,

see [5, Prop. XIII.1.2]. We note that kλ,n 6= 0 if λ > n− 1.
We realize O(2, n− 1) as the subgroup of O(2, n) which fixes the (n+ 2)-th coor-

dinate, and set G′ = SOo(2, n− 1) as its identity component. By abuse of notation,

we write G̃′ for the connected subgroup of G̃ = SOo(2, n)˜ corresponding to G′ ⊂ G.

The subgroup G̃′ is simply connected if n 6= 4. Similarly, a (relative) holomorphic

discrete series representation π
(n−1)
ν of G̃′ is defined for ν > n− 2, as an irreducible

unitary representation on the weighted Bergman spaceH2(TΩ(n−1))ν . By abuse of no-

tation, the same symbol π
(n−1)
ν will be used to denote a (nonunitary) representation

on O(TΩ(n−1),Lν) for ν ∈ C.
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3.1.2. Holomorphic Juhl operators.
Let ∆C1,n−2 := ∂2

∂ζ2
1
− ∂2

∂ζ2
2
− · · · − ∂2

∂ζ2
n−1

be the holomorphic Laplacian on Cn−1

associated to the complexified quadratic form Q1,n−2. For α ∈ C and `, k ∈ N with
` ≥ 2k, we define a polynomial of α of degree `− k by

(3.4) ak(`, α) :=
(−1)k2`−2k · Γ (α + `− k)

Γ (α) k!(`− 2k)!
.

The coefficients ak(`, α) appear in the definition (5.5) of the Gegenbauer polynomials
Cα
` (x), see Appendix. We define a holomorphic differential operator Dα` on Cn by

(3.5) Dα` :=

[ `2 ]∑
k=0

ak (`, α)

(
∂

∂ζn

)`−2k

∆k
C1,n−2 .

For λ, ν ∈ C with ` := ν−λ ∈ N, the holomorphic Juhl operatorDλ→ν : O(TΩ(n)) −→
O(TΩ(n−1)) is defined as the composition

Dλ→ν := Restζn=0 ◦ D
λ−n−1

2
` .(3.6)

The operator Dλ→ν may be viewed as the holomorphic extension of the original
Juhl operator [9], which is a conformally covariant differential operator C∞(Sn) →
C∞(Sn−1). In our setting, the hyperbolic space Hn is realized as a totally real
submanifold of the tube domain TΩ(n), and likewise, Hn−1 is that of TΩ(n−1). The
restriction of the holomorphic Juhl operator to these real manifolds also yields a
conformally covariant operator C∞(Hn) −→ C∞(Hn−1), see [16, Thm. E].

The holomorphic Juhl operator Dλ→ν gives yet another symmetry breaking oper-

ator, intertwining the (relative) holomorphic discrete series representation π
(n)
λ of G̃

and the one π
(n−1)
ν of the subgroup G̃′ [19, Thm. 6.3]. Moreover, the differential op-

erator Dλ→ν induces a continuous map between the Bergman spaces by the general
theory [18, Thm. 5.13]. Its adjoint is denoted by D∗λ→ν . We determine the operator
norm of Dλ→ν in Proposition 3.6.

3.2. Two constants c`(λ) and r`(λ).
Throughout Section 3 the parameter set is (λ, ν) ∈ C2 with ν − λ ∈ N and n ≥ 3.

We use the following notation:

(3.7) α = λ− n− 1

2
, ` = ν − λ.
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As in Section 2.2 devoted to the tensor product case, the main results in this
section involve the following two constants:

c ≡ c`(λ) :=

∫ 1

−1

|Cα
` (v)|2 (1− v2)α−

1
2dv

=
π2n−2λΓ(2λ+ `− n+ 1)

`!
(
λ+ `− n−1

2

)
Γ
(
λ− n−1

2

)2 ,(3.8)

r ≡ r`(λ) :=
bn−1(ν)

bn(λ)

=
Γ
(
λ+ `− n−1

2

)
Γ (λ+ `− n+ 2)

(2π)
3
2 22`+1Γ

(
λ− n

2

)
Γ (λ− n+ 1)

,(3.9)

where bn(λ) is a Plancherel density (see (3.13) below).

3.3. Holomorphic Juhl transforms.

Definition 3.1 (holomorphic Juhl transform). For λ ∈ C, the holomorphic Juhl
transform Dλ is a collection of the holomorphic Juhl operators

Dλ : O(TΩ(n)) −→ Map(N,O(TΩ(n−1))), f 7→ {(Dλf)`}`∈N,
where (Dλf)` := Dλ→λ+`f .

The holomorphic Juhl transform Dλ intertwines (π
(n)
λ ,O(TΩ(n))) with the formal

direct sum
⊕̂

`∈N(π
(n−1)
λ+` ,O(TΩ(n−1))); its inversion formula and the corresponding

Parseval–Plancherel type theorems are given as follows.

Theorem 3.2. Suppose λ > n− 1.

(1) (inversion formula). Any f ∈ H2(TΩ(n))λ is recovered from Dλf by

f =
∞∑
`=0

1

r`(λ)c`(λ)
D∗λ→λ+` (Dλf)` .

(2) (Parseval–Plancherel type theorem). For every f ∈ H2(TΩ(n))λ, we have

(3.10) ‖f‖2
H2
λ(TΩ(n))

=
∞∑
`=0

1

r`(λ)c`(λ)
‖ (Dλf)` ‖

2
H2
λ+`(TΩ(n−1))

.

Theorem 3.2 is proved in Section 3.5.4. It gives an answer to Problems A.2 and B
raised in Section 1 for the holomorphic Juhl transform Dλ. An answer to Problem
A.1 (explicit integral formula for holographic transform) will be given in Theorem
3.10.
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From a representation-theoretic viewpoint, Theorem 3.2 gives quantitative infor-
mation on the corresponding branching law for the restriction of the (relative) holo-

morphic discrete series representation π
(n)
λ of G̃ to the subgroup G̃′, which decom-

poses the restriction π
(n)
λ

∣∣
G̃′

into a multiplicity-free direct Hilbert sum of irreducible

representations of the subgroup G̃′, see [13, Thm. 8.3]:

(3.11) π
(n)
λ |G̃′ '

∑
`∈N

⊕
π

(n−1)
λ+` .

