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λ,ν,γ along ν = constant . . . . . . . . . 110

5.11.2 Renormalized regular symmetry breaking operator ˜̃AV,W
λ,ν,γ111

6 Differential symmetry breaking operators 114
6.1 Differential operators between two manifolds . . . . . . . . . . 114
6.2 Duality for differential symmetry breaking operators . . . . . . 116
6.3 Parabolic subgroup compatible with a reductive subgroup . . . 117
6.4 Character identity for branching in the parabolic BGG category119
6.5 Branching laws for generalized Verma modules . . . . . . . . . 120
6.6 Multiplicity-one theorem for differential symmetry breaking

operators: Proof of Theorem 6.1 (2) . . . . . . . . . . . . . . . 122
6.7 Existence of differential symmetry breaking operators: Exten-

sion to special parameters . . . . . . . . . . . . . . . . . . . . 122
6.8 Proof of Theorem 3.13 (2-b) . . . . . . . . . . . . . . . . . . . 124

4



7 Minor summation formulæ related to exterior tensor
∧

i(Cn)127
7.1 Some notation on index sets . . . . . . . . . . . . . . . . . . . 127

7.1.1 Exterior tensors
∧

i(Cn) . . . . . . . . . . . . . . . . . 127
7.1.2 Signatures for index sets . . . . . . . . . . . . . . . . . 128

7.2 Minor determinant for ψ : RN − {0} → O(N) . . . . . . . . . 129
7.3 Minor summation formulæ . . . . . . . . . . . . . . . . . . . . 131

8 The Knapp–Stein intertwining operators revisited: Renor-
malization and K-spectrum 135
8.1 Basic K-types in the compact picture . . . . . . . . . . . . . . 135
8.2 K-picture and N -picture of principal series representations . . 137

8.2.1 Explicit K-finite vectors in the N -picture . . . . . . . . 137
8.2.2 Basic K-types in the N -picture . . . . . . . . . . . . . 139

8.3 Knapp–Stein intertwining operator . . . . . . . . . . . . . . . 141
8.3.1 Knapp–Stein intertwining operator . . . . . . . . . . . 141
8.3.2 K-spectrum of the Knapp–Stein intertwining operator 143
8.3.3 Vanishing of the Knapp–Stein operator . . . . . . . . . 144
8.3.4 Integration formula for the (K,K)-spectrum . . . . . . 144

8.4 Renormalization of the Knapp–Stein intertwining operator . . 147
8.5 Kernel of the Knapp–Stein operator . . . . . . . . . . . . . . . 148

9 Regular symmetry breaking operators Ãi,j
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λ,ν,± . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2.2 Zeros of Ãi,j
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Abstract

For a pair (G,G′) = (O(n + 1, 1), O(n, 1)) of reductive groups,
we investigate intertwining operators (symmetry breaking operators)
between principal series representations Iδ(V, λ) of G, and Jε(W,ν)
of the subgroup G′. The representations are parametrized by finite-
dimensional representations V , W of O(n) respectively of O(n − 1),
characters δ, ε of O(1), and λ, ν ∈ C. Denote by [V : W ] the multi-
plicity of W occurring in the restriction V |O(n−1), which is either 0 or
1. If [V : W ] ̸= 0 then we construct a holomorphic family of symmetry
breaking operators and prove that dimCHomG′(Iδ(V, λ)|G′ , Jε(W, ν))
is nonzero for all the parameters λ, ν and δ, ε, whereas if [V : W ] = 0
there may exist sporadic differential symmetry breaking operators.

We propose a classification scheme to find all matrix-valued sym-
metry breaking operators explicitly, and carry out this program com-
pletely in the case (V,W ) = (

∧i(Cn),
∧j(Cn−1)). In conformal geome-

try, our results yield the complete classification of conformal covariant
operators from differential forms on a Riemannian manifoldX to those
on a submanifold Y in the model space (X,Y ) = (Sn, Sn−1).

We use this information to determine the space of symmetry break-
ing operators for any pair of irreducible representations of G and the
subgroupG′ with trivial infinitesimal character. Furthermore we prove
the multiplicity conjecture by B. Gross and D. Prasad for tempered
principal series representations of (SO(n+1, 1), SO(n, 1)) and also for
3 tempered representations Π, π,ϖ of SO(2m + 2, 1), SO(2m + 1, 1)
and SO(2m, 1) with trivial infinitesimal character. In connection to
automorphic form theory, we apply our main results to find periods
of irreducible representations of the Lorentz group having nonzero
(g,K)-cohomologies.

This book is an extension of the recent work in the two research
monographs: Kobayashi–Speh [Memoirs Amer. Math. Soc., 2015] for
spherical principal series representations and Kobayashi–Kubo–Pevzner
[Lecture Notes in Math., 2016] for conformally covariant differential
symmetry breaking operators.
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1 Introduction

A representation Π of a group G defines a representation of a subgroup G′ by
restriction. In general irreducibility is not preserved by the restriction. If G is
compact then the restriction Π|G′ is isomorphic to a direct sum of irreducible
finite-dimensional representations π of G′ with multiplicities m(Π, π). These
multiplicities are studied by using combinatorial techniques. We are inter-
ested in the case where G and G′ are (noncompact) real reductive Lie groups.
Then most irreducible representations Π of G are infinite-dimensional, and
generically the restriction Π|G′ is not a direct sum of irreducible representa-
tions [30]. So we have to consider another notion of multiplicity.

For a continuous representation Π of G on a complete, locally convex
topological vector space H, the space H∞ of C∞-vectors of H is naturally
endowed with a Fréchet topology, and (Π,H) induces a continuous represen-
tation Π∞ of G on H∞. If Π is an admissible representation of finite length
on a Banach space H, then the Fréchet representation (Π∞,H∞), which we
refer to as an admissible smooth representation, depends only on the under-
lying (g, K)-module HK . In the context of asymptotic behaviour of matrix
coefficients, these representations are also referred to as an admissible rep-
resentations of moderate growth [66, Chap. 11]. We shall work with these
representations and write simply Π for Π∞. We denote by Irr(G) the set of
equivalence classes of irreducible admissible smooth representations. We also
sometimes call these representations “irreducible admissible representations”
for simplicity.

Given another admissible smooth representation π of a reductive sub-
group G′, we consider the space of continuous G′-intertwining operators
(symmetry breaking operators)

HomG′(Π|G′ , π).

If G = G′ then these operators include the Knapp–Stein operators [24] and
the differential intertwining operators studied by B. Kostant [46]. If G ̸= G′

the dimension
m(Π, π) := dimC HomG′(Π|G′ , π)

yields important information of the restriction of Π to G′ and is called the
multiplicity of π occurring in the restriction Π|G′ . In general, m(Π, π) may be
infinite. The finiteness criterion in [41] asserts that the multiplicity m(Π, π)
is finite for all Π ∈ Irr(G) and for all π ∈ Irr(G′) if and only if a minimal
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parabolic subgroup P ′ of G′ has an open orbit on the real flag variety G/P ,
and that the multiplicity is uniformly bounded with respect to Π and π if
and only if a Borel subgroup of G′

C has an open orbit on the complex flag
variety of GC.

The latter condition depends only on the complexified pairs (gC, g
′
C), of

which the classification was already known in 1970s by Krämer [47] and
Kostant. In particular, the multiplicity m(Π, π) is uniformly bounded if the
Lie algebras (g, g′) of (G,G′) are real forms of (sl(N + 1,C), gl(N,C)) or
(o(N + 1,C), o(N,C)). On the other hand, the former condition depends on
real forms (g, g′), and the classification of such symmetric pairs was recently
accomplished in [38]. For instance, let (G,G′) = (O(n+1, 1), O(n+1−k, 1)).
Then the classification theory [38] and the finiteness criterion [41] imply the
following upper and lower estimates of the multiplicity m(Π, π):

(1) For 2 ≤ k ≤ n+ 1,

m(Π, π) <∞ for every pair (Π, π) ∈ Irr(G)× Irr(G′);

sup
Π∈Irr(G)

sup
π∈Irr(G′)

m(Π, π) =∞.

(2) For k = 1, there exists C > 0 such that

m(Π, π) ≤ C for all Π ∈ Irr(G) and for all π ∈ Irr(G′). (1.1)

B. Sun and C.-B. Zhu [59] showed that one can take C to be one in (1.1),
namely, the multiplicity m(Π, π) ∈ {0, 1} in this case. Thus one of the open
problems is to determine when m(Π, π) ̸= 0 for irreducible representations Π
and π.

In the previous publication [44] we initiated a thorough study of symmetry
breaking operators between spherical principal series representations of

(G,G′) = (O(n+ 1, 1), O(n, 1)). (1.2)

In particular, we determined the multiplicities m(Π, π) when both Π and π
are irreducible composition factors of the spherical principal series represen-
tations.

In this article we will determine the multiplicities m(Π, π) for all irre-
ducible representations Π and π with trivial infinitesimal character ρ of
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G = O(n + 1, 1) and G′ = O(n, 1), respectively, and also for irreducible
principal series representations.

More than just determining the dimension m(Π, π) of the space of sym-
metry breaking operators, we investigate these operators of their own for
general principal series representations of G and the subgroup G′, i.e., for
representations induced from irreducible finite-dimensional representations of
a parabolic subgroup. We construct a holomorphic family of symmetry break-
ing operators, and present a classification scheme of all symmetry breaking
operators T in Theorem 3.13 through an analysis of their distribution kernels
KT . In particular, we prove that any symmetry breaking operators in this
case is either a sporadic differential symmetry breaking operator (cf. [37]) or
the analytic continuation of integral symmetry breaking operators and their
renormalization in Theorem 3.13.

The proof for the explicit formula of the multiplicity m(Π, π) is built on
the functional equations (Theorems 9.24 and 9.25) satisfied by the regular
symmetry breaking operators.

A principal series representation Iδ(V, λ) of G = O(n+1, 1) is an (unnor-
malized) induced representation from an irreducible finite-dimensional rep-
resentation V ⊗ δ⊗Cλ of a minimal parabolic subgroup P =MAN+. In our
setting, M ≃ O(n)×Z/2Z and A ≃ R+. We assume that V is a representa-
tion of O(n+1), δ ∈ {±}, and λ ∈ C. In what follows, we identify the repre-
sentation space of Iδ(V, λ) with the space of C∞-sections of the G-equivariant
bundle G×P Vδ,λ → G/P , so that Iδ(V, λ)

∞ = Iδ(V, λ) is the Fréchet global-
ization having moderate growth in the sense of Casselman–Wallach [66]. The
parametrization is chosen so that the representation Iδ(V,

n
2
) is a unitary tem-

pered representation. The representations Iδ(V, λ) are either irreducible or
of composition series of length 2, see Corollary 14.22 in Appendix I.

The group P ′ = G′ ∩ P = M ′AN ′
+ is a minimal parabolic subgroup of

G′ = O(n, 1). For an irreducible representation (τ,W ) ofO(n−1), a character
ε ∈ {±} of O(1), and ν ∈ C we define the principal series representation
Jε(W, ν) of G

′.

We set

[V : W ] := dimC HomO(n−1)(W,V |O(n−1)) = dimCHomO(n−1)(V |O(n−1),W ).

For principal series representations Iδ(V, λ) of G and Jε(W, ν) of the subgroup
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G′, we consider the cases [V : W ] ̸= 0 and [V : W ] = 0 separately. In the
first case we obtain a lower bound for the multiplicity.

In what follows, it is convenient to introduce the set of “special parame-
ters”:

Ψsp :=
{
(λ, ν, δ, ε) ∈ C2 × {±}2 : ν − λ ∈ 2N when δε = +

or ν − λ ∈ 2N+ 1 when δε = − } .
(1.3)

Theorem 1.1 (see Theorem 3.13 (2) and Theorem 3.15). Suppose (σ, V ) ∈
Ô(n) and (τ,W ) ∈ ̂O(n− 1). Assume [V : W ] ̸= 0.

(1) (existence of symmetry breaking operators) We have

dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ≥ 1 for all δ, ε ∈ {±}, and λ, ν ∈ C.

(2) (generic multiplicity-one)

dimCHomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = 1

for any (λ, ν, δ, ε) ∈ (C2 × {±}2)−Ψsp.

(3) Let ℓ(σ) be the “norm” of σ defined by using its highest weight (see
(2.21)). Then we have

dimCHomG′(Iδ(V, λ)|G′ , Jε(W, ν)) > 1

for any (λ, ν, δ, ε) ∈ Ψsp such that ν ∈ Z with ν ≤ −ℓ(σ).

We prove Theorem 1.1 by constructing (generically) regular symmetry

breaking operators ÃV,W
λ,ν,δε: they are nonlocal operators (e.g., integral oper-

ators) for generic parameters, whereas for some parameters they are local
operators (i.e., differential operators). See Theorem 3.10 for the construc-

tion of the normalized operator ÃV,W
λ,ν,±; Theorem 3.9 for “regularity” ([44,

Def. 3.3]) of ÃV,W
λ,ν,± under a certain generic condition; Theorem 5.45 for a

renormalization of ÃV,W
λ,ν,± when it vanishes; Fact 9.3 for the residue formula

of ÃV,W
λ,ν,± when it reduces to a differential operator.

In the case [V : W ] = 0, symmetry breaking operators are “rare” but
there may exist sporadic symmetry breaking operators:
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Theorem 1.2. Assume [V : W ] = 0.

(1) (vanishing for generic parameters, Corollary 3.14) If (λ, ν, δ, ε) ̸∈ Ψsp,
then

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = {0}.

(2) (localness theorem, Theorem 3.6) Any nontrivial symmetry breaking
operator

C∞(G/P,Vλ,δ)→ C∞(G′/P ′,Wν,ε)

is a differential operator.

Combining Theorem 1.1 (2) and Theorem 1.2 (1) together with the ex-
istence condition of differential symmetry breaking operators (see Theorem
5.21), we determine the following multiplicity formulæ for generic parame-
ters:

Theorem 1.3. Suppose that (λ, ν, δ, ε) ̸∈ Ψsp. Then there are no differential
symmetry breaking operators and

dimCHomG′(Iδ(V, λ)|G′ , Jε(W, ν)) =

{
1 if [V : W ] ̸= 0,

0 if [V : W ] = 0.

It deserves to be mentioned that the parameter set (C2 × {±}2) − Ψsp

contains parameters (λ, ν) for which the G-module Iδ(V, λ) or the G
′-module

Jε(W, ν) is not irreducible.

In the major part of this monograph, we focus our attention on the special
case

(V,W ) = (
∧

i(Cn),
∧

j(Cn−1)).

The principal series representations of G and the subgroup G′ are written as
Iδ(i, λ) for Iδ(

∧
i(Cn), λ) and Jε(j, ν) for Jε(

∧
j(Cn−1), ν), respectively. The

representations Iδ(i, λ) of G and Jε(j, ν) of G
′ are of interest in geometry as

well as in automorphic forms and in the cohomology of arithmetic groups. In
geometry, given an arbitrary Riemannian manifold X, one forms a natural
family of representations of the conformal group G on the space E i(X) of
differential forms, to be denoted by E i(X)λ′,δ′ for 0 ≤ i ≤ dimX, λ′ ∈ C,
and δ′ ∈ {±}. Then the representations Iδ(i, λ) are identified with such
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conformal representations in the case where (G,X) = (O(n + 1, 1), Sn), see
e.g., [37, Chap. 2, Sect. 2] for precise statement. In representation theory,
all irreducible, unitarizable representations with nonzero (g, K)-cohomology
arise as subquotients of Iδ(i, λ) with λ = i for some 0 ≤ i ≤ n and δ = (−1)i,
see Theorem 2.20 (9).

Our main results of this article include a complete solution to the general
problem of constructing and classifying the elements of HomG′(Π|G′ , π) (see
[35, Prob. 7.3 (3) and (4)]) in the following special setting:

(G,G′) = (O(n+ 1, 1), O(n, 1)) with n ≥ 3,

(Π, π) = (Iδ(i, λ), Jε(j, ν)),

where 0 ≤ i ≤ n, 0 ≤ j ≤ n − 1, δ, ε ∈ {±}, and λ, ν ∈ C. Thus our main
results include a complete solution to the following question in conformal
geometry:

Problem 1.4. (1) Find a necessary and sufficient condition on 6-tuples
(i, j, λ, ν, δ, ε) for the existence of conformally covariant, symmetry break-
ing operators

A : E i(X)λ,δ → E i(X)ν,ε

in the model space (X, Y ) = (Sn, Sn−1).

(2) Construct those operators explicitly in the (flat) coordinates.

(3) Classify all such symmetry breaking operators.

Partial results were known earlier: when the operator A is given by a
differential operator, Juhl [23] solved Problem 1.4 in the case (i, j) = (0, 0),
see also [40], which has been recently extended in Kobayashi–Kubo–Pevzner
[37] for the general (i, j). Problem 1.4 was solved for all (possibly, nonlocal)
operators in our previous paper [44] in the case (i, j) = (0, 0). The complete
classification of (continuous) symmetry breaking operators for the general
(i, j) is given in Theorem 3.25 (multiplicity) and Theorem 3.26 (construction
of explicit generators), and we have thus settled Problem 1.4 in this mono-
graph. For this introduction, we explain only the “multiplicity” (Theorem
3.25). For this, using the same notation as in [44, Chap. 1], we define the
following two subsets on Z2:

Leven := {(−i,−j) : 0 ≤ j ≤ i and i ≡ j mod 2} ,
Lodd := {(−i,−j) : 0 ≤ j ≤ i and i ≡ j + 1 mod 2} .
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Theorem 1.5 (multiplicity, Theorem 3.25). Suppose Π = Iδ(i, λ) and π =
Jε(j, ν) for 0 ≤ i ≤ n, 0 ≤ j ≤ n − 1, δ, ε ∈ {±}, and λ, ν ∈ C. Then we
have the following.

(1)

m(Π, π) ∈{1, 2} if j = i− 1 or i,

m(Π, π) ∈{0, 1} if j = i− 2 or i+ 1,

m(Π, π) =0 otherwise.

(2) Suppose j = i−1 or i. Then m(Π, π) = 1 generically, and = 2 when the
parameter belongs to the following exceptional countable set. Without
loss of generality, we take δ to be +.

(a) Case 1 ≤ i ≤ n− 1.

m(I+(i, λ), J+(i, ν)) =2 if (λ, ν) ∈ Leven − {ν = 0} ∪ {(i, i)}.
m(I+(i, λ), J−(i, ν)) =2 if (λ, ν) ∈ Lodd − {ν = 0}.

m(I+(i, λ), J+(i− 1, ν)) =2 if (λ, ν) ∈ Leven − {ν = 0} ∪ {(n− i, n− i)}.
m(I+(i, λ), J−(i− 1, ν)) =2 if (λ, ν) ∈ Lodd − {ν = 0}.

(b) Case i = 0.

m(I+(0, λ), J+(0, ν)) =2 if (λ, ν) ∈ Leven.

m(I+(0, λ), J−(0, ν)) =2 if (λ, ν) ∈ Lodd.

(c) Case i = n.

m(I+(n, λ), J+(n− 1, ν)) =2 if (λ, ν) ∈ Leven.

m(I+(n, λ), J−(n− 1, ν)) =2 if (λ, ν) ∈ Lodd.

(3) Suppose j = i − 2 or i + 1. Then m(Π, π) = 1 if one of the following
conditions (d)–(g) is satisfied, and m(Π, π) = 0 otherwise.

(d) Case j = i− 2, 2 ≤ i ≤ n− 1, (λ, ν) = (n− i, n− i+1), δε = −1.
(e) Case (i, j) = (n, n− 2), −λ ∈ N, ν = 1, δε = (−1)λ+1.

(f) Case j = i+ 1, 1 ≤ i ≤ n− 2, (λ, ν) = (i, i+ 1), δε = −1.
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(g) Case (i, j) = (0, 1), −λ ∈ N, ν = 1, δε = (−1)λ+1.

More than just an abstract formula of multiplicities, we also obtain ex-
plicit generators of HomG′(Iδ(i, λ)|G′ , Jε(j, ν)) for j ∈ {i − 1, i} in Theorem
3.26. The generators for j ∈ {i − 2, i + 1} are always differential operators
(localness theorem, see Theorem 1.2 (2)), and they were constructed and
classified in [37] (see Fact 3.23).

The principal series representations Iδ(i, λ) and Jε(j, ν) in the above the-
orem are not necessarily irreducible. For the study of symmetry break-
ing of the irreducible subquotients, we utilize the concrete generators of
HomG′(Iδ(i, λ)|G′ , Jε(j, ν)) and determine explicit formulæ about

• the (K,K ′)-spectrum of the normalized regular symmetry breaking op-

erators Ãi,j
λ,ν,± on basic “(K,K ′)-types” (Theorem 9.8);

• the functional equations among symmetry breaking operators Ãi,j
λ,ν,±

(Theorems 9.24 and 9.25).

Here, the (K,K ′)-spectrum is defined in Definition 9.7. It resembles eigenval-
ues of symmetry breaking operators, and serves as a clue to find the functional
equations.

We now highlight symmetry breaking of irreducible representations that
have the same infinitesimal character ρ with the trivial one-dimensional rep-
resentation 1. Denote by Irr(G)ρ the (finite) set of equivalence classes of
irreducible admissible representations of G with trivial infinitesimal charac-
ter ρ ≡ ρG. The principal series representations Iδ(i, i) of G = O(n+1, 1) are
reducible, and any element in Irr(G)ρ is a subquotient of the representations
Iδ(i, i) for some 0 ≤ i ≤ n and δ ∈ {±}. To be more precise, we have the
following.

Theorem 1.6 (see Theorem 2.20). Let G = O(n+ 1, 1) (n ≥ 1).

(1) For 0 ≤ ℓ ≤ n and δ ∈ {±}, there are exact sequences of G-modules:

0→ Πℓ,δ → Iδ(ℓ, ℓ)→ Πℓ+1,−δ → 0,

0→ Πℓ+1,−δ → Iδ(ℓ, n− ℓ)→ Πℓ,δ → 0.

These exact sequences split if and only if n = 2ℓ.
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(2) Irreducible admissible representations of G with trivial infinitesimal
character can be classified as

Irr(G)ρ = {Πℓ,δ : 0 ≤ ℓ ≤ n+ 1, δ = ±}.

(3) Every Πℓ,δ (0 ≤ ℓ ≤ n+ 1, δ = ±) is unitarizable.

There are four one-dimensional representations of G, and they are given
by

{Π0,+ ≃ 1, Π0,− ≃ χ+−, Πn+1,+ ≃ χ−+, Πn+1,− ≃ χ−−(= det)}.

(See (2.13) for the definition of χ±±.) The other representations Πℓ,δ (1 ≤
ℓ ≤ n, δ = ±) are infinite-dimensional representations.

For the subgroup G′ = O(n, 1), we use the letters πj,ε to denote the
irreducible representations in Irr(G′)ρ, similar to Πi,δ in Irr(G)ρ.

With these notations, we determine

m(Πi,δ, πj,ε) = dimCHomG′(Πi,δ|G′ , πj,ε)

for all Πi,δ ∈ Irr(G)ρ and πj,ε ∈ Irr(G′)ρ as follows.

Theorem 1.7 (vanishing, see Theorem 4.1). Suppose 0 ≤ i ≤ n + 1, 0 ≤
j ≤ n, δ, ε ∈ {±}.

(1) If j ̸= i, i− 1 then HomG′(Πi,δ|G′ , πj,ε) = {0}.

(2) If δε = −, then HomG′(Πi,δ|G′ , πj,ε) = {0}.

Theorem 1.8 (multiplicity-one, see Theorem 4.2). Suppose 0 ≤ i ≤ n + 1,
0 ≤ j ≤ n and δ, ε ∈ {±}. If j = i− 1 or i and if δε = +, then

dimC HomG′(Πi,δ|G′ , πj,ε) = 1.

We can represent these results graphically as follows. We suppress the
subscript, and write Πi for Πi,+, and πj for πj,+. The first row are repre-
sentations of G, the second row are representations of G′. The existence of
nonzero symmetry breaking operators is represented by arrows.
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Theorem 1.9 (see Theorem 4.3). Symmetry breaking for irreducible rep-
resentations with infinitesimal character ρ is represented graphically in the
following form.

Symmetry breaking for O(2m+ 1, 1) ↓ O(2m, 1)

Π0 Π1 . . . Πm−1 Πm

↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓
π0 π1 . . . πm−1 πm

Symmetry breaking for O(2m+ 2, 1) ↓ O(2m+ 1, 1)

Π0 Π1 . . . Πm−1 Πm Πm+1

↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓ ↙
π0 π1 . . . πm−1 πm

We believe that we are seeing in Theorem 4.3 only the “tip of the ice-
berg”, and we present a conjecture that a similar statement holds in more
generality, see Conjecture 13.15. Suppose that F and F ′ are irreducible
finite-dimensional representations of G and the subgroup G′, respectively,
and that

HomG′(F |G′ , F ′) ̸= {0}.

In Chapters 13 and 14 we describe sequences of irreducible representations
{Πi ≡ Πi(F )} and {πj ≡ πj(F

′)} of G and G′ with the same infinitesimal
characters with F and F ′, respectively. We refer to these sequences as stan-
dard sequences that starting with Π0(F ) = F and π0(F

′) = F ′, see Definition
13.2. They generalize the standard sequence with trivial infinitesimal charac-
ter which we used in the formulation of Theorem 1.9. They are an analogue
of a diagrammatic description of irreducible representations with regular in-
tegral infinitesimal characters for the connected group G0 = SO0(n + 1, 1)
given in Collingwood [11, p. 144, Fig. 6.3]. In this generality, we conjecture
that the results of symmetry breaking can be represented graphically exactly
as in Theorem 1.9 for the representations with trivial infinitesimal character
ρ. Again in the first row are representations of G, and in the second row
are representations of G′. Conjecture 13.15 asserts that symmetry breaking
operators are represented by arrows.

Symmetry breaking for O(2m+ 1, 1) ↓ O(2m, 1)
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Π0(F ) Π1(F ) . . . Πm−1(F ) Πm(F )
↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓

π0(F
′) π1(F

′) . . . πm−1(F
′) πm(F

′)

Symmetry breaking for O(2m+ 2, 1) ↓ O(2m+ 1, 1)

Π0(F ) Π1(F ) . . . Πm−1(F ) Πm(F ) Πm+1(F )
↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓ ↙

π0(F
′) π1(F

′) . . . πm−1(F
′) πm(F

′)

We present some supporting evidence for this conjecture in Chapter 13.

Applications of our formulæ include some results about periods of repre-
sentations. Suppose that H is a subgroup of G. Following the terminology
used in automorphic forms and the relative trace formula, we say that a
smooth representation U of G is H-distinguished if there is a nontrivial lin-
ear H-invariant linear functional

FH : U → C.

If the G-module U is H-distinguished, we say that (FH , H) is a period (or
an H-period) of U .

Let (G,H) = (O(n + 1, 1), O(m + 1, 1)) with m ≤ n. For 0 ≤ i ≤ n + 1
and 0 ≤ j ≤ m + 1, we denote by Πi and πj the irreducible representations
Πi,+ of G and analogous ones of H with trivial infinitesimal character ρ.

Theorem 1.10 (see Theorems 12.4 and 12.6).

(1) The irreducible representation Πi is H-distinguished if i ≤ n−m.

(2) The outer tensor product representation

Πi ⊠ πj
has a nontrivial H-period if 0 ≤ i− j ≤ n−m.

The period is given by the composition of the normalized regular symme-
try breaking operators (see Chapter 5) with respect to the chain of subgroups:

G = O(n+ 1, 1) ⊃ O(n, 1) ⊃ O(n− 1, 1) ⊃ · · · ⊃ O(m+ 1, 1) = H.

Using the above chain of subgroups we also define a vector v in the minimal
K-type of Πi. We prove
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Theorem 1.11 (see Theorem 12.5). Suppose that G = O(n + 1, 1) and
Πi (0 ≤ i ≤ n) is the irreducible representation with trivial infinitesimal
character ρ defined as above. Then the value of the O(n+1− i, 1)-period on
v ∈ Πi is

π
1
4
i(2n−i−1)

((n− i)!)i−1
×

{
1

(n−2i)!
if 2i < n+ 1,

(−1)n+1(2i− n− 1)! if 2i ≥ n+ 1.

We also prove in Chapter 12 a generalization of a theorem of Sun [58].

Theorem 1.12 (see Theorem 12.13). Let (G,G′) = (O(n + 1, 1), O(n, 1)),
0 ≤ i ≤ n, and δ ∈ {±}.

(1) The symmetry breaking operator T : Πi,δ → πi,δ in Proposition 10.12
induces bilinear forms

BT : H
j(g, K; Πi,δ)×Hn−j(g′, K ′;πn−i,(−1)nδ)→ C

for all j.

(2) The bilinear form BT is nonzero if and only if j = i and δ = (−1)i.

Inspired by automorphic forms and number theory B. Gross and D. Prasad
published in 1992 conjectures about the multiplicities of irreducible tempered
representations (U,U ′) of (SO(p, q), SO(p− 1, q)) [15]. Over time these con-
jectures have been modified and proved in some cases for automorphic forms
and for p-adic orthogonal and unitary groups. See for example Astérisque
volumes [13, 54] by W. T. Gan, B. Gross, D. Prasad, C. Mœglin and J.-L.
Waldspurger and the references therein as well as the work by R. Beuzart-
Plessis [8] for the unitary groups.

We prove the multiplicity conjecture by B. Gross and D. Prasad for tem-
pered principal series representations of (SO(n+1, 1), SO(n, 1)) and also for
3 representations Π, π,ϖ of SO(2m + 2, 1), SO(2m + 1, 1) and SO(2m, 1)
with infinitesimal character ρ. More precisely we show:

Theorem 1.13 (Theorem 3.13). Suppose that Π = Iδ(V, λ), π = Jε(W, ν)
are (smooth) tempered principal series representations of G = O(n + 1, 1)
and G′ = O(n, 1). Then

dimCHomG′(Π|G′ , π) = 1 if and only if [V : W ] ̸= 0.

23



Restricting the principal series representations to special orthogonal groups
implies the conjecture of B. Gross and D. Prasad about multiplicities for tem-
pered principal series representations (Theorem 11.5).

In 2000 B. Gross and N. Wallach [16] showed that the restriction of small
discrete series representations of G = SO(2p + 1, 2q) to G′ = SO(2p, 2q)
satisfies the Gross–Prasad conjectures [15]. In that case, both the groups G
and G′ admit discrete series representations. On the other hand, for the pair
(G,G′) = (SO(n+1, 1), SO(n, 1)), only one of G or G′ admits discrete series
representations. Our results confirm the Gross–Prasad conjecture also for
tempered representations with trivial infinitesimal character ρ (Theorem
11.6).

The article is roughly divided in three parts and an appendix:
In the first part, Chapters 2–4, we give an overview of the notation and

the results about symmetry breaking operators. Notations and properties
for principal series and irreducible representations of orthogonal groups are
introduced in Chapter 2. Important concepts and properties of symmetry
breaking operators are discussed in Chapter 3, in particular, a classification
scheme of all symmetry breaking operators is presented in Theorem 3.13.
This includes a number of theorems about the dimension of the space of
symmetry operators for principal series representations which are stated and
discussed also in Chapter 3. The classification scheme is carried out in full
details for symmetry breaking from principal series representations Iδ(i, λ) of
G to Jε(j, ν) of the subgroup G′, and is used to obtain results on symmetry
breaking of irreducible representations with trivial infinitesimal character ρ
in Chapter 4.

The second part, Chapters 5–9, contains the proofs of the results discussed
in Part one. This is the technical heart of this monograph. In Chapter 5 the
estimates and results about regular symmetry breaking operators in Theo-
rems 1.1 and 1.2 are proved. Chapter 6 is devoted to differential symmetry
breaking operators. In the remaining chapters of this part we concentrate on
the symmetry breaking Iδ(i, λ)→ Jε(j, ν). We collect some technical results
in Chapters 7 and 8. The analytic continuation of the regular symmetry
breaking operators, their (K,K ′)-spectrum, and the functional equation are
discussed in Chapter 9. Many of the results and techniques developed here
are of independent interest, and would be applied to other problems.

In the third part, Chapters 11–13, we use the results in Chapters 3 and 4
to prove some of the conjectures of Gross and Prasad about symmetry break-
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ing for tempered representations of orthogonal groups in Chapter 11. We dis-
cuss periods of representations and a bilinear form on the (g, K)-cohomology
using symmetry breaking in Chapter 12. It also includes a conjecture about
symmetry breaking for a family of representations of irreducible representa-
tions with regular integral infinitesimal character in Chapter 13, which we
plan to attack in a sequel to this monograph. A major portion of Part 3 can
be read immediately after Part 1.

The appendix contains technical results used in the monograph. We
provide three characterizations of irreducible representations of the group
G = O(n + 1, 1): Langlands quotients (or subrepresentations), cohomolog-
ical parabolic induction, and translation from Irr(G)ρ. The first two are
discussed in Appendix I (Chapter 14) and the third one is in Appendix III
(Chapter 16). For the second description, we recall the description of the
Harish-Chandra modules of the irreducible representations of O(n, 1) as the
cohomological induction from a θ-stable Levi subgroup and introduce θ-stable
coordinates for irreducible representations with regular integral infinitesimal
character. This notation is used in the formulation of the conjecture in Chap-
ter 13. We discuss the restriction of representations of the orthogonal group
O(n, 1) to the special orthogonal group SO(n, 1) in Appendix II (Chapter
15). The results are used in Chapter 11 about the Gross–Prasad conjecture.
In Appendix III, we discuss translation functor of G = O(n + 1, 1) which is
not in the Harish-Chandra class when n is even.

Acknowlegements: Many of the results were obtained while the au-
thors were supported by the Research in Pairs program at the Mathematis-
ches Forschungsinstitut MFO in Oberwolfach, Germany.

Research by the first author was partially supported by Grant-in-Aid for
Scientific Research (A) (25247006) and (18H03669), Japan Society for the
Promotion of Science.

Research by the second author was partially supported by NSF grant
DMS-1500644. Part of this research was conducted during a visit of the
second author at the Graduate School of Mathematics of The University of
Tokyo, Komaba. She would like to thank it for its support and hospitality
during her stay.

25



Notation:

A−B set theoretic complement of B in A

N {integers ≥ 0}
N+ {positive integers}
R+ {t ∈ R : t > 0}
Image (T ) image of the operator T

Ker (T ) kernel of the operator T

Eij the matrix unit

[a] the largest integer that does not exceed a

1 the trivial one-dimensional representation

π∨ the contragredient representation of π

π1 ⊠ π2 the outer tensor product representation of a direct product group

π1 ⊗ π2 the tensor product representation

ρ(≡ ρG) the infinitesimal character of the trivial representation 1
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2 Review of principal series representations

In this chapter we recall results about representations of the indefinite or-
thogonal group G = O(n+ 1, 1).

2.1 Notation

The object of our study is intertwining restriction operators (symmetry break-
ing operators) between representations of G = O(n + 1, 1) and those of its
subgroup G′ = O(n, 1). Most of main results are stated in a coordinate-
free fashion, whereas concrete description of symmetry breaking operators
depends on coordinates. For the latter purpose, we choose subgroups of G
and G′ in a compatible fashion. The notations here are basically taken from
[44].

2.1.1 Subgroups of G = O(n+ 1, 1) and G′ = O(n, 1)

We define G to be the indefinite orthogonal group O(n+1, 1) that preserves
the quadratic form

Qn+1,1(x) = x20 + · · ·+ x2n − x2n+1 (2.1)

of signature (n+1, 1). LetG′ be the stabilizer of the vector en := t(0, · · · , 0, 1, 0).
Then G′ ≃ O(n, 1).

We take maximal compact subgroups of G and G′, respectively, as

K := O(n+ 2) ∩G ≃ O(n+ 1)×O(1),

K ′ := K ∩G′ =


A 1

ε

 : A ∈ O(n), ε = ±1

 ≃ O(n)×O(1).

Let g = o(n+1, 1) and g′ = o(n, 1) be the Lie algebras of G = O(n+1, 1)
and G′ = O(n, 1), respectively. We take a hyperbolic element

H := E0,n+1 + En+1,0 ∈ g′, (2.2)

and set
a := RH.
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Then a is a maximally split abelian subspace of g′, as well as that of g. The
eigenvalues of ad(H) ∈ End(g) are ±1 and 0, and the eigenspaces give rise
to the following two maximal nilpotent subalgebras of g:

n+ = Ker(ad(H)−1) =
n∑

j=1

RN+
j , n− = Ker(ad(H)+1) =

n∑
j=1

RN−
j , (2.3)

where N+
j and N−

j (1 ≤ j ≤ n) are nilpotent elements of g defined by

N+
j =− E0,j + Ej,0 − Ej,n+1 − En+1,j,

N−
j =− E0,j + Ej,0 + Ej,n+1 + En+1,j.

For b = t(b1, · · · , bn) ∈ Rn, we define unipotent matrices in G by

n+(b) := exp(
n∑

j=1

bjN
+
j ) = In+2 +

−1
2
Q(b) −tb 1

2
Q(b)

b 0 −b
−1

2
Q(b) −tb 1

2
Q(b)

 , (2.4)

n−(b) := exp(
n∑

j=1

bjN
−
j ) = In+2 +

−1
2
Q(b) −tb −1

2
Q(b)

b 0 b
1
2
Q(b) tb 1

2
Q(b)

 , (2.5)

where we set

Q(b) ≡ |b|2 =
n∑

l=1

b2l . (2.6)

Then n+ and n− give coordinates of the nilpotent groups N+ := exp(n+) and
N− := exp(n−), respectively. Then N+ stabilizes t(1, 0, · · · , 0, 1), whereas N−
stabilizes t(1, 0, · · · , 0,−1).

Since H is contained in the Lie algebra g′,

n′ε := nε ∩ g′ =
n−1∑
j=1

RN ε
j for ε = ±

are maximal nilpotent subalgebras of g′. We set N ′
+ := N+ ∩ G′ = exp(n′+)

and N ′
− := N− ∩G′ = exp(n′−).
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We define a split abelian subgroup A and its centralizers M and M ′ in
K and K ′, respectively, as follows:

A := exp(a),

M :=


ε B

ε

 : B ∈ O(n), ε = ±1

 ≃ O(n)× Z/2Z,

M ′ :=



ε

B
1

ε

 : B ∈ O(n− 1), ε = ±1

 ≃ O(n− 1)× Z/2Z.

Then P = MAN+ is a Langlands decomposition of a minimal parabolic
subgroup P of G. Likewise, P ′ = M ′AN ′

+ is that of a minimal parabolic
subgroup P ′ of G′. We note that A is a common maximally split abelian
subgroup in P ′ and P because we have chosen H ∈ g′. The Langlands
decompositions of the Lie algebras of P and P ′ are given in a compatible
way as

p = m+ a+ n+, p′ = m′ + a+ n′+ = (m ∩ g′) + (a ∩ g′) + (n+ ∩ g′).

We set

m− :=

 −1 In
−1

 ∈M ′. (2.7)

We note that m− does not belong to the identity component of G′.

2.1.2 Isotropic cone Ξ

The isotropic cone

Ξ ≡ Ξ(Rn+1,1) = {(x0, · · · , xn+1) ∈ Rn+2 : x20 + · · ·+ x2n − x2n+1 = 0} − {0}

is a homogeneous G-space with the following fibration:

G/O(n)N+ ≃ Ξ gO(n)N+ 7→ gp+

R× ↓ ↓ R× 7→ 7→

G/P ≃ Sn, gP 7→[gp+]
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where
p+ := t(1, 0, · · · , 0, 1) ∈ Ξ. (2.8)

The action of the subgroup N+ on the isotropic cone Ξ is given in the
coordinates as

n+(b)

 ξ0
ξ

ξn+1

 =

 ξ0 − (b, ξ)
ξ

ξn+1 − (b, ξ)

+
ξn+1 − ξ0

2

Q(b)−2b
Q(b)

 , (2.9)

where b ∈ Rn, ξ ∈ Rn and ξ0, ξn+1 ∈ R.
The intersections of the isotropic cone Ξ with the hyperplanes ξ0+ξn+1 =

2 or ξn+1 = 1 can be identified with Rn or Sn, respectively. We write down
the embeddings ιN : Rn ↪→ Ξ and ιK : Sn ↪→ Ξ in the coordinates as follows:

ιN :Rn ↪→ Ξ, t(x, xn) 7→ n−(x, xn)p+ =


1− |x|2 − x2n
2x
2xn
1 + |x|2 + x2n

 , (2.10)

ιK : Sn → Ξ, η 7→ (η, 1). (2.11)

The composition of ιN and the projection

Ξ→ Ξ/R× ∼→ Sn, ξ 7→ 1

ξn+1

(ξ0, . . . , ξn)

yields the conformal compactification of Rn:

Rn ↪→ Sn, rω 7→ η = (s,
√
1− s2 ω) =

(1− r2
1 + r2

,
2r

1 + r2
ω
)
. (2.12)

Here ω ∈ Sn−1 and the inverse map is given by r =
√

1−s
1+s

for s ̸= −1.

2.1.3 Characters χ±± of the component group G/G0

There are four connected components of the group G = O(n + 1, 1). Let
G0 denote the identity component of G. Then G0 ≃ SO0(n + 1, 1) and
the quotient group G/G0 (component group) is isomorphic to Z/2Z× Z/2Z.
Accordingly, there are four one-dimensional representations of G,

χab : G→ {±1} (2.13)
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with a, b ∈ {±} ≡ {±1} such that

χab (diag(−1, 1, · · · , 1)) = a, χab (diag(1, · · · , 1,−1)) = b.

We note that χ−− is given by the determinant, det, of matrices in O(n+1, 1).
Then the restriction of χ−− to the subgroup M ≃ O(n) × O(1) is given by
the outer tensor product representation:

χ−−|M ≃ det⊠1, (2.14)

where det in the right-hand side stands for the determinant for n by n ma-
trices.

2.1.4 The center ZG(g) and the Harish-Chandra isomorphism

For a Lie algebra g over R, we denote by U(g) the universal enveloping
algebra of the complexified Lie algebra gC = g⊗R C, and by Z(g) its center.
For a real reductive Lie group G with Lie algebra g, we define a subalgebra
of Z(g) of finite index by

ZG(g) := U(g)G = {z ∈ U(g) : Ad(g)z = z for all g ∈ G}.

Schur’s lemma implies that the algebra ZG(g) acts on any irreducible ad-
missible smooth representation of G by scalars, which we refer to as the
ZG(g)-infinitesimal character. If the reductive group G is of Harish-Chandra
class, then the adjoint group Ad(G) is contained in the inner automorphism
group Int(gC), and consequently, ZG(g) = Z(g). However, special attention
is required when G is not of Harish-Chandra class, as we shall see below.

For the disconnected group G = O(n + 1, 1), Ad(G) is not contained in
Int(gC) and ZG(g) is of index two in Z(g) if n is even, whereas Ad(G) ⊂
Int(gC) and ZG(g) = Z(g) if n is odd. In both cases, via the standard
coordinates of a Cartan subalgebra of gC ≃ o(n+2,C), we have the following
Harish-Chandra isomorphisms

Z(g) ≃ S(Cm+1)Wg

∪ ∪
ZG(g) ≃ S(Cm+1)WG .

Here we identify a Cartan subalgebra hC of gC ≃ o(n+2,C) with Cm+1 where
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m := [n
2
], and set

Wg :=W (∆(gC, hC)) ≃

{
Sm+1 ⋉ (Z/2Z)m+1 for n = 2m+ 1,

Sm+1 ⋉ (Z/2Z)m for n = 2m,

WG :=Sm+1 ⋉ (Z/2Z)m+1.

We shall describe the ZG(g)-infinitesimal character by an element of CN

modulo WG via the following isomorphism.

HomC -alg(Z(g),C) ≃ CN/Wg↠ ↠

HomC -alg(ZG(g),C) ≃ CN/WG
(2.15)

To define the notion of “regular” or “singular” about ZG(g)-infinitesimal
characters, we use the action of the Weyl group Wg for the Lie algebra gC =
o(n+ 2,C) rather than the Weyl group WG for the disconnected group G as
below.

Definition 2.1. LetG = O(n+1, 1) andm := [n
2
]. Suppose χ ∈ HomC -alg(ZG(g),C)

is given by µ ∈ Cm+1 mod WG via the Harish-Chandra isomorphism (2.15).
We say χ is integral if

µ− ρG ∈ Zm+1,

see (2.16) below for the definition of ρG, or equivalently, if

µ ∈ Zm+1 for n = 2m (even),

µ ∈ (Z+
1

2
)m+1 for n = 2m+ 1 (odd).

We note that this condition is stronger than the one which is usually referred
to as “integral”:

⟨µ, α∨⟩ ∈ Z for all α ∈ ∆(gC, hC)

where α∨ denotes the coroot of α.
For µ ∈ Cm+1, we set

Wµ ≡ (Wg)µ := {w ∈ Wg : wµ = µ},
(WG)µ := {w ∈ WG : wµ = µ}.
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We say µ is Wg-regular (or simply, regular) if (Wg)µ = {e}, and WG-regular if
(WG)µ = {e}. These definitions depend only on the WG-orbit through µ be-
cause #Wµ = #Wµ′ if µ′ ∈ WGµ. We say χ is regular integral (respectively,
singular integral) infinitesimal character if χ is integral and Wµ = {e} (re-
spectively, Wµ ̸= {e}). In the coordinates of µ = (µ1, · · · , µm+1), Wµ = {e}
if and only if

µi ̸= ±µj (1 ≤ ∀i < ∀j ≤ m+ 1) for n even,

µi ̸= ±µj (1 ≤ ∀i < ∀j ≤ m+ 1), µk ̸= 0 (1 ≤ ∀k ≤ m+ 1) for n odd.

Remark 2.2. Suppose G = O(n + 1, 1) with n ≥ 1. Then the ZG(g)-
infinitesimal character of an irreducible finite-dimensional representation of
G is regular integral, and conversely, for any regular integral χ, there ex-
ists an irreducible finite-dimensional representation F of G such that χ is
the ZG(g)-infinitesimal character of F . Here we remind from Definition 2.1
above that by “regular” we mean Wg-regular, and not WG-regular.

The ZG(g)-infinitesimal character of the trivial one-dimensional represen-
tation 1 of G = O(n+ 1, 1) is given by

ρ ≡ ρG = (
n

2
,
n

2
− 1, · · · , n

2
− [

n

2
]) ∈ C[n

2
]+1/WG. (2.16)

The infinitesimal character ρG will be also referred to as the trivial infinites-
imal character.

Definition 2.3. We denote by Irr(G)ρ the set of equivalence classes of ir-
reducible admissible smooth representations of G that have the trivial in-
finitesimal character ρ.

The finite set Irr(G)ρ is classified in Theorem 2.20 (2) for G = O(n+1, 1)
and in Proposition 15.11 (3) for the special orthogonal group SO(n+ 1, 1).

2.2 Representations of the orthogonal group O(N)

We recall that the orthogonal group O(N) has two connected components.
In this section, we review a parametrization of irreducible finite-dimensional
representations of the disconnected group O(N) following Weyl [68, Chap. V,
Sect. 7]. For later reference we include classical branching theorems for the
restriction of representations for the pairs O(N) ⊃ O(N − 1) and O(N) ⊃
SO(N). The results will be applied to the four compact subgroups K, K ′,
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M and M ′ = M ∩ K ′ of G introduced in Section 2.1.1, which satisfy the
following obvious inclusive relations:K ⊃ K ′

∪ ∪
M ⊃ M ′

 =

 O(n+ 1)×O(1) ⊃ O(n)×O(1)
∪ ∪

O(n)× diag(O(1)) ⊃ O(n− 1)× diag(O(1))

 .