Corollary 3.3 (projection operator). Suppose λ > n− 1 and ` := ν − λ ∈ N. Then

1

r`(λ)c`(λ)
D∗λ→νDλ→ν

is the projection operator from the Hilbert space H2(TΩ(n))λ onto the summand which

is isomorphic to the irreducible representation (π
(n−1)
ν ,H2(TΩ(n−1))ν), see (3.11).

3.4. Key operators in the proof of Theorem 3.2.
Analogously to the case of the tensor product representations (Section 2), we

introduce the following continuous operators for the proof of Theorem 3.2:

D∗λ→ν : H2(TΩ(n−1))ν −→H2(TΩ(n))λ adjoint of Dλ→ν ,

D̂λ→ν : L2(Ω(n))λ −→L2(Ω(n− 1))ν Fourier transform of Dλ→ν , see (3.23),

Φν
λ : L2(Ω(n− 1))ν −→L2(Ω(n))λ holographic operator, see (3.17).

The link between these operators may be summarized in the following diagram:

(3.12) Dλ→ν

Proposition 3.7
��

Theorem 3.10 // D∗λ→ν

D̂λ→ν
Proposition 3.5

// Φν
λ

Proposition 3.8

OO

Among them, the holographic operator Φν
λ in the L2-model will play a crucial role

in the proof of Theorem 3.2.

3.5. Holographic transform in the L2-model on the time-like cone Ω(n).
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3.5.1. L2-model of holomorphic discrete series.
For λ > n− 1, we denote by L2(Ω)λ ≡ L2(Ω,mλ(y)dy) the Hilbert space of square

integrable functions on the time-like cone Ω ≡ Ω(n) with respect to the measure
mλ(y)dy, where mλ is a positive-valued function on Ω given by

mλ(y) := Q1,n−1(y)
n
2
−λ.

Let 〈y, ζ〉 =
∑n

j=1 yjζj. Since the cone Ω is self-dual in Rn, the Fourier–Laplace
transform

(FnF ) (ζ) :=

∫
Ω

F (y)ei〈y,ζ〉dy

is a holomorphic function of ζ ∈ TΩ if F ∈ Cc(Ω).

Fact 3.4 (Faraut–Koranyi [5, Thm. XIII.1.1]). For λ > n− 1, we set

(3.13) bn(λ) := (2π)
3n
2
−1 2−2λ+nΓ

(
λ− n

2

)
Γ(λ− n+ 1).

Then the Fourier–Laplace transform Fn : Cc(Ω) −→ O(TΩ) extends to a linear bijec-
tion:

Fn : L2(Ω)λ
∼→H2

λ(TΩ(n)).(3.14)

with

‖FnF‖2
H2
λ(TΩ(n))

= bn(λ)‖F‖2
L2(Ω(n))λ

for all F ∈ L2(Ω)λ.

Via the isomorphism (3.14), an irreducible unitary representation of G̃ is defined on
L2(Ω)λ for λ > n−1, to which we refer as the L2-model of the (relative) holomorphic

discrete series representation π
(n)
λ .

Similarly, we define a positive-valued function m′ν(y
′) := Q1,n−2(y′)

n−1
2
−ν on the

time-like cone Ω′ ≡ Ω(n − 1) in R1,n−2, and we set L2(Ω′)ν := L2(Ω′,m′ν(y
′)dy′) on

which the L2-model of the (relative) holomorphic discrete series representation π
(n−1)
ν

of G̃′ is defined via the unitary map

Fn−1 : L2(Ω′)ν
∼→H2

ν(TΩ(n−1)) for ν > n− 2

up to rescaling bn−1(ν)−
1
2 .

3.5.2. Gegenbauer polynomial and Juhl’s conformally covariant operator.
Let ak(`, α) be as in (3.4). We define a polynomial of two variables by

(3.15) (I`C
α
` )(u, v) :=

[ `2 ]∑
k=0

ak(`, α)ukv`−2k.
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For instance, we have (I0C
α
0 )(u, v) = 1, (I1C

α
1 )(u, v) = 2αv, and (I2C

α
2 )(u, v) =

α(2(α + 1)v2 − u). By definition, (I`C
α
` )(w2, v) is a homogeneous polynomial of

degree `, and (I`C
α
` )(1, v) coincides with the Gegenbauer polynomial Cα

` (v), see (5.5)
in Appendix. (This is the reason why we adopted the notation I`C

α
` .) The F-method

[19, Thm. 6.3] shows that the differential operator Dα` (see (3.5)) is expressed as

(3.16) Dα` = i−` (I`C
α
` )

(
−∆C1,n−2 , i

∂

∂ζn

)
.

3.5.3. Construction of discrete summands in the L2-model.
Following the idea of the F-method [15], we introduce the holographic operator Φν

λ

as a multiplication operator like in the tensor product case (cf. Definition 2.10). By
the simplicity of its formula, the holographic operator Φν

λ in the L2-model plays a
crucial role in the proof of Theorem 3.2.

Retain the basic setting (3.7) where ` = ν−λ ∈ N and α = λ− n−1
2

. For a function
h(y′) on Ω(n− 1), we define (Φν

λh) (y) on Ω(n) by

(3.17) (Φν
λh) (y) := Q1,n−2(y′)−(`+ 1

2)(1− y2
n)λ−

n
2 (I`C

α
` ) (Q1,n−2(y′),−yn)h(y′).

Then Φν
λ gives rise to a holographic operator in the L2-model in the following

sense:

Proposition 3.5. Suppose that λ > n− 1 and ν = λ+ ` for some ` ∈ N.

(1) The linear map Φν
λ : L2(Ω(n−1))ν −→ L2(Ω(n))λ is an isometry up to scalar:

‖Φν
λ(h)‖2

L2(Ω(n))λ
= c`(λ)‖h‖2

L2(Ω(n−1))ν
for all h ∈ L2(Ω(n− 1))ν ,

where we recall that the constant c`(λ) is given in (3.8).

(2) Φν
λ intertwines the irreducible unitary representation π

(n−1)
ν of the subgroup

G̃′ with the restriction π
(n)
λ

∣∣
G̃′

.

We also discuss some further basic properties of the holographic operators Φν
λ in

Proposition 3.8.