2.2.1 Notation for irreducible representations of O(N)

For finite-dimensional irreducible representations of orthogonal groups, we
use the following notation. We set

Λ+(N) := {λ = (λ1, . . . , λN) ∈ ZN : λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0}. (2.17)

We write FU(N)(λ) for the irreducible finite-dimensional representation of
U(N) (or equivalently, the irreducible polynomial representation ofGL(N,C))
with highest weight λ ∈ Λ+(N). If λ is of the form

(c1, · · · , c1︸ ︷︷ ︸
m1

, c2, · · · , c2︸ ︷︷ ︸
m2

, · · · , cℓ, · · · , cℓ︸ ︷︷ ︸
mℓ

, 0, · · · , 0),

then we also write λ = (cm1
1 , cm2

2 , · · · , cmℓ
ℓ ) as usual.

We define a subset of Λ+(N) by

Λ+(O(N)) := {λ ∈ Λ+(N) : λ′1 + λ′2 ≤ N},

where λ′1 := max{i : λi ≥ 1} and λ′2 := max{i : λi ≥ 2} for λ =
(λ1, . . . , λN) ∈ Λ+(N). We note that λ′1 equals the maximal column length
in the corresponding Young diagram.

It is readily seen that Λ+(O(N)) consists of elements of the following two
types:

Type I: (λ1, · · · , λk, 0, · · · , 0︸ ︷︷ ︸
N−k

), (2.18)

Type II: (λ1, · · · , λk, 1, · · · , 1︸ ︷︷ ︸
N−2k

, 0, · · · , 0︸ ︷︷ ︸
k

), (2.19)

with λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and 0 ≤ k ≤
[
N
2

]
.

For any λ ∈ Λ+(O(N)), there exists a unique O(N)-irreducible sum-
mand, to be denoted by FO(N)(λ), of the U(N)-module FU(N)(λ) which con-
tains the highest weight vector. Following Weyl ([68, Chap. V, Sect. 7]), we
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parametrize the set Ô(N) of equivalence classes of irreducible representations
of O(N) by

Λ+(O(N))
∼−→ Ô(N), λ 7→ FO(N)(λ). (2.20)

By the Weyl unitary trick, we may identify FO(N)(λ) with a holomorphic
irreducible representation of O(N,C), to be denoted by FO(N,C)(λ), on the
same representation space.

Definition 2.4. We say FO(N)(λ) ∈ Ô(N) is of type I (or type II), if λ ∈
Λ+(O(N)) is of type I (or type II), respectively.

We shall identify Ô(N) with Λ+(O(N)) via (2.20), and by abuse of nota-

tion, we write σ = (σ1, · · · , σN) ∈ Ô(N) when (σ1, · · · , σN) ∈ Λ+(O(N)).

Remark 2.5. We shall also use the notation

FO(N)(σ1, · · · , σk, 0, · · · , 0︸ ︷︷ ︸
[N
2
]−k

)+ instead of FO(N)(σ1, · · · , σk, 0, · · · , 0︸ ︷︷ ︸
N−k

),

FO(N)(σ1, · · · , σk, 0, · · · , 0︸ ︷︷ ︸
[N
2
]−k

)− instead of FO(N)(σ1, · · · , σk, 1, · · · , 1︸ ︷︷ ︸
N−2k

, 0, · · · , 0︸ ︷︷ ︸
k

),

by putting the subscript + or − for irreducible representations of type I or
of type II, respectively, see Remark 14.1 in Appendix I.

We define a map by summing up the first k-entries (k ≤ [N
2
]) of σ:

ℓ : Λ+(O(N))→ N, σ 7→ ℓ(σ) :=
k∑

i=1

σi, (2.21)

which induces a map

ℓ : Ô(N)→ N
via the identification (2.20). By (2.23), we have

ℓ(σ) = ℓ(σ ⊗ det). (2.22)

2.2.2 Branching laws for O(N) ↓ SO(N)

Definition 2.6. We say σ ∈ Ô(N) is of type X or type Y, if the restriction
σ|SO(N) to the special orthogonal group SO(N) is irreducible or reducible,
respectively.
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With the convention as in Definition 2.4, we recall a classical fact about
the branching rule for the restriction O(N) ↓ SO(N).

Lemma 2.7 (O(N) ↓ SO(N)). Let σ = (σ1, · · · , σN) ∈ Λ+(O(N)), and k
(≤ [N

2
]) be as in (2.18) and (2.19).

(1) (type X) The restriction of the irreducible O(N)-module FO(N)(σ) to
SO(N) is irreducible if and only if N ̸= 2k. In this case, the restricted
SO(N)-module has highest weight (σ1, · · · , σk, 0, · · · , 0).

(2) (type Y) If N = 2k, then the restriction FO(N)(λ)|SO(N) splits into two
inequivalent irreducible representations of SO(N) with highest weights
(σ1, · · · , σk−1, σk) and (σ1, · · · , σk−1,−σk).

Example 2.8. The orthogonal group O(N) acts irreducibly on the ℓ-th exte-
rior tensor space

∧
ℓ(CN) and on the space Hs(CN) of spherical harmonics of

degree s. Via the parametrization (2.20), these representations are described
as follows: ∧

ℓ(CN) = FO(N)(1ℓ) (0 ≤ ℓ ≤ N),

Hs(CN) = FO(N)(s, 0, · · · , 0) (s ∈ N).

The O(N)-module
∧

ℓ(CN) is of type Y if and only if N = 2ℓ; the O(N)-
module Hs(CN) is of type Y if and only if N = 2 and s ̸= 0.

Irreducible O(N)-modules of types I and II are related by the following
O(N)-isomorphism:

FO(N)(a1, · · · , ak, 1, · · · , 1, 0, · · · , 0) = det⊗FO(N)(a1, · · · , ak, 0, · · · , 0).
(2.23)

Hence we obtain the following:

Lemma 2.9. Let σ ∈ Ô(N). Then σ is of type Y if and only if σ⊗ det ≃ σ.

Then the following proposition is clear.

Proposition 2.10. Suppose σ ∈ Ô(n).

(1) If σ is of type Y, then σ is of type I.

(2) If σ is of type II, then σ is of type X.
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2.2.3 Branching laws O(N) ↓ O(N − 1)

Next we recall the classical branching laws for O(N) ↓ O(N − 1). Let σ =
(σ1, · · · , σN) ∈ Λ+(O(N)) and τ = (τ1, · · · , τN−1) ∈ Λ+(O(N − 1)).

Definition 2.11. We denote by τ ≺ σ if

σ1 ≥ τ1 ≥ σ2 ≥ τ2 ≥ · · · ≥ τN−1 ≥ σN .

Then the irreducible decomposition of representations of O(N) with re-
spect to the subgroup O(N − 1) is given as follows:

Fact 2.12 (Branching rule for orthogonal groups). Let (σ1, · · · , σN) ∈ Λ+(O(N)).
Then the irreducible representation FO(N)(σ1, · · · , σN) decomposes into a
multiplicity-free sum of irreducible representations of O(N − 1) as follows:

FO(N)(σ1, · · · , σN)|O(N−1) =
⊕
τ≺σ

FO(N−1)(τ1, · · · , τN−1). (2.24)

The commutant O(1) of O(N − 1) in O(N) acts on the irreducible sum-

mand FO(N−1)(τ1, · · · , τN−1) by (sgn)
∑N

j=1 σj−
∑N−1

i=1 τi .
The following lemma is derived from Lemma 2.9 and Fact 2.13.

Lemma 2.13. Let σ ∈ Ô(n) be of type I (see Definition 2.4). Then the
following four conditions are equivalent:

(i) σ ⊗ det ≃ σ;

(ii) [σ|O(n−1) : τ ] = [σ|O(n−1) : τ ⊗ det] for all τ ∈ ̂O(n− 1);

(iii) n is even and σ = FO(n)(s1, · · · , sn
2
, 0, · · · , 0) with sn

2
̸= 0;

(iv) σ|SO(n) is reducible, i.e., σ is of type Y (Definition 2.6).

2.3 Principal series representations Iδ(V, λ) of the or-
thogonal group G = O(n+ 1, 1)

We discuss here (nonspherical) principal series representations Iδ(V, λ) of
G = O(n + 1, 1). We shall use the symbol Jε(W, ν) for the principal series
representations of the subgroup G′ = O(n, 1).
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We recall the structure of principal series representations for rank one
orthogonal groups. The main references are Borel–Wallach [9] and Colling-
wood [11, Chap. 5, Sect. 2] for the representations of the identity component
G0 = SO0(n + 1, 1). We extend here the results to the disconnected group.
For representations of the disconnected group G, see also [44, Chap. 2] for
the spherical case (i.e., V = 1) and [37, Chap. 2, Sect. 3] for V =

∧
i(Cn)

(0 ≤ i ≤ n).

2.3.1 C∞-induced representations Iδ(V, λ)

We recall from Section 2.1.1 that the Levi subgroup MA of the minimal
parabolic subgroup P of G is a direct product group (O(n) × O(1)) × R.
Then any irreducible representation of MA is the outer tensor product of
irreducible representations of the three groups O(n), O(1), and R.

One-dimensional representations δ of O(1) = {1,m−} are labeled by +
or −, where we write δ = + for the trivial representation 1, and δ = − for

the nontrivial one given by δ(m−) = −1. Thus we identify Ô(1) with the set
{±}.

For λ ∈ C, we denote by Cλ the one-dimensional representation of the
split group A normalized by the generator H ∈ a (see (2.2)) as

A 7→ C×, exp(tH) 7→ eλt.

Let (σ, V ) be an irreducible representation of O(n), δ ∈ {±}, and λ ∈ C.
We extend the outer tensor product representation

Vλ,δ := V ⊠ δ ⊠ Cλ (2.25)

of the direct product group MA ≃ O(n) × O(1) × R to a representation of
the parabolic subgroup P = MAN+ by letting the unipotent subgroup N+

act trivially. The resulting irreducible P -module will be written as Vλ,δ =
V ⊗δ⊗Cλ by a little abuse of notation. We define the induced representation
of G by

Iδ(V, λ) ≡ I(V ⊗ δ, λ) := IndG
P (Vλ,δ).

We refer to δ as the signature of the induced representation. If δ = + (the
trivial character 1), we sometimes suppress the subscript.

If (σ, V ) ∈ Ô(n) is given as V = FO(n)(σ1, · · · , σn) with (σ1, · · · , σn) ∈
Λ+(O(n)) via (2.20), then Iδ(V, λ) has a ZG(g)-infinitesimal character

(σ1+
n

2
−1, σ2+

n

2
−2, · · · , σk+

n

2
−k, n

2
−k−1, · · · , n

2
− [
n

2
], λ− n

2
) (2.26)
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in the standard coordinates via the Harish-Chandra isomorphism, see (2.15).
We are using in this article unnormalized induction, i.e., the representa-
tion Iδ(V,

n
2
) is a unitarily induced principal series representation. Thus if

λ is purely imaginary, the principal series representations Iδ(V, λ + n
2
) are

tempered. If n is even, then every irreducible tempered representation is iso-
morphic to a tempered principal series representation. If n is odd, then there
is one family of discrete series representations parametrized by characters of
the compact Cartan subgroup and every irreducible tempered representation
is isomorphic to a tempered principal series representation or a discrete series
representation.

We denote by
Vλ,δ := G×P Vλ,δ (2.27)

the G-equivariant vector bundle over the real flag manifold G/P associated to
the representation Vλ,δ of P . We assume from now on that the principal series
representations Iδ(V, λ) are realized on the Fréchet space C∞(G/P,Vλ,δ) of
smooth sections for the vector bundle Vλ,δ → G/P . Thus Iδ(V, λ) is the
induced representation C∞-IndG

P (Vλ,δ) which is of moderate growth, see [44,
Chap. 3, Sect. 4]. As usual, we denote the representation space and the
representation by the same letter. We trivialize the vector bundle Vλ,δ over
G/P on the open Bruhat cell via the following map

ιN : Rn ∼→
n−
N−

∼→ N− · o ⊂ G/P.

Then Iδ(V, λ) is realized in a subspace of C∞(Rn)⊗ V by

ι∗N : Iδ(V, λ) ↪→ C∞(Rn)⊗ V, F 7→ f(b) := F (n−(b)), (2.28)

and this model is referred to as the noncompact picture, or the N-picture,
see Section 8.2.

2.3.2 Tensoring with characters χ±± of G

The character group (G/G0)̂ of the component group G/G0 ≃ Z/2Z×Z/2Z
acts on the set of admissible representations Π of G, by taking the tensor
product

Π 7→ Π⊗ χ (2.29)

for χ ∈ (G/G0)̂ . This action leaves the subsets Irr(G) and Irr(G)ρ (see
Definition 2.3) invariant. We describe the action explicitly on principal se-
ries representations in Lemma 2.14 below. The action on Irr(G)ρ will be
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given explicitly in Theorem 2.20 (5), and on the space of symmetry breaking
operators in Section 3.7.

Lemma 2.14. Let V ∈ Ô(n), δ ∈ {±}, and λ ∈ C. Let χ±± be the one-
dimensional representations of G = O(n + 1, 1) as defined in (2.13). Then
we have the following isomorphisms between representations of G:

Iδ(V, λ)⊗ χ+− ≃I−δ(V, λ),

Iδ(V, λ)⊗ χ−+ ≃I−δ(V ⊗ det, λ),

Iδ(V, λ)⊗ χ−− ≃Iδ(V ⊗ det, λ).

Proof. For any P -module U and for any finite-dimensionalG-module F , there
is an isomorphism of G-modules:

F ⊗ IndG
P (U) ≃ IndG

P (F ⊗ U).

Then Lemma 2.14 follows from the restriction formula of the character χ of
G to the subgroup M ≃ O(n)×O(1) as below:

χ+−|M ≃ 1⊠ sgn, χ−+|M ≃ det⊠sgn, χ−−|M ≃ det⊠1.

A special case of Lemma 2.14 for the exterior tensor representations V =∧
i(Cn) will be stated in Lemma 3.36.

2.3.3 K-structure of the principal series representation Iδ(V, λ)

Let (σ, V ) ∈ Ô(n) and δ ∈ {±} as before. By the Frobenius reciprocity
law, K-types of the principal series representation Iδ(V, λ) are the irreducible
representations ofK = O(n+1)×O(1) whose restriction toM ≃ O(n)×O(1)
contains the representation V ⊠ δ of M . The classical branching theorem
(Fact 2.12) is used to determine K-types of the G-module Iδ(V, λ). We
shall give an explicit K-type formula in the next section when V is the
exterior tensor representation

∧
i(Cn) of O(n). For the general representation

(σ, V ) ∈ Ô(n), we do not use an explicit K-type formula of Iδ(V, λ), but just
mention an immediate corollary of Fact 2.12:

Proposition 2.15. The K-types of principal series representations Iδ(V, λ)
of O(n+ 1, 1) have multiplicity one.
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2.4 Principal series representations Iδ(i, λ)

For 0 ≤ i ≤ n, δ ∈ {±}, and λ ∈ C, we denote the principal series repre-
sentation Iδ(

∧
i(Cn), λ) = C∞-IndG

P (
∧

i(Cn) ⊗ δ ⊗ Cλ) of G = O(n + 1, 1)
simply by Iδ(i, λ). Similarly, we write Jε(j, ν) for the induced representation
C∞-IndG′

P ′(
∧

j(Cn−1) ⊗ ε ⊗ Cν) of G
′ = O(n, 1) for 0 ≤ j ≤ n − 1, ε ∈ {±},

and ν ∈ C. In the major part of this monograph, we focus our attention on
special families of principal series representations Iδ(i, λ) of G and Jε(j, ν) of
the subgroup G′.

In geometry, Iδ(i, λ) is a family of representations of the conformal group
O(n+ 1, 1) of Sn on the space E i(Sn) of differential forms (cf. [37, Chap. 2,
Sect. 2]) on one hand. In representation theory, any irreducible, unitarizable
representations with nonzero (g, K)-cohomologies arise as subquotients in
Iδ(i, λ) with λ = i for some 0 ≤ i ≤ n and δ = (−1)i, see Theorem 2.20 (9),
also Proposition 14.45 in Appendix I.

In this section we collect some basic properties of the principal series
representations

Iδ(i, λ) for δ ∈ {±}, 0 ≤ i ≤ n, λ ∈ C,

which will be used throughout the article.

2.4.1 ZG(g)-infinitesimal character of Iδ(i, λ)

As we have seen in (2.26) in the general case, the ZG(g)-infinitesimal character
of the principal series representation Iδ(i, λ) is given by

(
n

2
,
n

2
− 1, · · · , n

2
− i+ 1︸ ︷︷ ︸

i

;
n

2
− i− 1, · · · , n

2
− [

n

2
]︸ ︷︷ ︸

[n
2
]−i

;λ− n

2
) if 0 ≤ i ≤ n

2
,

(
n

2
,
n

2
− 1, · · · ,−n

2
+ i+ 1︸ ︷︷ ︸

n−i

;−n
2
+ i− 1, · · · , n

2
− [

n

2
]︸ ︷︷ ︸

i−[n+1
2

]

;λ− n

2
) if

n

2
≤ i ≤ n.

In particular, the G-module Iδ(i, λ) has the trivial infinitesimal character
ρG if and only if λ = i or n− i.

2.4.2 K-type formula of the principal series representations Iδ(i, λ)

By the Frobenius reciprocity, we can compute the K-type formula of Iδ(i, λ)
explicitly by using the classical branching law (Fact 2.12) and Example 2.8
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as follows:

Lemma 2.16 (K-type formula of Iδ(i, λ)). Let 0 ≤ i ≤ n and δ ∈ {±}.
With the parametrization (2.20), the K-type formula of the principal series
representation Iδ(i, λ) of G = O(n+ 1, 1) is described as below:

(1) for i = 0,
∞⊕
a=0

FO(n+1)(a, 0n)⊠ (−1)aδ;

(2) for 1 ≤ i ≤ n− 1,

∞⊕
a=1

FO(n+1)(a, 1i, 0n−i)⊠(−1)aδ⊕
∞⊕
a=1

FO(n+1)(a, 1i−1, 0n+1−i)⊠(−1)a+1δ;

(3) for i = n,
∞⊕
a=1

(det⊗FO(n+1)(a, 0n))⊠ (−1)a+1δ.

See Proposition 14.29 for a more general K-type formula of the principal
series representation Iδ(V, λ).

2.4.3 Basic K-types of Iδ(i, λ)

Let δ ∈ {±} and 0 ≤ i ≤ n. Following the notation [37, Chap. 2, Sect. 3],
we define two irreducible representations of K ≃ O(n+ 1)×O(1) by:

µ♭(i, δ) :=
∧

i(Cn+1)⊠ δ, (2.30)

µ♯(i, δ) :=
∧

i+1(Cn+1)⊠ (−δ). (2.31)

This means:{
µ♭(i,+) =

∧
i(Cn+1)⊠ 1,

µ♭(i,−) =
∧

i(Cn+1)⊠ sgn,

{
µ♯(i,+) =

∧
i+1(Cn+1)⊠ sgn,

µ♯(i,−) =
∧

i+1(Cn+1)⊠ 1.

The superscripts ♯ and ♭ indicate that there are the following obvious K-
isomorphisms

µ♯(i, δ) = µ♭(i+ 1,−δ) (0 ≤ i ≤ n), (2.32)
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which will be useful in describing the standard sequence with trivial infinites-
imal character ρG (Definition 2.21 below), see also Remark 2.19.

By the K-type formula of the principal series representation Iδ(i, λ) in
Lemma 2.16, the K-types µ♭(i, δ) and µ♯(i, δ) occur in Iδ(i, λ) with multiplic-
ity one for any λ ∈ C.

Definition 2.17. We say µ♭(i, δ) and µ♯(i, δ) are basic K-types of the prin-
cipal series representations Iδ(i, λ) of G = O(n+ 1, 1).

2.4.4 Reducibility of Iδ(i, λ)

The principal series representation Iδ(i, λ) is generically irreducible. More
precisely, we have the following.

Proposition 2.18. Let G = O(n+ 1, 1), 0 ≤ i ≤ n, δ ∈ {±}, and λ ∈ C.

(1) The principal series representation Iδ(i, λ) is reducible if and only if

λ ∈ {i, n− i} ∪ (−N+) ∪ (n+ N+). (2.33)

(2) Suppose (n, λ) ̸= (2i, i). If λ satisfies (2.33), then the G-module Iδ(i, λ)
has a unique irreducible proper submodule (say, A) and has a unique ir-
reducible subquotient (say, B) and there is a nonsplitting exact sequence
of G-modules:

0→ A→ Iδ(i, λ)→ B → 0.

(3) Suppose (n, λ) = (2i, i). Then the Iδ(i, λ) decomposes into the direct
sum of two irreducible representations of G which are not isomorphic
to each other.

When n ̸= 2i, the “only if” part of the first statement and the second one
in Proposition 2.18 follow readily from the corresponding results ([9, 11, 17])
for the connected group SO0(n+ 1, 1) and from Lemma 2.22 below because∧

i(Cn) is irreducible as an SO(n)-module. We need some argument for n =
2i where

∧
i(Cn) is reducible as an SO(n)-module, see Examples 14.16 and

15.6 in Appendix II for the proof of Proposition 2.18 (1) and (3), respectively.
In Section 8.5, we discuss the description of proper submodules of reducible
Iδ(i, λ) by using the Knapp–Stein operator (8.14) and its normalized one
(8.21). The “if” part of the first statement is proved there, see Lemma 8.16.
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The composition series of Iδ(i, λ) with trivial infinitesimal character ρG
(i.e., for λ = i or n− i) will be discussed in the next subsection (see Theorem
2.20), which will be extended in Theorem 13.11 to the case of regular integral
infinitesimal characters.

2.4.5 Irreducible subquotients of Iδ(i, i)

Every irreducible representation of G = O(n+1, 1) with trivial infinitesimal
character ρ is equivalent to a subquotient of Iδ(i, i) for some 0 ≤ i ≤ n and
δ ∈ {±}, or equivalently, of I+(i, i)⊗ χ with i ≥ n/2 and χ ∈ (G/G0)̂ . We
recall now facts about the principal series representations I+(i, i), I−(i, i),
I+(n − i, i) and I−(n − i, i) of the orthogonal group O(n + 1, 1) and their
composition factors.

We denote by Iδ(i)
♭ and Iδ(i)

♯ the unique irreducible subquotients of
Iδ(i, i) containing the basic K-types µ♭(i, δ) and µ♯(i, δ), respectively. Then
we have G-isomorphisms:

Iδ(i)
♯ ≃ I−δ(i+ 1)♭ for 0 ≤ i ≤ n− 1 and δ ∈ {±}, (2.34)

see Theorem 2.20 (1) below. For 0 ≤ ℓ ≤ n+ 1 and δ ∈ {±}, we set

Πℓ,δ :=

{
Iδ(ℓ)

♭ (0 ≤ ℓ ≤ n),

I−δ(ℓ− 1)♯ (1 ≤ ℓ ≤ n+ 1).
(2.35)

In view of (2.34), the irreducible representation Πℓ,δ of G is well-defined.

Remark 2.19. The point here is that each irreducible representation Πℓ,δ (1 ≤
ℓ ≤ n, δ = ±) can be realized in two different principal series representations:

Iδ(ℓ, ℓ) =IndG
P (
∧

ℓ(Cn)⊗ δ ⊗ Cℓ),

I−δ(ℓ− 1, ℓ− 1) =IndG
P (
∧

ℓ−1(Cn)⊗ (−δ)⊗ Cℓ−1).

Theorem 2.20. Let G = O(n+ 1, 1) (n ≥ 1).

(1) For 0 ≤ ℓ ≤ n and δ ∈ {±}, we have exact sequences of G-modules:

0→ Πℓ,δ → Iδ(ℓ, ℓ)→ Πℓ+1,−δ → 0,

0→ Πℓ+1,−δ → Iδ(ℓ, n− ℓ)→ Πℓ,δ → 0.

These exact sequences split if and only if n = 2ℓ.
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(2) Irreducible admissible smooth representations of G with trivial ZG(g)-
infinitesimal character ρG can be classified as

Irr(G)ρ = {Πℓ,δ : 0 ≤ ℓ ≤ n+ 1, δ = ±}.

(3) For any 0 ≤ ℓ ≤ n + 1 and δ ∈ {±}, the minimal K-type of the
irreducible G-module Πℓ,δ is given by µ♭(ℓ, δ) =

∧
ℓ(Cn+1)⊠ δ.

(4) There are four one-dimensional representations of G, and they are
given by

{Π0,+ ≃ 1, Π0,− ≃ χ+−, Πn+1,+ ≃ χ−+, Πn+1,− ≃ χ−−(= det)}.

The other representations Πℓ,δ (1 ≤ ℓ ≤ n, δ ∈ {±}) are infinite-
dimensional.

(5) There are isomorphisms as G-modules for any 0 ≤ ℓ ≤ n+1 and δ = ±:

Πℓ,δ ⊗ χ+− ≃Πℓ,−δ,

Πℓ,δ ⊗ χ−+ ≃Πn+1−ℓ,δ,

Πℓ,δ ⊗ χ−− ≃Πn+1−ℓ,−δ.

(6) Every Πℓ,δ (0 ≤ ℓ ≤ n+ 1, δ = ±) is unitarizable and self-dual.

(7) For n odd, there are exactly two inequivalent discrete series representa-
tions of G = O(n+1, 1) with infinitesimal character ρG. Their smooth
representations are given by

{Πn+1
2

,δ : δ = ±}.

All the other representations in the list (2) are nontempered represen-
tations of G.

(8) For n even, there are exactly four inequivalent irreducible tempered rep-
resentations of G = O(n+ 1, 1) with infinitesimal character ρG. Their
smooth representations are given by

{Πn
2
,δ,Πn

2
+1,δ : δ = ±}.
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(9) Irreducible and unitarizable (g, K)-modules with nonzero (g, K)-cohomologies
are exactly given as the set of the underlying (g, K)-modules of Πℓ,δ

(0 ≤ ℓ ≤ n+ 1, δ = ±).

The exact sequences in Theorem 2.20 (1) leads us to a labeling of the
finite set Irr(G)ρ as follows:

Definition 2.21 (standard sequence). Let G = O(n + 1, 1) and n = 2m or
2m− 1. We refer to the sequence

Π0,+ , Π1,+ , . . . , Πm−1,+ , Πm,+

as the standard sequence starting with the trivial one-dimensional represen-
tation Π0,+ = 1. Likewise, we refer to the sequence

Π0,− , Π1,− , . . . , Πm−1,− , Πm,−

as the standard sequence starting with the one-dimensional representation
Π0,− = χ+−. Sometimes we suppress the subscript + and write Πi for Πi,+

for simplicity.

More generally, we shall define the standard sequence starting with other
irreducible finite-dimensional representations of G in Chapter 13, see Defini-
tion 13.2 and Example 13.5. An analogous sequence, which we refer to as the
Hasse sequence, will be defined also in Chapter 13, see Definition-Theorem
13.1.

We give some remarks on the proof of Theorem 2.20. Basic references are
[9, 11, 37]. Theorem 2.20 (1) generalizes the results proved in Borel–Wallach
[9, pp. 128–129 in the new edition; p. 192 in the old edition] for the identity
component group G0 = SO0(n + 1, 1). (Unfortunately and confusingly the
restriction of our representations I+(i, i) to the connected component G0 are
denoted there by Ii when n ̸= 2i.) See also Collingwood [11, Chap. 5, Sect. 2]
for the identity component group G0; [37, p. 20] for the disconnected group
G = O(n+ 1, 1).

For the relationship between principal series representations of G and of
its identity component group G0, we recall from [44, Chap. 5] the following.

Lemma 2.22. For G = O(n+1, 1), let P0 := P ∩G0. Then P0 is connected,
and is a minimal parabolic subgroup of G0. Then we have a natural bijection:

G0/P0
∼→ G/P (≃ Sn).
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Then we can derive results for the disconnected group G from those for
the connected group G0 and vice versa by using the action of the Pontrjagin
dual (G/G0)̂ of the component group G/G0 and the classical branching law
O(N) ↓ SO(N) (Section 2.2.2). In Appendix II (Chapter 15) we discuss
restrictions of representations of O(n+ 1, 1) with respect to SO(n+ 1, 1) in
the same spirit.

In Proposition 14.44 of Appendix I, we will give a description of the under-
lying (g, K)-modules (Πi,±)K of the G-irreducible subquotients Πi,± in terms
of the so-called Aq(λ)-modules, i.e., cohomologically induced representations
from one-dimensional representations of a θ-stable parabolic subalgebra q.

By using the description, Theorem 2.20 (9) follows readily from results of
Vogan and Zuckerman [65], see Proposition 14.45 in Appendix I. The unita-
rizability of the irreducible subquotients Πi,± (Theorem 2.20 (6)) traces back
to T. Hirai [17], see also Howe and Tan [18]. Alternatively, the unitarizability
in Theorem 2.20 (6) is deduced from the theory on Aq(λ), see [26, Thm. 0.51].

Remark 2.23. Analogous results for the special orthogonal group SO(n+1, 1)
will be given in Proposition 15.11 in Appendix II, where we denote the group
by G.
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3 Symmetry breaking operators for principal

series representations—general theory

In this chapter we discuss important concepts and properties of symmetry
breaking operators from principal series representations Iδ(V, λ) of the or-
thogonal group G = O(n+1, 1) to Jε(W, ν) of the subgroup G

′ = O(n, 1). In
particular, we present a classification scheme (Theorem 3.13) of all symmetry
breaking operators, which is built on the strategy of the classification in the
spherical case [44] and also on a new phenomenon for which we refer to as
sporadic operators (Section 3.2.3). The classification scheme is carried out
in full details for symmetry breaking from principal series representations
Iδ(V, λ) of G to Jε(W, ν) of the subgroup G′, which will play a crucial role
in understanding symmetry breaking of all irreducible admissible representa-
tions of G having the trivial infinitesimal character (Chapters 4, 11, and 12).
Various theorems stated in this chapter will be proved in later chapters, in
particular, in Chapter 5.

3.1 Generalities

We refer to nontrivial homomorphisms in

HomG′(Iδ(V, λ)|G′ , Jε(W, ν))

as intertwining restriction operators or symmetry breaking operators. Here
δ, ε ∈ Z/2Z in our setting where (G,G′) = (O(n + 1, 1), O(n, 1)). For a
detailed introduction to symmetry breaking operators we refer to [35] and
[44, Chaps. 1 and 3].

3.2 Summary of results

We keep our setting where (G,G′) = (O(n+ 1, 1), O(n, 1)).

For (σ, V ) ∈ Ô(n), δ ∈ {±}, and λ ∈ C, we write Iδ(V, λ) for the princi-
pal series representation of G as in Section 2.3. Similarly, let (τ,W ) be an
irreducible representation of O(n − 1), ε ∈ {±}, and ν ∈ C. We extend the
outer tensor product representation

Wν,ε := W ⊠ ε⊠ Cν
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of the direct product group M ′A ≃ O(n− 1)×O(1)×R to P ′ =M ′AN ′
+ by

letting N ′
+ act trivially. We also write Wν,ε = W ⊗ ε⊗Cν when we regard it

as a P ′-module. We form a G′-equivariant vector bundleWν,ε := G′×P ′ Wν,ε

over the real flag manifoldG′/P ′. The principal series representation Jε(W, ν)
of G′ = O(n, 1) is defined to be the induced representation IndG′

P ′(Wν,ε) on
the space C∞(G′/P ′,Wν,ε) of smooth sections for the vector bundle.

For (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1), we set

[V : W ] := dimCHomO(n−1)(V |O(n−1),W ). (3.1)

If we want to emphasize the subgroup, we also write [V |O(n−1) : W ] for
[V : W ]. We recall from Fact 2.12 on the classical branching rule for the
restriction O(N) ↓ O(N − 1) that the multiplicity [V : W ] is either 0 or 1.

3.2.1 Symmetry breaking operators when [V : W ] ̸= 0

Suppose [V : W ] ̸= 0. In this case we prove the existence of nonzero symme-
try breaking operators for all λ, ν ∈ C and for all signatures δ, ε ∈ {±}:

Theorem 3.1 (existence of symmetry breaking operators, see Theorem

5.42). Suppose (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1). Assume [V : W ] ̸= 0.
Then we have

dimCHomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ≥ 1 for all δ, ε ∈ Z/2Z, λ, ν ∈ C.

Theorem 3.1 is proved in Section 5.10 by constructing symmetry breaking
operators: generic ones are nonlocal (e.g. integral operators) see Theorem
3.9 below, whereas a few are local operators (i.e. differential operators, see
Theorem 3.5).

Definition 3.2. We say that the quadruple (λ, ν, δ, ε) is a generic parameter
if (λ, ν) ∈ C2 and δ, ε ∈ {±} satisfy{

ν − λ ̸∈ 2N when δε = +;

ν − λ ̸∈ 2N+ 1 when δε = −.
(3.2)

We recall from (1.3) that the set of “special parameters” is given as the
complement of “generic parameters”, namely,

Ψsp =
{
(λ, ν, δ, ε) ∈ C2 × {±}2 : ν − λ ∈ 2N when δε = +

or ν − λ ∈ 2N+ 1 when δε = − } . (3.3)
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In the case [V : W ] ̸= 0, we also prove the following “generic multiplicity-
one theorem”, which extends [44, Thm. 1.1] in the scalar case (V = W = C).

Theorem 3.3 (generic multiplicity-one theorem). Suppose (σ, V ) ∈ Ô(n),

(τ,W ) ∈ ̂O(n− 1) with [V : W ] ̸= 0. If (λ, ν, δ, ε) ∈ C2 × {±}2 satisfies the
generic parameter condition, namely, (λ, ν, δ, ε) ̸∈ Ψsp, then

dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = 1.

Theorem 3.3 gives a stronger estimate than what the existing general
theory guarantees:

• the dimension ≤ 1 if both Iδ(V, λ) and Jε(W, ν) are irreducible [59],

• the dimension is uniformly bounded with respect to σ, τ , δ, ε, λ, ν [41].

We note that Iδ(V, λ) or Jε(W, ν) can be reducible even if (λ, ν, δ, ε) ∈ Ψsp.
Theorem 3.3 will be proved in a strengthened form by giving an explicit
generator (see Theorem 5.41 in Section 5.10).

3.2.2 Differential symmetry breaking operators when [V : W ] ̸= 0

We realize the principal series representations Iδ(V, λ) and Jε(W, ν) in the
Fréchet spaces C∞(G/P,Vλ,δ) and C∞(G′/P ′,Wν,ε).

Definition 3.4 (differential symmetry breaking operator). A linear map

D : C∞(G/P,Vλ,δ)→ C∞(G′/P ′,Wν,ε)

is called a differential symmetry breaking operator if D is a differential op-
erator with respect to the inclusion G′/P ′ ↪→ G/P and D intertwines the
action of the subgroup G′. See Definition 6.3 in Chapter 6 for the notion of
differential operators between two different manifolds. We denote by

DiffG′(Iδ(V, λ)|G′ , Jε(W, ν))

the subspace of HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) consisting of differential symme-
try breaking operators.

We retain the assumption that [V : W ] ̸= 0. We give a necessary and suf-
ficient condition for the existence of nonzero differential symmetry breaking
operators:
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Theorem 3.5 (existence of differential symmetry breaking operators). Sup-

pose (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1) satisfy [V : W ] ̸= 0. Then the
following two conditions on the parameters λ, ν ∈ C and δ, ε ∈ {±} are
equivalent:

(i) The quadruple (λ, ν, δ, ε) does not satisfy the generic parameter condi-
tion (3.2), namely, (λ, ν, δ, ε) ∈ Ψsp.

(ii) DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) ̸= {0}.

We shall prove Theorem 3.5 in Chapter 6, see Theorem 6.1.

3.2.3 Sporadic symmetry breaking operators when [V : W ] = 0

This section treats the case [V : W ] = 0. In the holomorphic setting, we
found in [42] a phenomenon that all symmetry breaking operators are given
by differential operators (localness theorem). This phenomenon does not oc-
cur in the real setting if both V and W are the trivial one-dimensional rep-
resentations [44]. However, we shall see that this phenomenon may occur in
the real setting for vector bundles. Indeed, the following theorem shows that
there may exist sporadic symmetry breaking operators which are differential
operators in the case [V : W ] = 0:

Theorem 3.6 (localness theorem). Assume [V : W ] = 0. Then

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = DiffG′(Iδ(V, λ)|G′ , Jε(W, ν))

for all (λ, ν, δ, ε) ∈ C2 × {±}2, that is, any symmetry breaking operator (if
exists)

C∞(G/P,Vλ,δ)→ C∞(G′/P ′,Wν,ε)

is a differential operator.

Theorem 3.6 is proved in Section 5.5. We call such operators sporadic
because there is no regular symmetry breaking operator if [V : W ] = 0, see
Theorem 3.9 below. Another localness theorem is formulated in Theorem
3.13 (2-b) (see also Proposition 6.16 in Chapter 6) under the assumption
that the parameter (λ, ν) ∈ C2 satisfies ν − λ ∈ N.

Example 3.7. Suppose (V,W ) = (
∧

i(Cn),
∧

j(Cn−1)). Then [V : W ] ̸= 0 if
and only if j = i−1 or i. Hence Theorem 3.6 tells that there exists a nonlocal
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symmetry breaking operators Iδ(i, λ)→ Jε(j, ν) only if j ∈ {i−1, i}. (In fact,
this is also a sufficient condition, see Theorem 9.1.) On the other hand, there
exist nontrivial differential symmetry breaking operators for some (λ, ν) ∈ C2

if and only if j ∈ {i−2, i−1, i, i+1}, as is seen from the complete classification
of differential symmetry breaking operators (Fact 3.22). Thus there exist
sporadic (differential) symmetry breaking operators when j = i− 2 or i+ 1.

Remark 3.8. The assumption [V : W ] ̸= 0 in Theorems 3.3 and 3.5 is not an
intertwining property forM ′ =M∩G′ ≃ O(n−1)×O(1) but for the subgroup
O(n − 1) which is of index two in M ′. We note that for Vδ := V ⊠ δ ∈ M̂
and Wε :=W ⊠ ε ∈ M̂ ′,

HomM ′(Vδ|M ′ ,Wε) ̸= {0} if and only if [V : W ] ̸= 0 and δ = ε.

Indeed the condition δ = ε is not included in the assumption of Theorem 3.3
on the construction of regular symmetry breaking operators. The reason is
clarified in Theorem 3.9 in the next subsection.

3.2.4 Existence condition for regular symmetry breaking opera-
tors

A regular symmetry breaking operator is an “opposite” notion to a differential
symmetry breaking operator in the sense that the support of its distribution
kernel contains an interior point in the real flag manifold, see [44, Def. 3.3].
(See also Definition 5.10 in our special setting.) In [44, Cor. 3.6] we give a
necessary condition for the existence of regular symmetry breaking operators
in the general setting. This condition is also sufficient in our setting:

Theorem 3.9 (existence of regular symmetry breaking operators). Suppose

V ∈ Ô(n) and W ∈ ̂O(n− 1). Then the following three conditions on the
pair (V,W ) are equivalent:

(i) [V : W ] ̸= 0.

(ii) There exists a nonzero regular symmetry breaking operator from the G-
module Iδ(V, λ) to the G′-module Jε(W, ν) for some (λ, ν, δ, ε) ∈ C2 ×
{±}2.

(iii) For any (δ, ε) ∈ {±}2, there is an open dense subset U in C2 such that
a nonzero regular symmetry breaking operator exists from Iδ(V, λ) to
Jε(W, ν) for all (λ, ν) ∈ U .
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The proof will be given in Section 5.7. The open dense subset U is
explicitly given in Proposition 5.39.

3.2.5 Integral operators, analytic continuation, and normalization
factors

For an explicit construction of regular symmetry breaking operators, we use
the reflection map ψn defined as follows:

ψn : Rn − {0} → O(n), x 7→ In −
2xtx

|x|2
. (3.4)

Then ψn(x) gives the reflection ψn(x) with respect to the hyperplane {y ∈
Rn : (x, y) = 0}. Clearly, we have

ψn(x) = ψn(−x), ψn(x)
2 = In, and detψn(x) = −1. (3.5)

Suppose (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1). For the construction of
regular symmetry breaking operators, we need the condition [V : W ] ̸= 0,
see Theorem 3.9. So let us assume [V : W ] ̸= 0. We fix a nonzero O(n− 1)-
homomorphism

prV→W : V →W,

which is unique up to scalar multiplication by Schur’s lemma because [V :
W ] = 1. We introduce a smooth map

RV,W : Rn − {0} → HomC(V,W )

by
RV,W := prV→W ◦σ ◦ ψn. (3.6)

In what follows, we use the coordinates (x, xn) ∈ Rn = Rn−1 ⊕ R where
x = (x1, · · · , xn−1), and the n-th coordinate xn will play a special role.

We set

ÃV,W
λ,ν,+ :=

1

Γ(λ+ν−n+1
2

)Γ(λ−ν
2
)
(|x|2 + x2n)

−ν |xn|λ+ν−nRV,W (x, xn), (3.7)

ÃV,W
λ,ν,− :=

1

Γ(λ+ν−n+2
2

)Γ(λ−ν+1
2

)
(|x|2 + x2n)

−ν |xn|λ+ν−nsgnxnR
V,W (x, xn).

(3.8)
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Theorem 3.10 (regular symmetry breaking operators). Suppose [V : W ] ̸=
0 and γ ∈ {±}. Then the distributions ÃV,W

λ,ν,γ, initially defined as HomC(V,W )-
valued locally integrable functions on Rn for Reλ ≫ |Re ν|, extends to P ′-
invariant elements in D′(G/P,V∗

λ,δ)⊗Wν,ε for all (λ, ν) ∈ C2 and δ, ε ∈ {±}
with δε = γ. Then the distributions ÃV,W

λ,ν,γ induce a family of symmetry
breaking operators

ÃV,W
λ,ν,γ : C

∞(G/P,Vλ,δ)→ C∞(G′/P ′,Wν,ε),

which depends holomorphically on (λ, ν) in the entire C2.

Remark 3.11. The denominator in (3.7) is different from the product of the

denominators of the two distributions (|x|2+x2
n)

−ν

Γ(n−ν
2

)
and |xn|λ+ν−n

Γ(λ+ν−n+1
2

)
on Rn that

depend holomorphically on (λ, ν) in the entire C2. In fact the product

(|x|2 + x2n)
−ν

Γ(n−ν
2
)
× |xn|λ+ν−n

Γ(λ+ν−n+1
2

)
(3.9)

does not always make sense as distributions on Rn. For instance, if (λ, ν) =
(−1, n), then the multiplication (3.9) means the multiplication (up to nonzero
scalar multiplication) of the Dirac delta functions δ(x1, · · · , xn) by δ(xn),
which is not well-defined in the usual sense.

Theorem 3.10 will be proved in Section 5.6.
We prove in Theorem 3.19 that the normalization is optimal for (V,W ) =

(
∧

i(Cn),
∧

j(Cn−1)) in the sense that the zeros of ÃV,W
λ,ν,± are of codimension

> 1 in the parameter space of (λ, ν), namely, discrete in C2 in our setting.
For the general (V,W ), we shall give an upper and lower estimate of the null

set of the symmetry breaking operators ÃV,W
λ,ν,+ and ÃV,W

λ,ν,− in Theorem 3.15.

3.3 Classification scheme of symmetry breaking oper-
ators: general case

In this section, we give a general scheme for the classification of all symmetry
breaking operators Iδ(V, λ)|G′ → Jε(W, ν) between the two principal series
representations of G and the subgroup G′ in full generality where (σ, V ) ∈
Ô(n) and (τ,W ) ∈ ̂O(n− 1).

We begin with conditions on the parameter (λ, ν, δ, ε) for the existence of
differential symmetry breaking operators.
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Theorem 3.12 (existence of differential symmetry breaking operators).

(1) (Theorem 5.21) Suppose λ, ν ∈ C and δ, ε ∈ {±} satisfy the generic
parameter condition (3.2). Then,

DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) = {0}

for any (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1).

(2) (Theorem 6.1) Suppose [V : W ] ̸= 0. Then the converse statement
holds, namely, if (λ, ν, δ, ε) ∈ Ψsp (see (1.3)), then

DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) ̸= {0}.

We give a proof for the first statement of Theorem 3.12 in Section 5.4, and
the second statement in Section 6.7. Keeping Theorem 3.12 on differential
symmetry breaking operators in mind, we state a general scheme for the
classification of all symmetry breaking operators:

Theorem 3.13 (classification scheme of symmetry breaking operators). Let

n ≥ 3, (σ, V ) ∈ Ô(n), (τ,W ) ∈ ̂O(n− 1), λ, ν ∈ C and δ, ε ∈ {±}.

(1) Suppose [V : W ] = 0. Then

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)).

(2) Suppose [V : W ] ̸= 0.

(2-a) (generic case) Suppose further that (λ, ν, δ, ε) ̸∈ Ψsp, namely, it
satisfies the generic parameter condition (3.2). Then

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = CÃV,W
λ,ν,δε.

In this case, ÃV,W
λ,ν,δε is nonzero and is not a differential operator.

(2-b) (special parameter case I, localness theorem) Suppose ÃV,W
λ,ν,δε ̸= 0

and (λ, ν, δ, ε) ∈ Ψsp (i.e., does not satisfy the generic parame-
ter condition (3.2)). Then any symmetry breaking operator (in

particular, ÃV,W
λ,ν,δε) is a differential operator and

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) ∋ ÃV,W
λ,ν,δε.
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(2-c) (special parameter case II) Suppose ÃV,W
λ,ν,δε = 0. Then (λ, ν, δ, ε) ∈

Ψsp, and the renormalized operator ˜̃AV,W
λ,ν,δε (see Section 5.11.2)

gives a nonzero symmetry breaking operator which is not a dif-
ferential operator. We have

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = C ˜̃AV,W
λ,ν,δε⊕DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)).

In particular,

dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ≥ 2.

The first assertion of Theorem 3.13 is a restatement of Theorem 3.6. The
case (2-a) is given in Theorem 5.41 and the case (2-b) is in Proposition 6.16.
The first statement for the case (2-c) is proved in Theorem 5.45 (1). The
direct sum decomposition is given in Corollary 5.46. The last statement fol-
lows from the existence of nonzero differential symmetry breaking operators
for all special parameters (Theorem 3.12 (2)).

Theorems 3.5 and 3.13 lead us to a vanishing result of symmetry breaking
operators as follows:

Corollary 3.14 (vanishing of symmetry breaking operators). Let (σ, V ) ∈
Ô(n), (τ,W ) ∈ ̂O(n− 1), λ, ν ∈ C and δ, ε ∈ {±}. If [V : W ] = 0 and (λ, ν)
satisfies the generic parameter condition (3.2), then

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = {0}.

Proof. By Theorem 3.13 (1), we have

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = DiffG′(Iδ(V, λ)|G′ , Jε(W, ν))

because [V : W ] = 0. In turn, the right-hand side reduces to zero by Theorem
3.5 because of the generic parameter condition (3.2).

Theorem 3.13 gives a classification of symmetry breaking operators up to
the following two problems:

• the location of zeros of the normalized regular symmetry breaking op-
erator ÃV,W

λ,ν,γ;

• the classification of differential symmetry breaking operators.
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For (V,W ) = (
∧

i(Cn),
∧

j(Cn−1)), these two problems are solved explic-
itly in Theorem 3.19 and Fact 3.22, respectively, and thus we accomplish
the complete classification of symmetry breaking operators. This will be
stated in Theorem 3.25 (multiplicity formula) and in Theorem 3.26 (explicit
generators).

3.4 Summary: vanishing of regular symmetry break-
ing operators ÃV,W

λ,ν,±

As we have seen in the classification scheme (Theorem 3.13) for all symme-
try breaking operators, the parameter (λ, ν, δ, ε) for which the (generically)

regular symmetry breaking operator ÃV,W
λ,ν,± vanishes plays a crucial role in

the classification theory. For (λ, ν, δ, ε) ∈ Ψsp, we noted:

• when ÃV,W
λ0,ν0,± = 0, we can construct a nonzero symmetry breaking op-

erator ˜̃AV,W
λ0,ν0,± by “renormalization” which is not a differential operator

(Theorem 5.45);

• when ÃV,W
λ0,ν0,± ̸= 0, we prove a localness theorem asserting that all sym-

metry breaking operators are differential operators (Proposition 6.16).