3.5.4. Proof of Theorem 3.2.
Postponing the proof of Proposition 3.5 until Section 3.5.7 and Proposition 3.8

until Section 3.5.8 we complete the proof of Theorem 3.2.

Proposition 3.6. Suppose λ > n − 1 and ν = λ + ` with ` ∈ N. Then the dif-
ferential operator Dλ→ν extends to a continuous linear map Dλ→ν : H2(TΩ(n))λ −→
H2(TΩ(n−1))ν with the following operator norm:

‖Dλ→ν‖2
op = r`(λ)c`(λ).
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Proof. It follows from Lemma 2.24 (1) and Propositions 3.5 and 3.8 that

‖Dλ→ν‖2
op = r`(λ)‖D̂λ→ν‖2

op = r`(λ)‖Φν
λ‖2

op = r`(λ)c`(λ).

�

Proof of Theorem 3.2. By Lemma 2.23 and by the (abstract) branching law (3.11)

for the restriction G̃ ↓ G̃′, the theorem follows from the expression of the operator
norm of the differential operator Dλ→ν given in Proposition 3.6. �

The rest of this section is devoted to the proof of Proposition 3.5.
3.5.5. Coordinate change in the L2-model.

As in Section 2.7.2 for the tensor product case, we introduce the following coordi-
nates of the time-like cone Ω(n) in R1,n−1:

(3.18) ι : Ω(n− 1)× (−1, 1)
∼−→ Ω(n), (y′, v) 7→ (y′,−

√
Q1,n−2(y′)v),

which is a bijection because (y′, yn) ∈ Ω(n) if and only if y′ ∈ Ω(n − 1) and y2
n <

Q1,n−2(y′).
We define a function on Ω(n− 1)× (−1, 1) by

(3.19) M(y′, v) ≡Mλ,ν(y
′, v) := Q1,n−2(y′)

`+1
2 (1− v2)

n
2
−λ.

Via the isomorphism ι, the ratio of the densities mλ(y) and mν(y
′), and the holo-

graphic operator Φν
λ are expressed as follows:

m′ν(y
′)

mλ(y)
= M(y′, v)−1 Q1,n−2(y′)−

`
2 ,(3.20)

mλ(y)dy = M(y′, v)2 m′ν(y
′)dy′(1− v2)λ−

n
2 dv,(3.21)

(Φν
λh) ◦ ι(y′, v) = M(y′, v)−1 Cα

` (v)h(y′).(3.22)

3.5.6. Fourier transform of the holomorphic Juhl operators.
For λ > n− 1 and ν = λ + ` (` ∈ N), the holomorphic Juhl operator Dλ→ν gives

rise to a continuous operator H2(TΩ(n))λ −→ H2(TΩ(n−1))ν between the weighted
Bergman spaces [18, Thm. 5.13].

We define a linear map D̂λ→ν : L2(Ω)λ −→ L2(Ω′)ν by

(3.23) D̂λ→ν := F−1
n−1 ◦Dλ→ν ◦ Fn.

Then the idea of the F-method [18] implies that the “Fourier transform” D̂λ→ν
of the holomorphic Juhl operator Dλ→ν is given by a Gegenbauer transform (cf. [4,
Chap. 15]) along the trajectory in (3.18) where the parameter v moves:
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Proposition 3.7. The operator D̂λ→ν is given by the following integral transform:(
D̂λ→νF

)
(y′) = i−`Q1,n−2(y′)

`+1
2

∫ 1

−1

F ◦ ι(y′, v)Cα
` (v)dv for y′ ∈ Ω′,

where we set α = λ− n−1
2

.

Proof. Let α = λ− n−1
2

. Then it follows from (3.5) and (3.16) that(
i`Dλ→ν ◦ Fn

)
F = Restζn=0 ◦ (I`C

α
` )

(
−∆C1,n−2 , i

∂

∂ζn

)
FnF

= Restζn=0 ◦ Fn (I`C
α
` (Q1,n−2(y′),−yn)F ) ,(3.24)

for F ∈ L2(Ω(n))λ. Since (I`C
α
` )(u2, w) = u`Cα

`

(
w
u

)
, the right-hand side amounts to∫

Ω(n−1)

∫ 1

−1

F ◦ ι(y′, v)Q1,n−2(y′)
`+1

2 Cα
` (v)ei〈y

′,ζ′〉dy′dv

= Fn−1

(
Q1,n−1(y′)

`+1
2

∫ 1

−1

F ◦ ι(y′, v)Cα
` (v)dv

)
via the diffeomorphism (3.18). Since the left-hand side of (3.24) is equal to i`Fn−1 ◦
D̂λ→νF by the definition (3.23) of D̂λ→ν , we proved Proposition 3.7. �

3.5.7. Proof of Proposition 3.5.

Proof of Proposition 3.5. Let α = λ− n−1
2

as before. By (3.21) and (3.22) we have

‖Φν
λh‖2

L2(Ω(n))λ
= ‖h‖2

L2(Ω(n−1))λ+`

∫ 1

−1

|Cα
` (v)|2 (1− v2)α−

1
2dv.

Thus the first assertion holds by the definition (3.8) of c`(λ).
The second assertion follows readily from Proposition 3.8 (1) below. �

3.5.8. Holographic operators and the adjoint of symmetry breaking operators.

We have constructed holographic operators Φν
λ in the L2-model and Φ̂ν

λ in the
holomorphic model using the F-method. On the other hand, the adjoint of symmetry
breaking operators between unitary representations yield holographic operators in
general (cf. Theorem 4.4 (1) below). In our setting, these operators are proportional
to each other because the branching law (3.11) is multiplicity free. We determine
the proportionality constants:

Proposition 3.8. Suppose λ > n− 1 and ` = ν − λ ∈ N. Then we have(
D̂λ→ν

)∗
= i`Φν

λ,

D∗λ→ν = i`r`(λ)Φ̂ν
λ.
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Proof. Take any h ∈ L2(Ω(n − 1))ν and F ∈ L2(Ω(n))λ with ν − λ = ` ∈ N. Since
α = λ − n−1

2
is real, Cα

` (v) is real-valued for −1 < v < 1, hence we have from
Proposition 3.7(

h, D̂λ→νF
)
L2(Ω(n−1))ν

= i`
∫

Ω(n−1)

h(y′)

(∫ 1

−1

Q1,n−2(y′)
`+1

2 F ◦ ι(y′, v)Cα
` (v)dv

)
m′ν(y

′)dy′

= i`
∫

Ω(n)

h(y′)F (y)(I`C
α
` )(Q1,n−2(y′),−yn)m′ν(y

′)dy

= i`
∫

Ω(n)

(Φν
λh) (y)F (y)mλ(y)dy

= i` (Φν
λh, F )L2(Ω(n))λ

.