We obtain a condition for the (non) vanishing of ÃV,W
λ,ν,± as follows. Using

the same notation as in [44, Chap. 1], we define the following two subsets in
Z2:

Leven := { (−i,−j) : 0 ≤ j ≤ i and i ≡ j mod 2 } , (3.10)

Lodd := { (−i,−j) : 0 ≤ j ≤ i and i ≡ j + 1 mod 2 } . (3.11)

Theorem 3.15. Let (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1) with [V : W ] ̸= 0.

(1) There exists N(σ) ∈ N such that

ÃV,W
λ,ν,+ =0 if (λ, ν) ∈ Leven and ν ≤ −N(σ),

ÃV,W
λ,ν,− =0 if (λ, ν) ∈ Lodd and ν ≤ −N(σ).

(2) If ÃV,W
λ,ν,+ = 0 then ν − λ ∈ 2N; if ÃV,W

λ,ν,− = 0 then ν − λ ∈ 2N+ 1.
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Remark 3.16. We shall show in Lemma 5.35 that N(σ) can be taken to be
ℓ(σ), as defined in (2.22).

Theorem 3.15 (2) is a part of Theorem 3.13 (2), and will be proved in
Section 5.8.

Combining Theorems 3.13 and 3.15, we see that there exist infinitely
many (λ, ν) ∈ C2 such that the multiplicity m(Iδ(V, λ), Jε(W, ν)) > 1 as
follows:

Corollary 3.17. Let (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1) satisfy [V : W ] ̸=
0. If

(λ, ν) ∈

{
Leven ∩ {ν ≤ −N(σ)} for δε = +,

Lodd ∩ {ν ≤ −N(σ)} for δε = −,

then we have
dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) > 1.

By Theorem 3.15, we get readily the following corollary, to which we shall
return in Chapter 13 (see Example 13.32).

Corollary 3.18. Suppose that ÃV,W
λ,ν,δ = 0. Then ÃV,W

n−λ,n−1−ν,δ ̸= 0.

Theorem 3.15 means that

Leven ∩ {ν ≤ −N(σ)} ⊂{(λ, ν) ∈ C2 : ÃV,W
λ,ν,+ = 0} ⊂ {(λ, ν) ∈ C2 : ν − λ ∈ 2N},

Lodd ∩ {ν ≤ −N(σ)} ⊂{(λ, ν) ∈ C2 : ÃV,W
λ,ν,− = 0} ⊂ {(λ, ν) ∈ C2 : ν − λ ∈ 2N+ 1}.

We shall determine in Theorem 3.19 the set {(λ, ν) ∈ C2 : ÃV,W
λ,ν,γ = 0} for

γ = ± in the special case where (V,W ) = (
∧

i(Cn),
∧

j(Cn−1)). If σ is the
i-th exterior representation σ(i) on

∧
i(Cn), then we can take N(σ) to be 0 if

i = 0 or n; to be 1 if 1 ≤ i ≤ n− 1. In this case, the left inclusion is almost
a bijection. On the other hand, concerning the right inclusions, we refer to
Theorem 3.13 (2-b), which will be proved in Section 6.8, see Proposition 6.16.

3.5 The classification of symmetry breaking operators
for differential forms

Let (G,G′) = (O(n + 1, 1), O(n, 1)) with n ≥ 3 as before. We consider the
special case

(V,W ) = (
∧

i(Cn),
∧

j(Cn−1)).
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Then the corresponding principal series representations Iδ(V, λ) of G and
Jε(W, ν) of the subgroup G

′ are denoted by Iδ(i, λ) and Jε(j, ν), respectively.
In this section we summarize the complete classification of symmetry break-
ing operators from the G-module Iδ(i, λ) to the G′-module Jε(j, ν). The
main results are stated in Theorems 3.25 and 3.26. Our results rely on the
vanishing condition of the normalized regular symmetry breaking operators
Ãi,j

λ,ν,γ (Theorem 3.19) and the classification of differential symmetry breaking
operators (Fact 3.22).

3.5.1 Vanishing condition for the regular symmetry breaking op-
erators Ãi,j

λ,ν,γ

We apply the general construction of the (normalized) symmetry breaking

operators ÃV,W
λ,ν,γ in Theorem 3.10 to the pair of representations (V,W ) =

(
∧

i(Cn),
∧

j(Cn−1)). Then we obtain (normalized) symmetry breaking oper-

ators, to be denoted by Ãi,j
λ,ν,γ, that depend holomorphically on (λ, ν) in the

entire complex plane C2 if j ∈ {i− 1, i} and γ ∈ {±}, see Theorem 9.2.

We determine the zero set of Ãi,j
λ,ν,γ explicitly as follows:

Theorem 3.19 (zeros of regular symmetry breaking operators Ãi,j
λ,ν,±).

(1) For 0 ≤ i ≤ n− 1,

{(λ, ν) ∈ C2 : Ãi,i
λ,ν,+ = 0}

=

{
Leven if i = 0,

(Leven − {ν = 0}) ∪ {(i, i)} if 1 ≤ i ≤ n− 1.

(2) For 1 ≤ i ≤ n,

{(λ, ν) ∈ C2 : Ãi,i−1
λ,ν,+ = 0}

=

{
(Leven − {ν = 0}) ∪ {(n− i, n− i)} if 1 ≤ i ≤ n− 1,

Leven if i = n.

(3) For 0 ≤ i ≤ n− 1,

{(λ, ν) ∈ C2 : Ãi,i
λ,ν,− = 0}

=

{
Lodd if i = 0,

Lodd − {ν = 0} if 1 ≤ i ≤ n− 1.
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(4) For 1 ≤ i ≤ n,

{(λ, ν) ∈ C2 : Ãi,i−1
λ,ν,− = 0}

=

{
Lodd − {ν = 0} if 1 ≤ i ≤ n− 1,

Lodd if i = n.

Theorem 3.19 will be proved in Section 9.2 by using the residue formula
of Ãi,j

λ,ν,± ([36]).
A special case of Theorem 3.19 includes the following.

Example 3.20. (1) For 0 ≤ i ≤ n, Ãi,i
i,i,+ = 0 and Ãi,i

n−i,n−i−1,+ ̸= 0.

(2) For 0 ≤ i ≤ n− 1, Ãn−i,n−i−1
i,i,+ = 0 and Ãn−i,n−i−1

n−i,n−i−1,+ ̸= 0.

Remark 3.21. In the case i = 0, Ãi,i
λ,ν,+ is the scalar-valued symmetry breaking

operator induced from the scalar-valued distribution Ãλ,ν,+, as we recall from
(5.40). Thus the case i = 0 in (1) was proved in [44, Thm. 8.1].

3.5.2 Differential symmetry breaking operators

We review from [37] the notation of conformally equivariant differential oper-
ators E i(Sn) → E j(Sn−1), namely, differential symmetry breaking operators
Iδ(V, λ)|G′ → Jε(W, ν) with (V,W ) = (

∧
i(Cn),

∧
j(Cn−1)). The complete

classification of differential symmetry breaking operators was recently ac-
complished in [37, Thm. 2.8] based on the F-method [32].

Fact 3.22 (classification of differential symmetry breaking operators). Let
n ≥ 3. Suppose 0 ≤ i ≤ n, 0 ≤ j ≤ n − 1, λ, ν ∈ C, and δ, ε ∈ {±}. Then
the following three conditions on 6-tuple (i, j, λ, ν, δ, ε) are equivalent.

(i) DiffG′(Iδ(i, λ)|G′ , Jε(j, ν)) ̸= {0}.

(ii) dimC DiffG′(Iδ(i, λ)|G′ , Jε(j, ν)) = 1.

(iii) ν − λ ∈ N, (−1)ν−λ = δε, and one of the following conditions holds:

(a) j = i− 2, 2 ≤ i ≤ n− 1, (λ, ν) = (n− i, n− i+ 1);

(a′) (i, j) = (n, n− 2), −λ ∈ N, ν = 1;

(b) j = i− 1, 1 ≤ i ≤ n;
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(c) j = i, 0 ≤ i ≤ n− 1;

(d) j = i+ 1, 1 ≤ i ≤ n− 2, (λ, ν) = (i, i+ 1);

(d′) (i, j) = (0, 1), −λ ∈ N, ν = 1.

The generators are explicitly constructed in [37, (2.24)–(2.32)] (see [23,

40, 44] for the i = 0 case), which we review quickly. Let C̃α
ℓ (z) be the

Gegenbauer polynomial of degree ℓ, normalized by

C̃α
ℓ (z) :=

1

Γ(α+ [ ℓ+1
2
])

[ ℓ
2
]∑

k=0

(−1)kΓ(ℓ− k + α)

k!(ℓ− 2k)!
(2z)ℓ−2k (3.12)

as in [37, (14.3)]. Then C̃α
ℓ (z) ̸≡ 0 for all α ∈ C and ℓ ∈ N.

For ℓ ∈ N, we inflate C̃α
ℓ (z) to a polynomial of two variables x and y:

C̃α
ℓ (x, y) :=x

ℓ
2 C̃α

ℓ (
y√
x
)

=

[ ℓ
2
]∑

k=0

(−1)kΓ(ℓ− k + α)

Γ(α + [ ℓ+1
2
])Γ(ℓ− 2k + 1)k!

(2y)ℓ−2kxk. (3.13)

For instance, C̃α
0 (x, y) = 1, C̃α

1 (x, y) = 2y, C̃α
2 (x, y) = 2(α + 1)y2 − x, etc.

Notice that C̃α
ℓ (x

2, y) is a homogeneous polynomial of x and y of degree ℓ.

For ν−λ ∈ N, we set a scalar-valued differential operator C̃λ,ν : C∞(Rn)→
C∞(Rn−1) by

C̃λ,ν := Restxn=0 ◦C̃
λ−n−1

2
ν−λ (−∆Rn−1 ,

∂

∂xn
). (3.14)

For µ ∈ C and a ∈ N, we set

γ(µ, a) :=

{
1 if a is odd,

µ+ a
2

if a is even.
(3.15)

We are ready to define matrix-valued differential operators

C̃i,j
λ,ν : E

i(Rn)→ E j(Rn−1)

which were introduced in [37, (2.24) and (2.26)] by the following formulæ:

Ci,i
λ,ν := C̃λ+1,ν−1dRnd∗Rn−γ(λ−

n

2
, ν−λ)C̃λ,ν−1dRnι ∂

∂xn
+
1

2
(ν−i)C̃λ,ν , (3.16)
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Ci,i−1
λ,ν := −C̃λ+1,ν−1dRnd∗Rnι ∂

∂xn
−γ(λ−n− 1

2
, ν−λ)C̃λ+1,νd

∗
Rn+

1

2
(λ+i−n)C̃λ,νι ∂

∂xn
.

(3.17)
Here ιZ : E i(Rn)→ E i−1(Rn) stands for the interior product which is defined
to be the contraction with a vector field Z.

We note that

C0,0
λ,ν =

1

2
νC̃λ,ν , Ci,i

ν,ν =
1

2
(ν − i)Restxn=0,

Ci,i−1
λ,λ =

1

2
(λ+ i− n)Restxn=0 ◦ ι ∂

∂xn
, Cn,n−1

λ,ν =
1

2
νC̃λ,ν ◦ ι ∂

∂xn
.

The operators Ci,j
λ,ν vanish for the following special values of (λ, ν):

Ci,i
λ,ν =0 if and only if λ = ν = i or ν = i = 0,

Ci,i−1
λ,ν =0 if and only if λ = ν = n− i or ν = n− i = 0.

In order to provide nonzero operators, following the notation as in [37,
(2.30)], we renormalize Ci,j

λ,ν as

C̃i,i
λ,ν :=


Restxn=0 if λ = ν,

C̃λ,ν if i = 0,

Ci,i
λ,ν otherwise,

(3.18)

C̃i,i−1
λ,ν :=


Restxn=0 ◦ι ∂

∂xn
if λ = ν,

C̃λ,ν ◦ ι ∂
∂xn

if i = n,

Ci,i−1
λ,ν otherwise.

(3.19)

For j = i− 2 or i+ 1, we also set

C̃i,i−2
λ,n−i+1 :=

{
−d∗Rn−1 ◦ C̃n,n−1

λ,0 if i = n, λ ∈ −N,
Restxn=0 ◦ι ∂

∂xn
d∗Rn if 2 ≤ i ≤ n− 1, λ = n− i.

C̃i,i+1
λ,i+1 :=

{
dRn−1 ◦ C̃λ,0 if i = 0, λ ∈ −N,
Restxn=0 ◦dRn if 1 ≤ i ≤ n− 2, λ = i.

With the notation as above, we can describe explicit generators of the
space DiffG′(Iδ(i, λ)|G′ , Jε(j, ε)) of differential symmetry breaking operators:

62



Fact 3.23 (basis, [37, Thm. 2.9]). Suppose that 6-tuple (i, j, λ, ν, δ, ε) is one
of the six cases in Fact 3.22 (iii). Then the differential symmetry breaking
operators Iδ(i, λ)→ Jε(j, ν) are proportional to

j = i− 2 : C̃i,i−2
n−i,n−i+1 (2 ≤ i ≤ n− 1); C̃n,n−2

λ,1 (i = n),

j = i− 1 : C̃i,i−1
λ,ν ,

j = i : C̃i,i
λ,ν ,

j = i+ 1 : C̃i,i+1
i,i+1 (1 ≤ i ≤ n− 2); C̃0,1

λ,1 (i = 0).

Remark 3.24. The scalar case (i = j = 0) was classified in Juhl [23] for
n ≥ 3. See also [40] for a different approach using the F-method. The
case n = 2 (and i = j = 0) is essentially equivalent to find differential
symmetry breaking operators from the tensor product of two principal series
representations to another principal series representation for SL(2,R). In
this case, generic (but not all) operators are given by the Rankin–Cohen
brackets, and the complete classification was accomplished in [43, Thms. 9.1
and 9.2]. We note that the dimension of differential symmetry breaking
operators may jump to two at some singular parameters where n = 2.

3.5.3 Formula of the dimension of HomG′(Iδ(i, λ)|G′ , Jε(j, ν))

For admissible smooth representations Π of G and π of the subgroup G′, we
set

m(Π, π) := dimCHomG′(Π|G′ , π).

In this subsection we give a formula of the multiplicity m(Π, π) for Π =
Iδ(i, λ) and π = Jε(j, ν).

Theorem 3.25 (multiplicity formula). Let (G,G′) = (O(n + 1, 1), O(n, 1))
with n ≥ 3. Suppose Π = Iδ(i, λ) and π = Jε(j, ν) for 0 ≤ i ≤ n, 0 ≤ j ≤
n− 1, δ, ε ∈ {±}, and λ, ν ∈ C. Then we have the following.

(1)

m(Π, π) ∈{1, 2} if j = i− 1 or i,

m(Π, π) ∈{0, 1} if j = i− 2 or i+ 1,

m(Π, π) =0 otherwise.
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(2) Suppose j = i− 1 or i. Then m(Π, π) = 1 except for the countable set
described as below.

(a) Case 1 ≤ i ≤ n− 1. Then m(Iδ(i, λ), Jε(i, ν)) = 2 if and only if

j = i, δε = +, (λ, ν) ∈ Leven − {ν = 0} ∪ {(i, i)},
j = i, δε = −, (λ, ν) ∈ Lodd − {ν = 0},
j = i− 1, δε = +, (λ, ν) ∈ Leven − {ν = 0} ∪ {(n− i, n− i)},

or

j = i− 1, δε = −, (λ, ν) ∈ Lodd − {ν = 0}.

(b) Case i = 0. Then m(Iδ(0, λ), Jε(0, ν)) = 2 if δε = +, (λ, ν) ∈ Leven

or δε = −, (λ, ν) ∈ Lodd.

(c) Case i = n. Then m(Iδ(n, λ), Jε(n− 1, ν)) = 2 if

δε = +, (λ, ν) ∈ Leven or δε = −, (λ, ν) ∈ Lodd.

(3) Suppose j = i − 2 or i + 1. Then m(Π, π) = 1 if one of the following
conditions (d)–(g) is satisfied, and m(Π, π) = 0 otherwise.

(d) Case j = i− 2, 2 ≤ i ≤ n− 1, (λ, ν) = (n− i, n− i+1), δε = −1.
(e) Case (i, j) = (n, n− 2), −λ ∈ N, ν = 1, δε = (−1)λ+1.

(f) Case j = i+ 1, 1 ≤ i ≤ n− 2, (λ, ν) = (i, i+ 1), δε = −1.
(g) Case (i, j) = (0, 1), −λ ∈ N, ν = 1, δε = (−1)λ+1.

The proof of Theorem 3.25 will be given right after Theorem 3.26, by
using Fact 3.22 and Theorems 3.13 and 3.19, whose proofs are deferred at
later chapters.

3.5.4 Classification of symmetry breaking operators Iδ(i, λ)→ Jε(j, ν)

In this subsection, we give explicit generators of

HomG′(Iδ(i, λ)|G′ , Jε(j, ν)),

of which the dimension is determined in Theorem 3.25. For most of the
cases, the regular symmetry breaking operators Ãi,j

λ,ν,± and the differential
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symmetry breaking operators C̃i,j
λ,ν give the generators. However, for the

exceptional discrete set classified in Theorem 3.19, we need more operators
which are defined as follows: for (λ0, ν0) ∈ C2 such that Ãi,j

λ0,ν0,± = 0, we

renormalize the regular symmetry breaking operators Ãi,j
λ,ν,± as follows (see

Section 9.9). For j = i of i− 1, we set

˜̃Ai,j
λ0,ν0,+

:= lim
λ→λ0

Γ(
λ− ν0

2
)Ãi,j

λ,ν0,+
, (3.20)

˜̃Ai,j
λ0,ν0,− := lim

λ→λ0

Γ(
λ− ν0 + 1

2
)Ãi,j

λ,ν0,−. (3.21)

Then ˜̃Ai,j
λ,ν,± are well-defined and nonzero symmetry breaking operators (The-

orem 5.45).
For j ∈ {i− 1, i} and γ ∈ {±}, the set

{(λ, ν) ∈ C2 : Ãi,j
λ,ν,γ = 0}

is classified in Theorem 3.19. Then we are ready to give an explicit basis of
symmetry breaking operators:

Theorem 3.26 (generators). Suppose j = i or i− 1.

(1) m(Iδ(i, λ), Jε(j, ν)) = 1 if and only if Ãi,j
λ,ν,δε ̸= 0. In this case

HomG′(Iδ(i, λ)|G′ , Jε(j, ν)) = CÃi,j
λ,ν,δε.

(2) m(Iδ(i, λ), Jε(j, ν)) = 2 if and only if Ãi,j
λ,ν,δε = 0. In this case

HomG′(Iδ(i, λ)|G′ , Jε(j, ν)) = C ˜̃Ai,j
λ,ν,δε ⊕ CC̃i,j

λ,ν .

See Theorem 3.19 for the necessary and sufficient condition on (i, j, λ, ν, γ)

for Ãi,j
λ,ν,γ to vanish.

Remark 3.27. For j = i + 1 or i − 2, all symmetry breaking operators are
differential operators by the localness theorem (Theorem 3.6), and the gen-
erators are given in Fact 3.23.
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Proof of Theorems 3.25 and 3.26. We apply the general scheme of symmetry
breaking operators (Theorem 3.13) to the special setting:

V =
∧

i(Cn) and W =
∧

j(Cn−1).

Then the theorems follow from the explicit description of the zero sets of the
(normalized) regular symmetry breaking operators Ãi,j

λ,ν,γ (Theorem 3.19) and
the classification of differential symmetry breaking operators (Fact 3.22).

Remark 3.28. The first statement (i.e., δε = + case) of Theorem 3.25 (2) (b)
was established in [44, Thm. 1.1], and the second statement (i.e., δε = −
case) of (b) can be proved similarly. In this article, we take another approach
for the latter case: we deduce results for all the matrix-valued cases (including
the scalar-valued case with δε = −) from the scalar valued case with δε = +.

3.6 Consequences of main theorems in Sections 3.3
and 3.5

In this section we discuss symmetry breaking from principal series represen-
tations Π = Iδ(V, λ) of G to π = Jε(W, ν) of the subgroup G′ in the case
where Π and π are unitarizable. Unitary principal series representations are
treated in Section 3.6.1, and complementary series representations are treated
in Sections 3.6.2 and 3.6.3. We note that Π and π are irreducible in these
cases. On the other hand, if λ (resp. ν) is integral, then Π (resp. π) may
be reducible. We shall discuss symmetry breaking operators for the subquo-
tients in the next chapter in detail when they have the trivial infinitesimal
character ρ.

3.6.1 Tempered representations

We recall the concept of tempered unitary representations of locally compact
groups.

Definition 3.29 (tempered unitary representation). A unitary representa-
tion of a unimodular group G is called tempered if it is weakly contained in
the regular representations on L2(G). By a little abuse of notation, we also
say the smooth representation Π∞ is tempered.

Returning to our setting where (G,G′) = (O(n + 1, 1), O(n, 1)), we see
that the principal series representations Iδ(V, λ) and Jε(W, ν) are tempered
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if and only if λ ∈
√
−1R + n

2
and ν ∈

√
−1R + 1

2
(n − 1), respectively. We

refer to them as tempered principal series representations.
We recall [V : W ] = dimC HomO(n−1)(V |O(n−1),W ). Then Theorem 3.13

implies the following:

Theorem 3.30 (tempered principal series representations). Let (σ, V ) ∈
Ô(n), (τ,W ) ∈ ̂O(n− 1), δ, ε ∈ {±}, and λ ∈

√
−1R+ n

2
, ν ∈

√
−1R+ 1

2
(n−

1) so that Iδ(V, λ) and Jε(W, ν) are tempered principal series representations.
Then the following four conditions are equivalent:

(i) [V : W ] ̸= 0;

(i′) [V : W ] = 1;

(ii) HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ̸= {0};

(ii′) dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = 1.

Applying Theorem 3.30 to the exterior tensor representations V =
∧

i(Cn)
of O(n) and W =

∧
j(Cn−1) of O(n− 1), we get:

Corollary 3.31. Suppose λ ∈
√
−1R+ n

2
, and ν ∈

√
−1R+ 1

2
(n− 1). Then

dimCHomG′(Iδ(i, λ)|G′ , Jε(j, ν)) =

{
1 if i = j or j = i− 1,

0 otherwise.

3.6.2 Complementary series representations

We say that Iδ(V, λ) is a (smooth) complementary series representation if it
has a Hilbert completion to a unitary complementary series representation.
If the irreducible O(n)-module (σ, V ) is of type X (see Definition 2.6), i.e.,
the last digit of the highest weight of V is not zero, then the principal series
representation Iδ(V, λ) is irreducible at λ = n

2
, and consequently, there exist

complementary series representations Iδ(V, λ) for some interval λ ∈ (n
2
−

a, n
2
+ a) with a > 0.

Example 3.32. Suppose (σ, V ) is the i-th exterior tensor representation∧
i(Cn). We assume that this representation is of type X, equivalently, n ̸= 2i

(see Example 2.8). The first reduction point of the principal series represen-
tation of Iδ(i, λ) is given by λ = i or n− i (see Proposition 2.18). Therefore
Iδ(i, λ) ≡ Iδ(

∧
i(Cn), λ) is a complementary series representation if

min(i, n− i) < λ < max(i, n− i).
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In the category of unitary representations, the restriction of a tempered
representation of G to a reductive subgroup G′ decomposes into the direct
integral of irreducible unitary tempered representations of a reductive sub-
group G′ because it is weakly contained in the regular representation. In
particular, complementary series representations of the subgroup G′ do not
appear in the unitary branching law of the restriction of a unitary tempered
principal series representation Iδ(V, λ), whereas Theorem 3.13 in the cate-
gory of admissible smooth representations shows that there are nontrivial
symmetry breaking operators

ÃV,W
λ,ν,δε : Iδ(V, λ)→ Jε(W, ν)

to all complementary series representations Jδ(W, ν) of the subgroup G′ if
[V : W ] ̸= 0.

Moreover, Theorem 3.13 (2) implies also that there are nontrivial sym-
metry breaking operators from any (smooth) complementary series represen-
tation Iδ(V, λ) of G to all (smooth) tempered principal series representations
Jε(W, ν) of the subgroup G′ as far as [V : W ] ̸= 0.

3.6.3 Singular complementary series representations

We consider the complementary series representations Iδ(i, s) for i < s < n
2

with an additional assumption that s is an integer. These representations are
irreducible and have singular integral infinitesimal characters. We may de-
scribe the underlying (g, K)-modules of these singular complementary series
representations in terms of cohomological parabolic induction Aq(λ) where
the parameter λ wanders outside the good range relative to the θ-stable
parabolic subalgebra q (see [26, Def. 0.49] for the definition).

For 0 ≤ r ≤ n+1
2
, we denote by qr the θ-stable parabolic subalgebra of

gC = o(n+2,C) with Levi factor SO(2)r×O(n−2r+1, 1) in G = O(n+1, 1)
(see Definition 14.37).

Lemma 3.33. Let 0 ≤ i ≤ [n
2
] − 1. For s ∈ {i + 1, i + 2, · · · , [n

2
]}, we have

an isomorphism as (g, K)-modules:

I+(i, s)K ≃ Aqi+1
(0, · · · , 0, s− i).

See Remark 14.43 in Appendix I for the normalization of the (g, K)-
module Aq(λ) and Theorem 14.53 for more details about Lemma 3.33. See
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also [29, Thm. 3] for some more general cases. The restriction of these
representations to the special orthogonal group SO(n+1, 1) stays irreducible
(see Lemma 15.3 in Appendix II). Bergeron and Clozel proved that there are
automorphic square integrable representations, whose component at infinity
is isomorphic to a representation Iδ(i, s)|SO(n+1,1) (see [5, 10]).

A special case of Theorem 3.25 includes:

Proposition 3.34. Suppose s ∈ N and i < s ≤ [n
2
]. Let δ, ε ∈ {±}.

(1) For i < r ≤ [n−1
2
],

HomG′(Iδ(i, s)|G′ , Jε(i, r)) = C.

(2) For 0 ≤ i− 1 < r ≤ [n−1
2
],

HomG′(Iδ(i, s)|G′ , Jε(i− 1, r)) = C.

Remark 3.35. Proposition 3.34 may be viewed as symmetry breaking op-
erators from the Casselman–Wallach globalization of the irreducible (g, K)-
module Aq(λ) to that of the irreducible (g

′, K ′)-module Aq′(ν) in some special
cases where both λ and ν are outside the good range of parameters relative
to the θ-stable parabolic subalgebras.

In the next chapter, we treat the case with trivial infinitesimal character
ρ, and thus the parameters stay in the good range relative to the θ-stable
parabolic subalgebras. In particular, we shall determine a necessary and
sufficient condition for a pair (q, q′) of θ-stable parabolic subalgebras q of gC
and q′ of its subalgebra g′C such that

HomG′(Π|G′ , π) ̸= {0},

when the underlying (g, K)-module ΠK of Π ∈ Irr(G) is isomorphic to (Aq)±±
and the underlying (g′, K ′)-module of π ∈ Irr(G′) is (Aq′)±±, see Theorems
4.1 and 4.2 for the multiplicity-formula, and Proposition 14.44 in Appendix
I for the description of ΠK in terms of (Aq)±±. In contrast to the case of
Proposition 3.34, the irreducible G-module Π and G′-module π do not coin-
cide with principal series representations, but appear as their subquotients
in this case, see Theorem 2.20 (1).
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3.7 Actions of (G/G0)̂ ×(G′/G′0)̂ on symmetry breaking
operators

In this section we discuss the action of the character group of G×G′ on the
set

{HomG′(Π|G′ , π)}

of the spaces of symmetry breaking operators where admissible smooth repre-
sentations Π of G and those π of the subgroup G′ vary. Actual computations
for the pair (G,G′) = (O(n+ 1, 1), O(n, 1)) are carried out by using Lemma
2.14 for principal series representations and Theorem 2.20 (5) for their irre-
ducible subquotients.

3.7.1 Generalities: The action of character group of G × G′ on
{HomG′(Π|G′ , π)} in the general case

Let G ⊃ G′ be a pair of real reductive Lie groups. Then the character group
of G × G′ acts on the set of vector spaces {HomG′(Π|G′ , π)} where Π runs
over admissible smooth representations of G, and π runs over those of the
subgroup G′. Here the action is given by

HomG′(Π|G′ , π) 7→ HomG′((Π⊗ χ−1)|G′ , π ⊗ χ′)

for a character χ of G and χ′ of the subgroup G′.
In what follows, we regard a character of G as a character of G′ by

restriction, and use the same letter to denote its restriction to the subgroup
G′. Then for all characters χ and χ′ ofG, we have the following isomorphisms:

HomG′((Π⊗ χ)|G′ , π ⊗ χ′) ≃ HomG′(Π|G′ , π ⊗ χ−1 ⊗ χ′)

≃ HomG′((Π⊗ (χ′)−1)|G′ , π ⊗ χ−1)

≃ HomG′((Π⊗ χ⊗ (χ′)−1)|G′ , π). (3.22)

The above isomorphisms define an equivalence relation on the set

{HomG′(Π|G′ , π)}

of the spaces of symmetry breaking operators where Π and π vary.
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3.7.2 Actions of the character group of the component group on
{HomG′(Iδ(i, λ)|G′ , Jε(j, ν))}

We apply the above idea to our setting

(G,G′) = (O(n+ 1, 1), O(n, 1)).

Then the component groups of G and G′ are a finite abelian group given by

G′/G′
0 ≃ G/G0 ≃ Z/2Z× Z/2Z. (3.23)

We recall from (2.13) that the set of their one-dimensional representations
is parametrized by

(G′/G′
0)̂ ≃ (G/G0)̂ = {χab : a, b ∈ {±}}.

By abuse of notation, we shall use the same letters χab to denote the corre-
sponding one-dimensional representations of G, G′, G/G0, and G

′/G′
0.

The action of the character group (Pontrjagin dual) (G/G0)̂ on the set
of principal series representations can be computed by using Lemma 2.14.
To describe the action of the Pontrjagin dual (G/G0)̂ ≃ (G′/G′

0)̂ on the
parameter set of the principal series representations Iδ(i, λ) of G and Jε(j, ν)
of the subgroup G′, we define

S := {0, 1, · · · , n} × C× Z/2Z, I(s) := Iδ(i, λ) for s = (i, λ, δ) ∈ S,
T := {0, 1, · · · , n− 1} × C× Z/2Z, J(t) := Jε(j, ν) for t = (j, ν, ε) ∈ T.

We let the character group (G/G0)̂ act on S by the following formula:

χ++ · (i, λ, δ) :=(i, λ, δ), χ+− · (i, λ, δ) :=(i, λ,−δ),
χ−+ · (i, λ, δ) :=(̃i, λ,−δ), χ−− · (i, λ, δ) :=(̃i, λ, δ),

where ĩ := n − i. The action of (G′/G′
0)̂ on the set T is defined similarly,

with obvious modification
j̃ := n− 1− j

when we discuss representations of the subgroup G′ = O(n, 1). By Lemma
2.14 and by the O(n)-isomorphism

∧
i(Cn) ≃

∧
n−i(Cn)⊗ det, we obtain the

following.
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Lemma 3.36. For all χ ∈ (G/G0)̂ ≃ (G′/G′
0)̂ and for s ∈ S, t ∈ T , we

have the following isomorphisms as G-modules and G′-modules, respectively:

I(s)⊗ χ ≃ I(χ · s),
J(t)⊗ χ ≃ J(χ · t).

Then the equivalence defined by the isomorphisms (3.22) implies that
it suffices to consider symmetry breaking operators for (δ, ε) = (+,+) and
(δ, ε) = (+,−). To be more precise, we obtain the following.

Proposition 3.37. Let λ, ν ∈ C. Then every symmetry breaking operator
in ∪

δ,ε∈{±}

∪
0≤i≤n

∪
0≤j≤n−1

HomG′(Iδ(i, λ)|G′ , Jε(j, ν))

is equivalent to a symmetry breaking operator in∪
0≤i≤[n

2
]

∪
0≤j≤n−1

(HomG′(I+(i, λ)|G′ , J+(j, ν)) ∪ HomG′(I+(i, λ)|G′ , J−(j, ν))) .

Proof. We use a graph to prove this. We set

(δ, ε) := HomG′(Iδ(i, λ)|G′ , Jε(j, ν)),(
δ
ε

)
:= HomG′(Iδ(n− i, λ)|G′ , Jε(n− j − 1, ν)).

In the following graph the nodes are indexed by (δ, ε) in first row and by

(
δ
ε

)
in the second row. The nodes are connected by a line if they are equivalent.
By Lemma 3.36, we obtain the graph by taking χ = χ′ = χ+− in (3.22) for
horizontal equivalence, and χ = χ′ = χ−+ in (3.22) for crossing equivalence
(we omit here lines in the graph corresponding to χ = χ′ = χ−− in (3.22) for
vertical equivalence):
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We observe that there are exactly two connected components of the graph,
and that HomG′(I+(i, λ)|G′ , J+(j, ν)) and HomG′(I+(i, λ)|G′ , J−(j, ν)) are in
a different connected component. Moreover, we may choose i or n− i in the
same equivalence classes, and thus we may take 0 ≤ i ≤ n

2
as a representative.

Example 3.38. (1) Suppose n = 2m and i = m. Applying the isomor-
phism (3.22) to (Π, π) = (Iδ(m,λ), Jε(m, ν)) with χ = χ′ = χ−−, we
obtain a natural bijection:

HomG′(Iδ(m,λ)|G′ , Jε(m, ν)) ≃ HomG′(Iδ(m,λ)|G′ , Jε(m− 1, ν)).

We note that the G-module Iδ(m,λ) at λ = m splits into the direct sum
of two irreducible smooth tempered representations (Theorem 2.20 (1)
and (8)).

(2) Suppose n = 2m + 1 and i = m. Similarly to the first statement, we
have a natural bijection:

HomG′(Iδ(m,λ)|G′ , Jε(m, ν)) ≃ HomG′(Iδ(m+ 1, λ)|G′ , Jε(m, ν)).

In this case, the G′-module Jε(m, ν) at ν = m splits into the direct
sum of two irreducible smooth tempered representations.
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3.7.3 Actions of characters of the component group on HomG′(Πi,δ|G′ , πj,ε)

In the next chapter, we discuss

HomG′(Π|G′ , π)

for Π ∈ Irr(G)ρ and π ∈ Irr(G′)ρ. In this case, (3.22) implies the following:

Proposition 3.39 (duality for symmetry breaking operators). There are
natural isomorphisms

HomG′(Πi,δ|G′ , πj,ε) ≃ HomG′(Πn+1−i,δ|G′ , πn−j,ε)

≃ HomG′(Πi,−δ|G′ , πj,−ε)

≃ HomG′(Πn+1−i,−δ|G′ , πn−j,−ε).

Proof. By Theorem 2.20 (5), we have a natural G-isomorphism Πi,δ⊗χ−+ ≃
Πn+1−i,δ and a G′-isomorphism πj,ε ⊗ χ−+ ≃ πn−j,ε. Hence the first isomor-
phism is derived from (3.22). By taking the tensor product with χ+−, we get
the last two isomorphisms again by Theorem 2.20 (5).
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4 Symmetry breaking for irreducible repre-

sentations with infinitesimal character ρ.

In this chapter, we focus on symmetry breaking operators from irreducible
representations Π of G = O(n + 1, 1) with ZG(g)-infinitesimal character ρG
to irreducible representations π of the subgroup G′ = O(n, 1) with ZG′(g′)-
infinitesimal character ρG′ . The main results are Theorems 4.1 and 4.2,
where we determine the multiplicity dimC HomG′(Π|G′ , π) for all pairs (Π, π).
A diagrammatic formulation of the main results is given in Theorem 4.3.

The proof uses basic properties of the normalized symmetry breaking
operators for principal series representations of G and G′,

Ãi,j
λ,ν,δε : Iδ(i, λ)→ Jε(j, ν),

in particular, the (K,K ′)-spectrum on basicK-types (Theorem 9.8) and their
functional equations (Theorems 9.24 and 9.25).

4.1 Main Theorems

We recall from Theorem 2.20 that irreducible admissible smooth represen-
tations of G with trivial ZG(g)-infinitesimal character ρG are classified as

Irr(G)ρ = {Πi,δ : 0 ≤ i ≤ n+ 1, δ = ±}.

Similarly, irreducible admissible smooth representations of the subgroupG′ =
O(n, 1) with trivial ZG′(g′)-infinitesimal character ρG′ are classified as

Irr(G′)ρ = {πj,ε : 0 ≤ j ≤ n, ε = ±},

where we have used lowercase letters π for the subgroup G′ instead of Π. We
also recall that the representation Πi,δ of G = O(n+ 1, 1) is

• one-dimensional if and only if i = 0 or n+ 1;

• the smooth representation of a discrete series representation if i = n+1
2

(n: odd);

• that of a tempered representation if i = n
2
(n: even).
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The following two theorems determine the dimension of

HomG′(Π|G′ , π) for Π ∈ Irr(G)ρ and π ∈ Irr(G′)ρ.

Theorem 4.1 (vanishing). Suppose 0 ≤ i ≤ n+ 1, 0 ≤ j ≤ n, δ, ε ∈ {±}.

(1) If j ̸= i, i− 1 then HomG′(Πi,δ|G′ , πj,ε) = {0}.

(2) If δε = −, then HomG′(Πi,δ|G′ , πj,ε) = {0}.

Theorem 4.2 (multiplicity-one). Suppose 0 ≤ i ≤ n + 1, 0 ≤ j ≤ n and
δ, ε ∈ {±}. If j = i− 1 or i and if δε = +, then

dimC HomG′(Πi,δ|G′ , πj,ε) = 1.

The proof of Theorems 4.1 and 4.2 will be given in Chapter 10. The
nonzero symmetry breaking operators from Πi,+ to πj,+ (j ∈ {i − 1, i}) will
be applied to construct periods in Chapter 12 (see Theorem 12.6 for example).

4.2 Graphic description of the multiplicity for irre-
ducible representations with infinitesimal charac-
ter ρ

Using the action of the Pontrjagin dual of the component group (G/G0)̂×
(G′/G′

0)̂ on HomG′(Πi,δ|G′ , πj,ε), see Proposition 3.39, we see that Theorems
4.1 and 4.2 are equivalent to their special case where i ≤ n+1

2
and δ = +.

Furthermore, taking the vanishing result (Theorem 4.1) into account, we
focus on the case j ≤ n

2
and ε = +. We then describe Theorems 4.1 and 4.2

graphically in this setting.
We suppress the subscript, and write Πi for Πi,+, and πj for πj,+. Then

Πi (0 ≤ i ≤ n+1
2
) and πj (0 ≤ j ≤ n

2
) are the standard sequence of repre-

sentations with infinitesimal character ρ of G, respectively G′ starting with
the trivial one-dimensional representation (Definition 2.21). In the diagrams
below, the first row are representations of G, the second row are representa-
tions of the subgroup G′. Arrows mean that there exist nonzero symmetry
breaking operators.

Theorem 4.3. Symmetry breaking for the standard sequence of irreducible
representations starting at the trivial one-dimensional representations are
represented graphically in Diagrams 4.1 and 4.2.
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Diagram 4.1: Symmetry breaking for O(2m+ 1, 1) ↓ O(2m, 1)

Π0 Π1 . . . Πm−1 Πm

↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓
π0 π1 . . . πm−1 πm

Diagram 4.2: Symmetry breaking for O(2m+ 2, 1) ↓ O(2m+ 1, 1)

Π0 Π1 . . . Πm−1 Πm Πm+1

↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓ ↙
π0 π1 . . . πm−1 πm
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5 Regular symmetry breaking operators

Let Iδ(V, λ) be a principal series representation of G = O(n+1, 1) realized in
the Fréchet space C∞(G/P,Vλ,δ), and Jε(W, ν) that of G′ = O(n, 1) realized
in C∞(G′/P ′,Wν,ε) as in Section 2.3.1. In this chapter we apply the general
result in [44, Chap. 3] to construct a “matrix-valued regular symmetry break-

ing operators” ÃV,W
λ,ν,± : Iδ(V, λ)→ J±δ(W, ν) that depend holomorphically on

(λ, ν) ∈ C2. We shall prove that the normalization (3.7) and (3.8) is optimal

in the sense that the zeros of the operator ÃV,W
λ,ν,± are of codimension > 1 in

the parameter space of (λ, ν), that is, discrete in C2 in our setting. A key
idea of the proof is a reduction to the scalar case.

5.1 Generalities

We recall from the general theory [44, Chap. 3] on the distribution kernels
of symmetry breaking operators, which will be the basic tool in this chapter.
Furthermore, we discuss some subtle questions on the underlying topology
of representation spaces for symmetry breaking, see Theorem 5.4.

5.1.1 Distribution kernels of symmetry breaking operators

Throughout this monograph, we shall regard distributions as the dual of com-
pactly supported smooth densities rather than that of compactly supported
smooth functions. Thus we treat distributions as “generalized functions”,
and write their pairing with test functions by using the integral symbol, as
if they were ordinary functions (with densities).

Let G ⊃ G′ be a pair of real reductive Lie groups, and P , P ′ their
parabolic subgroups. We do not require an inclusive relation P ⊃ P ′ in
this subsection. Let (σ̃, V ) be a finite-dimensional representation of P , and
(τ̃ ,W ) that of the subgroup P ′. We form homogeneous vector bundles over
flag manifolds by

V :=G×P V → G/P,

W :=G′ ×P ′ W → G′/P ′.

We write IndG
P (σ̃) for the admissible smooth representation of G on the

Fréchet space C∞(G/P,V), and IndG′

P ′(τ̃) for that of the subgroup of G′ on
C∞(G′/P ′,W).
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We denote by V∗ the dualizing bundle of V , which is a G-homogeneous
vector bundle over G/P associated to the representation

V ∗ := V ∨ ⊗ | det(Adg/p)|−1

of the group P , where V ∨ denotes the contragredient representation of (σ̃, V ).
Then the regular representation of G on the space D′(G/P,V∗) of V∗-valued
distribution sections is the dual of the representation on C∞(G/P,V).

The Schwartz kernel theorem guarantees that any symmetry breaking
operator can be expressed by using a distribution kernel. Conversely, distri-
butions that give rise to symmetry breaking operators are characterized as
follows.

Fact 5.1 ([44, Prop. 3.2]). There are natural linear bijections:

HomG′(C∞(G/P,V)|G′ , C∞(G′/P ′,W)) ≃ D′(G/P ×G′/P ′,V∗ ⊠W)∆(G′).

Here V∗⊠W denotes the outer tensor product bundle over the direct product
manifold G/P ×G′/P ′.

We note that the multiplication map

m : G×G′ → G, (x, y) 7→ y−1x

induces a linear bijection

D′(G/P ×G′/P ′,V∗ ⊠W)∆(G′) ∼←
m∗

(D′(G/P,V∗)⊗W )∆(P ′),

where the right-hand side stands for the space of P ′-invariant vectors under
the diagonal action on the tensor product of the G-module D′(G/P,V∗) and
the P ′-module W .

Thus Fact 5.1 may be reformulated as the following linear bijection

HomG′(C∞(G/P,V)|G′ , C∞(G′/P ′,W)) ≃ (D′(G/P,V∗)⊗W )∆(P ′). (5.1)

The point of Fact 5.1 is that the map

C∞(G/P,V)→ D′(G′/P ′,W), f 7→
∫
X

K(x, y)f(x)

to the space D′(G′/P ′,W) of distribution sections becomes automatically
a continuous map to the space C∞(G′/P ′,W) of smooth sections for any
K ∈ D′(G/P ×G′/P ′,V∗ ⊠W)∆(G′). This observation leads us to the proof
of the isomorphism (5.3) in Theorem 5.4.
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5.1.2 Invariant bilinear forms on admissible smooth representa-
tions and symmetry breaking operators

We retain the setting of the previous subsection, in particular, we suppose
that G ⊃ G′ are a pair of real reductive Lie groups.

Let (Π, U) and (π, U ′) be admissible smooth representations of G and
G′, respectively. We recall that the underlying topological vector space of
any admissible smooth representation is a nuclear Fréchet space. We define
Π ⊠ π to be the natural representation of the direct product group G × G′

on the space U⊗̂U ′. In this subsection, we study the space HomG′(Π⊠ π,C)
of continuous functionals that are invariant under the diagonal action of the
subgroup G′.

For an admissible smooth representation (Π, U) of G, we denote by Π∨ the
contragredient representation of Π in the category of admissible smooth rep-
resentations, namely, the Casselman–Wallach minimal globalization of (Π∨)K
([66, Chap. 11]). The topological dual U∨ of U is the space of distribution
vectors, on which we can define a continuous representation of G. This is the
maximal globalization of (Π∨)K in the sense of Casselman–Wallach, which
we refer to (Π∨)−∞. Thus we have

(Π∨)K ⊂ Π∨ ⊂ (Π∨)−∞.

We shall use these symbols for a representation π of the subgroup G′ below.

Example 5.2. Let τ̃ be a finite-dimensional representation of a parabolic
subgroup P ′ of G′, and π := IndG′

P ′(τ̃) the representation on C∞(G′/P ′,W).
The dualizing bundleW∗ is given as the G′-homogeneous vector bundle over
G′/P ′ associated to τ ∗ := τ̃∨⊗| det(Ad|g′/p′)|−1, where τ̃∨ is the contragredi-
ent representation of τ̃ . Then the smooth admissible representation π∨ of G′

is given as a representation IndG′

P ′(τ ∗) on C∞(G′/P ′,W∗), whereas (π∨)−∞ is
given as a representation on D′(G′/P ′,W∗).

Any symmetry breaking operator T : Π|G′ → π∨ induces a continuous
bilinear form

Π⊠ π → C, u⊗ v 7→ ⟨Tu, v⟩,

and we have a natural embedding

HomG′(Π|G′ , π∨) ↪→ HomG′(Π⊠ π,C) ≃ HomG′(Π|G′ , (π∨)−∞). (5.2)

80



Here the second isomorphism follows from the natural bijections for nuclear
Fréchet spaces ([61, Prop. 50.7]):

HomC(U ⊗ U ′,C) ≃ HomC(U, (U
′)∨),

where HomC denotes the space of continuous linear maps.
As an immediate consequence of Fact 5.1, we have the following:

Proposition 5.3. Suppose σ̃ and τ̃ are finite-dimensional representations
of parabolic subgroups P and P ′, respectively. Let Π = IndG

P (σ̃) and π =
IndG′

P ′(τ̃) be admissible smooth representations of G and G′, respectively.
Then the embedding in (5.2) is an isomorphism.

Proof. We recall that HomC(·,C) denotes the space of (continuous) func-
tionals. Then HomG′(Π ⊠ π,C) is naturally isomorphic to the spaces of
G′-invariant elements of the following vector spaces

HomC(C
∞(G/P ×G′/P ′,V ⊠W),C) ≃ D′(G/P ×G′/P ′,V∗ ⊠W∗),

and so we have

HomG′(Π⊠ π,C) ≃ D′(G/P ×G′/P ′,V∗ ⊠W∗)∆(G′).

Since τ ∗∗ ≃ τ , the right-hand side is canonically isomorphic to

HomG′(C∞(G/P,V)|G′ , C∞(G′/P ′,W∗)) ≃ HomG′(Π|G′ , π∨)

by Fact 5.1 and Example 5.2. Hence Proposition 5.3 is proved.

More generally, we obtain the following.

Theorem 5.4. Let G ⊃ G′ be a pair of real reductive Lie groups. For any
Π ∈ Irr(G) and π ∈ Irr(G′), we have a canonical bijection:

HomG′(Π|G′ , π∨)
∼→ HomG′(Π⊠ π,C). (5.3)

By the second isomorphism (5.2), Theorem 5.4 is deduced from the fol-
lowing proposition, where we change the notation from π∨ to π for simplicity.

Proposition 5.5. Suppose Π ∈ Irr(G) and π ∈ Irr(G′), Let π−∞ be the
representation of G′ on distribution vectors. Then the natural embedding

HomG′(Π|G′ , π) ↪→ HomG′(Π|G′ , π−∞)

is a bijection.
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Proof of Proposition 5.5. We take P and P ′ to be minimal parabolic sub-
groups of G and G′, respectively. By Casselman’s subrepresentation theorem
(or equivalently, “quotient theorem”), see [66, Chap. 3, Sect. 8] for instance,
for any Π ∈ Irr(G), there exists an irreducible finite-dimensional represen-
tation (σ̃, V ) of P such that ΠK is obtained as a quotient of IndG

P (σ̃)K , and
therefore, there is a surjective continuousG-homomorphism p : C∞(G/P,V)→
Π by the automatic continuity theorem [66, Chap. 11, Sect. 4]. Likewise, for
any π ∈ Irr(G′), there exists an irreducible finite-dimensional representation
(τ̃ ,W ) of P ′ such that πK′ is a subrepresentation of IndG′

P ′(τ̃)K′ , and therefore,
there is an injective continuous G′-homomorphism ι : π−∞ ↪→ D′(G′/P ′,W)
by the dual of the automatic continuity theorem. If T : Π → π−∞ is a con-
tinuous G′-homomorphism, then T induces a continuous G′-homomorphism

ι ◦ T ◦ p : C∞(G/P,V)→ D′(G′/P ′,W).

By Proposition 5.3, ι ◦ T ◦ p is actually a continuous G′-homomorphism,

C∞(G/P,V)→ C∞(G′/P ′,W).

Hence the image of T is contained in the admissible smooth representation π.
Since the topology of the admissible smooth representation π coincides with
the relative topology of C∞(G′/P ′,W), T is actually a G′-homomorphism
Π|G′ → π.

Remark 5.6. (1) In [2, Lem. A.0.8], the authors proved the injectivity of
the map (5.2).

(2) Theorem 5.3 simplifies part of the proof of [34, Thm. 4.1] on twelve
equivalence conditions including the finiteness criterion for the dimen-
sion of continuous invariant bilinear forms.

5.2 Distribution kernels of symmetry breaking opera-
tors for G = O(n+ 1, 1)

We analyze the distribution kernels of symmetry breaking operators in coor-
dinates. For this, we set up some structural results for G = O(n+ 1, 1).
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5.2.1 Bruhat and Iwasawa decompositions for G = O(n+ 1, 1)

We recall from (3.4) that the map ψn : Rn − {0} → O(n), x 7→ ψn(x) is
defined as the reflection with respect to the hyperplane orthogonal to x.
By using ψn(x), we give an explicit formula of the Bruhat decomposition
G = N+wMAN+ ∪MAN+ and the Iwasawa decomposition G = KAN+ for
an element of N− for G = O(n+ 1, 1). Here we set

w := diag(1, · · · , 1,−1) ∈ NK(a). (5.4)

Retain the notation as in Section 2.1.1. In particular, we recall from
(2.4) and (2.5) the definition of the diffeomorphisms n+ : Rn ∼→ N+ and
n− : Rn ∼→ N−, respectively.

Lemma 5.7 (Bruhat decomposition). For b ∈ Rn − {0},

n−(b) = n+(a)

−1 ψn(b)
1

 etHn,

where a ∈ Rn and t ∈ R are given uniquely by a = − b
|b|2 and et = |b|2,

respectively, and n ∈ N+.

Proof. Suppose that a ∈ Rn, ε = ±1, B ∈ O(n), t ∈ R and n ∈ N+ satisfies

n−(b) = n+(a)w

ε B
ε

 etHn. (5.5)

Applying (5.5) to the vector p+ = t(1, 0, · · · , 0, 1) ∈ Ξ (see (2.8)), we have1− |b|2
2b

1 + |b|2

 = εet

 1− |a|2
2a

−1− |a|2

 .

Hence ε = −1, et = 1
|a|2 , and a = −|a|2b. Thus |a| |b| = 1. In turn, (5.5)

amounts to

n+(a)
−1n−(b) =

−1 B
1

 etHn,

whence B = In + 2atb = In − 2btb
|b|2 = ψn(b).
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For b ∈ Rn, we define k(b) ∈ SO(n+ 1) by

k(b) := In+1 +
1

1 + |b|2

(
−2|b|2 −2 tb
2b −2 b tb

)
= ψn+1(1, b)

(
−1

In

)
. (5.6)

Lemma 5.8 (Iwasawa decomposition). For any b ∈ Rn, we have

n−(b) = k(b)etHn+(a) ∈ KAN+, (5.7)

where a ∈ Rn and t ∈ R are given by a = −b
1+|b|2 and et = 1 + |b|2.

Proof. We shall prove that k(b) in (5.7) is given by the formula (5.6). Since
n−(b) is contained in the connected component of G, k(b) = (k(b)ij)0≤i,j≤n in
(5.7) belongs to the connected group SO(n+1). We write k(b) = (k(b)0, k

′(b))
where k(b)0 ∈ Rn+1 and k′(b) := (k(b)ij)0≤i≤n

1≤j≤n
∈ M(n + 1, n;R). Applying

(5.7) to the vector p+ = t(1, 0, · · · , 0, 1), we have1− |b|2
2b

1 + |b|2

 = et
(
k(b)0
1

)
.

The last component shows et = 1 + |b|2. In turn, we get the first column
vector k(b)0 of k(b). On the other hand, we observe

k(b)ij = (n−(b)n+(a)
−1e−tH)ij = (n−(b)n+(a)

−1)ij

for 0 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n. Hence we get

(
k′(b)
0 · · · 0

)
=

(1− |b|2)ta− tb
In + 2bta

(1 + |b|2)ta+ tb

 ,

which implies

a = − b

1 + |b|2
and k′(b) =

(
−1−|b|2

1+|b|2
tb− tb

In − 2btb
1+|b|2

)
=

(
−2

1+|b|2
tb

In − 2b tb
1+|b|2

)
.

In particular, we have shown that k(b) in (5.7) is given by the formula (5.6).
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5.2.2 Distribution kernels for symmetry breaking operators

We apply Fact 5.1 to the pair (G,G′) = (O(n + 1, 1), O(n, 1)) and a pair of
the minimal parabolic subgroups P and P ′. With the notation of Fact 5.1,
we shall take

σ̃ =V ⊗ δ ⊗ Cλ on Vλ,δ

τ̃ =W ⊗ ε⊗ Cν on Wε,ν

as (irreducible) representations of P and P ′, respectively, for (σ, V ) ∈ Ô(n),
δ ∈ {±}, and λ ∈ C and (τ,W ) ∈ ̂O(n− 1), ε ∈ {±}, and ν ∈ C. We
recall from (2.27) that Vλ,δ = G×P Vλ,δ is a homogeneous vector bundle over
the real flag variety G/P . The dualizing bundle V∗

λ,δ of Vλ,δ, is given by a
G-homogeneous vector bundle over G/P associated to the representation of
P/N+ ≃MA ≃ O(n)× Z/2Z× R:

V ∗
λ,δ := (Vλ,δ)

∨ ⊗ C2ρ ≃ V ∨ ⊠ δ ⊠ Cn−λ,

where V ∨ denotes the contragredient representation of (σ, V ). Then the regu-
lar representation of G on the space D′(G/P,V∗

λ,δ) of V∗
λ,δ-valued distribution

sections is the dual of the representation Iδ(V, λ) of G on C∞(G/P,Vλ,δ) as
we discussed in Example 5.2.

In this special setting, Fact 5.1 amounts to the following.

Fact 5.9. There is a natural bijective map:

HomG′(Iδ(V, λ)|G′ , Jε(W, ν))
∼→ (D′(G/P,V∗

λ,δ)⊗Wν,ε)
∆(P ′), T 7→ KT .

(5.8)

In [44, Def. 3.3], we defined regular symmetry breaking operators in the
general setting. In our special setting, there is only one open P ′-orbit in the
real flag manifold G/P , and thus the definition is reduced to the following.

Definition 5.10 (regular symmetry breaking operator). A symmetry break-
ing operator T : Iδ(V, λ)→ Jε(W, ν) is regular if the support of the distribu-
tion kernel KT is G/P .
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5.2.3 Distribution sections for dualizing bundle V∗
λ,δ over G/P

This section provides a concrete description of the right-hand side of (5.8) in
the coordinates on the open Bruhat cell.

We begin with a description of the G- and g-action on D′(G/P,V∗
λ,δ) in

the coordinates. We identify D′(G/P,V∗
λ,δ) with a subspace of V ∨-valued

distribution on G via the following map:

D′(G/P,V∗
λ,δ) ≃ (D′(G)⊗ V ∗

λ,δ)
∆(P ) ⊂ D′(G)⊗ V ∨.

We recall that the Bruhat decomposition of G is given by G = N+wP ∪ P
where w = diag(1, · · · , 1,−1) ∈ G, see (5.4). Since the real flag manifold
G/P is covered by the two open subsets N+wP/P and N−P/P , distribution
sections on G/P are determined uniquely by the restriction to these two open
sets:

D′(G/P,V∗
λ,δ) ↪→ D′(N+wP/P,V∗

λ,δ|N+wP/P )⊕D′(N−P/P,V∗
λ,δ|N−P/P ). (5.9)

By a little abuse of notation, we use the letters n+ and n− to denote the
induced diffeomorphisms Rn ∼→ N+wP/P and Rn ∼→ N−P/P , respectively.
Via the following trivialization of the two restricted bundles:

Rn × V ∨ ∼→ V∗
λ,δ|N+wP/P ⊂ V∗

λ,δ ⊃ V∗
λ,δ|N−P/P

∼← Rn × V ∨

↓ ↓ ↓ ↓ ↓
Rn ∼→

n+

N+wP/P ⊂ G/P ⊃ N−P/P
∼←
n−

Rn,

the injection (5.9) is restated as the following map:

D′(G/P,V∗
λ,δ) ↪→ (D′(Rn)⊗ V ∨)⊕(D′(Rn)⊗ V ∨) , f 7→ (F∞, F ) (5.10)

where
F∞(a) := f(n+(a)w), F (b) := f(n−(b)).

Lemma 5.11. Let ψn : Rn − {0} → O(n) be the map taking the reflection
defined in (3.4).

(1) The image of the injective map (5.10) is characterized by the following
identity in D′(Rn − {0})⊗ V ∨:

F (b) = δσ∨(ψn(b)
−1)|b|2λ−2nF∞(− b

|b|2
) on Rn − {0}. (5.11)
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(2) (first projection) f ∈ D′(G/P,V∗
λ,δ) is supported at the singleton {[p+]} =

{eP/P} if and only if F∞ = 0.

(3) (second projection) The second projection f 7→ F is injective.

Proof. (1) The image of the map (5.9) is characterized by the compatibility
condition on the intersection (N+wP ∩ N−P )/P , namely, the pair (F∞, F )
in (5.10) should satisfy:

F (b) = σ∗
λ,δ(p)

−1F∞(a)

for all (a, b, p) ∈ Rn×Rn×P such that n+(a)wp = n−(b). In this case, b ̸= 0
because N+wP ̸∋ e. By Lemma 5.7, we have

a = − b

|b|2
, p =

−1 ψn(b)
−1

 etH ,

where et = |b|2. Then

F (b) =f(n−(b))

=σ∗
λ,δ(p

−1)f(n+(a)w)

=δ|b|2λ−2nσ∨(ψn(b))F∞(a).

(2) Clear from G−N+wP = P .

(3) Since P ′N−P = G [44, Cor. 5.5], the third statement follows from [44,
Thm. 3.16].

The regular representation of G on D′(G/P,V∗
λ,δ) induces an action on the

pairs (F∞, F ) of V
∨-valued distributions through Lemma 5.11 (1). We need

an explicit formula of the action of the parabolic subgroup P = MAN+ or
its Lie algebra p = m+a+n+, which is given in the following two elementary
lemmas.

We begin with the first projection f 7→ F∞ in (5.10). Since the action
of P on G/P leaves the open subset N+wP/P = PwP/P invariant, we can
define the geometric action of the group P on D′(N+wP/P,V∗

λ,δ) as follows.
We recall M = O(n) × {1,m−} (see (2.7)). We collect some basic formulæ
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for the coordinates nε : Rn ∼→ Nε: for ε = ± (by abuse of notation, we also
write as ε = ±1),

nε(Bb) =

1
B

1

 nε(b)

1
B−1

1

 for B ∈ O(n), (5.12)

nε(−b) =m−nε(b)m
−1
− , (5.13)

nε(e
εtb) =etHnε(b)e

−tH . (5.14)

Lemma 5.12. We let P =MAN+ act on D′(Rn)⊗ V ∨ byπ
1

B
1

F∞

 (a) = σ∨(B)F∞(B−1a) for B ∈ O(n), (5.15)

(π(m−)F∞)(a) = δF∞(−a), (5.16)

(π(etH)F∞)(a) = e(λ−n)tF∞(e−ta) for all t ∈ R, (5.17)

(π(n+(c))F∞)(a) = F∞(a− c) for all c ∈ Rn. (5.18)

Then the first projection f 7→ F∞ in (5.10) is a P -homomorphism.

Proof. We give a proof for (5.17) on the action of the split abelian group A.
Let t ∈ R. By (5.14) and e−tHw = wetH , we have

f(e−tHn+(a)w) = f(n+(e
−ta)e−tHw) = e(λ−n)tf(n+(e

−ta)w) = e(λ−n)tF∞(e−ta),

whence we get the desired formula. The proof for the actions of M and N+

is similar.

Next, we consider the second projection f 7→ F in (5.10). In this case, the
group N+ does not preserve the open subset N−P/P in G/P , and therefore
we shall use the action of the Lie algebra n+ instead (see (5.22) below). We
denote by E the Euler homogeneity operator

∑n
ℓ=1 xℓ

∂
∂xℓ

.

Lemma 5.13. We let the group MA and the Lie algebra n+ act on D′(Rn)⊗
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V ∨ byπ
1

B
1

F

 (b) = σ∨(B)F (B−1b) for B ∈ O(n), (5.19)

(π(m−)F )(b) = δF (−b), (5.20)

(π(etH)F )(b) = e(n−λ)tF (etb) for all t ∈ R, (5.21)

dπ(N+
j )F (b) =

(
(λ− n)bj − bjE +

1

2
|b|2 ∂

∂bj

)
F for 1 ≤ j ≤ n.

(5.22)

Here b = (b1, · · · , bn). Then the second projection f 7→ F in (5.10) is an
(MA, n+)-homomorphism.

Proof. See [44, Prop. 6.4] for (5.22). The other formulæ are easy, and we
omit the proof.

5.2.4 Pair of distribution kernels for symmetry breaking opera-
tors

We extend Lemma 5.11 to give a local expression of the distribution kernels of
symmetry breaking operators via the isomorphism (5.8). Suppose (τ,W ) ∈
̂O(n− 1), ν ∈ C, and ε ∈ {±}. We define

(D′(Rn)⊗ HomC(V,W ))∆(P ′) ≡ (D′(Rn)⊗ HomC(Vλ,δ,Wν,ε))
∆(P ′) (5.23)

to be the space of HomC(V,W )-valued distributions T∞ on Rn satisfying the
following four conditions:

τ(B) ◦ T∞(B−1y, yn) ◦ σ−1(B) = T∞(y, yn) for all B ∈ O(n− 1), (5.24)

T∞(−y,−yn) = δεT∞(y, yn), (5.25)

T∞(ety, etyn) = e(λ+ν−n)tT∞(y, yn) for all t ∈ R, (5.26)

T∞(y − z, yn) = T∞(y, yn) for all z ∈ Rn−1. (5.27)

For the open Bruhat cell N−P ⊂ G, we consider the following.

Definition 5.14. We define Sol(Rn;Vλ,δ,Wν,ε) ⊂ D′(Rn) ⊗ HomC(V,W )
to be the space of HomC(V,W )-valued distributions T on Rn satisfying the
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following invariance under the action of the Lie algebras a, n′+, and the group
M ′ ≃ O(n− 1)×O(1):

(E − (λ− ν − n))T = 0, (5.28)(
(λ− n)xj − xjE +

1

2
(|x|2 + x2n)

∂

∂xj

)
T = 0 (1 ≤ j ≤ n− 1), (5.29)

τ(m) ◦ T (m−1b) ◦ σ(m−1) = T (b) for all m ∈ O(n− 1),
(5.30)

T (−b) = δεT (b). (5.31)

Applying Lemma 5.11 to the right-hand side of (5.8), we have the follow-
ing:

Proposition 5.15. Let (σ, V ) ∈ M̂ , (τ,W ) ∈ M̂ ′, δ, ε ∈ {±}, and λ, ν ∈ C.

(1) There is a one-to-one correspondence between a symmetry breaking op-
erator

T ∈ HomG′(Iδ(V, λ)|G′ , Jε(W, ν))

and a pair (T∞, T ) of HomC(V,W )-valued distributions on Rn subject
to the following three conditions:

T∞ ∈(D′(Rn)⊗ HomC(Vλ,δ,Wν,ε))
∆(P ′), (5.32)

T ∈Sol(Rn;Vλ,δ,Wν,ε), (5.33)

T (b) =δQ(b)λ−nT∞
(
− b

|b|2

)
◦ σ(ψn(b)) on Rn − {0}. (5.34)

(2) T determines T uniquely.

(3) Suppose that T ↔ (T∞, T ) is the correspondence in (1). Then the
following three conditions are equivalent:

(i) T∞ = 0.

(ii) Supp T ⊂ {0}.
(iii) T is a differential operator (see Definition 6.3).

Proof. The first statement follows from Fact 5.9, Lemmas 5.11 (1), 5.12 and
5.13. The second statement is immediate from Lemma 5.11 (3). The third
one is proved in [42], see Section 6.1 for more details about differential oper-
ators between two manifolds.
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Remark 5.16. The advantage of using T is that the second projection

HomG′(Iδ(V, λ)|G′ , Jε(W, ν))
∼→ Sol(Rn;σλ,δ, τν,ε), T 7→ T

is bijective, and therefore, it is sufficient to use T in order to describe a
symmetry breaking operator T. This was the approach that we took in [44].
In this monograph, we shall use both T∞ and T . The advantage of using T∞ is
that the group P ′ leaves N+wP/P invariant, and consequently, we can easily
determine T∞ (see Proposition 5.20 below), although the first projection

HomG′(Iδ(V, λ)|G′ , Jε(W, ν))→ (D′(Rn)⊗ HomC(V,W ))∆(P ′), T 7→ T∞

is neither injective nor surjective. We shall return to this point in Section
5.6.

5.3 Distribution kernels near infinity

Let (T∞, T ) be as in Proposition 5.15. This section determines T∞ up to
scalar multiplication. The main result is Proposition 5.20, which also deter-
mines uniquely the restriction of T to Rn − {0} up to scalar multiplication.

Example 5.17. For σ = 1, τ = 1, δ = +1, and

T∞(y, yn) = |yn|λ+ν−n,

we have from (5.34)

T (x, xn) = (|x|2 + x2n)
−ν |xn|λ+ν−n.

We begin with the following classical result on homogeneous distributions
of one variable:

Lemma 5.18. (1) Both 1
Γ(µ

2
)
|t|µ−1 and 1

Γ(µ+1
2

)
|t|µ−1 sgn t are nonzero dis-

tributions on R that depend holomorphically on µ in the entire complex
plane C.

(2) Suppose k ∈ N. Then

|t|µ−1

Γ(µ
2
)
=

(−1)k

2k(2k − 1)!!
δ(2k)(t) if µ = −2k,

|t|µ−1 sgn t

Γ(µ+1
2
)

=
(−1)k(k − 1)!

(2k − 1)!
δ(2k−1)(t) if µ = −2k − 1.
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(3) Suppose µ ∈ C and γ = ±1. Then any distribution g(t) on R satisfying
the homogeneity condition

g(at) = aµ−1g(t) for all a > 0, and g(−t) = γg(t)

is a scalar multiple of 1
Γ(µ

2
)
|t|µ−1 (γ = 1), or of 1

Γ(µ+1
2

)
|t|µ−1 sgn t (γ =

−1).

For (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1), we recall that [V : W ] is the
dimension of HomO(n−1)(V |O(n−1),W ). Suppose [V : W ] ̸= 0, or equivalently,
[V : W ] = 1. We fix a generator

prV→W ∈ HomO(n−1)(V |O(n−1),W )

which is unique up to nonzero scalar multiplication by Schur’s lemma. In
light of the Γ-factors in Lemma 5.18, we introduce HomC(V,W )-valued dis-

tributions ( ˜̃AV,W
λ,ν,±)∞ on Rn that depend holomorphically on (λ, ν) ∈ C2 by

( ˜̃AV,W
λ,ν,+)∞(x, xn) :=

1

Γ(λ+ν−n+1
2

)
|xn|λ+ν−n prV→W , (5.35)

( ˜̃AV,W
λ,ν,−)∞(x, xn) :=

1

Γ(λ+ν−n+2
2

)
|xn|λ+ν−n sgn xn prV→W . (5.36)

We regard prV→W = 0 if [V : W ] = 0.

Remark 5.19. The notation ( ˜̃AV,W
λ,ν,γ)∞ with double tildes is used here because

it will be compatible with the renormalization ˜̃AV,W
λ,ν,γ of the normalized sym-

metry breaking operator ÃV,W
λ,ν,γ which we will introduce in the next sections.

Let γ = δε. If there exists Tγ ∈ Sol(Rn;Vλ,δ,Wν,ε) such that the pair

(( ˜̃AV,W
λ,ν,ε)∞, Tγ) satisfies the compatibility condition (5.34), then the restriction

Tγ|Rn−{0} must be of the form ( ˜̃AV,W
λ,ν,γ)

′ ∈ D′(Rn−{0})⊗HomC(V,W ) where
we set

( ˜̃AV,W
λ,ν,+)

′ :=
1

Γ(λ+ν−n+1
2

)
(|x|2 + x2n)

−ν |xn|λ+ν−nRV,W (x, xn), (5.37)

( ˜̃AV,W
λ,ν,−)

′ :=
1

Γ(λ+ν−n+2
2

)
(|x|2 + x2n)

−ν |xn|λ+ν−nsgnxnR
V,W (x, xn), (5.38)
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with RV,W = prV→W ◦σ ◦ ψn (see (3.6)). We have used the notation ( ˜̃AV,W
λ,ν,γ)

′

instead of ˜̃AV,W
λ,ν,γ because it is defined only on Rn − {0} and may not extend

to Rn (see Proposition 6.19 below).
Then we have:

Proposition 5.20. (1) For any (σ, V ) ∈ Ô(n), (τ,W ) ∈ ̂O(n− 1), δ, ε ∈
{±}, and λ, ν ∈ C, we have

(D′(Rn)⊗ HomC(Vλ,δ,Wν,ε))
∆(P ′) = C( ˜̃AV,W

λ,ν,δε)∞.

(2) If [V : W ] ̸= 0 then ( ˜̃AV,W
λ,ν,±)

′ ̸= 0 for all λ, ν ∈ C.
(3) If T ∈ Sol(Rn;Vλ,δ,Wν,ε), then T |Rn−{0} is a scalar multiple of ( ˜̃AV,W

λ,ν,δε)
′.

Proof. Suppose F ∈ (D′(Rn)⊗ HomC(Vλ,δ,Wν,ε))
∆(P ′).

(1) Let pn : Rn → R be the n-th projection, and p∗n : D′(R) → D′(Rn) the
pull-back of distributions. By the N ′

+-invariance (5.27), F depends only on
the last coordinate, namely, F is of the form p∗nf for some f ∈ D′(R) ⊗
HomC(V,W ). In turn, the O(n− 1)-invariance (5.24) implies

f ∈ D′(R)⊗ HomO(n−1)(V |O(n−1),W ).

In particular, F = 0 if [V : W ] = 0.
From now, we assume [V : W ] ̸= 0. Then f is of the form h(yn) prV→W

for some h(t) ∈ D′(R). By (5.25) and (5.26), h is a homogeneous distribution
of degree λ + ν − n and of parity δε. Then h(t) is determined by Lemma
5.18, and we get the desired result.
(2) The assertion follows from the nonvanishing statement for the distribu-
tion of one-variable (see Lemma 5.18 (1)).
(3) The third statement follows from the first assertion and Proposition
5.15.

5.4 Vanishing condition of differential symmetry break-
ing operators: Proof of Theorem 3.12 (1)

In this section, we prove a necessary condition for the existence of nonzero
differential symmetry breaking operators as stated in Theorem 3.12 (1):
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Theorem 5.21 (vanishing of differential symmetry breaking operators).
Suppose that V and W are finite-dimensional representations of O(n) and
O(n − 1), respectively, δ, ε ∈ {±}, and (λ, ν) ∈ C2. If (λ, ν, δ, ε) satisfies
the generic parameter condition (3.2), namely, ν − λ ̸∈ 2N for δε = +, or
ν − λ ̸∈ 2N+ 1 for δε = −, then

DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) = {0}.

Remark 5.22. In the above theorem, we do not impose any assumption on V
and W . In Chapter 6, we give a converse implication under the assumption
[V : W ] ̸= 0, see Theorem 6.1.

For the proof of Theorem 5.21, we use the following properties of distri-
butions supported at the origin:

Lemma 5.23. Let F be any HomC(V,W )-valued distribution on Rn sup-
ported at the origin and satisfying the Euler homogeneity differential equation
(5.28).

(1) Assume ν − λ ̸∈ N. Then F must be zero.

(2) Assume ν − λ ∈ N. Then F (−x) = (−1)ν−λF (x).

Proof. Let δ(x) ≡ δ(x1, · · · , xn) be the Dirac delta function on Rn. For a
multi-index α = (α1, · · · , αn) ∈ Nn, we define another distribution by

δ(α)(x1, · · · , xn) :=
∂|α|

∂xα1
1 · · · ∂xαn

n

δ(x1, · · · , xn)

where |α| = α1 + · · ·+αn. By the structural theory of distributions, F must
be of the following form

F =
∑
α∈Nn

aαδ
(α)(x1, · · · , xn) (finite sum)

with some aα ∈ HomC(V,W ) for α ∈ Nn. Since δ(α)(x1, · · · , xn) is a homo-
geneous distribution of degree −n − |α|, the Euler homogeneity operator E
acts as the scalar multiplication by −(n+ |α|), and thus

EF = −
∑
α∈Nn

(n+ |α|)aαδ(α)(x1, · · · , xn).
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Since {δ(α)(x1, · · · , xn)}α∈Nn are linearly independent distributions, the dif-
ferential equation (5.28), namely, EF = (λ− ν − n)F implies that

aα = 0 whenever − n− |α| ̸= λ− ν − n.

Thus we conclude:

(1) If ν − λ ̸∈ N, we get aα = 0 for all α ∈ Nn, whence F = 0.

(2) If ν − λ ∈ N, then aα can survive only when |α| = ν − λ. Then
F (−x) = (−1)|α|F (x) = (−1)ν−λF (x) because δ(x) = δ(−x).

Therefore Lemma 5.23 is proved.

Proof of Theorem 5.21. Immediate from the characterization of differential
symmetry breaking operators (Proposition 5.15 (3)) and from Lemma 5.23.

5.5 Upper estimate of the multiplicities

We recall from the general theory [41] that there exists a constant C > 0
such that

dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ≤ C (5.39)

for any (σ, V ) ∈ Ô(n), (τ,W ) ∈ ̂O(n− 1), δ, ε ∈ {±}, and (λ, ν) ∈ C2.
Moreover, we also know that the left-hand side of (5.39) is either 0 or 1 if
both the G-module Iδ(V, λ) and the G′-module Jε(W, ν) are irreducible [59].
In this section, we give a more precise upper estimate of the dimension of
(continuous) symmetry breaking operators by that of differential symmetry
breaking operators. Owing to the “duality theorem” (see [42, Thm. 2.9],
see also Fact 6.5 in the next chapter), the latter object can be studied al-
gebraically as a branching problem for generalized Verma modules, and is
completely classified in [37] when (V,W ) = (

∧
i(Cn),

∧
j(Cn−1)). The proof

for the upper estimate leads us to complete the proof of a localness theo-
rem (Theorem 3.6), namely, a sufficient condition for all symmetry breaking
operators to be differential operators.

Theorem 5.24 (upper estimate of dimension). For any V ∈ Ô(n), W ∈
̂O(n− 1), δ, ε ∈ {±}, and (λ, ν) ∈ C2, we have

dimCHomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ≤ 1 + dimC DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)).
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Proof. Let (T∞, T ) be the pair of distribution kernels of a symmetry breaking
operator T as in Proposition 5.15. Then the first projection T 7→ T∞ induces
an exact sequence:

0→ DiffG′(Iδ(V, λ)|G′ , Jε(W, ν))→ HomG′(Iδ(V, λ)|G′ , Jε(W, ν))→ C( ˜̃AV,W
λ,ν,δε)∞,

by Proposition 5.15 (3) and Proposition 5.20. Thus Theorem 5.24 is proved.

We are ready to prove a localness theorem stated in Theorem 3.6.

Proof of Theorem 3.6. If [V : W ] = 0 then (D′(Rn)⊗ HomC(Vλ,δ,Wν,ε))
P ′

=
{0} by Proposition 5.20 because prV→W = 0. Hence we get Theorem 3.6 by
the exact sequence in the above proof.

We also prove a part of Theorem 3.3, a generic uniqueness result.

Corollary 5.25. Suppose (σ, V ) ∈ Ô(n), (τ,W ) ∈ ̂O(n− 1), δ, ε ∈ {±},
and (λ, ν) ∈ C2. If (λ, ν, δ, ε) satisfies the generic parameter condition (3.2),
namely, if ν − λ ̸∈ 2N for δε = +, or ν − λ ̸∈ 2N+ 1 for δε = −, then

dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ≤ 1.

Proof of Corollary 5.25. Owing to Theorem 5.24, we obtain Corollary 5.25
by Theorem 5.21.

We shall see that the inequality in Corollary 5.25 is actually the equality
by showing the lower estimate of the multiplicities in Theorem 5.42 below.

5.6 Proof of Theorem 3.10: Analytic continuation of
symmetry breaking operators ÃV,W

λ,ν,±

The goal of this section is to complete the proof of Theorem 3.10 about the

analytic continuation of ÃV,W
λ,ν,±. For (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1)

such that [V : W ] ̸= 0 and for δ, ε ∈ {±}, we set γ = δε and construct a
family of matrix-valued symmetry breaking operators, to be denoted by

ÃV,W
λ,ν,γ : Iδ(V, λ)→ Jε(W, ν),

which are initially defined for Reλ ≫ |Re ν| in Lemma 5.31. We show that
they have a holomorphic continuation to the entire plane (λ, ν) ∈ C2, and
thus complete the proof of Theorem 3.10.
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Here is a strategy.
Step 0. (distribution kernel near infinity)

We define HomC(V,W )-valued distributions (ÃV,W
λ,ν,γ)∞ on Rn as a mul-

tiplication of ( ˜̃AV,W
λ,ν,γ)∞ (see (5.35) and (5.36)) by appropriate holomorphic

functions of λ and ν (Section 5.6.1). The distributions (ÃV,W
λ,ν,γ)∞ depend

holomorphically on (λ, ν) in the entire plane C2 (but may vanish at special
(λ, ν)).

Step 1. (very regular case) For Reλ ≫ |Re ν|, we define HomC(V,W )-

valued, locally integrable functions ÃV,W
λ,ν,± on Rn such that the restriction

ÃV,W
λ,ν,±|Rn−{0} satisfies the compatibility condition (5.34). We then prove that

the pair ((ÃV,W
λ,ν,γ)∞, Ã

V,W
λ,ν,γ) belongs to (D′(G/P,V∗

λ,δ)⊗Wν,ε)
∆(P ′) for δε = γ

if Reλ≫ |Reν|.

Step 2. (meromorphic continuation and possible poles of ÃV,W
λ,ν,±) We find

polynomials pV,Wγ (λ, ν) such that pV,Wγ (λ, ν)ÃV,W
λ,ν,γ is a family of distributions

on Rn that depend holomorphically on (λ, ν) ∈ C2 (see Proposition 5.32).

Step 3. (holomorphic continuation of ÃV,W
λ,ν,±) We prove that there are actu-

ally no poles of the distributions ÃV,W
λ,ν,γ by inspecting the residue formula of

the scalar-valued symmetry breaking operators and the zeros of the polyno-
mials pV,Wγ (λ, ν). Thus ÃV,W

λ,ν,γ are distributions on Rn that depend holomor-
phically on (λ, ν) ∈ C2.

Thus the pair ((ÃV,W
λ,ν,γ)∞, Ã

V,W
λ,ν,γ) gives an element of D′(G/P,V∗

λ,δ)⊗Wν,ε

for δε = γ which is invariant under the diagonal action of P ′, yielding a
regular symmetry breaking operator ÃV,W

λ,ν,γ that depends holomorphically on
(λ, ν) ∈ C2 by Proposition 5.15.

The key idea for Steps 1 and 2 is a reduction to scalar-valued symmetry
breaking operators which will be discussed in Section 5.6.2 (Lemma 5.37).

5.6.1 Normalized distributions (ÃV,W
λ,ν,γ)∞ at infinity

This is for Step 0. We note that the map T 7→ T∞ in Proposition 5.15 is
neither injective nor surjective in general. In particular, the nonzero distri-

bution ( ˜̃AV,W
λ,ν,±)∞ on Rn (see (5.35) and (5.36)) does not always extend to

the compactification G/P as an element in (D′(G/P,V∗
λ,δ) ⊗Wν,ε)

∆(P ′), see
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Proposition 6.19. However, we shall see in Section 5.6.6 that the following
renormalization extends to a distribution on the compact manifold G/P for
any λ, ν ∈ C.

(ÃV,W
λ,ν,+)∞ :=

1

Γ(λ−ν
2
)
( ˜̃AV,W

λ,ν,+)∞ =
1

Γ(λ−ν
2
)Γ(λ+ν−n+1

2
)
|xn|λ+ν−n prV→W ,

(ÃV,W
λ,ν,−)∞ :=

1

Γ(λ−ν+1
2

)
( ˜̃AV,W

λ,ν,−)∞ =
1

Γ(λ−ν+1
2

)Γ(λ+ν−n+2
2

)
|xn|λ+ν−n sgn xn prV→W .

By definition, (ÃV,W
λ,ν,±)∞ are distributions on Rn that depend holomorphically

on (λ, ν) in the entire C2. Inspecting the poles of Γ(λ−ν
2
) and Γ(λ−ν+1

2
), we

immediately have the following:

Lemma 5.26. Suppose [V : W ] ̸= 0. Then, (ÃV,W
λ,ν,+)∞ = 0 if and only if

ν − λ ∈ 2N; (ÃV,W
λ,ν,−)∞ = 0 if and only if ν − λ ∈ 2N+ 1.

5.6.2 Preliminary results in the scalar-valued case

As we have seen in Section 5.6.1, the analytic continuation of the distribution
(ÃV,W

λ,ν,γ)∞ at infinity is easy. In order to deal with the nontrivial case, i.e., the

distribution kernel ÃV,W
λ,ν,γ near the origin, we begin with some basic properties

of the scalar-valued symmetry breaking operators. We recall from [44, (7.8)]

that the (scalar-valued) distribution kernels Ãλ,ν,± ∈ D′(Rn) are initially
defined as locally integrable functions on Rn by

Ãλ,ν,+(x, xn) =
1

Γ(λ+ν−n+1
2

)Γ(λ−ν
2
)
(|x|2 + x2n)

−ν |xn|λ+ν−n, (5.40)

Ãλ,ν,−(x, xn) =
1

Γ(λ+ν−n+2
2

)Γ(λ−ν+1
2

)
(|x|2 + x2n)

−ν |xn|λ+ν−n sgnxn, (5.41)

respectively for Reλ ≫ |Re ν|. (In [44], we used the notation K̃A
λ,ν for the

scalar-valued distribution kernel Ãλ,ν,+.) More precisely, we have:

Fact 5.27 ([44, Chap. 7]). Ãλ,ν,± are locally integrable on Rn if Re (λ− ν) >
0 and Re (λ+ ν) > n − 1, and extend as distributions on Rn that depend
holomorphically on λ, ν in the entire (λ, ν) ∈ C2.

The distributions Ãλ,ν,+ were thoroughly studied in [44, Chap. 7], and

analogous results for Ãλ,ν,− can be proved exactly in the same way.
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We introduce polynomials p±,N(λ, ν) of the two-variables λ and ν by

p+,N(λ, ν) :=
N∏
j=1

(λ− ν − 2j) for N ∈ N+, (5.42)

p−,N(λ, ν) :=(λ+ ν − n)
N∏
j=0

(λ− ν − 1− 2j) for N ∈ N. (5.43)

We use a trick to raise the regularity of the distribution Ãλ,ν,+(x, xn) at
the origin by shifting the parameter. The resulting distributions are under
control by the polynomials p±,N(λ, ν) as follows:

Lemma 5.28. We have the following identities as distributions on Rn:

p+,N(λ, ν)Ãλ,ν,+(x, xn) =2N(|x|2 + x2n)
NÃλ−N,ν+N,+(x, xn),

p−,N(λ, ν)Ãλ,ν,−(x, xn) =2N+2(|x|2 + x2n)
NxnÃλ−N−1,ν+N,+(x, xn).

Proof. For Reλ≫ |Re ν|, we have from the definition (5.40),

(|x|2 + x2n)
NÃλ−N,ν+N,+(x, xn) =

Γ(λ−ν
2
)

Γ(λ−ν
2
−N)

Ãλ,ν,+(x, xn)

=
1

2N
p+,N(λ, ν)Ãλ,ν,+(x, xn).

Since both sides depend holomorphically on (λ, ν) ∈ C2, we get the first
assertion. The proof of the second assertion goes similarly.

Lemma 5.29. If (λ, ν) ∈ C2 satisfies p+,N(λ, ν) = 0, then

h(x, xn)Ãλ−N,ν+N,+ = 0 in D′(Rn),

for all homogeneous polynomials h(x, xn) of degree 2N .

Proof. It follows from p+,N(λ, ν) = 0 that

(ν +N)− (λ−N) ∈ {0, 2, 4, · · · , 2N − 2}.

By the residue formula of the scalar-valued symmetry breaking operator
Ãλ′,ν′,+ (see [44, Thm. 12.2 (2)]), we have

Ãλ−N,ν+N,+ = q C̃λ−N,ν+N
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for some constant q ≡ qAC(λ − N, ν + N) depending on λ − N and ν + N .

Since C̃λ−N,ν+N is a distribution of the form Dδ(x1, · · · , xn) where D =

C̃
λ−N−n−1

2
2N−2j (−∆Rn−1 , ∂

∂xn
) is a differential operator of homogeneous degree

2N − 2j(< 2N), see (3.13), an iterated use of the Leibniz rule shows

h(x, xn)Dδ(x1, · · · , xn) = 0 in D′(Rn)

for any homogeneous polynomial h(x, xn) of degree 2N .

Lemma 5.30. If (λ, ν) ∈ C2 satisfies p−,N(λ, ν) = 0, then

xnh(x, xn)Ãλ−N−1,ν+N,+(x, xn) = 0 in D′(Rn)

for all homogeneous polynomial h(x, xn) of degree 2N .

Proof. It follows from p−,N(λ, ν) = 0 that (ν+N)−(λ−N−1) ∈ {0, 2, · · · , 2N}
or (λ−N − 1) + (ν +N) = n− 1. By using again the residue formula of the

scalar-valued symmetry breaking operator Ãλ′,ν′,+ in [44, Thm. 12.2], we see

that the distribution kernel Ãλ−N−1,ν+N,+(x, xn) is a scalar multiple of the
following distributions:

δ(xn) if λ+ ν = n,

Dδ(x1, · · · , xn) if λ− ν = 2j + 1 (0 ≤ j ≤ N),

where D = C̃
λ−N−1−n−1

2
2N−2j (−∆Rn−1 , ∂

∂xn
) is a differential operator of homoge-

neous degree 2N−2j (< 2N+1). Then the multiplication by a homogeneous
polynomial xnh(x, xn) of degree 2N+1 annihilates these distributions. Hence
the lemma follows.

5.6.3 Step 1. Very regular case

We recall from (3.6) that RV,W = prV→W ◦σ ◦ ψn ∈ C∞(Rn − {0}) ⊗
HomC(V,W ). For Reλ≫ |Re ν|, we define ÃV,W

λ,ν,± ∈ C(Rn−{0})⊗HomC(V,W )
by

ÃV,W
λ,ν,+ :=

1

Γ(λ+ν−n+1
2

)Γ(λ−ν
2
)
(|x|2 + x2n)

−ν |xn|λ+ν−nRV,W (x, xn),

ÃV,W
λ,ν,− :=

1

Γ(λ+ν−n+2
2

)Γ(λ−ν+1
2

)
(|x|2 + x2n)

−ν |xn|λ+ν−n sgnxnR
V,W (x, xn),

(see (3.7) and (3.8)), respectively. The goal of this section is to prove the
following lemma in the matrix-valued case for Reλ≫ |Re ν|.
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Lemma 5.31. Let (σ, V ) ∈ Ô(n), (τ,W ) ∈ ̂O(n− 1) and δ, ε ∈ {±}.
Suppose Re (λ− ν) > 0 and Re (λ+ ν) > n− 1.

(1) ÃV,W
λ,ν,± are HomC(V,W )-valued locally integrable functions on Rn.

(2) The pair ((ÃV,W
λ,ν,δε)∞, Ã

V,W
λ,ν,δε) defines an element of (D′(G/P,V∗

λ,δ) ⊗
Wν,ε)

∆(P ′), and thus yield a symmetry breaking operator ÃV,W
λ,ν,δε : Iδ(V, λ)→

Jε(W, ν).

Proof. We fix inner products on V and W that are invariant by O(n) and
O(n− 1), respectively. Let ∥ · ∥op denote the operator norm for linear maps
between (finite-dimensional) Hilbert spaces. In view of the definition RV,W =
prV→W ◦σ ◦ ψn (see (3.6)), we have

∥RV,W (x, xn)∥op ≤ ∥σ ◦ ψn(x, xn)∥op = 1 for all (x, xn) ∈ Rn − {0}.

Hence the first statement is reduced to the scalar case as stated in Fact 5.27.
The compatibility condition (5.34) can be verified readily from the defi-

nition of (ÃV,W
λ,ν,±)∞ and ÃV,W

λ,ν,±. Hence the pair ((Ã
V,W
λ,ν,δε)∞, Ã

V,W
λ,ν,δε) defines an

element of D′(G/P,V∗
λ,δ) ⊗Wν,ε by Lemma 5.11. The invariance under the

diagonal action of P ′ follows from Proposition 5.20 for (ÃV,W
λ,ν,δε)∞ and from a

direct computation for ÃV,W
λ,ν,δε when Reλ ≫ |Re ν| because both (ÃV,W

λ,ν,δε)∞

and ÃV,W
λ,ν,δε ∈ L1

loc(Rn).

5.6.4 Step 2. Reduction to the scalar-valued case

We shall prove:

Proposition 5.32. Let (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1). Then the

distributions ÃV,W
λ,ν,±, initially defined as an element of L1

loc(Rn)⊗HomC(V,W )
for Reλ≫ |Re ν| in Lemma 5.31, extend meromorphically in the entire plane
(λ, ν) ∈ C2.

In order to prove Proposition 5.32, we need to control the singularity of
σ ◦ ψn ∈ C∞(Rn − {0})⊗ EndC(V ) at the origin. We formulate a necessary
lemma:
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Lemma 5.33. For any irreducible representation (σ, V ) of O(n), there exists
N ∈ N such that

g(x, xn) := (|x|2 + x2n)
Nσ(ψn(x, xn))

is an End(V )-valued homogeneous polynomial of degree 2N .

Definition 5.34. For σ ∈ Ô(n), we denote by N(σ) the smallest integer N
satisfying the conclusion of Lemma 5.33.

We prove Lemma 5.33 by showing the following estimate of the integer
N(σ). Let ℓ(σ) be as defined in (2.21).

Lemma 5.35. N(σ) ≤ ℓ(σ) for all σ ∈ Ô(n).

Proof of Lemma 5.35. Suppose (σ1, · · · , σn) ∈ Λ+(O(n)), and let (σ, V ) be
the irreducible finite-dimensional representation FO(n)(σ1, · · · , σn) of O(n)
via the Cartan–Weyl isomorphism (2.20). It is convenient to set σn+1 =
0. Since the exterior representations of GL(n,C) on

∧
j(Cn) have highest

weights (1, · · · , 1, 0, · · · , 0), and since

n∑
j=1

(σj − σj+1)(1, · · · , 1︸ ︷︷ ︸
j

, 0, · · · , 0) = (σ1, · · · , σn),

we can realize the irreducible representation of GL(n,C) with highest weight
(σ1, · · · , σn) as a subrepresentation of the tensor product representation

n⊗
j=1

(
∧

j(Cn))σj−σj+1 .

This is a polynomial representation of homogeneous degree

n∑
j=1

j(σj − σj+1) =
n∑

j=1

σj.

We set N :=
∑n

j=1 σj. Then the matrix coefficients of this GL(n,C)-module
are given by homogeneous polynomials of degree N of zij (1 ≤ i, j ≤ n)
where zij are the coordinates of GL(n,C). Since the representation (σ, V )
of O(n) arises as a subrepresentation of this GL(n,C)-module, the formula
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(3.4) of ψn shows that the matrix coefficients of σ(ψn(x, xn)) is a polynomial
of x and xn after multiplying (|x|2 + x2n)

N .
We note that detψn(x, xn) = −1 for all (x, xn) ∈ Rn − {0} by (3.5).

Therefore, we may assume that (σ, V ) is of type I by (2.23), namely, σk+1 =
· · · = σn for some k with 2k ≤ n. In this case N = l(σ) by the definition
(2.21). By (2.22), we have shown the lemma.

The estimate in Lemma 5.35 is not optimal.

Example 5.36. 1) N(σ) = 0 if (σ, V ) is a one-dimensional representa-
tion.

2) N(σ) = 1 if σ is the exterior representation on V =
∧

i(Cn) (1 ≤ i ≤
n− 1). See (7.10) and Lemma 7.4 (2) for the proof.

Let N ≡ N(σ) ∈ N and g ∈ Pol[x1, · · · , xn] ⊗ EndC(V ) be as in Lemma
5.33, and prV→W : V → W be a nonzero O(n−1)-homomorphism. We define
gV,W ∈ Pol[x1, · · · , xn]⊗ HomC(V,W ) by

gV,W := prV→W ◦g. (5.44)

With notation of RV,W as in (3.6), we have

gV,W (x, xn) =(|x|2 + x2n)
NRV,W (x, xn) (5.45)

=(|x|2 + x2n)
N prV→W ◦σ(ψn(x, xn)).

Then gV,W is a HomC(V,W )-valued polynomial of homogeneous degree 2N .
The following lemma will imply that the singularity at the origin of the

matrix-valued distributions ÃV,W
λ,ν,± is under control by the scalar-valued case:

Lemma 5.37. Suppose Reλ≫ |Re ν|. Let p±(λ, ν) be the polynomials of λ
and ν defined in (5.42) and (5.43). Then,

p+,N(λ, ν)ÃV,W
λ,ν,+(x, xn) =2NÃλ−N,ν+N,+(x, xn)g

V,W (x, xn), (5.46)

p−,N(λ, ν)ÃV,W
λ,ν,−(x, xn) =2N+2xnÃλ−N−1,ν+N,+(x, xn)g

V,W (x, xn). (5.47)

Proof. For Reλ ≫ |Re ν|, both ÃV,W
λ,ν,± and Ãλ,ν,± are locally integrable in

Rn. By definition, we have

(|x|2 + x2n)
NÃV,W

λ,ν,γ = Ãλ,ν,γ(x, xn)g
V,W (x, xn)
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for γ = ±. By Lemma 5.28, we have

(|x|2 + x2n)
N(p+,N(λ, ν)ÃV,W

λ,ν,+(x, xn)− 2NÃλ−N,ν+N,+(x, xn)g
V,W (x, xn)) = 0.