Here we have used (3.20) and (3.22) in the third identity. Hence the first equality is
shown. By Lemma 2.24, the second equality follows from the first one. �

3.6. Explicit integral formula for the holographic operator.
In this section, we give an integral formula for the holographic operator D∗λ→ν

in the holomorphic model, giving thus an answer to Problem A.1 in Section 1, see
Theorem 3.10 below.

3.6.1. Construction of discrete summands in the holomorphic model.
In contrast to the holographic operators Ψλ′′′

λ′,λ′′ (Definition 2.1) in the tensor prod-
uct case in Section 2, we do not have a simple integral expression for a holographic
operator like (2.6) in the present setting. Instead, we adopt an alternative ap-
proach to construct a holographic operator by introducing a relative reproducing
kernel Kλ,ν(ζ, τ

′) as below.
For λ, ν ∈ C with ` := ν − λ ∈ N, we set

(3.25) Kλ,ν(ζ, τ
′) := ζν−λn

(
(ζ1 − τ 1)2 − (ζ2 − τ 2)2 − · · · − (ζn−1 − τn−1)2 − ζ2

n

)−ν
,

where ζ = (ζ1, · · · , ζn) ∈ TΩ(n) and τ ′ = (τ1, · · · , τn−1) ∈ TΩ(n−1).

Remark 3.9. Kλ,ν(ζ, τ
′) may be viewed as the holomorphic counterpart of the distri-

bution kernel of a conformally covariant integral symmetry breaking operator for the
pair of Riemannian manifolds (Sn, Sn−1), see [20]. See also (1.1) for the case n = 2.

Let dµν be a measure on TΩ(n−1) given by dµν(τ
′) :=

(
i
2

)n−1
Q1,n−2(Im τ ′)ν−n+1dτ ′dτ ′.
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Theorem 3.10 (holographic operator). Let n ≥ 3. Suppose λ > n−1 and ν = λ+ `
with ` ∈ N. Then the integral∫

TΩ(n−1)

Kλ,ν(ζ, τ
′)g(τ ′)dµν(τ

′)

converges for all g ∈ H2(TΩ(n−1))ν and ζ ∈ TΩ(n). Moreover, it gives the adjoint
operator D∗λ→ν up to scalar multiplication:

(D∗λ→νg) (ζ) = C

∫
TΩ(n−1)

Kλ,ν(ζ, τ
′)g(τ ′)dµν(τ

′),

where the constant C is given by

(3.26) C =
22λ−2n+`−1(λ− n+ 1)n+`−1(2λ− n)`+1

i2λ+2`πn`!
.

In particular, it yields an injective continuous G̃′-intertwining operator between weighted
Bergman spaces, H2(TΩ(n−1))ν ↪→ H2(TΩ(n))λ.

We first show that Theorem 3.10 is derived from the following Bernstein–Sato type
identity for the holomorphic Juhl operator.

Theorem 3.11. Let Dα` be the differential operator as in (3.16). We set

q(n, `;λ) :=
2`

`!
(2λ− n+ 1)`(λ)`.(3.27)

Then,

ζ−`n D
λ−n−1

2
` Q1,n−1(ζ)−λ = q(n, `;λ)Q1,n−1(ζ)−λ−`.

Remark 3.12. Theorem 3.11 shows that the complex power of the quadratic form
Q1,n−1 satisfies the Bernstein–Sato type identity not only for the power of the Lapla-
cian (see (3.32) below) but also for another operator closely related to the holomor-
phic Juhl operator.

Postponing the proof of Theorem 3.11, we complete the proof of Theorem 3.10.
For this, we also use the following lemma.

Lemma 3.13. Let Dj (j = 1, 2) be complex manifolds, and Hj Hilbert spaces con-
tained in O(Dj) with reproducing kernels K(j)(·, ·). Suppose that R : H1 → H2 is a
continuous linear map, and R∗ : H2 → H1 is its adjoint operator. Then,

(1) RK(1)( ·, ζ)(τ ′) =
(
R∗K(2)( ·, τ ′)

)
(ζ) for ζ ∈ D1, τ

′ ∈ D2;

(2) (R∗g) (ζ) =
(
g,RK(1)( ·, ζ)

)
H2

for g ∈ H2 and ζ ∈ D1.
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Proof. (1) The first assertion results from the reproducing property of K(j)(·, ·) ap-
plied to the following identity:(

R∗K(2)( ·, τ ′), K(1)( ·, ζ)
)
H1

=
(
K(2)( ·, τ ′),RK(1)( ·, ζ)

)
H2
.

(2) Immediate from (R∗g) (ζ) =
(
R∗g,K(1)( ·, ζ)

)
H1

= (g,RK(1)( ·, ζ))H2 . �

Proof of Theorem 3.10. Applying Lemma 3.13 to the triple

(R,H1,H2) = (Dλ→ν ,H2(TΩ(n))λ,H2(TΩ(n−1))ν),

we obtain the following integral expression of the adjoint operator D∗λ→ν :

(3.28) (D∗λ→νg) (ζ) =

∫
TΩ(n−1)

g(τ ′)Dλ→νKλ( ·, ζ)(τ ′)dµν(τ
′).

Here, we have viewed the reproducing kernel Kλ(τ, ζ) = kλ,nQ1,n−1(τ−ζ)−λ defined in
(3.3) as a function of τ ∈ TΩ(n) with parameter ζ ∈ TΩ(n) and applied the holomorphic
Juhl operator Dλ→ν . Writing τ as τ = (τ ′, τn), we get from Theorem 3.11:

Dλ→νKλ(τ, ζ) = kλ,n q(n, `;λ) Restτn=0 ◦ (τn − ζn)`Q1,n−1(τ − ζ)−λ−`

= (−1)`kλ,nq(n, `;λ)Kλ,ν(ζ, τ ′)

for τ ′ ∈ TΩ(n−1), by the definition (3.25) of the relative reproducing kernel Kλ,ν(ζ, τ
′).

Since q(n, `;λ) ∈ R when λ ∈ R, the integral formula of Theorem 3.10 is shown
with the constant C = (−1)`kλ,nq(n, `;λ). A short computation shows the formula
(3.26). �

The rest of this section is devoted to the proof of Theorem 3.11.
3.6.2. Proof of Theorem 3.11.

Lemma 3.14. Suppose ` ∈ N. Then there exist qj ≡ qj(n, `;λ) (0 ≤ 2j ≤ `) such
that

Dα` Q1,n−1(ζ)−λ =

[ `2 ]∑
j=0

qjζ
`−2j
n Q1,n−1(ζ)−λ−`+j.

Proof. It is easy to see that an analogous statement holds for
(

∂
∂ζn

)`
instead of Dα` ,

namely, there exist q′j ≡ q′j(n, `;λ) (0 ≤ 2j ≤ `) such that

(3.29)

(
∂

∂ζn

)`
Q1,n−1(ζ)−λ =

[ `2 ]∑
j=0

q′jζ
`−2j
n Q1,n−1(ζ)−λ−`+j.
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We rewrite Dα` as a polynomial of ∆C1,n−1 = ∂2

∂ζ2
1
− ∂2

∂ζ2
2
− · · · − ∂2

∂ζ2
n

and ∂
∂ζn

by

substituting ∆C1,n−2 = ∆C1,n−1 + ∂2

∂ζ2
n

into (3.5):

(3.30) Dα` =

[ `2 ]∑
k=0

pk(n, `;α)

(
∂

∂ζn

)`−2k

(∆C1,n−1)k ,

where the first coefficient is given by

(3.31) p0(n, `;α) =

[ `2 ]∑
k=0

ak(`, α) = Cα
` (1) =

(2α)`
`!

.

An iterated use of the formula

∆C1,n−1Q1,n−1(ζ)−λ = 2λ(2λ− n+ 2)Q1,n−1(ζ)−λ−1,

leads us to

(3.32) (∆C1,n−1)kQ1,n−1(ζ)−λ = sk(n, λ)Q1,n−1(ζ)−λ−k,

for some polynomials sk(n, λ) of λ of degree 2k. We note that s0(n, λ) = 1. Now the
lemma follows from (3.29). �

Clearly the coefficients qj = qj(n, `;λ) in Lemma 3.14 are unique. The proof of
Theorem 3.11 is reduced to the following proposition on these coefficients qj(n, `;λ).

Proposition 3.15.

(1) (the first term). Recall that q(n, `;λ) is defined in (3.27). Then,

q0 (n, `;λ) = q(n, `;λ).

(2) (vanishing of higher terms).

qj (n, `;λ) = 0 for all j ≥ 1.

Proof of Proposition 3.15 (1). In the expression(
∂

∂ζn

)`−2k

(∆C1,n−1)kQ1,n−1(ζ)−λ = sk(n, λ)

(
∂

∂ζn

)`−2k

Q1,n−1(ζ)−λ−k,

the term ζ`n Q1,n−1(ζ)−λ−` occurs only when k = 0, and its coefficient is given by
s0(n, λ)2`(λ)` = 2`(λ)`. By (3.30), we get

q0(n, `;λ) = p0(n, `;α) · 2`(λ)`.

Now the first assertion of Proposition 3.15 follows from (3.31). �

In order to prove the second assertion of Proposition 3.15, we discuss the kernel
of the holomorphic Juhl operator Dλ→ν : O(TΩ(n)) −→ O(TΩ(n−1)).
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Proposition 3.16. Suppose λ − n−1
2
6∈ {0,−1,−2, · · · }. Then for any N ∈ N we

have
N⋂
j=0

Ker (Dλ→λ+j) =

{
f ∈ O(TΩ(n)) : Restζn=0 ◦

(
∂

∂ζn

)j
f = 0 for all 0 ≤ j ≤ N

}
.

Proof. By the definition (3.6) of Dλ→ν , the right-hand side is clearly contained in the
left-hand side. To see the opposite inclusion, we recall from the definition (3.6) that
the symmetry breaking operator Dλ→λ+j is of the form

Dλ→λ+j = Restζn=0 ◦

a0

(
∂

∂ζn

)j
+

[ j2 ]∑
k=1

ak

(
∂

∂ζn

)j−2k

∆k
C1,n−2

 ,

where the first coefficient a0 ≡ a0 (j, α) is given by

a0 (j, α) =
2j

j!
(α)` with α = λ− n− 1

2
.

We now prove the proposition by induction on N . The statement is clear for N = 0
and 1 because Dλ→λ = Restζn=0 and Dλ→λ+1 = Restζn=0 ◦ ∂

∂ζn
.

Suppose that f ∈ O(TΩ(n)) satisfies Dλ→λ+jf = 0 for 0 ≤ j ≤ N + 1. By

the inductive assumption, we get Restζn=0 ◦
(

∂
∂ζn

)j
f = 0 (0 ≤ j ≤ N). Since

a0 ≡ a0(j, α) is nonzero for any j by the assumption on λ, Dλ→λ+N+1f = 0 implies

Restζn=0 ◦
(

∂
∂ζn

)N+1

f = 0. Thus the proposition is proved by induction. �

Proof of Proposition 3.15 (2). Let ν = λ+ `. By (3.28) and Lemma 3.14, we obtain

(3.33) (D∗λ→νg) (ζ) = (−1)`kλ,n

[ `2 ]∑
j=0

qjζ
`−2j
n

∫
TΩ(n−1)

g(τ ′)Q1,n−1(ζ − τ)−λ−`+jdµν(τ
′),

where we write τ = (τ ′, 0) = (τ ′1, · · · , τ ′n−1, 0) by abuse of notations.
On the other hand, the composition map

Dλ→λ+j ◦D∗λ→λ+` : H2(TΩ(n−1))λ+` −→ H2(TΩ(n−1))λ+j

is a G′-intertwining operator for any j. Since the G′-modules H2(TΩ(n−1))λ+j (j ∈ N)
are irreducible and mutually inequivalent if λ > n− 1, such an intertwining operator
must be zero unless j = `. Therefore

Image
(
D∗λ→λ+`

)
⊂

`−1⋂
j=0

Ker (Dλ→λ+j) .
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We now prove that qj ≡ qj(n, `;λ) vanishes for all 1 ≤ j ≤
[
`
2

]
by downward

induction on j. For simplicity, we treat the case where ` is even, say ` = 2m. The
case where ` is odd can be dealt with similarly.