Hence we get the equality (5.46) as HomC(V,W )-valued locally integrable
functions in Rn. Similarly, we obtain

(|x|2 + x2n)
NÃλ−N−1,ν+N,+(x, xn)xn =

1

2N+2
p−,N(λ, ν)Ãλ,ν,−(x, xn).

Thus the second statement follows.

We are ready to prove the main result of this section.

Proof of Proposition 5.32. Since gV,W (x, xn) is a polynomial of (x, xn) =
(x1, · · · , xn), the multiplication of any distributions on Rn by gV,W is well
defined. Therefore, the right-hand sides of (5.46) and (5.47) make sense as
distributions on Rn that depend holomorphically in (λ, ν) ∈ C2.

Taking their quotients by the polynomials p±,N(λ, ν), we set

ÃV,W
λ,ν,+(x, xn) :=

2N

p+,N(λ, ν)
Ãλ−N,ν+N,+(x, xn)g

V,W (x, xn), (5.48)

ÃV,W
λ,ν,−(x, xn) :=

2N+2

p−,N(λ, ν)
Ãλ−N−1,ν+N,+(x, xn)xng

V,W (x, xn). (5.49)

Then ÃV,W
λ,ν,± are HomC(V,W )-valued distributions on Rn which depend mero-

morphically on (λ, ν) ∈ C2 because Ãλ′,ν′,+(x, xn) is a family of scalar-valued
distributions on Rn that depend holomorphically on (λ′, ν ′) ∈ C2 (Fact 5.27)
and gV,W (x, xn) is a polynomial. By Lemma 5.37, they coincide locally inte-
grable functions on Rn that are defined in (3.7) and (3.8), respectively, when
Reλ≫ |Re ν|. Thus Proposition 5.32 is proved.

5.6.5 Step 3. Proof of holomorphic continuation

In this section, we show that there are no poles of ÃV,W
λ,ν,±.

Lemma 5.38. ÃV,W
λ,ν,± are distributions on Rn that depend holomorphically

on (λ, ν) ∈ C2.
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Proof. By (5.48) and (5.49), the only possible places that the distribution

ÃV,W
λ,ν,γ may have poles are the zeros of the denominators, namely,

p+,N(λ, ν) =
N∏
j=1

(λ− ν − 2j) γ = +,

p−,N(λ, ν) = (λ+ ν − n)
N∏
j=0

(λ− ν − 1− 2j) γ = −,

however, we have proved that they are not actually poles by Lemmas 5.29
and 5.30, respectively. Hence ÃV,W

λ,ν,γ are distributions that depend holomor-
phically on (λ, ν) ∈ C2.

5.6.6 Proof of Theorem 3.10

We are ready to prove that the matrix-valued symmetry breaking operator
ÃV,W

λ,ν,± has a holomorphic continuation in the entire plane (λ, ν) ∈ C2.

Proof of Theorem 3.10. Suppose (σ, V ) ∈ Ô(n). Let N ≡ N(σ) ∈ N be as in
Lemma 5.33. We recall from (5.45) that the HomC(V,W )-valued function

gV,W (x, xn) = (|x|2 + x2n)
N prV→W ◦σ(ψn(x, xn))

is actually a HomC(V,W )-valued polynomial of homogeneous degree 2N .

We know that the pair ((ÃV,W
λ,ν,±)∞, Ã

V,W
λ,ν,±) satisfies the following proper-

ties:

(1) (ÃV,W
λ,ν,±)∞ is a HomC(V,W )-valued distribution on Rn satisfying (5.32)

that depend holomorphically in (λ, ν) ∈ C2.

(2) ÃV,W
λ,ν,± is a HomC(V,W )-valued distribution on Rn that depend holo-

morphically on (λ, ν) ∈ C2.

(3) For δ, ε ∈ {±}, ÃV,W
λ,ν,δε ∈ Sol(Rn;Vλ,δ,Wν,ε). Moreover, the conditions

(5.33) and (5.34) are satisfied when Reλ≫ |Re ν|.

All the equations concerning Sol(Rn;Vλ,δ,Wν,ε) depend holomorphically
on (λ, ν) in the entire C2. On the other hand, for γ ∈ {±}, the proper-

ties (1) and (2) tell that the pair ((ÃV,W
λ,ν,γ)∞, Ã

V,W
λ,ν,γ) depends holomorphi-

cally on (λ, ν) in the entire C2. Hence the property (3) holds in the entire
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(λ, ν) ∈ C2 by analytic continuation. In turn, Proposition 5.15 implies that

the pair ((ÃV,W
λ,ν,γ)∞, Ã

V,W
λ,ν,γ) gives an element of (D′(G/P,V∗

λ,δ)⊗Wν,ε)
∆(P ′) for

all (λ, ν) ∈ C2, and we have completed the proof of Theorem 3.10.

5.7 Existence condition for regular symmetry breaking
operators : Proof of Theorem 3.9

In Theorem 3.10, we have assumed [V : W ] ̸= 0 for the construction of sym-
metry breaking operators. In this section we complete the proof of Theorem
3.9, which asserts that the condition [V : W ] ̸= 0 is necessary and sufficient
for the existence of regular symmetry breaking operators.

Suppose [V : W ] ̸= 0. Let ÃV,W
λ,ν,δε : Iδ(V, λ)→ Jε(W, ν) be the normalized

symmetry breaking operator which is obtained by the analytic continuation of
the integral operator in Section 5.6. We study the support of its distribution
kernel ÃV,W

λ,ν,δε. We define subsets U reg
+ and U reg

− in C2 by

U reg
+ :={(λ, ν) ∈ C2 : n− λ− ν − 1 ̸∈ 2N, ν − λ ̸∈ 2N}, (5.50)

U reg
− :={(λ, ν) ∈ C2 : n− λ− ν − 2 ̸∈ 2N, ν − λ− 1 ̸∈ 2N}. (5.51)

Proposition 5.39. Suppose V ∈ Ô(n) and W ∈ ̂O(n− 1) satisfy [V : W ] ̸=
0. Let δ, ε ∈ {±}. Then ÃV,W

λ,ν,δε is a nonzero regular symmetry breaking
operator in the sense of Definition 5.10 for all (λ, ν) ∈ U reg

δε .

Proof of Proposition 5.39. As in Proposition 5.15, the distribution kernel
of the operator ÃV,W

λ,ν,δε can be expressed by a pair ((ÃV,W
λ,ν,δε)∞, Ã

V,W
λ,ν,δε) of

HomC(V,W )-valued distributions on Rn corresponding to the open covering

G/P = N+wP/P ∪ N−P/P . Then it suffices to show Supp(ÃV,W
λ,ν,δε)∞ = Rn

for (λ, ν) ∈ U reg
δε . If (λ, ν) ∈ U reg

δε , then (λ, ν, δ, ε) ̸∈ Ψsp, and therefore

(ÃV,W
λ,ν,δε)∞ ̸= 0 by Lemma 5.26. Moreover, if n− λ− ν − 1 ̸∈ 2N for δε = +

(or if n− λ− ν − 2 ̸∈ 2N for δε = −), then we deduce Supp(ÃV,W
λ,ν,δε)∞ = Rn

from Lemma 5.18 about the support of the Riesz distribution. Hence Propo-
sition 5.39 is proved.

Definition 5.40 (normalized regular symmetry breaking operator). We shall

say ÃV,W
λ,ν,δε : Iδ(V, λ) → Jε(W, ν) is a holomorphic family of the normalized

(generically) regular symmetry breaking operators. For simplicity, we also
call it a holomorphic family of the normalized regular symmetry breaking
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operators by a little abuse of terminology. We are ready to complete the
proof of Theorem 3.9.

Proof of Theorem 3.9. The implication (i) ⇒ (iii) follows from the explicit

construction of the (normalized) regular symmetry breaking operators ÃV,W
λ,ν,±

in Theorem 3.10, and from Proposition 5.39.
(iii) ⇒ (ii) Clear.
Let us prove the implication (ii)⇒ (i). We use the notation as in Section

2.1 which is adopted from [44, Chap. 5]. Then there exists a unique open
orbit of P ′ on G/P , and the isotropy subgroup at [q+] = [t(0, · · · , 0, 1, 1)] ∈
Ξ/R× ≃ G/P is given by

{


1

B
1

1

 : B ∈ O(n− 1)} ≃ O(n− 1).

Then the implication (ii) ⇒ (i) follows from the necessary condition for the
existence of regular symmetry breaking operators proved in [44, Prop. 3.5].

Thus Theorem 3.9 is proved.

5.8 Zeros of ÃV,W
λ,ν,± : Proof of Theorem 3.15

This section discusses the zeros of the analytic continuation of the symmetry
breaking operator ÃV,W

λ,ν,γ : Iδ(V, λ)→ Jε(W, ν) with δε = γ.

Proof of Theorem 3.15. (1) Let N := N(σ) as in Definition 5.34. We first
observe that

(λ−N, ν +N) ∈ Leven if (λ, ν) ∈ Leven and ν ≤ −N ,

(λ−N − 1, ν +N) ∈ Leven if (λ, ν) ∈ Lodd and ν ≤ −N .

Then the scalar-valued distributions Ãλ−N,ν+N,+ and Ãλ−N−1,ν+N,+ vanish,
respectively by [44, Thm. 8.1]. By Lemma 5.37, the HomC(V,W )-valued

distributions p+,N(λ, ν)ÃV,W
λ,ν,+ and p−,N(λ, ν)ÃV,W

λ,ν,− vanish, respectively, be-

cause the multiplication of distributions by the polynomial gV,W (x, xn) is
well-defined. Since p+,N(λ, ν) ̸= 0 for (λ, ν) ∈ Leven and p−,N(λ, ν) ̸= 0 for
(λ, ν) ∈ Lodd, the first assertion follows from Proposition 5.15 (2).
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(2) If the symmetry breaking operator ÃV,W
λ,ν,γ vanishes, then its distribution

kernel is zero, and in particular, (ÃV,W
λ,ν,γ)∞ = 0 (see Proposition 5.15). This

implies ν − λ ∈ 2N for γ = +, and ν − λ ∈ 2N + 1 for γ = −, owing to
Lemma 5.26. Hence Theorem 3.15 is proved.

5.9 Generic multiplicity-one theorem: Proof of Theo-
rem 3.3

We recall from (3.3) the definition of “generic parameter” (3.2) that (λ, ν, δ, ε) ̸∈
Ψsp if and only if

ν − λ ̸∈ 2N for δε = +; ν − λ ̸∈ 2N+ 1 for δε = −.

We are ready to classify symmetry breaking operators for generic parameters.
The main result of this section is Theorem 5.41, from which Theorem 3.3
follows.

Theorem 5.41 (generic multiplicity-one theorem). Suppose (σ, V ) ∈ Ô(n),
(τ,W ) ∈ ̂O(n− 1) with [V : W ] ̸= 0. Assume (λ, ν) ∈ C2 and δ, ε ∈ {±}
satisfy the generic parameter condition, namely, (λ, ν, δ, ε) ̸∈ Ψsp. Then

the normalized operator ÃV,W
λ,ν,δε is nonzero and is not a differential operator.

Furthermore we have

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = CÃV,W
λ,ν,δε.

Proof. By Theorem 3.10, ÃV,W
λ,ν,± is a symmetry breaking operator for all λ, ν ∈

C. The generic assumption on (λ, ν, δ, ε) implies ÃV,W
λ,ν,δε ̸= 0 by Theorem 3.15

(2). On the other hand, by Theorem 5.24 and Corollary 5.25, we see that

ÃV,W
λ,ν,δε is not a differential operator and dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ≤

1. Thus we have proved Theorem 5.41.

The generic multiplicity-one theorem given in Theorem 3.3 is the second
statement of Theorem 5.41.

5.10 Lower estimate of the multiplicities

In this section we do not assume the generic parameter condition (Definition
3.2), and allow the case (λ, ν, δ, ε) ∈ Ψsp. In this generality, we give a lower
estimate of the dimension of the space of symmetry breaking operators.
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Theorem 5.42. Let (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1) satisfying [V :
W ] ̸= 0. For any δ, ε ∈ {±} and (λ, ν) ∈ C2, we have

dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) ≥ 1.

We use a general technique from [44, Lem. 11.10] to prove that the mul-
tiplicity function is upper semicontinuous.

As before, we denote by ((ÃV,W
λ,ν,γ)∞, Ã

V,W
λ,ν,γ) the pair of HomC(V,W )-valued

distributions on Rn that represents the symmetry breaking operator ÃV,W
λ,ν,γ

via Proposition 5.15.
We fix (λ0, ν0) ∈ C2, and define HomC(V,W )-valued distributions on Rn

for k, ℓ ∈ N as follows:

Fkℓ :=
∂k+ℓ

∂λk∂νℓ

∣∣∣∣
λ=λ0
ν=ν0

ÃV,W
λ,ν,γ,

(Fkℓ)∞ :=
∂k+ℓ

∂λk∂νℓ

∣∣∣∣
λ=λ0
ν=ν0

(ÃV,W
λ,ν,γ)∞.

Lemma 5.43. Let γ ∈ {±} and m a positive integer such that

((Fkℓ)∞, Fkℓ) = (0, 0) for all (k, ℓ) ∈ N2 with k + ℓ < m.

Then for any (k, ℓ) with k+ℓ = m, the pair ((Fkℓ)∞, Fkℓ) defines a symmetry
breaking operator Iδ(V, λ)→ Jε(W, ν) for (δ, ε) with δε = γ.

Proof. Since both the equations (5.32)–(5.34) and the pairs ((ÃV,W
λ,ν,γ)∞, Ã

V,W
λ,ν,γ)

satisfying (5.32)–(5.34) depend holomorphically on (λ, ν) in the entire C2, we
can apply [44, Lem. 11.10] to conclude that the pair ((Fkℓ)∞, Fkℓ) satisfies
(5.32)–(5.34) at (λ, ν) = (λ0, ν0) for any (k, ℓ) ∈ N2 with k + ℓ = m. Then
((Fkℓ)∞, Fkℓ) gives an element in HomG′(Iδ(V, λ0)|G′ , Jε(W, ν0)) by Proposi-
tion 5.15.

Definition 5.44. Suppose we are in the setting of Lemma 5.43. For (k, ℓ)
with k + ℓ = m and δ, ε ∈ {±} with δε = γ, we denote by

∂k+ℓ

∂λk∂νℓ

∣∣∣∣
λ=λ0
ν=ν0

ÃV,W
λ,ν,γ ∈ HomG′(Iδ(V, λ0)|G′ , Jε(W, ν0)),

the symmetry breaking operator associated to the pair ((Fkℓ)∞, Fkℓ).
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Proof of Theorem 5.42. Set γ := δε. Then the pair ((ÃV,W
λ,ν,γ)∞, Ã

V,W
λ,ν,γ) of

HomC(V,W )-valued distributions depends holomorphically on (λ, ν) in the
entire C2 and satisfies (5.32)–(5.34) for all (λ, ν) ∈ C2. Moreover, the pair

((ÃV,W
λ,ν,γ)∞, Ã

V,W
λ,ν,γ) is nonzero as far as ν−λ ̸∈ N by Lemma 5.26. This implies

that, given (λ0, ν0) ∈ C2, there exists (k, ℓ) ∈ N2 for which ((Fkℓ)∞, Fkℓ) is
nonzero. Take (k, ℓ) ∈ N2 such that k+ℓ attains the minimum among all (k, ℓ)

for which the pair ((Fkℓ)∞, Fkℓ) is nonzero. By Lemma 5.43, ∂k+ℓ

∂λk∂νℓ

∣∣∣
λ=λ0
ν=ν0

ÃV,W
λ,ν,γ

is a symmetry breaking operator.

5.11 Renormalization of symmetry breaking operators
ÃV,W

λ,ν,γ

In this section we construct a nonzero symmetry breaking operator ˜̃AV,W
λ0,ν0,γ

by “renormalization” when ÃV,W
λ0,ν0,γ

= 0. We shall also prove that the renor-
malized operator is not a differential operator. The main results are stated
in Theorem 5.45.

5.11.1 Expansion of ÃV,W
λ,ν,γ along ν = constant

We fix γ ∈ {±} and (λ0, ν0) ∈ C2 such that

ν0 − λ0 =

{
2ℓ for γ = +,

2ℓ+ 1 for γ = −,

with ℓ ∈ N. For every (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1), the distribution

kernel ÃV,W
λ,ν,γ of the symmetry breaking operator ÃV,W

λ,ν,γ is a HomC(V,W )-
valued distribution on Rn that depend holomorphically on (λ, ν) ∈ C2 by

Theorem 3.10. We fix ν = ν0 and expand ÃV,W
λ,ν0,γ

with respect to λ near
λ = λ0 as

ÃV,W
λ,ν0,γ

= F0 + (λ− λ0)F1 + (λ− λ0)2F2 + · · · (5.52)

with HomC(V,W )-valued distributions F0, F1, F2, · · · on Rn. By definition,

ÃV,W
λ0,ν0,γ

̸= 0 if and only if F0 ̸= 0.

For the next term F1, we have the following two equivalent expressions:

F1 = lim
λ→λ0

1

λ− λ0
(ÃV,W

λ,ν0,γ
− ÃV,W

λ0,ν0,γ
), (5.53)
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and

F1 =
∂

∂λ

∣∣∣∣
λ=λ0

ÃV,W
λ,ν0,γ

. (5.54)

5.11.2 Renormalized regular symmetry breaking operator ˜̃AV,W
λ,ν,γ

We consider the following renormalized operators

˜̃AV,W
λ,ν,+ :=Γ(

λ− ν
2

)ÃV,W
λ,ν,+ for ν − λ ̸∈ 2N, (5.55)

˜̃AV,W
λ,ν,− :=Γ(

λ− ν + 1

2
)ÃV,W

λ,ν,− for ν − λ ̸∈ 2N+ 1. (5.56)

Since ÃV,W
λ,ν,γ depend holomorphically on (λ, ν) in C2, ˜̃AV,W

λ,ν,γ are obviously
well-defined as symmetry breaking operators Iδ(V, λ) → Jε(W, ν) if γ = δε,
because the gamma factors do not have poles in the domain of definitions
(5.55) and (5.56).

On the other hand, Theorem 3.15 (2) implies that the gamma factors

in (5.55) or (5.56) have poles if ÃV,W
λ0,ν0,γ

= 0. Nevertheless we shall see in

Theorem 5.45 below that the renormalization ˜̃AV,W
λ0,ν0,γ

still makes sense if

ÃV,W
λ0,ν0,γ

= 0.

Theorem 5.45. Suppose [V : W ] ̸= 0 and let (λ0, ν0) ∈ C2 such that

ÃV,W
λ0,ν0,γ

= 0.

(1) There exists ℓ ∈ N such that

ν0 − λ0 =

{
2ℓ when γ = +,

2ℓ+ 1 when γ = −.

(2) We set

˜̃AV,W
λ0,ν0,γ

:=
2(−1)ℓ

ℓ!

∂

∂λ

∣∣∣∣
λ=λ0

ÃV,W
λ,ν0,γ

. (5.57)

Then ˜̃AV,W
λ0,ν0,γ

gives a nonzero symmetry breaking operator from Iδ(V, λ)
to Jε(W, ν0) with δε = γ.
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(3) We fix ν = ν0. Then ˜̃AV,W
λ,ν0,γ

defined by (5.55) and (5.56) for λ ̸= λ0,
and by (5.57) for λ = λ0, is a family of symmetry breaking operators
from Iδ(V, λ) to Jε(W, ν0) with δε = γ that depend holomorphically on
λ in the entire complex plane C. In particular, we have

˜̃AV,W
λ0,ν0,γ

= lim
λ→λ0

˜̃AV,W
λ,ν0,γ

. (5.58)

(4) ˜̃AV,W
λ0,ν0,γ

is not a differential operator.

Proof. (1) The assertion is already given in Theorem 3.15 (2).

(2) The assertion follows from Lemma 5.43.

(3) By the first statement, we see (λ, ν0, δ, ε) with δε = γ satisfies the
generic parameter condition (3.2) if and only if λ ̸= λ0 and that

˜̃AV,W
λ,ν0,γ

= Γ(
λ− λ0

2
− ℓ)ÃV,W

λ,ν0,γ
if λ ̸= λ0.

We expand the distribution ÃV,W
λ,ν0,γ

as in (5.52) near λ = λ0. By the

assumption that ÃV,W
λ0,ν0,γ

= 0, it follows from the two expressions (5.53)
and (5.54) of the second term F1 that

F1 = lim
λ→λ0

1

λ− λ0
ÃV,W

λ,ν0,γ
= lim

λ→λ0

1

(λ− λ0)Γ(λ−λ0

2
− ℓ)

˜̃AV,W
λ,ν0,γ

,

F1 =
(−1)ℓℓ!

2
˜̃AV,W
λ0,ν0,γ

.

In light that limµ→0 µΓ(
µ
2
− ℓ) = 2(−1)ℓ

ℓ!
, we obtain

lim
λ→λ0

˜̃AV,W
λ,ν0,γ

= ˜̃AV,W
λ0,ν0,γ

.

Since ˜̃AV,W
λ,ν0,γ

depends holomorphically on λ in C−{λ0}, and since it is

continuous at λ = λ0,
˜̃AV,W
λ,ν0,γ

is holomorphic in λ in the entire complex
plane C.
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(4) Let (( ˜̃AV,W
λ0,ν0,γ

)∞,
˜̃AV,W
λ0,ν0,γ

) be the pair of the distribution kernels for
˜̃AV,W
λ0,ν0,γ

via Proposition 5.15 (1). Then as in the above proof, we have

( ˜̃AV,W
λ0,ν0,γ

)∞ = lim
λ→λ0

( ˜̃AV,W
λ,ν0,γ

)∞.

By Proposition 5.20 (2), the right-hand side is not zero. Hence ˜̃AV,W
λ0,ν0,γ

is not a differential operator by Proposition 5.15 (3).

We are ready to complete the proof of Theorem 3.13 (2-C).

Corollary 5.46. Let γ ∈ {±}. Suppose ÃV,W
λ,ν,γ = 0. Then the following

holds.

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = C ˜̃AV,W
λ,ν,δε ⊕DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)).

(5.59)

Proof of Corollary 5.46. By Theorem 5.45, the renormalized operator ˜̃AV,W
λ,ν,δε

is well-defined and nonzero. Moreover, the right-hand side of (5.59) is a direct
sum, and is contained in the left-hand side.

Conversely, take any T ∈ HomG′(Iδ(V, λ)|G′ , Jε(W, ν)), and write (T∞, T )
for the corresponding pair of distribution kernels for T via Proposition 5.15.
Let γ := δε. Then Proposition 5.20 tells that T∞ must be proportional to

( ˜̃AV,W
λ,ν,γ)∞, namely, T∞ = C( ˜̃AV,W

λ,ν,γ)∞ for some C ∈ C. This implies that the

distribution kernel T −C ˜̃AV,W
λ,ν,γ of the symmetry breaking operator T−C ˜̃AV,W

λ,ν,γ

is supported at the origin, and consequently T − C ˜̃AV,W
λ,ν,γ is a differential

operator by Proposition 5.15.
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6 Differential symmetry breaking operators

In this chapter, we analyze the space

DiffG′(Iδ(V, λ)|G′ , Jε(W, ν))

of differential symmetry breaking operators between principal series repre-

sentations of G = O(n + 1, 1) and G′ = O(n, 1) for arbitrary V ∈ Ô(n) and
W ∈ ̂O(n− 1) with [V : W ] ̸= 0.

The goal of this chapter is to prove Theorem 6.1 below. We recall from
(1.3) that the set of “special parameters” is denoted by

Ψsp = {(λ, ν, δ, ε) ∈ C2×{±}2 : ν − λ ∈ 2N (δε = +) or ν − λ ∈ 2N+ 1 (δε = −)}.

Theorem 6.1. Let (G,G′) = (O(n + 1, 1), O(n, 1)). Suppose (σ, V ) ∈ Ô(n)
and (τ,W ) ∈ ̂O(n− 1) satisfy [V : W ] ̸= 0.

(1) The following two conditions on λ, ν ∈ C and δ, ε ∈ {±} are equivalent:

(i) (λ, ν, δ, ε) ∈ Ψsp.

(ii) DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) ̸= {0}.

(2) If 2λ ̸∈ Z then (i) (or equivalently, (ii) ) implies

(ii)′ dimC DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) = 1.

The implication (ii) ⇒ (i) in Theorem 6.1 holds without the assumption
[V : W ] ̸= 0 as we have seen in Theorem 5.21. Thus the remaining part is
to show the opposite implication (i) ⇒ (ii) and the second statement, which
will be carried out in Sections 6.7 and 6.6, respectively.

Remark 6.2. In the setting where (V,W ) = (
∧

i(Cn),
∧

j(Cn−1)), an explicit
construction and the complete classification of the space DiffG′(Iδ(V, λ)|G′ , Jε(W, ν))
were carried out in [37] without the assumption [V : W ] ̸= 0, see Fact 3.23.

6.1 Differential operators between two manifolds

To give a rigorous definition of differential symmetry breaking operators, we
need the notion of differential operators between two manifolds, which we
now recall.
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For any smooth vector bundle V over a smooth manifold X, there exists
the unique (up to isomorphism) vector bundle JkV over X (called the k-th
jet prolongation of V) together with the canonical differential operator

Jk : C∞(X,V)→ C∞(X, JkV)

of order k. We recall that a linear operator D : C∞(X,V) → C∞(X,V ′)
between two smooth vector bundles V and V ′ over X is called a differential
operator of order at most k, if there is a bundle morphism Q : JkV → V ′

such that D = Q∗ ◦ Jk, where Q∗ : C
∞(X, JkV)→ C∞(X,V ′) is the induced

homomorphism. We need a generalization of this classical definition to the
case of linear operators acting between vector bundles over two different
smooth manifolds.

Definition 6.3 (differential operators between two manifolds [40, 42]).
Suppose that p : Y → X is a smooth map between two smooth manifolds Y
and X. Let V → X and W → Y be two smooth vector bundles. A linear
map D : C∞(X,V)→ C∞(Y,W) is said to be a differential operator of order
at most k if there exists a bundle map Q : p∗(JkV)→W such that

D = Q∗ ◦ p∗ ◦ Jk.

Alternatively, one can give the following equivalent definitions of differ-
ential operators acting between vector bundles over two manifolds Y and X
with morphism p:

• based on local properties that generalize Peetre’s theorem [55] in the
X = Y case ([42, Def. 2.1]);

• based on the Schwartz kernel theorem ([42, Lem. 2.3]);

• by local expression in coordinates ([42, Ex. 2.4]).

Here is a local expression in the case where p is an immersion:

Example 6.4 ([42, Ex. 2.4 (2)]). Suppose that p : Y ↪→ X is an immersion.
Choose an atlas of local coordinates {(yi, zj)} on X such that Y is given
locally by zj = 0 for all j. Then every differential operator D : C∞(X,V)→
C∞(Y,W) is locally of the form

D =
∑
α,β

gαβ(y)
∂|α|+|β|

∂yα∂zβ

∣∣∣∣
z=0

(finite sum),

where gαβ(y) are Hom(V,W )-valued smooth functions on Y .
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Let X and Y be two smooth manifolds acted by G and its subgroup G′,
respectively, with a G′-equivariant smooth map p : Y → X. When V → X
is a G-equivariant vector bundle and W → Y is a G′-equivariant one, we
denote by

DiffG′(C∞(X,V)|G′ , C∞(Y,W))

the space of differential symmetry breaking operators, namely, differential
operators in the sense of Definition 6.3 that are also G′-homomorphisms.

6.2 Duality for differential symmetry breaking opera-
tors

We review briefly the duality theorem between differential symmetry break-
ing operators and morphisms for branching of generalized Verma modules.
See [42, Sect. 2] for details.

Let G be a (real) Lie group. We denote by U(g) the universal envelop-
ing algebra of the complexified Lie algebra gC = Lie(G) ⊗R C. Analogous
notations will be applied to other Lie groups.

Let H be a (possibly disconnected) closed subgroup of G. Given a finite-
dimensional representation F of H, we set

indg
h(F ) := U(g)⊗U(h) F. (6.1)

The diagonal H-action on the tensor product U(g)⊗CF induces an action
of H on U(g) ⊗U(h) F , and thus indg

h(F ) is endowed with a (g, H)-module
structure.

When X and Y are homogeneous spaces G/H and G′/H ′, respectively,
with G′ ⊂ G and H ′ ⊂ H ∩ G′, we have a natural G′-equivariant smooth
map G′/H ′ → G/H induced from the inclusion map G′ ↪→ G. In this case,
the following duality theorem ([42, Thm. 2.9], see also [40, Thm. 2.4]) is a
generalization of the classical duality in the case where G = G′ are complex
reductive Lie groups and H = H ′ are Borel subgroups:

Fact 6.5 (duality theorem). Let F and F ′ be finite-dimensional represen-
tations of H and H ′, respectively, and we define equivariant vector bundles
V = G×H F and W = G′ ×H′ F ′ over X and Y , respectively. Then there is
a canonical linear isomorphism:

Homg′,H′(indg′

h′(F
′∨), indg

h(F
∨)|g′,H′) ≃ DiffG′(C∞(X,V)|G′ , C∞(Y,W)).

(6.2)
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Applying Fact 6.5 to our special setting, we obtain the following:

Proposition 6.6. Let (G,G′) = (O(n + 1, 1), O(n, 1)), V ∈ Ô(n), W ∈
̂O(n− 1), λ, ν ∈ C, and δ, ε ∈ {±}. Let Vλ,δ = V ⊗ δ ⊗Cλ be the irreducible

representation of P with trivial N+-action as before, and V ∨
λ,δ the contra-

gredient representation. Similarly, W∨
ν,ε be the contragredient P ′-module of

Wν,ε = W ⊗ ε⊗ Cν. Then there is a canonical linear isomorphism:

Homg′,P ′(indg′

p′(W
∨
ν,ε), ind

g
p(V

∨
λ,δ)|g′,P ′) ≃ DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)). (6.3)

6.3 Parabolic subgroup compatible with a reductive
subgroup

In this section we treat the general setting where G is a real reductive Lie
group and G′ is a reductive subgroup, and study basic properties of differen-
tial symmetry breaking operators between principal series representation Π
of G and π of the subgroup G′. We shall prove in Theorem 6.8 below that
the image of any nonzero differential symmetry breaking operator is infinite-
dimensional if Π is induced from a parabolic subgroup P which is compatible
with the subgroup G′ (see Definition 6.7).

Let us give a basic setup. Suppose that G is a real reductive Lie group
with Lie algebra g. Take a hyperbolic element H of g, and we define the
direct sum decomposition, referred sometimes to as the Gelfand–Naimark
decomposition (cf. [14]):

g = n− + l+ n+

where n−, l, and n+ are the sum of eigenspaces of ad(H) with negative,
zero and positive eigenvalues, respectively. We define a parabolic subgroup
P ≡ P (H) of G by

P = LN+ (Levi decomposition),

where L = {g ∈ G : Ad(g)H = H} and N+ = exp(n+). The following
“compatibility” gives a sufficient condition for the “discrete decomposabil-
ity” of the generalized Verma module indg

p(V
∨) when restricted to the subal-

gebra g′, which concerns with the left-hand side of the duality (6.2) (see [31,
Thm. 4.1]):

Definition 6.7 ([31]). Suppose G′ is a reductive subgroup of G with Lie
algebra g′. A parabolic subgroup P of G is said to be G′-compatible if there
exists a hyperbolic element H in g′ such that P = P (H).

117



If P is G′-compatible, then P ′ := P ∩ G′ is a parabolic subgroup of the
reductive subgroupG′ with Levi decomposition P ′ = L′N ′

+ where L′ := L∩G′

and N ′
+ := N+ ∩G′.

Theorem 6.8. Let G be a real reductive Lie group, P a parabolic subgroup
which is compatible with a reductive subgroup G′, and P ′ := P ∩G′. Suppose
that V is a G-equivariant vector bundle of finite rank over the real flag man-
ifold G/P , and that W is a G′-equivariant one over G′/P ′. Then for any
nonzero differential operator D : C∞(G/P,V)→ C∞(G′/P ′,W), we have

dimC ImageD =∞.

As we shall see in the proof below, Theorem 6.8 follows from the defini-
tion of differential operators (Definition 6.3) without the assumption that D
intertwines the G′-action.

Proof of Theorem 6.8. We set Y = G′/P ′ and X = G/P . Then Y ⊂ X
because P ′ = P ∩G′. There exist countably many disjoint open subsets {Uj}
of X such that Y ∩ Uj ̸= ∅. It suffices to show that for every j there exists
φj ∈ C∞(X,V) such that Supp(φj) ⊂ Uj andDφj ̸= 0 because Supp(Dφj) ⊂
Uj ∩ Y and because {Uj ∩ Y } is a set of disjoint open sets of Y . We fix j,
and write U simply for Uj. By shrinking U if necessary, we trivialize the
bundles V|U and W|U∩Y . Then we see from Example 6.4 that D can be
written locally as the matrix-valued operators:

D =
∑
α,β

gαβ(y)
∂|α|+|β|

∂yα∂zβ

∣∣∣∣
z=0

.

Take a multi-index β such that gαβ(0) ̸= 0 on U for some α. We fix α such
that |α| = α1 + · · ·+ αdimY attains its maximum among all multi-indeces α
with gαβ(y) ̸≡ 0. Take v in the typical fiber V at (y, z) = (0, 0) such that
gαβ(0)v ̸= 0. By using a cut function, we can construct easily φ ∈ C∞(X,V)
such that Supp(φ) ⊂ U and that φ(y, z) ≡ yαzβv in a neighbourhood of
(y, z) = (0, 0). Then we have

Dφ ̸= 0.

Thus Theorem 6.8 is proved.
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6.4 Character identity for branching in the parabolic
BGG category

We retain the general setting as in Section 6.3, and discuss the duality the-
orem in Section 6.2. To study the left-hand side of (6.3), we use the results
[31, 40] on the restriction of parabolic Verma modules indg

p(F ) with respect
to a reductive subalgebra g′ under the assumption that p is compatible with
g′. For later purpose, we need to formulate the results in [31, 40] in a slightly
more general form as below, because a parabolic subgroup P of a real reduc-
tive Lie group is not always connected.

Suppose that P = LN+ is a parabolic subgroup of G which is compatible
with a reductive subgroup G′. We set n′− := n− ∩ g′. Then the L′-module
structure on the nilradical n− descends to the quotient n−/n

′
−, and extends

to the (complex) symmetric tensor algebra S((n−/n
′
−)⊗R C).

For an irreducible L-module F and an irreducible L′-module F ′, we set

n(F, F ′) := dimCHomL′(F ′, F |L ⊗ S((n−/n′−)⊗R C)). (6.4)

Then we have the following branching rule in the Grothendieck group of
the parabolic BGG category of (g′, P ′)-modules ([31, Prop. 5.2],[40, Thm. 3.5]):

Fact 6.9 (character identity for branching to a reductive subalgebra). Sup-
pose that P = LN+ is a G′-compatible parabolic subgroup of G (Definition
6.7). Let F be an irreducible finite-dimensional L-module.

(1) n(F, F ′) <∞ for all irreducible finite-dimensional L′-modules F ′.

(2) We inflate F to a P -module by letting N+ act trivially, and form a
(g, P )-module indg

p(F ) = U(g) ⊗U(p) F . Then we have the following
identity in the Grothendieck group of the parabolic BGG category of
(g′, P ′)-modules:

indg
p(F )|g′,P ′ ≃

⊕
F ′

n(F, F ′)indg′

p′(F
′).

In the right-hand side, F ′ runs over all irreducible finite-dimensional
P ′-modules, or equivalently, all irreducible finite-dimensional L′-modules
with trivial N ′

+-actions.

Proof. The argument is parallel to the one in [40, Thm. 3.5] for (g′, p′)-
modules, which is proved by using [31, Prop. 5.2].
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6.5 Branching laws for generalized Verma modules

In this section we refine the character identity (identity in the Grothendieck
group) in Section 6.4 to obtain actual branching laws. The idea works in the
general setting (cf. [40, Sect. 3]), however, we confine ourselves with the pair
(G,G′) = (O(n+1, 1), O(n, 1)) for actual computations below. In particular,
under the assumption 2λ ̸∈ Z, we give an explicit irreducible decomposition
of the (g, P )-module indg

p(V
∨
λ,δ) when we regard it as a (g′, P ′)-module:

Theorem 6.10 (branching law for generalized Verma modules). Let V ∈
Ô(n), λ ∈ C, and δ ∈ {±}. Assume 2λ ̸∈ Z. Then the (g, P )-module
indg

p(V
∨
λ,δ) decomposes into the multiplicity-free direct sum of irreducible (g′, P ′)-

modules as follows:

indg
p(V

∨
λ,δ)|g′,P ′ ≃

∞⊕
a=0

⊕
[V :W ]̸=0

indg′

p′((Wλ+a,(−1)aδ)
∨). (6.5)

Here W runs over all irreducible O(n− 1)-modules such that [V : W ] ̸= 0.

Proof of Theorem 6.10. The hyperbolic element H defined in (2.2) is con-
tained in g′ = o(n, 1), and therefore, the parabolic subgroup P is compatible
with the reductive subgroup G′ = O(n, 1) in the sense of Definition 6.7. We
then apply Fact 6.9 to

(F, n−, n
′
−) = (V ∨

λ,δ,
n∑

j=1

RN−
j ,

n−1∑
j=1

RN−
j ).

Since n−/n
′
− ≃ RN−

n , the a-th symmetric tensor space amounts to

Sa((n−/n
′
−)⊗R C) ≃ 1⊠ (−1)a ⊠ C−a

as a module of L′ ≃ O(n − 1) × O(1) × R. Therefore we have an L′-
isomorphism:

F |L′ ⊗ Sa((n−/n
′
−)⊗R C) ≃

⊕
W∈Ô(n−1)
[V :W ]̸=0

W∨ ⊠ (−1)aδ ⊠ C−λ−a,

where we observe [V ∨ : W∨] ̸= 0 if and only if [V : W ] ̸= 0. Thus the identity
(6.5) in the level of the Grothendieck group of (g′, P ′)-modules is deduced
from Fact 6.9.
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In order to prove the identity (6.5) as (g′, P ′)-modules, we use the follow-
ing two lemmas.

Lemma 6.11. Assume 2λ ̸∈ Z. Then any Z(g′)-infinitesimal characters of
the summands in (6.5) are all distinct.

Lemma 6.12. Assume 2λ ̸∈ Z. Then any summand indg′

p′((Wλ+a,(−1)aδ)
∨) in

(6.5) is irreducible as a (g′, P ′)-module.

Proof of Lemma 6.11. Via the Cartan–Weyl bijection (2.20) for the discon-
nected group O(N) (N = n, n − 1), we write V = FO(n)(µ) and W =
FO(n−1)(µ′) for µ = (µ1, · · · , µn) ∈ Λ+(O(n)) and µ′ = (µ′

1, · · · , µ′
n−1) ∈

Λ+(O(n − 1)). By the classical branching law for the restriction O(n) ↓
O(n− 1) (Fact 2.12), [V : W ] ̸= 0 if and only if

µ1 ≥ µ′
1 ≥ µ2 ≥ · · · ≥ µ′

n−1 ≥ µn. (6.6)

Since any irreducible O(N)-module is self-dual, we have W∨ ≃ FO(n−1)(µ′).

Therefore, the Z(g′)-infinitesimal character of the g′-module indg′

p′(W
∨ ⊗

(−1)aδ ⊗ C−λ−a) is given by

(−λ− a+ n− 1

2
, µ′

1 +
n− 3

2
, µ′

2 +
n− 5

2
, · · · , µ′

[n−1
2

]
+
n− 1

2
− [

n− 1

2
])

modulo the Weyl group Sm ⋉ (Z/2Z)m for the disconnected group G′ =
O(n, 1) where m = [n+1

2
]. Hence, if 2λ ̸∈ Z, they are all distinct when a runs

over N and µ′ runs over Λ+(O(n− 1)) subject to (6.6). Thus Lemma 6.11 is
proved.

Proof of Lemma 6.12. By the criterion of Conze-Berline and Duflo [7], the

g′-module indg′

p′(τν ⊗ C−λ−a) is irreducible if τν is an irreducible so(n − 1)-
module with highest weight (ν1, · · · , ν[n−1

2
]) satisfying

⟨−λ−a+n− 1

2
, ν1+

n− 3

2
, ν2+

n− 5

2
, · · · , ν[n−1

2
]+
n− 1

2
−[n− 1

2
], β∨⟩ ̸∈ N+,

where β∨ is the coroot of β, and β runs over the set

∆+(gC)−∆+(lC) = {e1 ± ej : 2 ≤ j ≤ [
n+ 1

2
]}(∪{e1},when n is even).

This condition is fulfilled if 2λ ̸∈ Z because ν1, · · · , ν[n−1
2

] ∈ 1
2
Z and a ∈

N. Hence indg′

p′((Wλ+a,(−1)aδ)
∨) is an irreducible g′-module if W∨(≃ W ) ∈
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O(n − 1) is of type X (Definition 2.6), namely, if W∨ is irreducible as an
so(n − 1)-module. On the other hand, if W∨ ∈ O(n − 1) is of type Y, then

indg′

p′((Wλ+a,(−1)aδ)
∨) splits into the direct sum of two irreducible g′-module

according to the decomposition of W∨ into irreducible so(n − 1)-modules.
Since these two g′-submodules are not stable by the L′-action, we conclude
that indg′

p′((Wλ+a,(−1)aδ)
∨) is irreducible as a (g′, L′)-module, in particular, as

a (g′, P ′)-module. Thus Lemma 6.12 is proved.

6.6 Multiplicity-one theorem for differential symmetry
breaking operators: Proof of Theorem 6.1 (2)

Combining Proposition 6.6 (duality theorem) with the branching law for
generalized Verma modules (Theorem 6.10), we obtain a generic multiplicity-
one theorem for differential symmetry breaking operators as follows:

Corollary 6.13. Suppose V ∈ Ô(n) and W ∈ ̂O(n− 1) satisfy [V : W ] ̸= 0.
Suppose that (λ, ν, δ, ε) ∈ Ψsp (see (1.3)). Assume further 2λ ̸∈ Z. Then

dimC DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) = 1.

This gives a proof of the second statement of Theorem 6.1.

6.7 Existence of differential symmetry breaking oper-
ators: Extension to special parameters

What remains to prove is the implication (i)⇒ (ii) in Theorem 6.1 for special
parameters, namely, for 2λ ∈ Z. We shall use the general idea given in [44,
Lem. 11.10] and deduce the implication (i) ⇒ (ii) for the special parameters
from Corollary 6.13 for the regular parameters, and thus complete the proof
of Theorem 6.1 (1).

Let Diffconst(n−) denote the ring of holomorphic differential operators
on n− with constant coefficients and ⟨ , ⟩ denote the natural pairing n− =∑n

j=1RN
−
j and n+ =

∑n
j=1 RN

+
j . Then the symbol map

Symb: Diffconst(n−)→ Pol(n+), Dz 7→ Q(ζ)

given by the characterization

Dze
⟨z,ζ⟩ = Q(ζ)e⟨z,ζ⟩
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is a ring isomorphism between Diffconst(n−) and the polynomial ring Pol(n+).
The F-method ([42, Thm. 4.1]) characterizes the “Fourier transform” of

differential symmetry breaking operators by certain systems of differential
equations. It tells that any element in DiffG′(Iδ(V, λ)|G′ , Jε(W,λ + a)) is
given as a HomC(V,W )-valued differential operator D on the Bruhat cell
N− ≃ Rn as

D = Restxn=0 ◦ (Symb−1 ⊗ id)(ψ),

where ψ(ζ1, · · · , ζn) is a HomC(V,W )-valued homogeneous polynomial of de-
gree a satisfying a system of linear (differential) equations (cf. [42, (4.3) and
(4.4)]) that depend holomorphically on λ ∈ C.

If we write the solution ψ(ζ) as

ψ(ζ) =
∑

β1+···+βn=a

φ(β)ζβ1

1 · · · ζβn
n ,

then the system of differential equations for ψ(ζ) in the F-method amounts
to a system of linear (homogeneous) equations for the coefficients {φ(β) :
|β| = a}. We regard φ = (φ(β)) ∈ Ck where k := #{β ∈ Nn : |β| = α}, and
use the following elementary lemma on the global basis of solutions:

Lemma 6.14. Let Qλφ = 0 be a system of linear homogeneous equations
of φ ∈ Ck such that Qλ depends holomorphically on λ ∈ C. Assume that
there exists a nonempty open subset U of C such that the space of solutions
to Qλφ = 0 is one-dimensional for every λ in U . Then there exists φλ ∈ Ck

that depend holomorphically on λ in the entire C such that Qλφλ = 0 for all
λ ∈ C.

Proof. We may regard the equation Qλφ = 0 as a matrix equation where Qλ

is an l by k matrix (l ≥ k) whose entries are holomorphic functions of λ ∈ C.
By assumption, we have

rankQλ = k − 1 for all λ ∈ U.

We can choose a nonempty open subset U ′ of U and k row vectors in Qλ such
that the corresponding square submatrix Pλ is of rank k− 1, provided λ be-
longs to U ′. Then at least one of row vectors in the cofactor of Pλ is nonzero,
which we choose and denote by φλ. Clearly, φλ depends holomorphically on
the entire λ ∈ C, and Qλφλ = 0 for all λ ∈ U ′.

Since both Qλ and φλ depend holomorphically on λ in the entire C, the
equation Qλφλ = 0 holds for all λ ∈ C.
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We note that the solution φλ in Lemma 6.14 may vanish for some λ ∈ C.
However, the following nonvanishing result holds for all λ ∈ C.

Proposition 6.15. Suppose we are in the setting of Lemma 6.14. Then

dimC{φ ∈ Ck : Qλφ = 0} ≥ 1 for all λ ∈ C. (6.7)

Proof. Let φλ be as in Lemma 6.14. Then it suffices to show (6.7) for λ
belonging to the discrete set {λ ∈ C : φλ = 0}. Take any λ0 such that
φλ0 = 0. Let k be the smallest positive integer such that

ψλ0 :=
∂k

∂λk

∣∣∣∣
λ=λ0

φλ ̸= 0 and
∂j

∂λj

∣∣∣∣
λ=λ0

φλ = 0 for 0 ≤ j ≤ k − 1.

By the Leibniz rule, ∂k

∂λk

∣∣∣
λ=λ0

(Qλφλ) = 0 yieldsQλ0ψλ0 = 0, because ∂j

∂λj

∣∣∣
λ=λ0

φλ =

0 for all 0 ≤ j ≤ k − 1. Therefore ψλ0 is a nonzero solution to Qλ0φ = 0,
showing (6.7) for λ = λ0. Hence Proposition 6.15 is proved.

As in the proof of Theorem 5.42, the implication (i) ⇒ (ii) in Theorem
6.1 follows from Corollary 6.13 (generic parameters) and the extension result
to special parameters (Proposition 6.15). Thus we have completed a proof
of Theorem 6.1, and in particular, of Theorem 3.12 (2).

6.8 Proof of Theorem 3.13 (2-b)

In this section, we give a proof of Theorem 3.13 (2-b), namely, we prove the
following proposition.

Proposition 6.16 (localness theorem). Suppose [V : W ] ̸= 0. Suppose that
(λ, ν, δ, ε) ∈ Ψsp, namely, (λ, ν) ∈ C2 and δ, ε ∈ {±} satisfy

ν − λ ∈ 2N when δε = +; ν − λ ∈ 2N+ 1 when δε = −.

Assume further that ÃV,W
λ,ν,δε ̸= 0. The we have

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) = DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)).