By Proposition 3.16, we have

Restζn=0 ◦D∗λ→νg = 0 for all g ∈ H2(TΩ(n−1))ν .

Then it follows from (3.33) that

(−1)` kλ,nqm

∫
TΩ(n−1)

g(τ ′)Q1,n−2(ζ ′ − τ)−λ−mdµν(τ
′) = 0.

Thus we conclude that qm = 0 because kλ,n 6= 0.
Suppose that we have shown qj = 0 for j = m,m − 1, · · · ,m + 1 − s for some

s ≥ 1. If s ≤ m − 1, then 2s ≤ ` − 1(= 2m − 1) and we can proceed by applying
Proposition 3.16 with N = `− 1, hence

Restζn=0 ◦
(

∂

∂ζn

)2s

◦D∗λ→νg = 0.

By the inductive assumption, we obtain

(−1)`kλ,nqm−s

∫
TΩ(n−1)

g(τ ′)Q1,n−2(ζ ′ − τ)−λ−m−sdµν(τ
′) = 0

for all g ∈ H2(TΩ(n−1))ν . Thus we conclude that qm−s = 0 as far as s ≤ m−1. Hence
we have shown qj = 0 for all j ≥ 1. �

Thus the proof of Theorem 3.11 (hence, also the one of Theorem 3.10) is completed.

4. Perspectives of symmetry breaking and holographic transforms

We end this article with discussion on a representation-theoretic background of
Problems A and B in a broader framework.

In Section 4.1, we consider these problems from the viewpoint of the branching laws
of unitary representations of locally compact groups. In Section 4.2, we investigate
Problems A and B for triples (G,G′, π) such that

• (G,G′) is a reductive symmetric pair of holomorphic type;
• π is a unitary highest weight module of G of scalar type,

generalizing the settings for the main results in Sections 2 and 3. The role of special
orthogonal polynomials in these cases is clarified in Section 4.3.
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4.1. Branching laws, symmetry breaking transform and holographic trans-
form.

Let G ⊃ G′ be a pair of groups, π an irreducible G-module, and ρ an irreducible
G′-module. We recall from Section 1 that an element in HomG′ (π|G′ , ρ) (resp. in
HomG′ (ρ, π|G′)) is said to be a symmetry breaking operator (resp. a holographic
operator). We also recall that a symmetry breaking transform (resp. a holographic
transform) is a collection of symmetry breaking operators (resp. holographic oper-
ators) where (ρ,W ) runs over a certain set Λ of irreducible representations of the
subgroup G′.

If π is a unitary representation of a locally compact group G on a Hilbert space V ,
then Mautner’s theorem guarantees that the restriction (π|G′ , V ) is unitarily equiv-
alent to the direct integral of irreducible unitary representations of the subgroup
G′:

(4.1) π|G′ '
∫ ⊕
Ĝ′
mπ(ρ)ρ dµ(ρ),

where Ĝ′ is the set of equivalence classes of irreducible unitary representations of

G′ (unitary dual), µ is a Borel measure on Ĝ′ endowed with the Fell topology, and

mπ : Ĝ′ −→ N∪{∞} is a measurable function (multiplicity). The irreducible decom-
position (4.1) is called branching law of the restriction π|G′ , which is unique up to
isomorphism if G′ is a type I group, in particular, if G′ is a real reductive group by
a theorem of Harish-Chandra [8].

The (abstract) branching law (4.1) would be enriched through Problems A and
B by geometric realizations of irreducible representations and explicit intertwining
operators:

from (LHS) to (RHS) symmetry breaking transform;

from (RHS) to (LHS) holographic transform.

In the unitary case, it is natural to take Λ to be the support of the measure µ in
(4.1). If Λ is a countable set, then the branching law (4.1) is discretely decompos-
able without continuous spectrum. A criterion for the triple (G,G′, π) to admit a
discretely decomposable restriction π|G′ was studied in [11, 12] when G ⊃ G′ are a
pair of real reductive groups.

On the other hand, the multiplicity mπ(ρ) in (4.1) is not always finite when π and
ρ are infinite-dimensional. A geometric criterion for the pair (G,G′) to assure that
HomG′(π

∞|G′ , ρ∞) is finite-dimensional for all smooth irreducible G-modules π∞ and
G′-modules ρ∞ was established in [17].

If the branching law (4.1) is discretely decomposable and multiplicity free, then
we could expect a simple and detailed study of symmetry breaking transform and
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holographic transform. In this case, since the vector space HomG′(π|G′ , ρ) is one-
dimensional, symmetry breaking operator is unique up to scaling for every ρ, and
the symmetry breaking transform is defined as the collection of countably many such
operators.

4.2. Symmetric pairs of holomorphic type.
In this section, we provide a geometric condition (see Setting 4.1 below) that

assures the branching law π|G′ to be discretely decomposable and multiplicity free.
In this case, we see that every symmetry breaking operator is a differential operator
(e.g. the Rankin–Cohen transforms studied in Section 2 and the holomorphic Juhl
transforms in Section 3), and that our symmetry breaking transform D is injective,
hence giving an affirmative answer to Problem A.0 in Section 1. The main results in
Sections 2 and 3 are built on special cases of this general setting.

Let us fix some notations. Let G be a connected reductive Lie group, θ a Cartan
involution, K = {g ∈ G : θg = g}, g = k+p the corresponding Cartan decomposition,
and gC = kC + pC its complexification. Assume that there exists a central element Z
of kC such that

gC = kC + n+ + n−

is the eigenspace decomposition of ad(Z) with eigenvalues 0, 1, and −1, respectively.
This assumption is satisfied if and only if G is locally isomorphic to a direct product
of compact Lie groups (with Z = 0) and noncompact Lie groups of Hermitian type.
Then the associated Riemannian symmetric space X = G/K becomes a Hermitian
symmetric space with complex structure induced from the Borel embedding G/K ⊂
GC/KC exp(n+). Take a Cartan subalgebra t of k, and write ρ(n+) for half the sum
of roots in ∆(n+, tC).

Setting 4.1. Let (G,G′) be a reductive symmetric pair of holomorphic type, that is,
X = G/K and Y = G′/K ′ are both Hermitian symmetric spaces and the natural
embedding ι : Y ↪→ X is holomorphic. Let L = G ×K Cλ be a G-equivariant holo-
morphic line bundle over X associated to a unitary character Cλ of K, and we set
H2(X,L) := (O ∩ L2) (X,L). Assume λ satisfies the following condition:

(4.2) 〈λ, α〉 = 0 ∀α ∈ ∆(kC, tC), and 〈λ− ρ(n+), α〉 > 0 ∀α ∈ ∆(n+, tC).

The Hilbert space H2(X,L) is naturally identified with a weighted Bergman space,
which is nonzero if λ satisfies the condition (4.2). We denote by π the representation
of G on the Hilbert space H2(X,L), which is irreducible and unitary, and is called
a holomorphic discrete series representation of G. The list of irreducible symmetric
pairs (G,G′) of holomorphic type may be found in [13, Table 3.4.1].

Fact 4.2 (see [13, Thm. B]). In Setting 4.1, the restriction π|G′ is discretely decom-
posable and multiplicity free.
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Any irreducible G′-module that occurs in the branching law (4.1) for the uni-
tary representation (π,H2(X,L)) is of the form H2(Y,W) for some G′-equivariant
holomorphic vector bundle W over Y associated to an irreducible finite-dimensional
unitary representation W of K ′, and such bundles W are classified. Thus Λ is

parametrized by a subset of K̂ ′, or by a subset of dominant integral weights which
can be described in terms of the root data (see [13, Thm. 8.3]). We write ρ` for the
irreducible unitary representation of G′ corresponding to ` ∈ Λ, and identify Λ as a

subset of Ĝ′ by ` 7→ ρ`.
Here is a summary on general results about symmetry breaking operators in this

setting:

Fact 4.3. In Setting 4.1, let W be the G′-equivariant holomorphic vector bundle
corresponding to ` ∈ Λ.

(1) Any continuous G′-homomorphism O(X,L) −→ O(Y,W) is given as a holo-
morphic differential operator, and induces a continuous G′-homomorphism
between the Hilbert spaces H2(X,L) −→ H2(Y,W).

(2) Any continuous G′-homomorphism H2(X,L) −→ H2(Y,W) extends to a con-
tinuous G′-homomorphism O(X,L) −→ O(Y,W).

Proof. (1) The first statement is proved in [18, Thm. 5.3] (localness theorem), and
the second one is in [18, Thm. 5.13].
(2) By (1) there is a natural injective map

(4.3) HomG′(O(X,L)
∣∣
G′
,O(Y,W)) ↪→ HomG′(H2(X,L)

∣∣
G′
,H2(Y,W)).

To prove that (4.3) is surjective, we observe that the left-hand side of (4.3) is under-
stood by the branching law for the generalized Verma module [14, Thm. 5.2] via the
duality theorem [18, Thm. A], whereas the right-hand side of (4.3) is given by the
branching law of the unitary representation H2(X,L)|G′ ([13, Thm. 8.3]), and that
they coincide under the condition (4.2). Hence (4.3) is bijective. �

In order to clarify the dependence of the parameter `, we write W` for the G′-
equivariant vector bundle corresponding to ` ∈ Λ from now. Then Fact 4.3 tells that
the one-dimensional vector space

HomG′
(
O(X,L)

∣∣
G′
,O(Y,W`)

)
' HomG′

(
H2(X,L)

∣∣
G′
,H2(Y,W`)

)
is spanned by a differential symmetry breaking operator. We fix such a generator
D` for every ` ∈ Λ.

Since D` : H2(X,L) → H2(Y,W`) is a continuous operator between the Hilbert
spaces, its operator norm ‖D`‖op is finite and its adjoint D∗` is a continuous linear
operator. Set

C` := ‖D`‖2
op, Ψ` :=

1

C`
D∗` .
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Let D = (D`)`∈Λ be the symmetry breaking transform. Then we have the following:

Theorem 4.4. Suppose we are in Setting 4.1.

(1) Ψ` : H2(Y,W`) −→ H2(X,L) is a holographic operator. Moreover, it is an
isometry up to renormalization.

(2) The symmetry breaking transform D is injective on H2(X,L).
(3) Any f ∈ H2(X,L) is recovered from its symmetry breaking transform Df by

f =
∑
`∈Λ

Ψ` (Df)` .

(4) The norm ‖f‖H2(X,L) is recovered from the sequence of norms ‖ (Df)` ‖H2(Y,W`)

by

‖f‖2
H2(X,L) =

∑
`∈Λ

1

C`
‖ (Df)` ‖

2
H2(Y,W`)

.

Proof. The unitary representation of G on the Hilbert space H2(X,L) is decomposed
discretely and multiplicity free into the Hilbert direct sum:

(4.4) H2(X,L)|G′ '
∑
`∈Λ

⊕H2(Y,W`)

as unitary representations of the subgroup G′ by Fact 4.3.
(1) The adjoint operator D∗` is a G′-homomorphism because both H2(X,L) and
H2(Y,W`) are unitary representations. The second assertion follows from Schur’s
lemma because HomG′(H2(Y,W`),H2(X,L)

∣∣
G′

) is one-dimensional.

(2) Expand f ∈ H2(X,L) as f =
∑

`∈Λ f` according to the decomposition (4.4).
Then (Df)` is a nonzero multiple of f` by Schur’s lemma since the decomposition
(4.4) is multiplicity free. Hence, if Df = 0, then f` = 0 for all ` ∈ Λ, and therefore
f = 0.
Statements (3) and (4) are direct consequences of Lemma 2.23. �

4.3. Role of orthogonal polynomials.
In this section we investigate Problems A and B in Setting 4.1, and clarify the role

of the F-method and special orthogonal polynomials for the L2-theory of symmetry
breaking transforms consisting of holomorphic differential operators.