We need two lemmas from [44].
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Lemma 6.17 ([44, Lem. 11.10]). Suppose Dµ is a differential operator with
holomorphic parameter µ, and Fµ is a distribution on Rn that depends holo-
morphically on µ having the following expansions:

Dµ = D0 + µD1 + µ2D2 + · · · ,
Fµ = F0 + µF1 + µ2F2 + · · · ,

where Dj are differential operators and Fi are distributions on Rn. Assume
that there exists ε > 0 such that DµFµ = 0 for any complex number µ with
0 < |µ| < ε. Then the distributions F0 and F1 satisfy the following differential
equations:

D0F0 = 0 and D0F1 +D1F0 = 0.

Lemma 6.18 ([44, Lem. 11.11]). Suppose h ∈ D′(Rn) is supported at the
origin. Let E be the Euler homogeneity operator

∑n
ℓ=1 xℓ

∂
∂xℓ

as before. If

(E + A)2h = 0 for some A ∈ Z then (E + A)h = 0.

The argument below is partly similar to the one in Section 5.11.2, how-

ever, we note that the renormalization ˜̃AV,W
λ0,ν0,γ

in Theorem 5.45 is not defined

under our assumption that ÃV,W
λ0,ν0,γ

̸= 0 and (λ0, ν0, δ, ε) ∈ Ψsp. Instead, we

shall use the distribution ( ˜̃AV,W
λ,ν,γ)

′ on Rn−{0}, of which we recall (5.37) and
(5.38) for the definition.

Proof of Proposition 6.16. Take any symmetry breaking operator

T ∈ HomG′(Iδ(V, λ0)|G′ , Jε(W, ν0)).

We write (T∞, T ) for the pair of distribution kernels of T as in Proposition
5.15. We set γ := δε.

It follows from Proposition 5.20 (3) that T |Rn−{0} = c′( ˜̃AV,W
λ0,ν0,γ

)′ for some
c′ ∈ C.

Suppose ÃV,W
λ0,ν0,γ

̸= 0 and ν0 − λ0 ∈ 2N (γ = +) or ∈ 2N+ 1 (γ = −). As
in (5.52), we expand ÃV,W

λ,ν0,γ
near λ = λ0:

ÃV,W
λ,ν0,γ

= F0 + (λ− λ0)F1 + (λ− λ0)2F2 + · · · ,

where Fj ∈ D′(Rn)⊗HomC(V,W ). We note that F0 ̸= 0 because ÃV,W
λ0,ν0,γ

̸= 0.
We define a nonzero constant c by

c := lim
µ→0

µΓ(
µ

2
− l) = 2(−1)l

l!
. (6.8)
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In view of the relation

ÃV,W
λ,ν,+|Rn−{0} =

1

Γ(λ−ν
2
)
( ˜̃AV,W

λ,ν,+)
′, ÃV,W

λ,ν,−|Rn−{0} =
1

Γ(λ−ν+1
2

)
( ˜̃AV,W

λ,ν,−)
′,

we get

cF1|Rn−{0} = ( ˜̃AV,W
λ0,ν0,γ

)′,

as in the proof of Theorem 5.45 (3). We set

D0 := E − λ0 + ν0 + n =
n∑

j=1

xj
∂

∂xj
− λ0 + ν0 + n.

Applying Lemma 6.17 to the differential equation (5.28):

(E − λ+ ν0 + n)ÃV,W
λ,ν0,γ

= (D0 − (λ− λ0))ÃV,W
λ,ν0,γ

= 0,

we get
D0F0 = 0, D0F1 − F0 = 0. (6.9)

We set
h := T − cc′F1 ∈ D′(Rn)⊗ HomC(V,W ).

Then Supph ⊂ {0}. Moreover, D2
0h = 0 by D0T = 0 and (6.9).

Applying Lemma 6.18, we get D0h = 0. It turn, cc′F0 = 0 again by
D0T = 0 and (6.9). Therefore, if ÃV,W

λ0,ν0,γ
̸= 0, or equivalently, if ÃV,W

λ0,ν0,γ
̸= 0,

then we conclude c′ = 0 because F0 ̸= 0. Thus T is supported at the origin,
and therefore T is a differential operator (see Proposition 5.15 (3)).

Hence Proposition 6.16 is proved.

The above proof implies that the distribution ( ˜̃AV,W
λ,ν,γ)

′ ∈ D′(Rn − {0})⊗
HomC(V,W ) in (5.37) and (5.38) does not always extend to an element of
Sol(Rn;Vλ,δ,Wν,ε) (γ = δε):

Proposition 6.19. Let γ ∈ {±}. Suppose (λ, ν) ∈ C2 satisfies

ν − λ ∈ 2N when γ = +; ν − λ ∈ 2N+ 1 when γ = −.

If ÃV,W
λ,ν,γ ̸= 0, then for δ, ε ∈ {±} with δε = γ, the restriction map

Sol(Rn;Vλ,δ,Wν,ε)→ D′(Rn − {0})⊗ HomC(V,W )

is identically zero.
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7 Minor summation formulæ related to exte-

rior tensor
∧
i(Cn)

This chapter collects some combinatorial formulæ, which will be used in later
chapters to compute the (K,K ′)-spectrum for symmetry breaking operators
between differential forms on spheres Sn and Sn−1, namely, between principal
series representations Iδ(V, λ) of G and Jε(W, ν) of its subgroup G′ in the
setting where (V,W ) = (

∧
i(Cn),

∧
j(Cn−1)).

7.1 Some notation on index sets

Let n be a positive integer. We shall use the following convention of index
sets:

In,i := {I ⊂ {1, · · · , n} : #I = i}. (7.1)

Convention 7.1. We use calligraphic uppercase letters I, J instead of Ro-
man uppercase letters I, J if the index set may contain 0. That is, if we
write I ∈ In+1,i, then

I ⊂ {0, 1, · · · , n} with #I = i.

In later applications for symmetry breaking with respect to (G,G′) =
(O(n+ 1, 1), O(n, 1)), the notation In+1,i for subsets of {0, 1, · · · , n} will be
used when we describe the basis of the basic K-types and K ′-types, whereas
the notation In,i, In−1,i will be used when we discuss representations of M
and M ′, respectively.

7.1.1 Exterior tensors
∧

i(Cn)

Let {e1, · · · , en} be the standard basis of Cn. For I = {k1, k2, · · · , ki} ∈ In,i

with k1 < k2 < · · · < ki, we set

eI := ek1 ∧ · · · ∧ eki ∈
∧i(Cn).

Then {eI : I ∈ In,i} forms a basis of the exterior tensor space
∧

i(Cn). We
define linear maps

pri→j :
∧i(Cn)→

∧j(Cn−1), (j = i− 1, i)
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by

pri→i(eI) =

{
eI if n /∈ I,
0 if n ∈ I,

(7.2)

pri→i−1(eI) =

{
0 if n /∈ I,
(−1)i−1eI−{n} if n ∈ I.

(7.3)

Then we have the direct sum decomposition∧i(Cn) ≃
∧i(Cn−1)⊕

∧i−1(Cn−1). (7.4)

7.1.2 Signatures for index sets

Let N ∈ N+. In later sections, N will be n− 1, n or n+ 1.
For a subset I ⊂ {1, · · · , N}, we define a signature εI(k) by

εI(k) :=

{
1 if k ∈ I,
−1 if k ̸∈ I,

and a quadratic polynomial QI(y) by

QI(y) :=
∑
ℓ∈I

yℓ
2 for y = (y1, · · · , yN) ∈ RN . (7.5)

We note that

2QI(y)− |y|2 =
N∑
k=1

εI(k)yk
2.

For I, J ⊂ IN,i, we set

|I − J | := #I −#(I ∩ J) = #J −#(I ∩ J).

By definition, |I − J | = 0 if and only if I = J ; |I − J | = 1 if and only if
there exist K ∈ IN,i−1 and p, q ̸∈ K with p ̸= q such that I = K ∪ {p} and
J = K ∪ {q}.

Definition 7.2. For I ⊂ {1, 2, · · · , n} and p, q ∈ N, we set

sgn(I; p) :=(−1)#{r∈I:r<p},

sgn(I; p, q) :=(−1)#{r∈I:min(p,q)<r<max(p,q)}.
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The following lemma is readily seen from the definition.

Lemma 7.3. For I ⊂ {1, 2, · · · , n} and p, q ∈ N, we have

sgn(I; p) sgn(I; q) =

{
sgn(I; p, q) if min(p, q) /∈ I,
− sgn(I; p, q) if min(p, q) ∈ I.

For y = (y1, · · · , yN) ∈ RN , we define quadratic polynomials SIJ(y) by

SIJ(y) :=


∑N

k=1 εI(k)y
2
k if I = J,

2 sgn(K; p, q)ypyq if I = K ∪ {p}, J = K ∪ {q},
0 if |I − J | ≥ 2,

(7.6)

where we write I = K ∪ {p} and J = K ∪ {q} (p ̸= q) when |I − J | = 1.
It is convenient to set

S∅∅(y) = −
N∑
k=1

y2k. (7.7)

7.2 Minor determinant for ψ : RN − {0} → O(N)

We introduce the following map:

ψN : RN × C→M(N,C), (y;λ) 7→ IN − λ y ty. (7.8)

Here we have used a similar notation to the map ψN(y) defined in (3.4). In
fact, the map (7.8) may be thought of as an extension of the previous one,

since its special value at λ =
2

|y|2
recovers (3.4) by

ψN(y) = ψN(y;
2

|y|2
) for y ∈ RN − {0}. (7.9)

For I, J ⊂ {1, 2, · · · , N} with #I = #J , the minor determinant of A =
(Aij)1≤i,j≤N ∈M(N,R) is denoted by

detAIJ := det(Aij) i∈I
j∈J

.

Then the exterior representation

σ : O(N)→ GLC(
∧

k(CN))
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is given by

σ(A)eJ =
∑

J ′∈IN,k

(detA)J ′JeJ ′ . (7.10)

It follows from (7.10) that for A,B ∈ O(N) we have

det(AB)JJ ′ =
∑

J ′′∈IN,j

(detA)JJ ′′(detB)J ′′J ′ (7.11)

Lemma 7.4. Suppose I, J ⊂ {1, · · · , N} with #I = #J .
(1) For (y;λ) ∈ RN × C,

detψN(y;λ)IJ =


1− λQI(y) if I = J,

−λ sgn(K; p, q)ypyq if I = K ∪ {p}, J = K ∪ {q},
0 if |I − J | ≥ 2.

(2) For y ∈ RN − {0},

detψN(y)IJ =− 1

|y|2
SIJ(y)

=
1

|y|2
×


−
∑N

l=1 εI(l)y
2
l if I = J,

−2 sgn(K; p, q)ypyq if I = K ∪ {p}, J = K ∪ {q},
0 if |I − J | ≥ 2.

Proof. (1) Suppose I = J . Since the symmetric matrix y ty is of rank 1, its
characteristic polynomial has zeros of order N − 1:

det(µIN − y ty) = µN − µN−1(Trace y ty) = µN − µN−1

N∑
j=1

y2j ,

and therefore

det(IN − λy ty) = 1− λ
N∑
j=1

y2j .

Applying this to the principal minor of size #I, we get the first formula.
Next suppose |I − J | = 1. We may write as I = K ∪ {p}, J = K ∪ {q}.

Then the q-th column vector of the minor matrix (IN − λy ty)IJ is of the
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form −λyq(yi)i∈I . Adding this vector multiplied by the scalar (−yj/yq) to
the j-th column vector for j ∈ J − {q}, we get

detψN(y;λ)IJ =sgn(K; q) det(−λyq(yi)i∈I , (δij) i∈I
j∈K

)

=− λ sgn(K; p) sgn(K; q)ypyq.

Hence the second formula follows from Lemma 7.3. The third one is proved
similarly.
(2) Substitute λ = 2

|y|2 .

As a special case of Lemma 7.4 (2) with N = n+1, we have the following:

Lemma 7.5. For I,J ∈ In+1,i and b ∈ Rn, we have

detψn+1(1, b)IJ =
−1

1 + |b|2
SIJ (1, b).

Here (1, b) := (1, b1, · · · , bn) ∈ Rn+1.

7.3 Minor summation formulæ

We collect minor summation formulæ that we shall need in computing the
(K,K ′)-spectrum of symmetry breaking operators for “basic K-types”.

We recall from (7.5) that QI(b) =
∑

k∈I b
2
k.

Lemma 7.6. Suppose I ∈ In,i. For b ∈ Rn and s, t ∈ C, we have:

(1)
∑

J∈In,i

detψn(b; s)IJ detψn(b; t)IJ = 1− (s+ t)QI(b) + st|b|2QI(b).

(7.12)

(2)
∑

J∈In,i

detψn+1(1, b; s)I∪{0},J∪{0} detψn(b; t)IJ

= 1− s− (s+ t− st)QI(b) + st|b|2QI(b). (7.13)

(3)
∑

J∈In,i

detψn+1(1, b; s)IJ detψn(b; t)IJ = 1− (s+ t)QI(b) + st|b|2QI(b).

(7.14)
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Proof. (1) By Lemma 7.4, the left-hand side is equal to

(1− sQI(b))(1− tQI(b)) +
∑
k∈I
l/∈I

stb2kb
2
l

=1− (s+ t)QI(b) + stQI(b)
2 + stQI(b)(|b|2 −QI(b)),

whence the equation (7.12).
(2) By Lemma 7.4, the left-hand side is equal to

(1− s(1 +QI(b)))(1− tQI(b)) + st
∑
k∈I
l/∈I

b2kb
2
l ,

whence the equation (7.13).
(3) By Lemma 7.4, the left-hand side is equal to

(1− sQI(b))(1− tQI(b)) + st
∑
k∈I
l/∈I

b2kb
2
l

=1− (s+ t)QI(b) + stQI(b)
2 + stQI(b)(|b|2 −QI(b)),

whence the equation (7.14).

The following proposition will be used in obtaining the closed formulæ of
the (K,K ′)-spectrum of the Knapp–Stein intertwining operators (Proposi-
tion 8.9) and the ones of the regular symmetry breaking operators (Theorem
9.8).

Proposition 7.7. For I ∈ In,i, we have:

(1)
∑

J∈In,i

detψn(b;
2

1 + |b|2
)IJ detψn(b)IJ = 1− 2QI(b)

(1 + |b|2)|b|2
.

(2)
∑

J∈In,i

detψn+1(1, b)I∪{0},J∪{0} detψn(b)IJ =
−1 + |b|2

1 + |b|2
+

2QI(b)

(1 + |b|2)|b|2
.

(3)
∑

J∈In,i

(
detψn(b;

2

1 + |b|2
)IJ + detψn+1(1, b)I∪{0},J∪{0}

)
detψn(b)IJ =

2|b|2

1 + |b|2
.

(4)
∑

J∈In,i

detψn+1(1, b)IJ detψn(b)IJ = 1− 2QI(b)

(1 + |b|2)|b|2
. (7.15)
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Proof. The assertions (1), (2), and (4) are special cases of Lemma 7.6 (1),

(2), and (3), respectively, with s =
2

1 + |b|2
and t =

2

|b|2
. The third one

follows from the first two.

Lemma 7.8. For I ∈ In−1,i−1,∑
J∈In,i

detψn+1(1, b)I∪{0},J detψn(b)I∪{n},J =
2(−1)i+1bn
1 + |b|2

.

Proof. Since 0 /∈ J , the summand vanishes except for the following two cases:
Case 1) J = I ∪ {n}.
Case 2) J = I ∪ {p} for some p ∈ {1, 2, · · · , n− 1} − I.

By Lemma 7.4, we get

(1 + |b|2)|b|2
∑

J∈In,i

detψn+1(1, b)I∪{0},J detψn(b)I∪{n},J

=(−2 sgn(I; 0, n)bn)(|b|2 − 2QI(b)− 2b2n)

+
∑

p∈{1,2,··· ,n−1}−I

(−2 sgn(I; 0, p)bp)(−2 sgn(I; p, n)bpbn)

=2(−1)i+1bn(2QI(b) + 2b2n − |b|2) + 4(−1)i+1bn(|b|2 −QI(b)− b2n)
=2(−1)i+1|b|2bn.

Hence Lemma 7.8 is proved.

Lemma 7.9. For I ∈ In−1,i,∑
J∈In,i

detψn+1(1, b)I∪{n},J∪{0} detψn(b)IJ =
2(−1)i+1bn
1 + |b|2

.

Proof. Since 0 /∈ I, |(I ∪ {n}) − (J ∪ {0})| ≤ 1 holds in the following two
cases:
Case 1. I = J .
Case 2. I = K ∪ {p} and J = K ∪ {n} for some K ∈ In−1,i−1.

In Case 1,

detψn+1(1, b)I∪{n},J∪{0} detψn(b)II =
2(−1)i+1bn
1 + |b|2

× (1− 2QI(b)

|b|2
).
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In Case 2,

detψn+1(1, b)K∪{p,n},K∪{0,n} detψn(b)K∪{p},K∪{n}

=
−2sgn(K ∪ {n}; 0, p)bp

1 + |b|2
× −2sgn(K; p, n)bpbn

|b|2

= (−1)i−1 4

(1 + |b|2)|b|2
b2pbn.

Adding the term in Case 1 and taking the summation of the terms over p ∈ I
in Case 2, we get the lemma.
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8 The Knapp–Stein intertwining operators re-

visited: Renormalization and K-spectrum

In this chapter, we discuss the classical Knapp–Stein operators, which may
be viewed as a baby case of symmetry breaking operators (i.e., G = G′ case).
We determine the (K,K)-spectrum (K-spectrum, for short) of the matrix-

valued Knapp–Stein operators T̃V
λ,n−λ : Iδ(V, λ) → Iδ(V, n − λ), see (8.13)

in the case where V =
∧

i(Cn). We also study the renormalization of the

operator T̃V
λ,n−λ when it vanishes, see Section 8.4.

8.1 Basic K-types in the compact picture

Let (µ, U) be an irreducible representation of a compact Lie group K, and
(σ, V ) that of a subgroup M . The classical Frobenius reciprocity tells that µ
occurs in the induced representation IndK

Mσ if and only if HomM(µ|M , σ) ̸=
{0}. In this section we provide a concrete realization of (µ, U) in the space
C∞(K/M,V) of global sections for the K-equivariant vector bundle V =
K ×M V which we will use later.

Lemma 8.1. (1) Let (µ, U) be a finite-dimensional representation of a
compact Lie group K. The left regular representation on C∞(K,U)
is defined by f(·) 7→ f(ℓ−1·) for f ∈ C∞(K,U) and ℓ ∈ K, where we
regard U just as a vector space. By assigning to u ∈ U , the function
fu : K → U is defined by fu(k) := µ(k)−1u. Then the K-module U can
be embedded as a submodule of the left regular representation C∞(K,U)
by

U → C∞(K,U), u 7→ fu.

(2) Let V be a vector space over C, and prU→V : U → V a linear map.
Then we have a K-homomorphism

U → C∞(K,V ), u 7→ prU→V ◦fu.

(3) Suppose that σ : M → GLC(V ) is a representation of a subgroup M
of K and that prU→V is an M-homomorphism. Then we have a well-
defined K-homomorphism

U → C∞(K/M,V), u 7→ prU→V ◦fu,
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where we identify the space of smooth sections for V := K ×M V over
K/M with the space of M-invariant elements

C∞(K,V )M := {F ∈ C∞(K,V ) : F (·m) = σ(m)−1F (·) for all m ∈M}.

Proof. The detailed formulation of each statement gives a proof by itself.

Applying Lemma 8.1 to differential forms on the sphere, we obtain:

Example 8.2. Let K := O(n + 1), and σ be the i-th exterior tensor rep-
resentation of the subgroup M := O(n) on V :=

∧
i(Cn). Then the vector

bundle V = K ×M V is identified with the i-th exterior tensor of the cotan-
gent bundle of the n-sphere Sn ≃ K/M , and we may identify C∞(K,V )M ≃
C∞(K/M,V) with the space E i(Sn) of differential i-forms on Sn. Suppose
that µ is the k-th exterior tensor representation of K = O(n + 1) on U :=∧

k(Cn+1). For k = i or i+1, the projection prk→i :
∧

k(Cn+1)→
∧

i(Cn), see
(7.2) and (7.3), is an M -homomorphism, and therefore, Lemma 8.1 gives a
concrete realization of theK-module U =

∧
k(Cn+1) in E i(Sn) ≃ C∞(K,V )M

as below. Let {e0, e1, · · · , en} be the standard basis of Cn+1, and {eI : I ∈
In+1,k} the standard basis of

∧
k(Cn+1).

We treat the cases k = i and i + 1, separately. In what follows, we
use Convention 7.1 for the index set In+1,k. See also Section 7.2 for minor
determinant (detA)IJ of A ∈M(N,R).
Case 1. Suppose k = i. Then 1I := pri→i ◦feI is a map given by

O(n+ 1)→
∧

i(Cn), k 7→ 1I(k) =
∑

J∈In,i

(det k)IJeJ . (8.1)

Thus 1I is regarded as an element of C∞(O(n+ 1),
∧

i(Cn))O(n) ≃ E i(Sn).

Case 2. Suppose k = i + 1. Then hI := (−1)i pri+1→i ◦feI is a map given
by

O(n+ 1)→
∧

i(Cn), k 7→ hI(k) =
∑

J∈In,i

(det k)I,J∪{0}eJ , (8.2)

which is again regarded as an element of E i(Sn). We remark that the pro-
jection

pri+1→j :
∧

i+1(Cn+1)→
∧

i(Cn)

is given by “removing” e0, whereas the projection in (7.3) was by “removing”
en.
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By Lemma 8.1, we obtain injective O(n+ 1)-homomorphisms∧
i(Cn+1) → E i(Sn), eI 7→ 1I ,∧
i+1(Cn+1)→ E i(Sn), eI 7→ hI .

8.2 K-picture and N-picture of principal series repre-
sentations

Let (σ, V ) ∈ Ô(n), δ ∈ {±1}, and λ ∈ C. We recall from Section 2.3.1 that
the principal series representation

Iδ(V, λ) = IndG
P (V ⊗ δ ⊗ Cλ)

of G = O(n+1, 1) is realized on the Fréchet space C∞(G/P,Vλ,δ) of smooth
sections for the homogeneous vector bundle G ×P Vλ,δ over the real flag
manifold G/P , see (2.27).

8.2.1 Explicit K-finite vectors in the N-picture

In this subsection we review the K-picture and N -picture of the principal
series representation Iδ(V, λ), and provide a concrete formula connecting the
two pictures.

As we saw in (2.28), the noncompact picture (N -picture) of Iδ(V, λ) is
given by

ι∗N : Iδ(V, λ) ↪→ C∞(Rn)⊗ V, F 7→ f(b) := F (n−(b)),

as the pull-back of sections via the coordinate map of the open Bruhat cell
ιN : Rn ↪→ G/P, b 7→ n−(b) · o, where n− : Rn ∼→ N− is defined in (2.5).

Next, let Vδ denote the outer tensor product representation V ⊠ δ of
M = O(n) × O(1). Then the diffeomorphism ιK : K/M

∼→ G/P induces
an isomorphism ι∗K(Vλ,δ) ≃ K ×M Vδ as K-equivariant vector bundles over
K/M , and hence K-isomorphisms between the space of sections:

ι∗K : Iδ(V, λ)
∼→ C∞(K/M,K ×M Vδ) ≃ (C∞(K)⊗ Vδ)M ,

which is referred to as the K-picture of Iδ(V, λ).
The transform from the K-picture to the N -picture is given by

ι∗λ := ι∗N ◦ (ι∗K)−1 : (C∞(K)⊗ Vδ)M ↪→ C∞(Rn)⊗ V. (8.3)
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Then the three realizations of the principal series representation Iδ(V, λ) of
G are summarized as below.

C∞(G/P,Vλ,δ)

xxrrr
rrr

rrr
rrr

rrr
rrr

rrr
rrr

rrr

ι∗N

%%KK
KKK

KKK
KKK

KKK
KKK

KKK
KKK

KKK

ι∗K

(K-picture) (C∞(K)⊗ Vδ)M ι∗λ

// C∞(Rn)⊗ V (N -picture)

To compute ι∗λ, we recall from Lemma 5.8 that the map

k : Rn → SO(n+ 1) ⊂ K = O(n+ 1)×O(1),

see (5.6), induces the following commutative diagram:

Rn ∼−→
n−

N− ↪→ G/P
∼←−K/M

K

��

k

66mmmmmmmmmmmmmmmmmmmmmmmmmm

Lemma 8.3. Suppose F ∈ (C∞(K)⊗ Vδ)M . Then we have

(ι∗λF )(b) = (1 + |b|2)−λF (k(b)) for all b ∈ Rn. (8.4)

Here k(b) ∈ SO(n+ 1) is viewed as an element of K on the right-hand side.

Proof. We define t ∈ R by et = 1 + |b|2. It follows from Lemma 5.8 that

(ι∗λF )(b) = (ι∗K
−1F )(n−(b)) =(ι∗K

−1F )

((
k(b) 0
0 1

)
etHn+(

−b
1 + |b|2

)

)
=(1 + |b|2)−λF

((
k(b) 0
0 1

))
.

Hence the lemma is verified.
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8.2.2 Basic K-types in the N-picture

We recall from the K-type formula (Lemma 2.16) that the principal series
representation Iδ(i, λ) of G = O(n + 1, 1) contains two “basic K-types”
µ♭(i, δ) =

∧
i(Cn+1)⊠ δ and µ♯(i, δ) =

∧
i+1(Cn+1)⊠ (−δ) for 0 ≤ i ≤ n.

In this section, we write down explicit K-finite vectors belonging to
µ♭(i, δ) and µ♯(i, δ) in the noncompact picture.

Let 1I and hI be the elements in E i(Sn) ≃ C∞(O(n + 1), V )O(n) con-
structed in Example 8.2, where we take V to be

∧
i(Cn). We note that the

pair
(K,M) = (O(n+ 1)×O(1), O(n)×O(1))

is not exactly the same with the pair (O(n+ 1), O(n)) in Example 8.2, how-
ever, the diffeomorphism O(n + 1)/O(n)

∼→ K/M induces the following iso-
morphisms

E i(Sn) ≃ C∞(O(n+ 1)⊗ V )O(n) ∼← C∞(K ⊗ Vδ)M .

Thus we may regard that {1I : I ∈ In+1,i} is a basis of µ♭(i, δ) and {hI :
I ∈ In+1,i+1} is a basis of µ♯(i, δ). Applying the map ι∗λ : C

∞(K ⊗ Vδ)M ↪→
C∞(Rn)⊗ V (see (8.4)), we set

1I
λ :=ι∗λ1

I for I ∈ In+1,i,

hIλ :=ι∗λh
I for I ∈ In+1,i+1.

By Lemma 8.1 and Example 8.2, we have shown the following.

Proposition 8.4 (basic K-type µ♭ and µ♯). We define linear maps by∧
i(Cn+1)→ C∞(Rn,

∧
i(Cn)), eI 7→ 1I

λ for I ∈ In+1,i, (8.5)∧
i+1(Cn+1)→ C∞(Rn,

∧
i(Cn)), eI 7→ hIλ for I ∈ In+1,i+1.

Then, for δ = ±, the images give the unique K-types µ♭(i, δ) =
∧

i(Cn+1)⊠ δ
and µ♯(i, δ) =

∧
i+1(Cn+1) ⊠ (−δ) respectively, of the principal series repre-

sentation Iδ(i, λ) = IndG
P (
∧

i(Cn)⊗ δ ⊗ Cλ) of G in the N-picture.

An explicit formula for 1I
λ and hIλ is given as follows.

Lemma 8.5. Let SIJ (b) be the quadratic polynomial of b = (b1, · · · , bn)
defined in (7.6).
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(1) Let 0 ≤ i ≤ n. For I ∈ In+1,i and λ ∈ C, we have

1I
λ(b) =(1 + |b|2)−λ

∑
J∈In,i

detψn+1(1, b)IJeJ

=− (1 + |b|2)−λ−1
∑

J∈In,i

SIJ(1, b)eJ . (8.6)

If i = 0, we regard I = ∅ and 1∅
λ = (1 + |b|2)−λ (see (7.7)).

(2) Let 0 ≤ i ≤ n. For I ∈ In+1,i+1 and λ ∈ C, we have

hIλ(b) =− (1 + |b|2)−λ
∑

J∈In,i

detψn+1(1, b)I,J∪{0}eJ

=(1 + |b|2)−λ−1
∑

J∈In,i

SI,J∪{0}(1, b)eJ . (8.7)

We note that Lemma 8.5 implies

1I
λ(0) =

{
eI 0 ̸∈ I,
0 0 ∈ I,

(8.8)

hIλ(0) =

{
eI−{0} 0 ∈ I,
0 0 /∈ I.

(8.9)

Proof of Lemma 8.5. Suppose b ∈ Rn, and let k(b) ∈ SO(n+1) be as defined
in (5.6). By (8.1) and (8.2), respectively, the formula (8.4) of ι∗λ tells that

1I
λ(b) = (ι∗λ1

I)(b) = (1 + |b|2)−λ1I(k(b))

= (1 + |b|2)−λ
∑

J∈In,i

(det k(b))IJeJ ,

hIλ(b) = (ι∗λh
I)(b) = (1 + |b|2)−λhI(k(b))

= (1 + |b|2)−λ
∑

J∈In,i

(det k(b))I,J∪{0}eJ .

It follows from Lemma 7.4 (2) that, for I,J ⊂ {0, 1, · · · , n} with #I =
#J = i, the minor determinant of k(b) is given by

(det k(b))IJ = −εJ (0)(detψn+1(1, b))IJ = εJ (0)
SIJ (1, b)

1 + |b|2
, (8.10)
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where we set εJ (0) = −1 for 0 /∈ J and εJ (0) = 1 for 0 ∈ J .
Now the second formulæ in Lemma 8.5 are also shown.

8.3 Knapp–Stein intertwining operator

In this section we summarize some basic results on the matrix-valued Knapp–
Stein intertwining operators, see [24, 25]. In the general framework of sym-
metry breaking operators for the restriction G ↓ G′, this classical case may
be thought of as a special case where G = G′, and the proof is much easier
than the general case G ⫌ G′. Nevertheless, we sketch a proof of results
which we need in other chapters.

8.3.1 Knapp–Stein intertwining operator

For (σ, V ) ∈ Ô(n), δ, ε ∈ {±} and λ, ν ∈ C, we consider intertwining op-
erators between two principal series representations Iδ(V, λ) and Iε(V, ν) of
G = O(n+ 1, 1). They are determined by distribution kernels, and Fact 5.9
(see [44, Prop. 3.2]) with G = G′ and V =W gives a linear isomorphism

HomG(Iδ(V, λ), Iε(V, ν)) ≃ (D′(G/P,V∗
λ,δ)⊗ Vν,ε)∆(P ), (8.11)

where P acts diagonally on the (G × P )-module D′(G/P,V∗
λ,δ) ⊗ Vν,ε. As

in Proposition 5.15 (2), the restriction to the open Bruhat cell determines
invariant distributions in the right-hand side, and thus we have an injective
homomorphism

(D′(G/P,V∗
λ,δ)⊗ Vν,ε)∆(P ) ↪→ D′(Rn)⊗ EndC(V ), f 7→ F (x) := f(n−(x)),

where we have used the canonical isomorphism V ∨⊗V ≃ EndC(V ). Different
from the case G ⫌ G′ for symmetry breaking operators, there are strong
constraints on the parameter for the existence of nonzero elements in (8.11).
In fact, it follows readily from the P -invariance that F |Rn−{0} is nonzero only
if ν = n−λ, and in this case it is proportional to |x|2λ−2nσ(ψn(x)), where we
recall from (3.4) the definition of ψn : Rn − {0} → O(n). We normalize as

T̃ V
λ,n−λ(x) :=

1

Γ(λ− n
2
)
|x|2λ−2nσ(ψn(x)). (8.12)

Remark 8.6. The normalization of the Knapp–Stein operator is not unique,
and different choices are useful for different purposes. See for example
Knapp–Stein [24] or Langlands [51].
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With the normalization (8.12), we now review the Knapp–Stein inter-
twining operators in this setting as follows.

Lemma 8.7 (normalized Knapp–Stein operator). The distribution (8.12)
belongs to L1

loc(Rn) ⊗ EndC(V ) if Reλ ≫ 0, and extends to an element of
(D′(G/P,V∗

λ,δ) ⊗ Vn−λ,δ)
∆(P ). Furthermore, it has an analytic continuation

to the entire λ ∈ C.

By definition, the (normalized) Knapp–Stein intertwining operator

T̃V
λ,n−λ : Iδ(V, λ)→ Iδ(V, n− λ) (8.13)

is defined in the N -picture of the principal series representation by the for-
mula

(T̃V
λ,n−λf)(x) =

∫
Rn

T̃ V
λ,n−λ(x− y)f(y)dy.

When (σ, V ) is the i-th exterior representation on
∧

i(Cn), we write sim-

ply T̃i
λ,n−λ and T̃ i

λ,n−λ for the operator T̃V
λ,n−λ and the distribution T̃ V

λ,n−λ,
respectively.

The Knapp–Stein operator (8.13) gives a continuous G-homomorphism
Iδ(i, λ) → Iε(j, ν) when j = i (and δ = ε, ν = n − λ). On the other hand,
there exist G-intertwining operators Iδ(i, λ) → Iε(j, ν) also when i ̸= j for
special parameters. Like sporadic symmetry breaking operators (cf. Theorem
3.6), they are given by differential operators as follows.

Fact 8.8. Suppose that 0 ≤ i ≤ n− 1.

(1) We can identify I(−1)i(i, i) with the space E i(Sn) of differential i-forms
endowed with the natural action of the conformal group G = O(n+1, 1).

(2) The exterior derivative d : E i(Sn)→ E i+1(Sn) induces a G-intertwining
operator

Di : I(−1)i(i, i)→ I(−1)i+1(i+ 1, i+ 1).

The kernel of Di is Πi,(−1)i, and the image is Πi+1,(−1)i+1.

This follows from [37, Thm. 12.2]. We note that the existence of such
an intertwining operator is assured a priori by the composition series of the
principal series representation (Theorem 2.20), see also [11].
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8.3.2 K-spectrum of the Knapp–Stein intertwining operator

This section gives an explicit formula for the eigenvalues of the (normalized)
Knapp–Stein intertwining operator

T̃i
λ,n−λ : Iδ(i, λ)→ Iδ(i, n− λ) (8.14)

on the basic K-types µ♭(i, δ) and µ♯(i, δ) (see (2.30) and (2.31), respectively).
For 0 ≤ i ≤ n and λ ∈ C, we set

c♮(i, λ) =
π

n
2

Γ(λ+ 1)
×

{
λ− i if ♮ = ♭,

n− i− λ if ♮ = ♯.
(8.15)

Proposition 8.9. Suppose 0 ≤ i ≤ n, λ ∈ C and δ ∈ {±}. Then the
(normalized) Knapp–Stein intertwining operator

T̃i
λ,n−λ : Iδ(i, λ)→ Iδ(i, n− λ)

acts on the basic K-types µ♭(i, δ) =
∧

i(Cn+1)⊠δ and µ♯(i, δ) =
∧

i+1(Cn+1)⊠
(−δ) as the scalar multiplication:

T̃i
λ,n−λ ◦ ι∗λ = c♮(i, λ)ι∗n−λ on µ♮(i, δ) for ♮ = ♭ or ♯.

In other words, we have

T̃i
λ,n−λ(1

I
λ) =

(λ− i)π n
2

Γ(λ+ 1)
1I
n−λ for all I ∈ In+1,i,

T̃i
λ,n−λ(h

I
λ) =

(n− i− λ)π n
2

Γ(λ+ 1)
hIn−λ for all I ∈ In+1,i+1.

Remark 8.10. Proposition 8.9 in the i = 0 case for µ♭(i, δ) was proved in [44,
Prop. 4.6].

We will give a proof of Proposition 8.9 in Section 8.3.4.
We recall from Theorem 2.20 that the composition series of Iδ(i, i) and

Iδ(i, n− i) are described by the following exact sequences of G-modules:

0→ Πi,δ → Iδ(i, i)→ Πi+1,−δ → 0,

0→ Πi+1,−δ → Iδ(i, n− i)→ Πi,δ → 0,

which do not split if i ̸= n
2
. Thus Proposition 8.9 implies:
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Proposition 8.11. Suppose G = O(n + 1, 1) and i ̸= n
2
. Then the kernels

and the images of the G-homomorphisms T̃i
λ,n−λ : Iδ(i, λ) → Iδ(i, n − λ) for

λ = i, n− i are given by

Ker(T̃i
i,n−i) ≃ Πi,δ ≃ Image(T̃i

n−i,i)

Image(T̃i
i,n−i) ≃ Πi+1,−δ ≃ Ker(T̃i

n−i,i).

8.3.3 Vanishing of the Knapp–Stein operator

There are a few exceptional parameters (i, λ) for which T̃i
λ,n−λ vanishes:

Proposition 8.12. Suppose G = O(n + 1, 1), 0 ≤ i ≤ n, and λ ∈ C. Then

the normalized Knapp–Stein intertwining operator T̃i
λ,n−λ is zero if and only

if λ = i = n
2
.

Proof. See [36].

A renormalization of the Knapp–Stein intertwining operator T̃i
λ,n−λ for

n = 2i will be discussed in Section 8.4.

8.3.4 Integration formula for the (K,K)-spectrum

In this subsection, we give a proof of Proposition 8.9. Let ♮ = ♭ or ♯. Since
the multiplicity of the K-type µ♮(i, δ) in the principal series representation
Iδ(i, λ) is one, there exists a constant c♮(i, λ) depending on i and λ such that

T̃i
λ,n−λ ◦ ι∗λ = c♮(i, λ)ι∗n−λ on µ♮(i, δ). (8.16)

We shall show that the constants c♮(i, λ) in the equation (8.16) are given
by the formulæ (8.15). The first step is to give an integral formula for the
constants c♮(i, λ) for ♮ = ♭ and ♯:

Lemma 8.13. Suppose 0 ≤ i ≤ n and λ ∈ C with Reλ≫ 0. Then we have

c♭(i, λ) =
1

Γ(λ− n
2
)

∫
Rn

|b|2λ−2n(1 + |b|2)−λ

(
1− 2

|b|2(1 + |b|2)

i∑
k=1

b2k

)
db,

c♭(i, λ)− c♯(i, λ) = 2

Γ(λ− n
2
)

∫
Rn

|b|2λ−2n+2(1 + |b|2)−λ−1db.
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Proof of Lemma 8.13. We first consider (8.16) for ♮ = ♭. Then we have

T̃i
λ,n−λ(1

I
λ) = c♭(i, λ)1I

n−λ for all I ∈ In+1,i.

Take I ∈ In+1,i such that 0 ̸∈ I. Then (8.8) tells that

(T̃i
λ,n−λ1

I
λ)(0) = c♭(i, λ)eI . (8.17)

Let us compute the left-hand side. In view of the distribution kernel
(8.12) of the normalized Knapp–Stein operator T̃i

λ,n−λ, for Reλ≫ 0 we have

(T̃i
λ,n−λ1

I
λ)(0) =

1

Γ(λ− n
2
)

∫
Rn

| − b|2λ−2nσ(ψn(−b))1I
λ(b)db.

By (7.10) and the formula (8.6) of 1I
λ(b), the integrand amounts to∑

J,J ′∈In,i

|b|2λ−2n(1 + |b|2)−λ(detψn+1(1, b))IJ(detψn(b))J ′JeJ ′ .

Comparing the coefficients of eI in the both sides of (8.17), we get

c♭(i, λ) =
1

Γ(λ− n
2
)

∫
Rn

|b|2λ−2n(1 + |b|2)−λgI(b)db,

where we set

gI(b) :=
∑

J∈In,i

(detψn+1(1, b))IJ(detψn(b))IJ = 1− 2QI(b)

(1 + |b|2)|b|2
. (8.18)

The second equality was proved as the minor summation formula in Propo-
sition 7.7 (4), where we recall QI(b) =

∑
l∈I b

2
l . Therefore, by taking I =

{1, 2, · · · , n}, we get the first assertion of Lemma 8.13.
Next, we consider (8.16) for ♮ = ♯. Then we have

T̃i
λ,n−λ(h

I
λ) = c♯(i, λ)hIn−λ for all I ∈ In+1,i+1.

Take I ∈ In,i, and set I := I ∪ {0} ∈ In+1,i+1. By (8.9), we have

T̃i
λ,n−λ(h

I
λ)(0) = c♯(i, λ)eI . (8.19)
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By (8.12), we have

T̃i
λ,n−λ(h

I
λ)(0) =

1

Γ(λ− n
2
)

∫
Rn

| − b|2λ−2nσ(ψn(−b))hIλ(b)db.

Comparing the coefficients of eI in the both sides of the equation (8.19), we
get from (8.7) and (7.10)

c♯(i, λ) = − 1

Γ(λ− n
2
)

∫
Rn

|b|2λ−2n(1 + |b|2)−λg′I(b)db,

where we set

g′I(b) :=
∑

J∈In,i

(detψn+1(1, b))I∪{0},J∪{0}(detψn(b))IJ .

We note that

detψn+1(1, b)IJ = detψn(b;
2

1 + |b|2
)IJ

if I, J ∈ In,i is regarded as elements of In+1,i in the left-hand side. Then we
have

gI(b) + g′I(b) =
2|b|2

1 + |b|2

from Proposition 7.7 (3), and thus we get

c♭(i, λ)− c♯(i, λ) = 2

Γ(λ− n
2
)

∫
Rn

|b|2λ+2−2n(1 + |b|2)−λ−1db.

Now Lemma 8.13 is proved.

The second step is to compute the integrals in Lemma 8.13.

Lemma 8.14. For Reλ≫ 0, c♭(i, λ) and c♯(i, λ) take the form (8.15).

Proof. Let B(λ, ν) denote the Beta function. By the change of variables
r2 = x

1−x
, we have∫ ∞

0

ra(1 + r2)bdr =
1

2

∫ 1

0

xλ−1(1− x)ν−1dx =
1

2
B(λ, ν), (8.20)
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where a = 2λ−1 and b = −λ−ν. Then Lemma 8.13 in the polar coordinates
tells that

c♭(i, λ) =
vol(Sn−1)

2Γ(λ− n
2
)
(B(λ− n

2
,
n

2
)− 2i

n
B(λ− n

2
,
n

2
+ 1))

by (8.20) and by the following observation:∫
Sn−1

|ωi|2dω =
1

n
vol(Sn−1) (1 ≤ i ≤ n).

Since vol(Sn−1) = 2π
n
2

Γ(n
2
)
, we get the first statement.

By the second formula of Lemma 8.13, we have

c♭(i, λ)− c♯(i, λ) = 1

Γ(λ− n
2
)
vol(Sn−1)B(λ− n

2
,
n

2
+ 1)

=
(2λ− n)π n

2

Γ(λ+ 1)
.

Thus the closed formula (8.15) for c♯(i, λ) is also proved.

Proof of Proposition 8.9. The assertion follows from Lemmas 8.13 and 8.14
for Reλ≫ 0. For general λ ∈ C, Proposition holds by the analytic continu-
ation.

8.4 Renormalization of the Knapp–Stein intertwining
operator

Because of the vanishing of the normalized Knapp–Stein intertwining oper-
ators in the middle degree when n is even (Proposition 8.12), intertwining
operators from Iδ(

n
2
, λ) to Iδ(

n
2
, n−λ) require special attention. In this case,

we set n = 2m and renormalize the Knapp–Stein intertwining operator of
G = O(2m+ 1, 1) at the middle degree by

˜̃Tm
λ,2m−λ :=

1

λ−m
T̃m

λ,2m−λ. (8.21)

Then ˜̃Tm
λ,2m−λ : Iδ(m,λ) → Iδ(m, 2m − λ) depends holomorphically in the

entire λ ∈ C, and is vanishing nowhere.
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If λ = m, then ˜̃Tm
λ,2m−λ acts as an endomorphism of Iδ(m,m). On the

other hand, we know from Theorem 2.20 (1) that the principal series represen-
tation Iδ(m,m) decomposes into the direct sum of two irreducible tempered
representations of G as follows:

Iδ(m,m) ≃ Iδ(m)♭ ⊕ Iδ(m)♯ ≡ Πm,δ ⊕ Πm+1,−δ.

Lemma 8.15. Let n = 2m and G = O(2m + 1, 1). Then the renormalized

Knapp–Stein operator ˜̃Tm
m,m acts on Iδ(m,m) ≃ Πm,δ ⊕ Πm+1,−δ as

πm

m!
(idΠm,δ

⊕ (−id)Πm+1,−δ
).

Proof. Since the irreducible G-module Πm,δ is not isomorphic to the irre-
ducible G-module Πm+1,−δ, the renormalized Knapp–Stein intertwining oper-

ator ˜̃Tm
m,m acts on each irreducible summand by scalar multiplication. There-

fore, it is sufficient to find the scalars on specific K-types occurring in each
summand. By Proposition 8.9, the renormalized Knapp–Stein intertwining

operator ˜̃Tm
λ,2m−λ acts on vectors that belong to theK-types µ♭(m, δ)(⊂ Πm,δ)

and µ♯(m, δ)(⊂ Πm+1,−δ) by the scalars

1

λ−m
(λ−m)πm

Γ(λ+ 1)
and

1

λ−m
(2m−m− λ)πm

Γ(λ+ 1)
,

respectively. Taking the limit as λ tends to m, we get the lemma.

8.5 Kernel of the Knapp–Stein operator

In this section, we discuss the proper submodules of the principal series
representation Iδ(i, λ) of G = O(n+ 1, 1) at reducible points (see (2.33)).

We consider the composition of the Knapp–Stein operators, T̃i
n−λ,λ ◦

T̃i
λ,n−λ ∈ EndG(Iδ(i, λ)). By Proposition 8.9, its K-spectrum on the basic

K-type µ♭(i, δ) is given as

T̃i
n−λ,λ ◦ T̃i

λ,n−λ(1
I
λ) =

(λ− i)(n− λ− i)πn

Γ(λ+ 1)Γ(n− λ+ 1)
(1I

λ) for all I ∈ In+1,i.

Since the principal series representation Iδ(i, λ) is generically irreducible, we
conclude

T̃i
n−λ,λ ◦ T̃i

λ,n−λ =
(λ− i)(n− λ− i)πn

Γ(λ+ 1)Γ(n− λ+ 1)
id on Iδ(i, λ) (8.22)
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for generic λ by Schur’s lemma, and then for all λ ∈ C by analytic continu-
ation.

Lemma 8.16. Let G = O(n+ 1, 1), 0 ≤ i ≤ n, and δ ∈ {±}. Assume

λ ∈ {i, n− i} ∪ (−N+) ∪ (n+ N+).

Then Iδ(i, λ) is reducible.

Proof. If (n, λ) = (2i, i), we already know that Iδ(i, λ) is reducible, see
Lemma 8.15.

Assume now (n, λ) ̸= (2i, i). Then Proposition 8.12 tells that neither

T̃i
n−λ,λ nor T̃i

λ,n−λ vanishes. On the other hand, by (8.22), the assumption
on λ implies

T̃i
n−λ,λ ◦ T̃i

λ,n−λ = 0,

which shows that at least one of the G-modules Iδ(i, λ) or Iδ(i, n − λ) is
reducible. By Lemma 3.36, we conclude that both Iδ(i, λ) and its contragre-
dient representation Iδ(i, n− λ) are reducible.

Lemma 8.16 gives an alternative proof for the “if part” of Proposition
2.18 (1).

Proposition 8.17. Let G = O(n + 1, 1), 0 ≤ i ≤ n, δ ∈ {±}, and λ ∈ C.
Assume further that Iδ(i, λ) is reducible, namely,

λ ∈ {i, n− i} ∪ (−N+) ∪ (n+ N+).