Suppose we are in Setting 4.1. As we have seen in Section 4.2, Theorem 4.4
(2) solves Problem A.0, whereas Theorem 4.4 (1), (3), and (4) give a framework
for Problems A.1, A.2, and B, respectively, for the symmetry breaking transform
D = (D`)`∈Λ. Thus the solution to Problems A and B is reduced to the following
four questions of finding explicit description and closed formulæ of

• the support of Λ;
• holomorphic differential operators D`;
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• the operator norm ‖D`‖op;
• the adjoint operator D∗` .

Let us summarize briefly what was known, what has been proved in this article,
and what looks promising.

As we mentioned in Section 4.2, the explicit description of Λ, equivalently, the
branching law (4.4) for the restriction π|G′ in Section 4.1 was proved in [13, Thm.
8.3], which gives a generalization of the Hua–Kostant–Schmid formula in the case
when G′ = K. Denote by rankRG/G

′ the split rank of the reductive symmetric space
G/G′. Then it turns out that Λ is a free abelian semigroup generated by rankRG/G

′

elements, see [13].
It is more involved to construct symmetry breaking operators D` explicitly than

determining Λ, namely, the branching law of the restriction π|G′ . As of now, an
explicit construction of D` for all ` ∈ Λ with exhaustion theorem is known when
rankRG/G

′ = 1, see [19]. There are six families of such symmetric pairs (G,G′), and
the resulting symmetry breaking operators include the Rankin–Cohen operators and
the holomorphic Juhl operators.

In order to obtain the operator norm ‖D`‖op of such holomorphic differential op-
erators D`, we have developed the idea of the F-method to connect ‖D`‖op with the
L2-norm of special polynomials P` in the following two cases in this article.

D` P`

Rankin–Cohen operators Jacobi polynomials

Juhl operators Gegenbauer polynomials

The relationship between D` and P` follows from the fact that the G′-equivariance
condition on the operator D` is transformed into a certain differential equation (e.g.
Jacobi differential equation (5.1)) for the polynomial P`. It is plausible that this idea
would work in the full generality of Setting 4.1.

Concerning the adjoint operator D∗` , this article has provided two kinds of integral
formulæ, that is, by the line integral (Definition 2.1), see Proposition 2.22, and by
the integral over the tube domain (Theorem 3.10). The former has an advantage that
the formula is simple and does not require the unitarity of representations, whilst the
latter uses a natural idea of the “relative reproducing kernel” Kλ,ν(ζ, τ

′), see (3.25).

5. Appendix: Jacobi polynomials and Gegenbauer polynomials

5.1. The Jacobi polynomials.
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Suppose α, β ∈ C and ` ∈ N. The Jacobi polynomial Pα,β
` (t) is a polynomial

solution to the Jacobi differential equation

(5.1)

(
(1− t2)

d2

dt2
+ (β − α− (α + β + 2)t)

d

dt
+ `(`+ α + β + 1)

)
y = 0,

which is normalized by Pα,β
` (1) = Γ(α+`+1)

Γ(α+1)`!
= (α+1)`

`!
. Then it satisfies the Rodrigues

formula

(5.2) (1− t)α(1 + t)βPα,β
` (t) =

(−1)`

2``!

(
d

dt

)` (
(1− t)`+α(1 + t)`+β

)
.

The Jacobi polynomial Pα,β
` (t) is nonzero and is a polynomial of degree ` for

generic parameters (see [19, Thm. 11.2] for the precise condition). Explicitly, one
has

Pα,β
` (t) =

(α + 1)`
`!

2F1

(
−`, α + β + `+ 1;α + 1;

1− t
2

)
=

∑̀
j=0

(α + β + `+ 1)j(α + j + 1)`−j
(`− j)!j!

(
t− 1

2

)j
.(5.3)

The first Jacobi polynomials are

• Pα,β
0 (t) = 1,

• Pα,β
1 (t) = 1

2
(α− β + (2 + α + β)t).

For real α, β with α, β > −1, the Jacobi polynomials
{
Pα,β
`

}
`∈N

form an orthogonal

basis in the Hilbert space L2
(
(−1, 1), (1− x)α(1 + x)βdx

)
with the following norm

(see [1, page 301] for example):

(5.4)

∫ 1

−1

∣∣∣Pα,β
` (x)

∣∣∣2 (1− x)α(1 + x)βdx =
2α+β+1Γ(`+ α + 1)Γ(`+ β + 1)

(2`+ α + β + 1)Γ(`+ α + β + 1)`!
.

When α = β these polynomials yield Gegenbauer polynomials (see (5.6) below),
and they further reduce to Legendre polynomials in the case when α = β = 0.

5.2. The Gegenbauer polynomials.
For α ∈ C and ` ∈ N, the Gegenbauer polynomial (or ultraspherical polynomial)

Cα
` (t) is defined by

(5.5) Cα
` (t) =

[ `2 ]∑
k=0

ak(`, α)t`−2k,
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where ak(`, α) is given in (3.4). The Gegenbauer polynomials are special cases of the
Jacobi polynomials by

(5.6)
(2α + 1)`
(α + 1)`

Pα,α
` (x) = C

α+ 1
2

` (x),

and have the generating function:

(1− 2tr + r2)−α =
∑
`∈N

Cα
` (t)r`.

We note that Cα
` (1) = (2α)`

2`
. If α > −1

2
, then the Gegenbauer polynomials {Cα

` (v)}`∈N
form an orthonormal basis in the Hilbert space L2

(
(−1, 1), (1− v2)α−

1
2dv
)

with the

following L2-norm (see [7, 7.313]):

(5.7)

∫ 1

−1

|Cα
` (v)|2 (1− v2)α−

1
2 dv =

π21−2αΓ(`+ 2α)

`!(`+ α)Γ (α)2 .

References

[1] G. E. Andrews, R. Askey, R. Roy, Special functions. Encyclopedia of Mathematics and its
Applications, 71. Cambridge University Press, Cambridge, 1999. xvi+664 pp.

[2] J.-L. Clerc, Another approach to Juhl’s conformally covariant differential operators from Sn

to Sn−1, SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 26, 18
pp.

[3] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters,
Math. Ann. 217 (1975), pp. 271–285.

[4] L. Debnath, D. Bhatta, Integral transforms and their applications. Third edition. Chapman
and Hall/CRC, Boca Raton, FL, 2015. xxvi+792 pp.
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