(1) Suppose (n, λ) ≠ (2i, i). Then the unique proper submodule of Iδ(i, λ)

is given as the kernel of the Knapp–Stein operator T̃i
λ,n−λ : Iδ(i, λ) →

Iδ(i, n− λ).

(2) Suppose (n, λ) = (2i, i). Then T̃i
λ,n−i = 0, and there are two proper

submodules of Iδ(i, λ), which are given as the kernel of ˜̃Ti
i,i ± πi

i!
id ∈

EndG(Iδ(i, i)) where
˜̃Ti
i,i is the renormalized Knapp–Stein operator.

Proof. (1) There is a unique irreducible submodule of Iδ(i, λ) for the pa-

rameter λ under consideration. Hence Ker(T̃i
λ,n−λ) is the unique irre-

ducible submodule by the proof of Lemma 8.16.

(2) This is already proved in Lemma 8.15.
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9 Regular symmetry breaking operators Ãi,j
λ,ν,δε

from Iδ(i, λ) to Jε(j, ν)

In this chapter we apply the general results developed in Chapter 5 on the an-
alytic continuation of integral symmetry breaking operators ÃV,W

λ,ν,δε : Iδ(V, λ)→
Jε(W, ν) to the special setting where

(V,W ) = (
∧

i(Cn),
∧

j(Cn−1)), (9.1)

and construct a holomorphic family of (normalized) regular symmetry break-
ing operators

Ãi,j
λ,ν,δε : Iδ(i, λ)→ Jε(j, ν),

which exist if and only if j = i − 1 or i (Theorems 9.1 and 9.2). Then the
goal of this chapter is to determine

• the parameter (λ, ν) for which Ãi,j
λ,ν,± vanishes (Section 9.2);

• the (K,K ′)-spectrum of Ãi,j
λ,ν,± (Sections 9.3–9.7);

• functional equations of Ãi,j
λ,ν,± (Sections 9.8–9.9).

Thus we will complete the proof of Theorem 3.19 that determines the zeros
of the normalized operators Ãi,j

λ,ν,δε. This is the last missing piece in the
classification scheme (Theorem 3.13), and thus we complete the proof of the
classification of the space HomG′(Iδ(i, λ)|G′ , Jε(j, ν)) of all symmetry breaking
operators as stated in Theorems 3.25 and 3.26.

The (K,K ′)-spectrum resembles eigenvalues of a symmetry breaking op-
erator (Definition 9.7), for which we find an integral expression and determine
the explicit formula for basic K- and K ′-types (Theorem 9.8).

The matrix-valued functional equations among various intertwining op-
erators are determined explicitly in Theorems 9.24 and 9.25 by using the
formula of the (K,K ′)-spectrum, which in turn will play a crucial role in an-
alyzing the behavior of the symmetry breaking operators at reducible places
(Chapter 10).

Degenerate cases where the normalized operators Ãi,j
λ,ν,± vanish will be

discussed in Sections 9.9 and 9.10.
As an application of the matrix-valued functional equations (Theorems

9.24 and 9.25) and the residue formulæ of Ãi,j
λ,ν,± (Fact 9.3), we determine
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when the differential symmetry breaking operators C̃i,j
λ,ν (j = i, i − 1) are

surjective in Section 9.11.

9.1 Regular symmetry breaking operators Ãi,j
λ,ν,±

In this section, we give the existence condition and an explicit construction of
(generically) regular symmetry breaking operators from G-modules Iδ(V, λ)
to G′-modules Jε(W, ν) in the setting (9.1) by applying the general results of
Chapters 3 and 5, in particular, Theorems 3.9 and 3.10 and their proofs.

9.1.1 Existence condition for regular symmetry breaking opera-
tors

We recall from Definition 5.10 the notion of regular symmetry breaking oper-
ators. We also recall from (5.50) and (5.51) the definition of the open dense
subsets U reg

± in C2. Then the existence condition of regular symmetry break-
ing operators in the setting (9.1) is stated as follows.

Theorem 9.1. Suppose 0 ≤ i ≤ n and 0 ≤ j ≤ n − 1. Then the following
three conditions on the pair (i, j) are equivalent:

(i) there exists a nonzero regular symmetry breaking operator from the G-
module Iδ(i, λ) to the G′-module Jε(j, ν) for some (λ, ν, δ, ε) ∈ C2 ×
{±}2;

(ii) for any (δ, ε) ∈ {±}2, there exists a nonzero regular symmetry breaking
operator from Iδ(i, λ) to Jε(j, ν) for all (λ, ν) ∈ U reg

δε ;

(iii) j = i or i− 1.

Proof. As we have seen in the decomposition (7.4), [V : W ] ̸= 0 in the setting
(9.1) if and only if j = i− 1 or i. Then Theorem 9.1 follows from Theorem
3.9 and Proposition 5.39.

9.1.2 Construction of Ãi,j
λ,ν,± for j ∈ {i− 1, i}

In this section we apply Theorem 3.10 about the construction of the (gener-

ically) regular symmetry breaking operators ÃV,W
λ,ν,± in the setting (9.1) with

j = i− 1 or i. In particular, we give concrete formulæ of the matrix-valued
distribution kernels Ãi,j

λ,ν,± for the operators.
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Let j = i − 1 or i. We recall from (7.2) and (7.3) that the projection
pri→j :

∧
i(Cn)→

∧
j(Cn−1) defines an element of

HomO(n−1)(V,W ) = HomO(n−1)(
∧i(Cn),

∧j(Cn−1)).

Denote by σ ≡ σ(i) the i-th exterior representation of O(n) on
∧i(Cn). Then

the matrix-valued function RV,W (see (3.6)) amounts to the following map

Ri,j : Rn − {0} → HomC(
∧i(Cn),

∧j(Cn−1))

given by
Ri,j := pri→j ◦σ ◦ ψn (9.2)

where we recall from (3.4) that ψn : Rn − {0} → O(n) is the map of taking
“reflection”.

Applying the general formulæ (3.7) and (3.8) of the distribution kernels

ÃV,W
λ,ν,± in the setting (9.1), we obtain HomC(

∧
i(Cn),

∧
j(Cn−1))-valued locally

integrable functions on Rn for Reλ≫ |Re ν| as follows.

Ãi,j
λ,ν,+ :=

1

Γ(λ+ν−n+1
2

)Γ(λ−ν
2
)
(|x|2 + x2n)

−ν |xn|λ+ν−nRi,j(x, xn), (9.3)

Ãi,j
λ,ν,− :=

1

Γ(λ+ν−n+2
2

)Γ(λ−ν+1
2

)
(|x|2 + x2n)

−ν |xn|λ+ν−nsgnxnR
i,j(x, xn). (9.4)

Then, as a special case of Theorem 3.10, we obtain:

Theorem 9.2 (holomorphic continuation of integral operators). Let (V,W )
be as in (9.1) with j = i, i − 1, and δ, ε ∈ {±}. Then the distributions

Ãi,j
λ,ν,δε, initially defined as HomC(V,W )-valued locally integrable functions

on Rn for Reλ≫ |Re ν|, extends to (D′(G/P,V∗
λ,δ)⊗Wν,ε)

∆(P ′) that depends
holomorphically on (λ, ν) in C2. Then the matrix-valued distribution kernels

Ãi,j
λ,ν,δε induce a family of symmetry breaking operators

Ãi,j
λ,ν,δε : Iδ(i, λ)→ Jε(j, ν) (9.5)

for all (λ, ν) ∈ C2.

Then Ãi,j
λ,ν,± is the normalized (generically) regular symmetry breaking

operator (Definition 5.40) in the sense that there exists an open dense subset

Uγ in C2 for γ ∈ {±} such that the support of the distribution kernel of Ãi,j
λ,ν,γ

equals the whole flag manifold G/P as far as (λ, ν) ∈ Uγ, see Proposition

5.39. By a little abuse of terminology, we say that {Ãi,j
λ,ν,±} is a family of

normalized regular symmetry breaking operators.
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9.2 Zeros of Ãi,j
λ,ν,± : Proof of Theorem 3.19

In this section we determine the exact place of the zeros of the normalized
regular symmetry breaking operators Ãi,j

λ,ν,δε, and thus give a proof of Theo-
rem 3.19. In particular, we see that the Gamma factors in the normalization
(9.3) and (9.4) are optimal in the sense that the zeros of Ãi,j

λ,ν,γ are of codimen-
sion two in C2, namely, form a discrete subset of C2. The proof of Theorem
3.19 consists of the following steps.
Step 0. (existence condition) Regular symmetry breaking operators from
Iδ(i, λ) to Jε(j, ν) exist if and only if j ∈ {i− 1, i} (Theorem 9.1).

Step 1. (generically nonzero) If Ãi,j
λ,ν,δε = 0, then (λ, ν, δ, ε) belongs to the

set Ψsp of special parameters (Theorem 5.41).

Step 2. (residue formula) If (λ, ν, δ, ε) ∈ Ψsp, then Ãi,j
λ,ν,δε is proportional to

the differential symmetry breaking operator Ci,j
λ,ν with explicit proportional

constant (Fact 9.3).

9.2.1 Residue formula of the regular symmetry breaking operator
Ãi,j

λ,ν,±

Generalizing the residue formula of the scalar-valued regular symmetry break-
ing operators Ã0,0

λ,ν,+ for spherical principal series representations given in [33]
(see also [44, Thm. 12.2]), we determined the residue of the matrix-valued

regular symmetry breaking operators Ãi,j
λ,ν,± in [36], as follows:

Fact 9.3 (residue formula [36, Thm. 1.3]). Let Ci,j
λ,ν be the differential sym-

metry breaking operators defined in (3.16) and (3.17) for j = i− 1 or i.

(1) Suppose ν − λ = 2ℓ with ℓ ∈ N. Then,

Ãi,j
λ,ν,+ =

(−1)i−j+ℓπ
n−1
2 ℓ!

22ℓ−1Γ(ν + 1)
Ci,j

λ,ν . (9.6)

(2) Suppose ν − λ = 2ℓ+ 1 with ℓ ∈ N. Then,

Ãi,j
λ,ν,− =

(−1)i−j+ℓ+1π
n−1
2 ℓ!

22ℓ+2Γ(ν + 1)
Ci,j

λ,ν .

153



We may unify the two formulæ in Fact 9.3 into one formula: for ν−λ ∈ N
and j ∈ {i, i− 1},

Ãi,j
λ,ν,(−1)ν−λ =

2(−1)i−jπ
n−1
2

q(ν − λ)Γ(ν + 1)
Ci,j

λ,ν , (9.7)

where we set, for m ∈ N,

q(m) :=


(−1)ℓ22ℓ

ℓ!
if m = 2ℓ,

(−1)ℓ+122ℓ+3

ℓ!
if m = 2ℓ+ 1.

(9.8)

9.2.2 Zeros of Ãi,j
λ,ν,±

The zeros of the operators Ãi,i
λ,ν,δε for the special parameter in Ψsp (see (1.3)

for the definition) were determined in [36] as a corollary of the residue formula
(Fact 9.3), which we recall now.

Corollary 9.4 (zeros of Ãi,i
λ,ν,± for Ψsp, [36, Thm. 8.1]). (1) Suppose ν−λ ∈

2N.
Ãi,i

λ,ν,+ = 0 if and only if

(λ, ν) ∈

{
Leven for i = 0,

(Leven − {ν = 0}) ∪ {(i, i)} for 1 ≤ i ≤ n− 1.

Ãi,i−1
λ,ν,+ = 0 if and only if

(λ, ν) ∈

{
(Leven − {ν = 0}) ∪ {(n− i, n− i)} for 1 ≤ i ≤ n− 1,

Leven for i = n.

(2) Suppose ν − λ ∈ 2N+ 1.

Ãi,i
λ,ν,− = 0 if and only if

(λ, ν) ∈

{
Lodd for i = 0,

Lodd − {ν = 0} for 1 ≤ i ≤ n− 1.
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Ãi,i−1
λ,ν,− = 0 if and only if

(λ, ν) ∈

{
Lodd − {ν = 0} for 1 ≤ i ≤ n− 1,

Lodd for i = n.

We are ready to complete the proof of Theorem 3.19 on the zeros of the
analytic continuation Ãi,j

λ,ν,γ of regular symmetry breaking operators.

Proof of Theorem 3.19. We apply Theorem 5.41 to the exterior representa-
tions (9.1), and see that Ãi,j

λ,ν,γ = 0 only if

ν − λ ∈ 2N (γ = +) or ν − λ ∈ 2N+ 1 (γ = −). (9.9)

Then Theorem 3.19 follows from Corollary 9.4.

9.3 (K,K ′)-spectrum for symmetry breaking operators

The second goal of this chapter is to formulate the concept of the (K,K ′)-
spectrum for symmetry breaking operators (Definition 9.7), and give an ex-
plicit formula of the (K,K ′)-spectrum

S(Ãi,j
λ,ν,ε) =

(
ai,jε (λ, ν) bi,jε (λ, ν)
ci,jε (λ, ν) di,jε (λ, ν)

)
, (9.10)

(see (9.13)), for the regular symmetry breaking operator Ãi,j
λ,ν,ε : Iδ(i, λ) →

Jδε(j, ν) with respect to basic K-types µ♮(i, δ) and K ′-types µ♮(j, δε)′ (see
(2.30) and (2.31)) for ♮ = ♭ or ♯. We will discuss the (K,K ′)-spectrum in
Sections 9.3–9.7. The main results are Theorem 9.8 which will be proved in
Proposition 9.9 (vanishing results) and Theorems 9.10 and 9.19.

One of the algebraic clues that we introduced in the study of symmetry
breaking operators A in [44] was an explicit formula of the “eigenvalues” of A
on spherical vectors. In the setting of this article, there is no spherical vector
in the principal series representation Iδ(i, λ) if i > 0 or Jε(j, ν) if j > 0. In
this section, we extend the idea of [44] to the (K,K ′)-spectrum for symmetry
breaking operators with focus on basic K-types.
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9.3.1 Generalities: (K,K ′)-spectrum of symmetry breaking oper-
ators

We begin with a general setup. Let (G,G′) be a pair of real reductive Lie
groups. Suppose Π is a continuous representation of G, and π is that of the
subgroup G′. We define a subset of K̂ × K̂ ′ by

D(Π, π) := {(µ, µ′) ∈ K̂ × K̂ ′ : [Π|K : µ], [π|K′ : µ′], [µ|K′ : µ′] ∈ {0, 1}}.

Here is a sufficient condition for D(Π, π) to be nonempty:

Proposition 9.5. Let P = LN and P ′ = L′N ′ be parabolic subgroups of
G and its subgroup G′, respectively. Suppose that Π = IndG

P (σ ⊗ Cλ) and
π = IndG′

P ′(τ ⊗ Cν) are the induced representations from irreducible finite-
dimensional representations σ ⊗ Cλ of L ≃ P/N and τ ⊗ Cν of L′ ≃ P ′/N ′,
respectively.

(1) (spherical principal series) If σ and τ are the trivial one-dimensional
representations, then D(Π, π) ∋ (1K ,1K′).

(2) If (K,L ∩K), (K ′, L′ ∩K ′) and (K,K ′) are strong Gel’fand pairs, in

particular, if they are symmetric pairs, then D(Π, π) = K̂ × K̂ ′.

Proof. (1) Clear from the Frobenius reciprocity.

(2) Immediate from the multiplicity-free property for strong Gel’fand pairs.

The following is an example of Proposition 9.5 (2).

Example 9.6. Let (G,G′) = (O(n + 1, 1), O(n, 1)), and we consider Π =

Iδ(V, λ), π = Jε(W, ν) for any (σ, V ) ∈ Ô(n) and any (τ,W ) ∈ ̂O(n− 1).

Then D(Π, π) = K̂ × K̂ ′.

Now we introduce a (K,K ′)-spectrum for symmetry breaking operators
as follows.

Definition 9.7 ((K,K ′)-spectrum). Let (µ, µ′) ∈ D(Π, π). If [Π|K : µ] =
[π|K′ : µ′] = [µ|K′ : µ′] = 1, then we fix a nonzero K-homomorphism φ :
µ ↪→ Π and nonzero K ′-homomorphisms φ′ : µ′ ↪→ π and ι : µ′ ↪→ µ that are
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unique up to scalar multiplication. Suppose A ∈ HomG′(Π|G′ , π). Then by
Schur’s lemma, there exists a constant Sµ,µ′(A) ∈ C such that

A ◦ φ ◦ ι = Sµ,µ′(A) ◦ φ′ on µ′. (9.11)

If one of [Π|K : µ], [π|K′ : µ′], or [µ|K′ : µ′] is 0, then we just set

Sµ,µ′(A) = 0 for any A ∈ HomG′(Π|G′ , π).

Thus we have defined a map

S : HomG′(Π|G′ , π)×D(Π, π)→ C, (A, (µ, µ′)) 7→ Sµ,µ′(A). (9.12)

We say Sµ,µ′(A) is the (K,K ′)-spectrum of the symmetry breaking operator

A for (µ, µ′) ∈ K̂ × K̂ ′. We note that it is independent of the choice of the
normalizations of φ, φ′, and ι whether Sµ,µ′(A) vanishes or not.

9.4 Explicit formula of (K,K ′)-spectrum on basic K-
types for regular symmetry breaking operators Ãi,j

λ,ν,±

We return to our setting where (G,G′) = (O(n+ 1, 1), O(n, 1)), and thus

K = O(n+ 1)×O(1) ⊃ K ′ = O(n)×O(1).

We consider a pair of representations Π = Iδ(i, λ) of G = O(n + 1, 1) and

π = Jε(j, ν) of the subgroup G
′ = O(n, 1). In this case D(Π, π) = K̂ × K̂ ′ as

we saw in Example 9.6, however, the following finite subset

D♭,♯ ≡ D♭,♯(Π, π) := {µ♭(i, δ), µ♯(i, δ)} × {µ♭(j, ε)′, µ♯(j, ε)′} ⊂ K̂ × K̂ ′

will be sufficient for the later analysis of symmetry breaking operators. Here
we recall from (2.30) and (2.31) that µ♭(i, δ) and µ♯(i, δ) are “basic K-types”
of the principal series representation Iδ(i, λ) of G and that µ♭(j, ε)′ and
µ♯(j, ε)′ are those for Jε(j, ν) of the subgroup G′.

Then the (K,K ′)-spectrum restricted to the subset D♭,♯ is described as a
2× 2 matrix:

S : HomG′(Iδ(i, λ)|G′ , Jε(j, ν))→M(2,C), A 7→
(
a b
c d

)
(9.13)

by taking a, b, c, d to be Sµ,µ′(A) as follows:
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Sµ,µ′(A) µ µ′

a µ♭(i, δ) =
∧

i(Cn+1)⊠ δ µ♭(j, ε)′ =
∧

j(Cn)⊠ ε
b µ♭(i, δ) =

∧
i(Cn+1)⊠ δ µ♯(j, ε)′ =

∧
j+1(Cn)⊠ (−ε)

c µ♯(i, δ) =
∧

i+1(Cn+1)⊠ (−δ) µ♭(j, ε)′ =
∧

j(Cn)⊠ ε
d µ♯(i, δ) =

∧
i+1(Cn+1)⊠ (−δ) µ♯(j, ε)′ =

∧
j+1(Cn)⊠ (−ε)

To be more precise, we need a normalization of the map φ, φ′ and ι in
Definition 9.7 in this setting. For this, we realize the K-types µ♭(i, δ) =∧

i(Cn+1) ⊠ δ and µ♯(i, δ) =
∧

i+1(Cn+1) ⊠ (−δ) in Iδ(i, λ) as in Proposition
8.4. Similarly, µ♭(j, ε)′ =

∧
j(Cn) ⊠ ε and µ♯(j, ε)′ =

∧
j+1(Cn) ⊠ (−ε) are

realized in Jε(j, ν). When µ′ and µ are representations on the exterior tensor
spaces

∧
l(Cn) and

∧
k(Cn+1) (l = k or k − 1) respectively, we normalize an

O(n)-homomorphism

ιl→k :
∧

l(Cn) ↪→
∧

k(Cn+1)

such that prk→l ◦ιl→k = id, where the projection prk→l :
∧

k(Cn+1)→
∧

l(Cn)
is defined in (7.2) and (7.3). With these normalizations, the map (9.13) is
defined. We obtain the following closed formula of the (K,K ′)-spectrum

for the normalized regular symmetry breaking operators Ãi,j
λ,ν,± : Iδ(i, λ) →

J±δ(j, ν).

Theorem 9.8 ((K,K ′)-spectrum for Ãi,j
λ,ν,±). Suppose (λ, ν) ∈ C2. Then

the (K,K ′)-spectrum of the analytic continuation Ãi,j
λ,ν,± of regular symmetry

breaking operators takes the following form on basic K-types:

S(Ãi,i
λ,ν,+) =

π
n−1
2

Γ(λ+ 1)

(
λ− i 0
0 ν − i

)
for 0 ≤ i ≤ n− 1;

S(Ãi,i
λ,ν,−) =

π
n−1
2

Γ(λ+ 1)

(
0 0

2(−1)i+1 0

)
for 0 ≤ i ≤ n− 1;

S(Ãi,i−1
λ,ν,+) =

π
n−1
2

Γ(λ+ 1)

(
n− ν − i 0

0 λ− n+ i

)
for 1 ≤ i ≤ n;

S(Ãi,i−1
λ,ν,−) =

π
n−1
2

Γ(λ+ 1)

(
0 −2
0 0

)
for 1 ≤ i ≤ n.

The vanishing result (an easy part) of Theorem 9.8 will be shown in
Proposition 9.9, and the remaining nontrivial part will be proved in Theorems
9.10 and 9.19.
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9.5 Proof of vanishing results on (K,K ′)-spectrum

In this section, we formulate and prove vanishing results for (K,K ′)-spectrum
that hold for general symmetry breaking operators.

Proposition 9.9. Suppose j ∈ {i − 1, i}, δ, ε ∈ {±}, and λ, ν ∈ C. Let
A : Iδ(i, λ)→ Jε(j, ν) be an arbitrary symmetry breaking operator. Then the
(K,K ′)-spectrum S(A) for basic K-types takes the following form:

j i i i− 1 i− 1
δε + − + −

S(A)

(
∗ 0
0 ∗

) (
0 0
∗ 0

) (
∗ 0
0 ∗

) (
0 ∗
0 0

)
Proof. Without loss of generality, we may assume δ = +. The K-modules
µ♭(i,+) and µ♯(i,+) (see (2.30) and (2.31)) decompose into the sum of irre-
ducible representations of the subgroup K ′:

µ♭(i,+) =
∧

i(Cn+1)⊠ 1 ≃
∧

i(Cn)⊠ 1 ⊕
∧

i−1(Cn)⊠ 1,

µ♯(i,+) =
∧

i+1(Cn+1)⊠ sgn ≃
∧

i+1(Cn)⊠ sgn⊕
∧

i(Cn)⊠ sgn.

Using the notion µ♮(j,±)′ with ♮ = ♭ or ♯ for K ′-types, we may rewrite
these decompositions as

µ♭(i,+)|K′ ≃µ♭(i,+)′ ⊕ µ♭(i− 1,+)′ (9.14)

≃µ♯(i− 1,−)′ ⊕ µ♯(i− 2,−)′,
µ♯(i,+)|K′ ≃µ♯(i,+)′ ⊕ µ♯(i− 1,+)′ (9.15)

≃µ♭(i+ 1,−)′ ⊕ µ♭(i,−)′.

The second isomorphisms follow from (2.32).
For simplicity, we discuss the symmetry breaking operator A : Iδ(i, λ)→

Jε(j, ν) in the case j = i, δ = +, and ε = −. Then the branching rule (9.14)
tells that neither the K ′-type µ♭(i,−)′ nor µ♯(i,−)′ occurs in the K-type
µ♭(i,+) of I+(i, λ). Likewise, (9.15) tells that the K

′-type µ♯(i,−)′ does not
occur in the K-type µ♯(i,+). Hence the matrix S(A) in (9.13) must be of

the form

(
0 0
∗ 0

)
.

The vanishing statements in the other cases are proved similarly.
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9.6 Proof of Theorem 9.8 on (K,K ′)-spectrum
for the normalized symmetry breaking operator
Ãi,j

λ,ν,+ : Iδ(i, λ)→ Jδ(j, ν)

In this section, we determine the (K,K ′)-spectrum ai,jε (λ, ν) and di,jε (λ, ν)
for j = i, i − 1 in (9.10) when ε = +. The case ε = − will be discussed
separately in Section 9.7. By definition (9.11), the constants ai,jε (λ, ν) and
di,jε (λ, ν) are characterized by the following equations:

Ãi,j
λ,ν,+ ◦ ι

∗
λ ◦ ιj→i =a

i,j
+ (λ, ν)ι∗ν on

∧
j(Cn), (9.16)

Ãi,j
λ,ν,+ ◦ ι

∗
λ ◦ ιj+1→i+1 =d

i,j
+ (λ, ν)ι∗ν on

∧
j+1(Cn), (9.17)

where Ãi,j
λ,ν,+ : Iδ(i, λ)→ Jδ(j, ν) is the normalized symmetry breaking opera-

tor, ι∗λ is the transform from the K-picture to the N -picture (see (8.3)), and
ιj→i :

∧
j(Cn) →

∧
i(Cn+1) is the normalized injective O(n)-homomorphism

such that pri→j ◦ιj→i = id. The main results of this section are part of
Theorem 9.8, which is given as follows:

Theorem 9.10. Suppose λ, ν ∈ C.

ai,i+ (λ, ν) =
π

n−1
2 (λ− i)
Γ(λ+ 1)

.

ai,i−1
+ (λ, ν) =

π
n−1
2 (n− ν − i)
Γ(λ+ 1)

.

di,i+ (λ, ν) =
π

n−1
2 (ν − i)

Γ(λ+ 1)
. (9.18)

di,i−1
+ (λ, ν) =

π
n−1
2 (λ− n+ i)

Γ(λ+ 1)
. (9.19)

Remark 9.11. Theorem 9.10 generalizes [44, Thm 1.10] in the spherical case
(i = j = 0 and δ = ε = +).

The proof of Theorem 9.10 is divided into the following two steps:

• integral expression of ai,j+ (λ, ν) and di,j+ (λ, ν) (Section 9.6.1);

• computation of the integral (Section 9.6.2).
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9.6.1 Integral expression of (K,K ′)-spectrum

As the first step of the proof, we give an integral expression of the (K,K ′)-
spectrum ai,j+ (λ, ν) and di,j+ (λ, ν). For I ∈ In,i, we recall from (7.5) that the
quadratic form QI(b) is defined to be

∑
k∈I bk

2, and set

αI(b) :=1− 2QI(b)

(1 + |b|2)|b|2
, (9.20)

δI(b) :=1− 2|b|2

1 + |b|2
− 2QI(b)

(1 + |b|2)|b|2
. (9.21)

Consider the following integrals:

AI(λ, ν) :=

∫
Rn

Ãλ,ν,+(b)(1 + |b|2)−λαI(b)db,

DI(λ, ν) :=

∫
Rn

Ãλ,ν,+(b)(1 + |b|2)−λδI(b)db.

Then the (K,K ′)-spectrum ai,j+ (λ, ν) and di,j+ (λ, ν) in (9.16) and (9.17),
respectively, is given by the integrals AI(λ, ν) and DI(λ, ν) as follows:

Proposition 9.12 (integral expression of (K,K ′)-spectrum).

ai,i+ (λ, ν) =AI(λ, ν) for any I ∈ In,i with n ̸∈ I,
ai,i−1
+ (λ, ν) =AI(λ, ν) for any I ∈ In,i with n ∈ I,
di,i+ (λ, ν) =DI(λ, ν) for any I ∈ In,i with n ̸∈ I,

di,i−1
+ (λ, ν) =−DI(λ, ν) for any I ∈ In,i with n ∈ I.

In order to prove Proposition 9.12, we use the N -picture of the principal
series representations Iδ(i, λ) and Jε(j, ν). By Proposition 8.4 for the vectors
1I
λ and hIλ belonging to the basic K-types, the equation (9.16) means that

for I ∈ In+1,i

Ãi,i
λ,ν,+1

I
λ = ai,i+ (λ, ν)1′

ν
I

(n /∈ I),

Ãi,i−1
λ,ν,+1

I
λ = (−1)i−1ai,i−1

+ (λ, ν)1′
ν
I−{n}

(n ∈ I).

The signature in the second formula arises from the definition (7.3) of the
projection pri→i−1.
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To compute the constants ai,j+ (λ, ν), we take I ∈ In,i and set I := I,
regarded as an element of In+1,i, where we recall Convention 7.1 of index
sets. Since 0 ̸∈ I, it follows from (8.8) that

Ãi,i
λ,ν,+(1

I
λ)(0) =a

i,i
+ (λ, ν)eI if n ̸∈ I,

Ãi,i−1
λ,ν,+(1

I
λ)(0) =(−1)i−1ai,i−1

+ (λ, ν)eI−{n} if n ∈ I.

Likewise, the equation (9.17) means that for I ∈ In+1,i+1

Ãi,i
λ,ν,+h

I
λ =di,i+ (λ, ν)h′

I
ν (n /∈ I),

Ãi,i−1
λ,ν,+h

I
λ =(−1)idi,i−1

+ (λ, ν)h′ν
I−{n}

(n ∈ I).

In this case, we take I ∈ In,i and set I := I ∪ {0} ∈ In+1,i+1. Then (8.9)
implies

(Ãi,i
λ,ν,+h

I∪{0}
λ )(0) =di,i+ (λ, ν)eI if n ̸∈ I, (9.22)

(Ãi,i−1
λ,ν,+h

I∪{0}
λ )(0) =(−1)idi,i−1

+ (λ, ν)eI−{n} if n ∈ I.

Let us compute Ãi,j
λ,ν,+(1

I
λ)(0) and Ãi,j

λ,ν,+(h
I∪{0}
λ )(0) for j = i and i− 1. If

Reλ ≫ |Re ν|, then the matrix-valued distribution kernel Ãi,j
λ,ν,+ (see (9.3))

of the regular symmetry breaking operator Ãi,j
λ,ν,+ is decomposed as

Ãi,j
λ,ν,+ = Ãλ,ν,+R

i,j,

where Ãλ,ν,+ is the scalar-valued, locally integrable function defined in (5.40)
and the matrix-valued functionRi,j ∈ C∞(Rn−{0})⊗HomC(

∧
i(Cn),

∧
j(Cn−1))

is defined in (9.2). Hence, we have

(Ãi,j
λ,ν,+ψ)(0) =

∫
Rn

Ãλ,ν,+(−b)Ri,j(−b)ψ(b)db

=

∫
Rn

Ãλ,ν,+(b)R
i,j(b)ψ(b)db

in the N -picture for any ψ ∈ ι∗λ(E i(Sn)) ⊂ C∞(Rn) ⊗
∧

i(Cn). Thus Propo-
sition 9.12 is a consequence of the following two lemmas on the computation
of Ri,j(b)ψ(b) ∈

∧
j(Cn−1) for ψ = 1I

λ or h
I∪{0}
λ and for j = i or i− 1.

Lemma 9.13. Suppose I ∈ In,i.
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(1) If n ̸∈ I, then the coefficient of eI in Ri,i(b)1I
λ(b) is given by

(1 + |b|2)−λαI(b) = (1 + |b|2)−λ(1− 2QI(b)

(1 + |b|2)|b|2
),

where we recall QI(b) =
∑

l∈I b
2
l from (7.5).

(2) If n ∈ I, then the coefficient of eI−{n} in Ri,i−1(b)1I
λ(b) is given by

(−1)i−1(1 + |b|2)−λαI(b) = (1 + |b|2)−λ(1− 2QI(b)

(1 + |b|2)|b|2
).

Lemma 9.14. Suppose I ∈ In,i.

(1) If n ̸∈ I, then the coefficient of eI in Ri,i(b)h
I∪{0}
λ (b) is given by

(1 + |b|2)−λδI(b) = (1 + |b|2)−λ−1(1− |b|2 − 2QI(b)

|b|2
).

(2) If n ∈ I, then the coefficient of eI−{n} in Ri,i−1(b)h
I∪{0}
λ (b) is given by

(−1)i−1(1 + |b|2)−λδI(b) = (−1)i−1(1 + |b|2)−λ−1(1− |b|2 − 2QI(b)

|b|2
).

Proof of Lemma 9.13. Let σ be the i-th exterior representation on
∧

i(Cn).
We recall from (9.2) Ri,j = pri→j ◦σ◦ψn. We identify I ∈ In,i with I ∈ In+1,i

such that n ̸∈ I as usual, and apply the formula (8.6) of 1I
λ. Then we have

σ(ψn(b))1
I
λ(b) = (1 + |b|2)−λσ(ψn(b))

∑
J∈In,i

(detψn+1(1, b))IJeJ .

By the formula (7.10) of the matrix coefficients of the exterior tensor repre-
sentation, the coefficient of eI in σ(ψn(b))1

I
λ(b) amounts to

(1 + |b|2)−λ
∑

J∈In,i

(detψn+1(1, b))IJ(detψn(b))IJ ,

which is equal to

(1 + |b|2)−λ(1− 2QI(b)

(1 + |b|2)|b|2
) = (1 + |b|2)−λαI(b)

by the minor summation formula (7.15) in Proposition 7.7. Hence the lemma
follows from pri→i(eI) = eI (n /∈ I) and pri→i−1(eI) = (−1)i−1eI−{n} (n ∈ I)
(see (7.2) and (7.3)).
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Proof of Lemma 9.14. The proof goes in parallel to that of Lemma 9.13. For
the sake of completeness, we give a proof.

By (8.7) and (7.10), we have

σ(ψn(b))h
I∪{0}
λ (b)

=− (1 + |b|2)−λσ(ψn(b))
∑

J∈In,i

(detψn+1(1, b))I∪{0},J∪{0}eJ

=− (1 + |b|2)−λ
∑

J∈In,i

∑
J ′∈In,i

(detψn+1(1, b))I∪{0},J∪{0} detψn(b)J ′JeJ ′ .

Hence the coefficient of eI in σ(ψn(b))h
I∪{0}
λ (b) is equal to

−(1 + |b|2)−λ
∑

J∈In,i

(detψn+1(1, b))I∪{0},J∪{0} detψn(b)IJ ,

which amounts to

(1 + |b|2)−λ−1(1− |b|2 − 2QI(b)

|b|2
) = (1 + |b|2)−λδI(b)

by the minor summation formula in Proposition 7.7 (2). Thus we have shown
the lemma.

Therefore we have completed the proof of Proposition 9.12.

9.6.2 Integral formula of the (K,K ′)-spectrum

As the second step, we compute the integrals AI(λ, ν) and DI(λ, ν) in Section
9.6.1. We begin with the following integral formulæ: Denote by dω the
standard measure on the unit sphere Sn−1 = {ω = (ω1, · · · , ωn) ∈ Rn :∑n

j=1 ωj
2 = 1}.

For a, b ∈ C with Re a,Re b > −1, we set

S(a, b) ≡ Sn(a, b) :=

∫
Sn−1

|ωn|a|ωn−1|bdω. (9.23)

Then we have

Sn(a, 0) =

∫
Sn−1

|ωn|adω =
2π

n−1
2 Γ(a+1

2
)

Γ(a+n
2
)

, (9.24)

see [44, Lemma 7.6], for instance. More generally, we have the following.
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Lemma 9.15. Suppose Re a > −1 and Re b > −1. Then we have

S(a, b) =
2π

n−2
2 Γ(a+1

2
)Γ( b+1

2
)

Γ(a+b+n
2

)
. (9.25)

It is convenient to write down the following recurrence relations that are
derived readily from (9.25):

S(a, 2) =
1

a+ n
S(a, 0), (9.26)

S(a+ 2, 0) =
a+ 1

a+ n
S(a, 0). (9.27)

Proof of Lemma 9.15. For any f ∈ C(Sn−1), the polar coordinates give the
following expression of the integral:∫

Sn−1

f(ω)dω =

∫ 1

−1

∫
Sn−2

f(
√
1− t2η, t)(1− t2)

n−3
2 dηdt. (9.28)

Then we have

S(a, b) =

∫ 1

−1

∫
Sn−2

|
√
1− t2ηn−1|b|t|a(1− t2)

n−3
2 dηdt

=

∫
Sn−2

|ηn−1|bdη
∫ 1

−1

|t|a(1− t2)
n+b−3

2 dt.

The first term equals Sn−1(b, 0), see (9.24). The second term is given by the
Beta function: ∫ 1

0

t2A−1(1− t2)B−1dt =
Γ(A)Γ(B)

2Γ(A+B)
. (9.29)

Here we get the lemma.

Lemma 9.16. Let Ãλ,ν,+ be the (scalar-valued) locally integrable function on
Rn defined in (5.40) for Re (λ− ν) > 0 and Re (λ+ ν) > n− 1.

(1) We have ∫
Rn

Ãλ,ν,+(b)(1 + |b|2)−λdb =
π

n−1
2

Γ(λ)
.
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(2) Let l ∈ {1, 2, · · · , n}. Then we have∫
Rn

Ãλ,ν,+(b)(1 + |b|2)−λ 2bℓ
2

(1 + |b|2)|b|2
db

=
π

n−1
2

Γ(λ+ 1)
×

{
1 if 1 ≤ ℓ ≤ n− 1,

λ+ ν − n+ 1 if ℓ = n.

Proof. (1) This formula was given in [44, Prop. 7.4], but we give a proof here
in order to illustrate our notation for later purpose. By (8.20), the left-hand
side amounts to

1

Γ(λ+ν−n+1
2

)Γ(λ−ν
2
)

∫ ∞

0

rλ−ν−1(1 + r2)−λdr

∫
Sn−1

|ωn|λ+ν−ndω

=
1

2Γ(λ+ν−n+1
2

)Γ(λ−ν
2
)
B(

λ− ν
2

,
λ+ ν

2
)S(λ+ ν − n, 0),

which equals π
n−1
2

Γ(λ)
by (9.25).

(2) By a similar computation as above, the ratio of the two integrals is given
as

the left-hand side of (2)

the left-hand side of (1)
=

2
∫∞
0
rλ−ν−1(1 + r2)−λ−1dr

∫
Sn−1 |ωn|λ+ν−n|ωℓ|2dω∫∞

0
rλ−ν−1(1 + r2)−λdr

∫
Sn−1 |ωn|λ+ν−ndω

.

The right-hand side depends on whether ℓ = n or not. It amounts to

2B(λ−ν
2
, λ+ν

2
+ 1)

B(λ−ν
2
, λ+ν

2
)
· 1

S(λ+ ν − n, 0)
×

{
S(λ+ ν − n, 2)
S(λ+ ν − n+ 2, 0)

=
λ+ ν

λ
· 1

λ+ ν
×

{
1 if 1 ≤ ℓ ≤ n− 1,

λ+ ν − n+ 1 if ℓ = n

by the recurrence relations (9.26) and (9.27).

Lemma 9.17. AI(λ, ν)−DI(λ, ν) =
π

n−1
2 (λ−ν)
Γ(λ+1)

.
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Proof. By the definitions (9.20) and (9.21), we have αI(b)− δI(b) =
2|b|2

1 + |b|2
.

Thus we have

AI(λ, ν)−DI(λ, ν) =2

∫
Rn

Ãλ,ν,+(b)(1 + |b|2)−λ−1|b|2db

=
B(λ−ν

2
, λ+ν

2
+ 1)S(λ+ ν − n, 0)

Γ(λ−ν
2
)Γ(λ+ν−n+1

2
)

,

as in the proof of Lemma 9.16 (1). Thus the lemma follows from (9.25).

Proof of Theorem 9.10. It follows from Lemma 9.16 that

AI(λ, ν) =
π

n−1
2

Γ(λ+ 1)
×

{
λ− i if n ̸∈ I,
λ− (i− 1)− (λ+ ν − n+ 1) if n ∈ I,

whence the first two formulæ of Theorem 9.10 are proved by Proposition
9.12.

By Lemma 9.17, we have

DI(λ, ν) = AI(λ, ν)−
π

n−1
2 (λ− ν)
Γ(λ+ 1)

=
π

n−1
2

Γ(λ+ 1)
×

{
(λ− i)− (λ− ν) if n ̸∈ I,
(n− ν − i)− (λ− ν) if n ∈ I,

whence the last two formulæ of Theorem 9.10 by Proposition 9.12.

Remark 9.18. Alternatively, one could derive the last two formulæ of Theorem
9.10 from the first two by using the duality theorem for symmetry breaking
operators given in Proposition 3.39.

9.7 Proof of Theorem 9.8 on the (K,K ′)-spectrum for
Ãi,j

λ,ν,− : Iδ(i, λ)→ J−δ(j, ν)

In this section, we determine the (K,K ′)-spectrum bi,i−1
− (λ, ν) and ci,i− (λ, ν) in

(9.10) for the normalized regular symmetry breaking operators Ãi,j
λ,ν,− : Iδ(i, λ)→
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J−δ(j, ν) with j ∈ {i − 1, i}. By definition, these constants bi,i−1
− (λ, ν) and

ci,i− (λ, ν) are characterized by the following equations:

Ãi,i−1
λ,ν,− ◦ ι

∗
λ =bi,i−1

− (λ, ν)ι∗ν ◦ pri→i on
∧

i(Cn+1), (9.30)

Ãi,i
λ,ν,− ◦ ι

∗
λ =(−1)ici,i− (λ, ν) ◦ ι∗ν ◦ pri+1→i on

∧
i+1(Cn+1). (9.31)

The main results of this section are given as follows:

Theorem 9.19. Suppose λ, ν ∈ C. Then we have

bi,i−1
− (λ, ν) =− 2π

n−1
2

Γ(λ+ 1)
, (9.32)

ci,i− (λ, ν) =
2(−1)i+1π

n−1
2

Γ(λ+ 1)
. (9.33)

This is the remaining part of Theorem 9.8, and the proof of Theorem 9.8
will be complete when Theorem 9.19 is shown. The proof of Theorem 9.19
is parallel to that of Theorem 9.10, and thus will be discussed briefly. We
begin with an integral expression of the constants bi,i−1

− (λ, ν) and ci,i− (λ, ν) as
follows.

Proposition 9.20 (integral expression of (K,K ′)-spectrum).

bi,i−1
− (λ, ν) =− 2

∫
Rn

Ãλ,ν,−(b)(1 + |b|2)−λ−1bndb,

ci,i− (λ, ν) =2(−1)i+1

∫
Rn

Ãλ,ν,−(b)(1 + |b|2)−λ−1bndb.

Admitting Proposition 9.20 for the time being, we complete the proof of
Theorem 9.19.

Proof of Theorem 9.19. Theorem 9.19 is an immediate consequence of Propo-
sition 9.20 and the following lemma.

Lemma 9.21. ∫
Rn

Ãλ,ν,−(b)(1 + |b|2)−λ−1bndb =
π

n−1
2

Γ(λ+ 1)
.
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Proof. We use the identity

bnÃλ,ν,−(b) = Ãλ+1,ν,+(b).

Then the lemma follows from Lemma 9.16.

The rest of this section is devoted to the proof of Proposition 9.20. In
the N -picture, the equation (9.30) amounts to

Ãi,i−1
λ,ν,−(1

I
λ) =

{
bi,i−1
− (λ, ν)h′Iν if n /∈ I,
0 if n ∈ I,

for all I ∈ In+1,i, whereas (9.31) amounts to

Ãi,i
λ,ν,−h

I
λ =

{
ci,i− (λ, ν)1′I−{n}

ν if n ∈ I,
0 if n /∈ I,

for all I ∈ In+1,i+1. In particular, we have

Ai,i−1
λ,ν,−(1

I∪{0}
λ )(0) =bi,i−1

− (λ, ν)eI for any I ∈ In−1,i−1, (9.34)

(Ãi,i
λ,ν,−h

I∪{n}
λ )(0) =ci,i− (λ, ν)eI for any I ∈ In−1,i (9.35)

by (8.8) and (8.9) because 0 /∈ I.
The distribution kernel Ãi,j

λ,ν,− of the regular symmetry breaking operator

Ãi,j
λ,ν,− is decomposed as

Ãi,j
λ,ν,− = Ãλ,ν,−R

i,j,

where Ãλ,ν,− is the scalar-valued, locally integrable function defined in (5.41)
and the matrix-valued function Ri,j is defined in (9.2). Then we have

(Ãi,j
λ,ν,−ψ)(0) =

∫
Rn

Ãλ,ν,−(−b)Ri,j(−b)ψ(b)db

=−
∫
Rn

Ãλ,ν,−(b)R
i,j(b)ψ(b)db

in the N -picture for any ψ ∈ ι∗λ(E i(Sn)). Hence Proposition 9.20 is a conse-
quence of (9.34), (9.35), and of the following two lemmas.

Lemma 9.22. Suppose I ∈ In−1,i. Then the coefficient of eI in R
i,i−1(b)1

I∪{0}
λ (b)

is equal to
2(1 + |b|2)−λ−1bn.
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Proof. Using the formula (8.6) of 1I
λ(b), we have for I ∈ In,i

(1 + |b|2)λRi,i−1(b)1
I∪{0}
λ (b)

=Ri,i−1(b)
∑

J∈In,i

detψn+1(1, b)I∪{0},JeJ

=pri→i−1

∑
J∈In,i

∑
J ′∈In,i

detψn+1(1, b)I∪{0},J detψn(b)J ′JeJ ′

=(−1)i−1
∑

J∈In,i

∑
J ′∈In,i−In−1,i

detψn+1(1, b)I∪{0},J detψn(b)J ′JeJ ′−{n}.

Here, for J ′ ∈ In,i, we mean by J ′ ̸∈ In−1,i the condition that n ̸∈ J ′. Hence

the coefficient of eI in Ri,i−1(b)1
I∪{0}
λ (b) amounts to

(−1)i−1
∑

J∈In,i

detψn+1(1, b)I∪{0},J detψn(b)I∪{n},J .

Now the lemma follows from Lemma 7.8.

Lemma 9.23. Suppose I ∈ In−1,i. The coefficient of eI in Ri,i(b)h
I∪{n}
λ (b)

is given by
2(−1)i(1 + |b|2)−λ−1bn.

Proof. By (8.7) and (7.10), we have

σ(ψn(b))h
I∪{n}
λ (b)

=− (1 + |b|2)−λσ(ψn(b))
∑

J∈In,i

detψn+1(1, b)I∪{n},J∪{0}eJ

=− (1 + |b|2)−λ
∑

J∈In,i

∑
J ′∈In,i

detψn+1(1, b)I∪{n},J∪{0} detψn(b)J ′JeJ ′ .

Applying the projection pri→i :
∧

i(Cn)→
∧

i(Cn−1) (see (7.2)), we find that

the coefficient of eI in Ri,i(b)h
I∪{n}
λ (b) is equal to

−(1 + |b|2)−λ
∑

J∈In,i

detψn+1(1, b)I∪{n},J∪{0} detψn(b)IJ .

Hence the lemma follows from the minor summation formula in Lemma 7.9.
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9.8 Matrix-valued functional equations

The third goal of this chapter is to obtain explicit matrix-valued functional
equations for the regular symmetry breaking operators Ãi,j

λ,ν,±. We retain the
setting where (G,G′) = (O(n + 1, 1), O(n, 1)). By the generic multiplicity-
one theorem (Theorem 3.3), two symmetry breaking operators from the G-
module Iδ(V, λ) to the G′-module Jε(W, ν) must be proportional to each
other if [V : W ] ̸= 0 and (λ, ν, δ, ε) does not belong to the set Ψsp of special
parameters. In Sections 9.8 and 9.9, we consider the case

(V,W ) = (
∧

i(Cn),
∧

j(Cn−1)), j ∈ {i− 1, i},

and compare the (normalized) regular symmetry breaking operator Ãi,j
λ,ν,γ

with its composition of the Knapp–Stein intertwining operator for G or for
the subgroup G′ as in the following diagrams:

Iδ(i, λ)
Ãi,j
λ,ν,γ //

Ãi,j
λ,n−1−ν,γ ))TTT

TTTT
TTTT

TTTT
T Jε(j, ν)

T̃j
ν,n−1−ν

��
Jε(j, n− 1− ν),

Iδ(i, λ)

T̃i
λ,n−λ

��

Ãi,j
λ,ν,γ

))RR
RRR

RRR
RRR

RRR

Iδ(i, n− λ)
Ãi,j
n−λ,ν,γ

// Jε(j, ν)

where γ = δε. We obtain closed formulæ of the proportional constants
for the two operators in each diagram in Theorems 9.24 and 9.25. The
zeros of the proportional constants provide us crucial information on the
kernels and the images of the symmetry breaking operators Ãi,j

λ,ν,δε : Iδ(i, λ)→
Jε(j, ν) at reducible places of the principal series representations, which will
be investigated in Chapter 10.

9.8.1 Main results : Functional equations of Ãi,j
λ,ν,ε

Suppose j ∈ {i − 1, i}. Let Ãi,j
λ,ν,δε : Iδ(i, λ) → Jε(j, ν) be the normalized

symmetry breaking operators as defined in (9.5), and T̃j
ν,n−1−ν : Jε(j, ν) →

Jε(j, n−1−ν) be the normalized Knapp–Stein operators as defined in (8.14)
for principal series representations of the subgroup G′. Then we obtain:

Theorem 9.24 (functional equation). Suppose (λ, ν) ∈ C2 and γ ∈ {±}.
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Then

T̃i
ν,n−1−ν ◦ Ã

i,i
λ,ν,γ =

π
n−1
2 (ν − i)
Γ(ν + 1)

Ãi,i
λ,n−1−ν,γ for 0 ≤ i ≤ n− 1,

T̃i−1
ν,n−1−ν ◦ Ã

i,i−1
λ,ν,γ =

π
n−1
2 (n− ν − i)
Γ(ν + 1)

Ãi,i−1
λ,n−1−ν,γ for 1 ≤ i ≤ n.

In the next theorem, we use the same letter T̃i
λ,n−λ to denote the normal-

ized Knapp–Stein intertwining operators T̃i
λ,n−λ : Iδ(i, λ) → Iδ(i, n − λ) for

the group G. Then we obtain:

Theorem 9.25 (functional equation). Suppose (λ, ν) ∈ C2 and γ ∈ {±}.
Then

Ãi,i
n−λ,ν,γ ◦ T̃

i
λ,n−λ =

π
n
2 (n− λ− i)
Γ(n− λ+ 1)

Ãi,i
λ,ν,γ for 0 ≤ i ≤ n− 1,

Ãi,i−1
n−λ,ν,γ ◦ T̃

i
λ,n−λ =

π
n
2 (λ− i)

Γ(n− λ+ 1)
Ãi,i−1

λ,ν,γ for 1 ≤ i ≤ n.

Remark 9.26. Theorems 9.24 and 9.25 generalize the functional equations
which we proved in the scalar case [44, Thm. 8.5]. Matrix-valued functional
identities (factorization identities) for differential symmetry breaking oper-
ators were recently proved explicitly in [37, Chap. 13]. Alternatively, we
could deduce a large part of the identities [37, Chap. 13] from Theorems 9.24
and 9.25 by using the residue formula of the normalized symmetry breaking
operators Ãi,j

λ,ν,± given in Fact 9.3, see [36].

9.8.2 Proof of functional equations

In this section we give a proof of the functional equations that are stated in
Theorems 9.24 and 9.25.

We apply Proposition 8.9 on the K ′-spectrum of the Knapp–Stein inter-
twining operator to the subgroup G′ = O(n, 1). Then the K ′-spectrum of

the (normalized) Knapp–Stein intertwining operator T̃j
ν,n−1−ν : Jε(j, ν) →

Jε(j, n− 1− ν) of G′ is given by

T̃i
ν,n−1−ν ◦ ι∗ν = c♮(j, ν)′ι∗n−ν on µ♮(j, ε)′

for ♮ = ♭ or ♯, where

c♭(j, ν)′ =
(ν − j)π n−1

2

Γ(ν + 1)
, c♯(j, ν)′ =

(n− 1− j − ν)π n−1
2

Γ(ν + 1)
.
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Proof of Theorem 9.24. For j = i or j−1 and for (λ, ν) ∈ C2 with ν−λ ̸∈ N,
we recall from Theorem 3.26 and Corollary 5.25 that

HomG′(I+(i, λ)|G′ , Jε(j, n− 1− ν)) = CÃi,j
λ,n−1−ν,ε.

Hence, there exists a constant pTA
A (i, j, ε;λ, ν) ∈ C such that

T̃j
ν,n−1−ν ◦ Ã

i,j
λ,ν,ε = pTA

A (i, j, ε;λ, ν)Ãi,j
λ,n−1−ν,ε (9.36)

if n − 1 − ν − λ ̸∈ N. We compute pTA
A (i, j, ε;λ, ν) by using the (K,K ′)-

spectrum Sµ,µ′ (see Section 9.3) for (9.36) with an appropriate choice of

basic K-types µ ∈ K̂ and µ′ ∈ K̂ ′. We recall from Theorem 9.8 an explicit
formula of the (K,K ′)-spectrum

S(Ãi,j
λ,ν,ε) =

(
ai,jε (λ, ν) bi,jε (λ, ν)
ci,jε (λ, ν) di,jε (λ, ν)

)
for the regular symmetry breaking operator Ãi,j

λ,ν,ε : I+(i, λ) → Jε(j, ν) with
respect to basic K-types.
Case 1. j = i and ε = +. Take (µ, µ′) = (µ♭(i,+), µ♭(i,+)′). Then the
computation of Sµ,µ′ on the both sides of (9.36) leads us to the following
identity:

pTA
A (i, i,+;λ, ν) = c♭(i, ν)′ · ai,i+ (λ, ν)

ai,i+ (λ, n− 1− ν)
=
π

n−1
2 (ν − j)
Γ(ν + 1)

· 1.

Case 2. j = i and ε = −. Take (µ, µ′) = (µ♯(i,+), µ♭(i,−)′). By the same
argument as above, we have

pTA
A (i, i,−;λ, ν) = c♭(i, ν)′ · ci,i− (λ, ν)

ci,i− (λ, n− 1− ν)
=
π

n−1
2 (ν − j)
Γ(ν + 1)

· 1.

Case 3. j = i− 1 and ε = +. Take (µ, µ′) = (µ♯(i,+), µ♯(i− 1,+)′).

pTA
A (i, i− 1,+;λ, ν) = c♯(i− 1, ν)′ · di,i−1

+ (λ, ν)

di,i−1
+ (λ, n− 1− ν)

=
π

n−1
2 (n− ν − i)
Γ(ν + 1)

· 1.

Case 4. j = i− 1 and ε = −. Take (µ, µ′) = (µ♭(i,+), µ♯(i− 1,−)′).

pTA
A (i, i− 1,−;λ, ν) = c♯(i− 1, ν)′ · bi,i−1

− (λ, ν)

bi,i−1
− (λ, n− 1− ν)

=
π

n−1
2 (n− ν − i)
Γ(ν + 1)

· 1.
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Since both sides of (9.36) depend holomorphically in the entire (λ, ν) ∈ C2,
the identity (9.36) holds for all (λ, ν) ∈ C2. Hence Theorem 9.24 is proved.

Proof of Theorem 9.25. The proof of Theorem 9.25 goes similarly. Since
Ãi,j

n−λ,ν,ε ◦ T̃i
λ,n−λ ∈ HomG′(I+(i, λ)|G′ , Jε(j, ν)), there exists a constant

pAT
A (i, j, ε;λ, ν) ∈ C

such that
Ãi,j

n−λ,ν,ε ◦ T̃
i
λ,n−λ = pAT

A (i, j, ε;λ, ν)Ãi,j
λ,ν,ε (9.37)

by the generic multiplicity-one theorem (Theorem 5.41) for j ∈ {i − 1, i},
ε ∈ {±}, and (λ, ν) ∈ C2 with ν − λ ̸∈ N.
Case 1. j = i and ε = +. Take (µ, µ′) = (µ♯(i,+), µ♯(i,+)′). Applying
both sides of (9.37) to the basic K ′-type µ′ = µ♯(i,+)′ via the inclusion
µ′ ↪→ µ = µ♯(i,+), we get the following identities from Proposition 8.9 and
Theorem 9.10:

pAT
A (i, i,+;λ, ν) = c♯(i, λ) · d

i,i
+ (n− λ, ν)
di,i+ (λ, ν)

=
π

n
2 (n− λ− i)
Γ(λ+ 1)

· Γ(λ+ 1)

Γ(n− λ+ 1)
.

The other three cases are proved similarly as below.
Case 2. j = i and ε = −. Take (µ, µ′) = (µ♯(i,+), µ♭(i,−)′).

pAT
A (i, i,−;λ, ν) = c♯(i, λ) · c

i,i
− (n− λ, ν)
ci,i− (λ, ν)

=
π

n
2 (n− λ− i)
Γ(λ+ 1)

· Γ(λ+ 1)

Γ(n− λ+ 1)
.

Case 3. j = i− 1 and ε = +. Take (µ, µ′) = (µ♭(i,+), µ♭(i− 1,+)′).

pAT
A (i, i− 1,+;λ, ν) = c♭(i, λ) · a

i,i−1
+ (n− λ, ν)
ai,i−1
+ (λ, ν)

=
π

n
2 (λ− i)
Γ(λ+ 1)

· Γ(λ+ 1)

Γ(n− λ+ 1)
.

Case 4. j = i− 1 and ε = −. Take (µ, µ′) = (µ♭(i,+), µ♯(i− 1,−)′).

pAT
A (i, i− 1,−;λ, ν) = c♭(i, λ) · b

i,i−1
− (n− λ, ν)
bi,i−1
− (λ, ν)

=
π

n
2 (λ− i)
Γ(λ+ 1)

· Γ(λ+ 1)

Γ(n− λ+ 1)
.

Thus Theorem 9.25 is proved.
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9.9 Renormalized symmetry breaking operator ˜̃Ai,j
λ,ν,+

In Theorem 5.45, we constructed a renormalized symmetry breaking opera-

tor ˜̃AV,W
λ,ν,± when the normalized regular symmetry breaking operator ÃV,W

λ,ν,±
vanishes. We apply it to the special case (V,W ) = (

∧
i(Cn),

∧
j(Cn−1)), and

obtain for those (λ, ν) for which Ãi,j
λ,ν,γ = 0 the renormalized symmetry break-

ing operator ˜̃Ai,j
λ,ν,γ as the analytic continuation of the following:

˜̃Ai,j
λ,ν,γ =

{
Γ(λ−ν

2
)Ãi,j

λ,ν,+ if γ = +,

Γ(λ−ν+1
2

)Ãi,j
λ,ν,− if γ = −.

(9.38)

We recall that for j ∈ {i−1, i} and γ ∈ {±}, we have determined in Theorem
3.19 precisely the zero set

{(λ, ν) ∈ C2 : Ãi,j
λ,ν,γ = 0}.

In this section, we discuss functional equations and (K,K ′)-spectrum of the

renormalized operators ˜̃Ai,j
λ,ν,± only in the few cases that are necessary for

later arguments.

9.9.1 Functional equations for the renormalized operator ˜̃Ai,i
λ,i,+

In this subsection, we treat the case j = i. For ν = i(= j), Ãi,i
λ,i,γ = 0 if and

only if λ = i ∈ {0, 1, · · · , n − 1} and γ = + by Theorem 3.19. Then the

renormalized operator ˜̃Ai,i
λ,i,+ : Iδ(i, λ) → Jδ(i, i) is the analytic continuation

of the following:
˜̃Ai,i
λ,i,+ = Γ(

λ− i
2

)Ãi,i
λ,i,+. (9.39)

Then ˜̃Ai,i
λ,i,+ : Iδ(i, λ)→ Jδ(i, i) is a G

′-homomorphism that depends holomor-
phically on λ in the entire complex plane C by Theorem 5.45 (3).

We determine functional equations and (K,K ′)-spectrum S( ˜̃Ai,i
λ,i,+) (see

(9.13)) on basic K- and K ′-types for the renormalized operator ˜̃Ai,i
λ,i,+ as

follows.

Lemma 9.27 (functional equations and the (K,K ′)-spectrum for ˜̃Ai,i
n−λ,i,+).
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Suppose 0 ≤ i ≤ n− 1 and λ ∈ C. Then we have

T̃i
i,n−1−i ◦

˜̃Ai,i
λ,i,+ =0, (9.40)

˜̃Ai,i
n−λ,i,+ ◦ T̃

i
λ,n−λ =

2π
n
2Γ(n−λ−i

2
+ 1)

Γ(λ−i
2
)Γ(n− λ+ 1)

˜̃Ai,i
λ,i,+, (9.41)

S( ˜̃Ai,i
λ,i,+) =

π
n−1
2

Γ(λ+ 1)

(
2 0
0 0

)
. (9.42)

Proof. Applying Theorem 9.24 with ν = i (0 ≤ i ≤ n), we have

T̃i
i,n−1−i ◦ Ã

i,i
λ,i,+ = 0 for all λ ∈ C.

Taking the limit as λ tends to i in the following equation:

T̃i
i,n−1−i ◦ Γ(

λ− i
2

)Ãi,i
λ,i,+ = 0,

we get the desired formula (9.40) by the definition (9.39) of the renormaliza-

tion ˜̃Ai,i
λ,i,+.

Similarly, the formulæ (9.41) and (9.42) for the renormalized operator
˜̃Ai,i
λ,i,+ follow from the limit of the corresponding results for Ãi,i

λ,i,+ given in
Theorems 9.25 and 9.8, respectively.

9.9.2 Functional equations at middle degree for n even

For n even (say, n = 2m), at the “middle degree” i = n
2
(= m), we observe

that the Knapp–Stein operator T̃m
λ,2m−λ : I+(m,λ)→ I+(m, 2m−λ) vanishes

if λ = m (see Proposition 8.12), and so the functional equation (9.41) is triv-

ial. Instead we use the renormalized Knapp–Stein operator ˜̃Tm
λ,2m−λ defined

in (8.21) for another functional equation, see (9.43) below. We recall from

Lemma 8.15 that ˜̃Tm
λ,2m−λ is an endomorphism of Iδ(m,m) when λ = m, but

is not proportional to the identity operator when λ = m.

Lemma 9.28 (functional equation for ˜̃Ai,i
m,m,+). Let (G,G

′) = (O(n+1, 1), O(n, 1))
with n = 2m. Then we have

˜̃Am,m
m,m,+ ◦

˜̃Tm
m,m =

πm

m!
˜̃Am,m
m,m,+. (9.43)
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Proof. By Theorem 5.45 and (8.21),

˜̃Am,m
m,m,+ ◦

˜̃Tm
m,m =( lim

λ→m
Γ(

(2m− λ)−m
2

)Ãm,m
2m−λ,m,+) ◦ ( lim

λ→m

1

λ−m
T̃m

λ,2m−λ)

= lim
λ→m

Γ(m−λ
2

)

λ−m
Ãm,m

2m−λ,m,+ ◦ T̃
m
λ,2m−λ.

In turn, the functional equation in Theorem 9.25 shows that the right-hand
side amounts to

lim
λ→m

Γ(m−λ
2

)

λ−m
πm(2m− λ−m)

Γ(2m− λ+ 1)
Ãm,m

λ,m,+ =
−πm

Γ(m+ 1)
( lim
λ→m

Γ(m−λ
2

)

Γ(λ−m
2

)
) ˜̃Am,m

m,m,+

=
πm

Γ(m+ 1)
˜̃Am,m
m,m,+. (9.44)

Hence the formula (9.43) is proved.

In contrast to Lemma 9.28 where we needed to treat the renormalized
operator ˜̃Am,m

m,m,+ because Ãm,m
m,m,+ = 0, the normalized operator Ãm,m

m,m,− does
not vanish (Theorem 3.19 (3)). In this case, the functional equations for

Ãm,m
m,m,− are given as follows:

Lemma 9.29 (functional equation for Ãm,m
m,m,−). We retain the setting that

(G,G′) = (O(n+ 1, 1), O(n, 1)) with n = 2m. Then we have

Ãm,m
m,m,− ◦

˜̃Tm
m,m =− πm

m!
Ãm,m

m,m,−, (9.45)

T̃m
m,m−1 ◦ Ã

m,m
m,m,− =0. (9.46)

Proof. By the definition of ˜̃Tm,m
λ,2m−λ in (8.21) and the functional equation in

Theorem 9.25, we have

Ãm,m
m,m,− ◦

˜̃Tm
m,m = lim

λ→m
Ãm,m

2m−λ,m,− ◦
1

λ−m
T̃m

λ,2m−λ

= lim
λ→m

πm(m− λ)
(λ−m)Γ(2m− λ+ 1)

Ãm,m
λ,m,−

=
−πm

m!
Ãm,m

m,m,−.

Hence the first statement is verified. The second statement is a special case
of Theorem 9.24.
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9.9.3 Functional equations for the renormalized operator ˜̃Ai,i−1
λ,n−i,+

In this subsection, we treat the case j = i− 1. For j = i− 1 and ν = n− i,
Ãi,j

λ,n−i,γ = 0 if and only if γ = + and λ = n − i by Theorem 3.19. In

this case, the renormalized symmetry breaking operator ˜̃Ai,i−1
λ,n−i,+ : Iδ(i, λ)→

Jδ(i− 1, n− i) is obtained as the analytic continuation of the following:

˜̃Ai,i−1
λ,n−i,+ = Γ(

λ− n+ i

2
)Ãi,i−1

λ,n−i,+,

see Theorem 5.45 (3).

We determine functional equations and (K,K ′)-spectrum S( ˜̃Ai,i−1
λ,n−i,+) (see

(9.13)) on basic K- and K ′-types for the renormalized operator ˜̃Ai,i−1
λ,n−i,+ as

follows.

Lemma 9.30 (functional equations and the (K,K ′)-spectrum for ˜̃Ai,i−1
λ,n−i,+).

Suppose 1 ≤ i ≤ n and λ ∈ C. Then we have

˜̃Ai,i−1
n−λ,n−i,+ ◦ T̃

i
λ,n−λ =−

2π
n
2Γ( i−λ

2
+ 1)

Γ(n− λ+ 1)Γ(λ−n+i
2

)
˜̃Ai,i−1
λ,n−i,+, (9.47)

T̃i−1
n−i,i−1 ◦

˜̃Ai,i−1
λ,n−i,+ =0, (9.48)

S( ˜̃Ai,i−1
λ,n−i,+) =

π
n−1
2

Γ(λ+ 1)

(
0 0
0 2

)
.

Proof. The functional equations follow from Theorems 9.24 and 9.25. The
formula for the (K,K ′)-spectrum is derived from Theorem 9.8.

9.9.4 Functional equations at middle degree for n odd

For n odd (say, n = 2m+1), the Knapp–Stein operator T̃j
ν,n−ν−1 : Jε(j, ν)→

Jε(j, n− 1− ν) for the subgroup G′ = O(n, 1) vanishes at the middle degree
j = 1

2
(n − 1)(= m) if ν = m by Proposition 8.12. We note that the exact

sequence in Theorem 2.20 (1) for G′ = O(2m + 1, 1) splits, and we have a
direct sum decomposition

Jε(m,m) ≃ πm,ε ⊕ πm+1,−ε

of two irreducible tempered representations of G′. In this case, the functional
equations (9.40) in Lemma 9.27 and (9.48) in Lemma 9.30 are trivial, and
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we replace them by the following functional equations for the renormalized

Knapp–Stein operator ˜̃Tm
m,m.

Lemma 9.31. For (G,G′) = (O(n+ 1, 1), O(n, 1)) with n = 2m+ 1 and for
λ ∈ C, we have

˜̃Tm
m,m ◦

˜̃Am,m
λ,m,+ =

πm

m!
˜̃Am,m
λ,m,+, (9.49)

˜̃Tm
m,m ◦

˜̃Am+1,m
λ,m,+ =− πm

m!
˜̃Am+1,m
λ,m,+ . (9.50)

Lemma 9.31 tells that

Image( ˜̃Am,m
λ,m,+ : Iδ(m,λ)→ Jδ(m,m)) ⊂ πm,δ,

Image( ˜̃Am+1,m
λ,m,+ : Iδ(m+ 1, λ)→ Jδ(m,m)) ⊂ πm+1,−δ,

for all λ ∈ C by Lemma 8.15.

Proof. The functional equations in Theorem 9.24 tell that

(
1

ν −m
T̃m

ν,2m−ν) ◦ Γ(
λ−m

2
)Ãm,m

λ,ν,+ =
πm

Γ(ν + 1)
Γ(
λ−m

2
)Ãm,m

λ,2m−ν,+,

(
1

ν −m
T̃m

ν,2m−ν) ◦ Γ(
λ−m

2
)Ãm+1,m

λ,ν,+ =− πm

Γ(ν + 1)
Γ(
λ−m

2
)Ãm+1,m

λ,2m−ν,+.

Taking the limit as ν tends to m, we get Lemma 9.31.

9.10 Restriction map Iδ(i, λ)→ Jδ(i, λ)

The restriction of (smooth) differential forms to a submanifold defines an
obvious continuous map between Fréchet spaces, which intertwines the con-
formal representation (see [37, Lem. 8.9]). We end this section with the most
elementary symmetry breaking operator, namely, the restriction map for the
pair (G′/P ′, G/P ) ⊂ (Sn−1, Sn).

Lemma 9.32. The restriction map from G/P to the submanifold G′/P ′ in-
duces obvious symmetry breaking operators

Resti,iλ,λ,+ : Iδ(i, λ)→ Jδ(i, λ).

Then the (K,K ′)-spectrum for basic K- and K ′-types (see (9.13)) is given by

S(Resti,iλ,λ,+) =

(
1 0
0 1

)
. (9.51)
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Proof. We recall from Proposition 8.4 that

{1I
λ : I ∈ In+1,i}

forms a basis of the basic K-type µ♭(i, δ) of the principal series representation
Iδ(i, λ) in the N -picture. Let I ∈ In+1,i and (x, xn) ∈ Rn−1 ⊕ R = Rn. By
(8.6), we have

1I
λ(x, xn) = −(1 + |x|2 + x2n)

−λ−1
∑

J∈In,i

SIJ(1, x, xn)eJ .

Then an elementary computation by using (7.6) shows

1I
λ(x, 0) =

{
1′
λ
I(x) if n /∈ I ∈ In+1,i,

1′
λ
I−{n}(x) ∧ en if n ∈ I ∈ In+1,i.

The case for the basic K-type µ♯(i, δ) is similar, where we recall from Propo-
sition 8.4 that {hIλ : I ∈ In+1,i+1} forms its basis, for which we can compute
the restriction xn = 0. Thus Lemma 9.32 is shown.

9.11 Image of the differential symmetry breaking op-
erator C̃i,j

λ,ν

In Theorem 6.8, we have proved that the image of any nonzero differential
symmetry breaking operator from principal series representation is infinite-
dimensional. As an application of the functional equations of the (generi-

cally) regular symmetry breaking operators Ãi,j
λ,ν,± (Theorems 9.24 and 9.25)

and of the residue formulæ of Ãi,j
λ,ν,± (Fact 9.3, see [36]), we end this chap-

ter with a necessary and sufficient condition for the renormalized differential
symmetry breaking operator C̃i,j

λ,ν to be surjective when j = i, i − 1, see
Theorems 9.33 and 9.34.

9.11.1 Surjectivity condition of C̃i,j
λ,ν

Suppose j ∈ {i, i−1}. We recall from (3.18) and (3.19) that the renormalized

differential symmetry breaking operator C̃i,j
λ,ν : Iδ(i, λ) → Jε(j, ν) is defined

for (λ, ν) ∈ C2 with ν − λ ∈ N and δε = (−1)ν−λ. Moreover, C̃i,j
λ,ν is nonzero

for any (i, j, λ, ν) with j ∈ {i, i− 1} and ν − λ ∈ N.
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In what follows, we shall sometimes encounter the condition that (λ, n−
1− ν) ∈ Leven ∪ Lodd, which is equivalent to

(λ, ν) ∈ Z2 and λ+ ν ≤ n− 1 ≤ ν. (9.52)

Theorem 9.33. Suppose 0 ≤ i ≤ n − 1, ν − λ ∈ N, and δ, ε ∈ {±} with
(−1)ν−λ = δε. Then the following two conditions (i) and (ii) on (i, λ, ν) are
equivalent:

(i) C̃i,i
λ,ν : Iδ(i, λ)→ Jε(i, ν) is not surjective.

(ii) One of the following conditions holds:

(ii-a) 1 ≤ i ≤ n− 1, ν = i, and Z ∋ λ < i;

(ii-b) n is odd, i = 0, and (9.52);

(ii-c) n is odd, 1 ≤ i ≤ n− 1, (9.52), and ν ̸= n− 1;

(ii-d) n is odd, 1 ≤ i < 1
2
(n− 1), (λ, ν) = (i, n− 1− i).

Theorem 9.34. Suppose 1 ≤ i ≤ n, ν − λ ∈ N, and δ, ε ∈ {±} with
(−1)ν−λ = δε. Then the following two conditions (i) and (ii) on (i, λ, ν) are
equivalent:

(i) C̃i,i−1
λ,ν : Iδ(i, λ)→ Jε(i− 1, ν) is not surjective.

(ii) One of the following conditions holds:

(ii-a) 1 ≤ i ≤ n− 1, ν = n− i, and Z ∋ λ < n− i;
(ii-b) n is odd, 1 ≤ i ≤ n− 1, (9.52), and ν ̸= n− 1;

(ii-c) n is odd, i = n, and (9.52);

(ii-d) n is odd, 1
2
(n+ 1) < i ≤ n− 1, and (λ, ν) = (n− i, i− 1).

For the proof of Theorems 9.33 and 9.34, we first derive the functional
equations for C̃i,j

λ,ν in Theorem 9.35 from those for the regular symmetry

breaking operators Ãi,j
λ,ν,± in Chapter 9 and from the matrix-valued residue

formulæ [36]. The results cover most of the cases where the Knapp–Stein

intertwining operators T̃j
ν,n−1−ν do not vanish. A special attention is required

when T̃j
ν,n−1−ν = 0. In this case, the principal series representation Jε(j, ν)

splits into the direct sum of two irreducible representations of the subgroup
G′ = O(n, 1), and we shall treat this case separately in Section 9.11.3. The
proof of Theorems 9.33 and 9.34 will be completed in Section 9.11.4.
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9.11.2 Functional equation for C̃i,j
λ,ν

Suppose 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1, and j = i or i− 1. We set pi,j(λ, ν) by

pi,i(λ, ν) :=

{
1 if i = 0 or λ = ν,
1
2
(ν − i) otherwise,

(9.53)

pi,i−1(λ, ν) :=

{
1 if i = n or λ = ν,
1
2
(ν + i− n) otherwise.

Theorem 9.35 (functional equation for C̃i,j
λ,ν). Suppose 0 ≤ i ≤ n, 0 ≤ j ≤

n− 1, and j ∈ {i, i− 1}. For (λ, ν) ∈ C2 with ν − λ ∈ N, we have

T̃j
ν,n−1−ν ◦ C̃

i,j
λ,ν = q(ν − λ)pi,j(λ, ν)Ãi,j

λ,n−1−ν,(−1)ν−λ , (9.54)

where q(m) is a nonzero number defined in (9.8).

Proof. We set

pi,j(ν) :=

{
1
2
(ν − i) if j = i,

1
2
(n− ν − i) if j = i− 1.

(9.55)

By the functional equation for the regular symmetry breaking operator Ãi,j
λ,ν,±

given in Theorem 9.24, we have for γ ∈ {±}

T̃j
ν,n−1−ν ◦ Ã

i,j
λ,ν,γ =

2π
n−1
2 pi,j(ν)

Γ(ν + 1)
Ãi,j

λ,n−1−ν,γ.

Suppose ν − λ ∈ N. Applying the residue formula (9.7) of Ãi,j
λ,ν,± to the

left-hand side, we get

T̃j
ν,n−1−ν ◦ C

i,j
λ,ν = (−1)i−jq(ν − λ)pi,j(ν)Ãi,j

λ,n−1−ν,(−1)ν−λ . (9.56)

On the other hand, by using pi,j(λ, ν) and pi,j(ν), the relation between the

unnormalized operators Ci,j
λ,ν and the renormalized operators C̃i,j

λ,ν defined in
(3.18) and (3.19) are given as the following unified formula:

pi,j(λ, ν)Ci,j
λ,ν = (−1)i−jpi,j(ν)C̃i,j

λ,ν for j ∈ {i, i− 1}.

Multiplying both sides of the equation (9.56) by pi,j(λ, ν), we get the desired
formula.
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Proposition 9.36. Suppose ν − λ ∈ N, and δ, ε ∈ {±} with (−1)ν−λ = δε.

(1) Suppose 0 ≤ i ≤ n − 1. Then the following two conditions on (i, λ, ν)
are equivalent:

(i) The image of C̃i,i
λ,ν : Iδ(i, λ)→ Jε(i, ν) is contained in Ker (T̃i

ν,n−1−ν).

(ii) One of the following conditions holds:

(ii-a) 1 ≤ i ≤ n− 1, ν = i, and Z ∋ λ < i;

(ii-b) n is odd, i = 0, and (9.52);

(ii-c) n is odd, 1 ≤ i ≤ n− 1, (9.52), and ν ̸= n− 1;

(ii-d) n is odd, 1 ≤ i ≤ 1
2
(n− 1), and (λ, ν) = (i, n− 1− i).

(2) Suppose 1 ≤ i ≤ n. Then the following two conditions on (i, λ, ν) are
equivalent:

(iii) The image of C̃i,i−1
λ,ν : Iδ(i, λ)→ Jε(i−1, ν) is contained in Ker (T̃i−1

ν,n−1−ν).

(iv) One of the following holds:

(iv-a) 1 ≤ i ≤ n− 1, ν = n− i, and Z ∋ λ < n− i;
(iv-b) n is odd, 1 ≤ i ≤ n− 1, (9.52), and ν ̸= n− 1;

(iv-c) n is odd, i = n, and (9.52);

(iv-d) n is odd, 1
2
(n+ 1) ≤ i ≤ n− 1, and (λ, ν) = (n− i, i− 1).

The difference of this proposition from Theorems 9.33 and 9.34 is that the
cases i = 1

2
(n− 1) in (1) and i = 1

2
(n+ 1) in (2) are included in Proposition

9.36. In these cases, the Knapp–Stein intertwining operator T̃j
ν,n−1−ν vanishes

where j = i in (1) and = i− 1 in (2), and the conditions (i) and (iii) do not

provide any information of Image(C̃i,j
λ,ν). In these special cases, we shall study

Image(C̃i,j
λ,ν) separately in Section 9.11.3 by using the renormalized Knapp–

Stein operators ˜̃Tj
ν,n−1−ν .

Proof. By the functional equation (9.54) in Theorem 9.35, we see that

Image (C̃i,j
λ,ν) ⊂ Ker (T̃j

ν,n−1−ν)

if and only if pi,j(λ, ν) = 0 or Ãi,j
λ,n−1−ν,(−1)ν−λ = 0. Suppose 0 ≤ i ≤ n,

0 ≤ j ≤ n− 1, and j ∈ {i, i− 1}. By definition (9.53),

pi,i(λ, ν) = 0⇔ λ ̸= ν = i and 1 ≤ i ≤ n− 1,

pi,i−1(λ, ν) = 0⇔ λ ̸= ν = n− i and 1 ≤ i ≤ n− 1.
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On the other hand, we claim

Ãi,i
λ,n−1−ν,(−1)ν−λ = 0⇔ (ii-b), (ii-c), or (ii-d) holds;

Ãi,i−1
λ,n−1−ν,(−1)ν−λ = 0⇔ (iv-b), (iv-c), or (iv-d) holds.

Let us verify the first equivalence for 1 ≤ i ≤ n− 1. The vanishing condition
of Ãi,j

λ,ν,± given in Theorem 3.19 (1) and (3) shows that Ãi,i
λ,n−1−ν,(−1)ν−λ = 0

if and only if one of the following three conditions holds:

• i = 0, (λ, n − 1 − ν) ∈ Z2, (ν + 1 − n) − λ ≡ ν − λ mod 2, and
0 ≤ ν + 1− n ≤ −λ;

• i ̸= 0, (λ, n − 1 − ν) ∈ Z2, (ν + 1 − n) − λ ≡ ν − λ mod 2, and
0 < ν + 1− n ≤ −λ;

• i ̸= 0, ν − λ ∈ 2Z, and (λ, n− 1− ν) = (i, i).

These conditions amount to (ii-b), (ii-c), and (ii-d) in Proposition 9.36 (1),
respectively. The second equivalence is shown similarly. Hence Proposition
9.36 is proved.

Remark 9.37. For λ = ν, the above conditions are fulfilled if and only if
(λ, ν) = (1

2
(n − 1), 1

2
(n − 1)) and i = 1

2
(n − 1) in Proposition 9.36 (1) or

i = 1
2
(n + 1) in Proposition 9.36 (2). This is exactly when T̃j

ν,n−1−ν (j = i,
i− 1) vanishes.

9.11.3 The case when T̃j
ν,n−1−ν = 0

By Proposition 8.12, the Knapp–Stein operators T̃j
ν,n−1−ν for the subgroup

G′ = O(n, 1) vanishes if and only if n is odd and

ν = j =
n− 1

2
.

We note in this case that ν − i = 0 for i = j and ν + i− n = 0 for i = j + 1,
and therefore the definition (9.53) tells

pi,j(λ, ν) =

{
1 if λ = ν,

0 if λ ̸= ν.
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When n = 2m + 1 and j = 1
2
(n − 1) (= m), we use the renormalized

Knapp–Stein operator, see (8.21), given by

˜̃Tm
ν,2m−ν =

1

ν −m
T̃m

ν,2m−ν .

Proposition 9.38. Suppose (G,G′) = (O(n+ 1, 1), O(n, 1)) with n = 2m+

1. Let i = m or m + 1. Then the composition ˜̃Tm
ν,2m−ν ◦ C̃

i,m
λ,ν : Iδ(i, λ) →

Jε(m, 2m− ν) for ν − λ ∈ N and δε ∈ (−1)ν−λ is given as follows.

(1) For ν − λ ∈ N+,

˜̃Tm
ν,2m−ν ◦ C̃

i,m
λ,ν =

1

2
q(ν − λ)Ãi,m

λ,2m−ν,(−1)ν−λ .

In particular, if m− λ ∈ N+, then

˜̃Tm
m,m ◦ C̃

i,m
λ,m = (−1)i−mπ

m

m!
C̃i,m

λ,m.

(2) For ν = λ = m,

˜̃Tm
m,m ◦ C̃i,m

m,m = ˜̃Ai,m
m,m,+ + (−1)i−m+1π

m

m!
C̃i,m

m,m.

Proof. (1) The functional equation (9.54) with n = 2m+1 and j = m shows

T̃m
ν,2m−ν ◦ C̃

i,m
λ,ν = q(ν − λ)pi,m(λ, ν)Ãi,m

λ,2m−ν,(−1)ν−λ .

By (9.53), we have for i ∈ {m,m+ 1} and λ ̸= ν,

pi,m(λ, ν) =
1

2
(ν −m).

Hence the first equation is verified. For the second statement, we substitute
ν = m. Then the second equation follows from the residue formula (9.7) and

from the fact C̃i,m
λ,m = Ci,m

λ,m when λ ̸= m.
(2) The case i = m + 1 will be shown in Lemma 10.25. The case i = m is
similar by using

lim
ν→m

1

ν −m
Ãm,m

ν,2m−ν,+ = ˜̃Am,m
m,m,+ −

πm

m!
C̃m,m

m,m

as it will be explained in (10.20) of Chapter 10.
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9.11.4 Proof of Theorems 9.33 and 9.34

Suppose 0 ≤ j ≤ n − 1. Then the principal series representation Jδ(j, ν) is
reducible as a module of G′ = O(n, 1) if and only if

ν ∈ {j, n− 1− j} ∪ (−N+) ∪ (n+ N), (9.57)

see Proposition 2.18 (1). Suppose ν satisfies (9.57). Then the proper sub-
modules of Jδ(j, ν) are described as follows:

Case 1. (n, ν) ̸= (2j + 1, j), equivalently, T̃j
ν,n−1−ν ̸= 0.

In this case, the unique proper submodule of Jδ(j, ν) is given as the kernel

of the Knapp–Stein operator T̃j
ν,n−1−ν : Jδ(j, ν)→ Jδ(j, n− 1− ν).

Case 2. (n, ν) = (2j + 1, j), equivalently, T̃j
ν,n−1−ν = 0.

In this case, there are two proper submodules of Jδ(j, ν), which are given

as the kernel of ˜̃Tj
j,j ± πj

j!
id ∈ EndG′(Jδ(j, j)), see Lemma 8.15.

Proof of Theorems 9.33 and 9.34. Assume (n, ν) ̸= (2j+1, j). This excludes
the case where Z ∋ λ ≤ j from the conditions (ii) (i = j) and (iv) (i = j+1)
in Proposition 9.36. In this case Theorems 9.33 and 9.34 are immediate
consequences of Proposition 9.36.

Assume now (n, ν, j) = (2m + 1,m,m) for some m ∈ N+. Then C̃i,m
λ,m is

not surjective if λ < m, and is surjective if λ = m by Proposition 9.38 (1)
and (2), respectively. Thus Theorems 9.33 and 9.34 are proved.
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10 Symmetry breaking operators for irreducible

representations with infinitesimal charac-

ter ρ : Proof of Theorems 4.1 and 4.2

In the first half of this chapter, we give a proof of Theorems 4.1 and 4.2 that
determine the dimension of the space of symmetry breaking operators from
irreducible representations Π of G = O(n + 1, 1) to irreducible representa-
tions π of the subgroup G′ = O(n, 1) when both Π and π have the trivial
infinitesimal characters ρ, or equivalently by Theorem 2.20 (2), when

Π ∈ Irr(G)ρ = {Πi,δ : 0 ≤ i ≤ n+ 1, δ ∈ {±}},
π ∈ Irr(G′)ρ = {πj,ε : 0 ≤ j ≤ n, ε ∈ {±}}.

The proofs of Theorems 4.1 and 4.2 are completed in Section 10.1 and Section
10.2.4, respectively. In the latter half of this chapter, we give a concrete
construction of such symmetry breaking operators from Π to π. We pursue
such constructions more than what we need for the proof for Theorems 4.1
and 4.2: some of the results will be used in calculating “periods” in Chapter
12. Our proof uses the symmetry breaking operators for principal series
representations and their basic properties that we have developed in the
previous chapters.

10.1 Proof of the vanishing result (Theorem 4.1)

This section gives a proof of the vanishing theorem of symmetry breaking
operators (Theorem 4.1). In the same circle of the ideas, we also give a proof
of multiplicity-free results (Proposition 10.7). In order to study symmetry
breaking for irreducible representations Πi,δ ofG, we embed HomG′(Πi,δ|G′ , πj,ε)
into the space of symmetry breaking operators between principal series rep-
resentations as follows:

Lemma 10.1. Let δ, ε ∈ {±}. Then we have natural embeddings:

(1) for 0 ≤ i ≤ n and 0 ≤ j ≤ n− 1,

HomG′(Πi,δ|G′ , πj,ε) ⊂ HomG′(Iδ(i, n− i)|G′ , Jε(j, j)); (10.1)

(2) for 1 ≤ i ≤ n+ 1 and 0 ≤ j ≤ n− 1,

HomG′(Πi,δ|G′ , πj,ε) ⊂ HomG′(I−δ(i− 1, i− 1)|G′ , Jε(j, j)); (10.2)
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(3) for 0 ≤ i ≤ n and 1 ≤ j ≤ n,

HomG′(Πi,δ|G′ , πj,ε) ⊂ HomG′(Iδ(i, n− i)|G′ , J−ε(j − 1, n− j)); (10.3)

(4) for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n,

HomG′(Πi,δ|G′ , πj,ε) ⊂ HomG′(I−δ(i− 1, i− 1)|G′ , J−ε(j − 1, n− j)).
(10.4)

Proof. We recall from Theorem 2.20 (1) that there are surjectiveG-homomorphisms

I ↠ Πi,δ for I = Iδ(i, n− i) or I−δ(i− 1, i− 1)

and injective G′-homomorphisms

πj,ε ↪→ J for J = Jε(j, j) or J−ε(j − 1, n− j).

Then the composition I ↠ Πi,δ → πj,ε ↪→ Jε(j, j) yields the embeddings
(10.1)–(10.4).

Proposition 10.2. If j /∈ {i− 1, i}, then HomG′(Πi,δ|G′ , πj,ε) = {0}.

Proof. Assume HomG′(Πi,δ|G′ , πj,ε) ̸= {0}.
Suppose first 1 ≤ i ≤ n. By Theorem 3.25 (1), we get j ∈ {i − 3, i −

2, i − 1, i} from (10.2), and j ∈ {i− 1, i, i + 1, i + 2} from (10.3). Hence we
conclude j ∈ {i− 1, i}.

Suppose next i = 0 or n + 1. By using Theorem 3.25 (1) again, we get
j ∈ {0, 1} from (10.1) for i = 0, and j ∈ {n− 1, n} from (10.2) for i = n+1.
Since dimC Π0,δ = dimC Πn+1,δ = 1 whereas both π1,ε and πn−1,ε are infinite-
dimensional irreducible representations of G′ (Theorem 2.20 (4)), we have an
obvious vanishing result:

HomG′(Πi,δ|G′ , πj,ε) = {0} if (i, j) = (0, 1) or (n+ 1, n− 1).

Hence we conclude j ∈ {i− 1, i} for i = 0 or n+ 1, too.

Proposition 10.3. If δε = −, then HomG′(Πi,δ|G′ , πj,ε) = {0}.
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Proof. We have already proved the assertion in the case j ̸∈ {i − 1, i} in
Proposition 10.2. Therefore it suffices to prove the assertion in the case
j = i− 1 and i. We begin with the case j = i− 1.

Suppose 2 ≤ i ≤ n. Then by Theorem 3.25 (3),

HomG′(Iδ(i, n− i)|G′ , J−ε(i− 2, n− i+ 1)) = {0}

because δ(−ε) = +. This implies HomG′(Πi,δ|G′ , πi−1,ε) = {0} from (10.3).
For the case (i, j) = (1, 0), we know from [44, Thm. 2.5 (1-a)] that

HomG′(Π1,−|G′ , π0,+) = {0}.

(F (0) = π0,+ and T (0) = Π1,− with the notation therein.) It then follows
from Proposition 3.39 that HomG′(Π1,+|G′ , π0,−) = {0}.

For the case (i, j) = (n+1, n), we use the fact that both Πi,δ and πj,ε are
one-dimensional. In fact, we have isomorphisms Πn+1,δ ≃ χ−,δ and πn,ε ≃
χ−,ε|G′ by Theorem 2.20 (4). Thus the vanishing assertion is straightforward
for j = i− 1 (1 ≤ i ≤ n+ 1).

The case j = i is derived from the case j = i−1 by duality (see Proposition
3.39).

By Propositions 10.2 and 10.3, we have completed the proof of Theorem
4.1.

10.2 Construction of symmetry breaking operators from
Πi,δ to πi,δ: Proof of Theorem 4.2

In this section we prove the existence and the uniqueness (up to scalar mul-
tiplication) of symmetry breaking operators from the irreducible G-module
Πi,δ to the irreducible G

′-module πj,ε when j ∈ {i−1, i} and δε = +, and thus
complete the proof of Theorem 4.2. Moreover, we investigate their (K,K ′)-
spectrum for minimalK- andK ′-types, and also give an explicit construction
of such operators.

10.2.1 Generators of symmetry breaking operators between prin-
cipal series representations having the trivial infinitesimal
character ρ

We have determined explicit generators of symmetry breaking operators
Iδ(i, λ) → Jε(j, ν) in Theorem 3.26. In this subsection, we extract some
special cases which will be used for the proof of Theorem 4.2.
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The following lemma is used for the proof of the multiplicity-free theorem
(Proposition 10.7 below), and also for an explicit construction of nonzero
symmetry breaking operators Π → π with Π ∈ Irr(G)ρ and π ∈ Irr(G′)ρ
(Proposition 10.13).

Lemma 10.4. (1) Suppose 0 ≤ i ≤ n− 1 and δε = +. Then

HomG′(Iδ(i, n− i)|G′ , Jδ(i, i)) ≃

{
CÃi,i

n−i,i,+ if 2i ̸= n,

C ˜̃Ai,i
n−i,i,+ ⊕ CC̃i,i

n−i,i if 2i = n.

(2) Suppose 1 ≤ i ≤ n− 1 and δε = +. Then

HomG′(I−δ(i− 1, i− 1)|G′ , Jε(i, i)) = CC̃i−1,i
i−1,i.

(3) Suppose 0 ≤ i ≤ n− 1 and δ ∈ {±}. Then we have

HomG′(Iδ(i, i)|G′ , Jδ(i, i)) = C ˜̃Ai,i
i,i,+ ⊕ CC̃i,i

i,i.

(4) Suppose 1 ≤ i ≤ n and δε = +. Then

HomG′(I−δ(i− 1, i− 1)|G′ , J−ε(i− 1, n− i))

≃

{
CÃi−1,i−1

i−1,n−i,+ if n ̸= 2i− 1,

C ˜̃Ai−1,i−1
i−1,n−i,+ ⊕ CC̃i−1,i−1

i−1,n−i if n = 2i− 1.

Proof. We determined the dimension of the left-hand side by Theorem 3.25
(2) and (3). Then the lemma follows from Theorem 3.26 for (1), (3), (4);
and from Fact 3.23 for (2).

Remark 10.5. In the N -picture where the open Bruhat cells for the pair of
the real flag manifolds G′/P ′ ⊂ G/P are represented by Rn−1 ⊂ Rn, we

have C̃i,i
n−i,i = Restxn=0 in Lemma 10.4 (1), C̃i−1,i

i−1,i = Restxn=0 ◦ dRn in (2),

C̃i,i
i,i = Restxn=0 in (3), and C̃i−1,i−1

i−1,i−1 = Restxn=0 in (4).

The following lemma is used for an alternative construction (see Propo-
sition 10.13 below) of symmetry breaking operators Πi,δ → πi,δ.

Lemma 10.6. Suppose 1 ≤ i ≤ n and δ ∈ {±}. Then we have

HomG′(Iδ(i, i)|G′ , J−δ(i− 1, n− i)) = CÃi,i−1
i,n−i,−.

Proof. By Theorem 3.25 (2), Ãi,i−1
i,n−i,− ̸= 0, and therefore the lemma follows

from Theorem 3.26.
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10.2.2 Multiplicity-free property of symmetry breaking

In this subsection, we prove the following multiplicity-free property:

Proposition 10.7. For any 0 ≤ i ≤ n + 1, 0 ≤ j ≤ n, and δ, ε ∈ {±}, we
have

dimC HomG′(Πi,δ|G′ , πj,ε) ≤ 1. (10.5)

Proposition 10.7 is a very special case of the multiplicity-free theorem
which was proved in Sun–Zhu [59], however, we give a different proof based
on Lemmas 10.1 and 10.4 because the following short proof illustrates the
idea of this chapter.

Proof of Proposition 10.7. Owing to the vanishing results (Theorem 4.1), it
suffices to show (10.5) when j ∈ {i − 1, i} and δε = +. Moreover, the case
j = i − 1 can be reduced to the case j = i by the duality between the
spaces of symmetry breaking operators (Proposition 3.39). Henceforth, we
assume j = i ∈ {0, 1, . . . , n} and δε = +. Then, owing to the embedding
results given in Lemma 10.1, the multiplicity-free property (10.5) holds for
1 ≤ i ≤ n − 1 by Lemma 10.4 (2), and for i = 0 and n by Lemma 10.4 (1)
and (4). Thus Proposition 10.7 is proved.

10.2.3 Multiplicity-one property: Proof of Theorem 4.2

In proving Theorem 4.2, we use the following proposition, whose proof is
deferred at the next subsection.

Proposition 10.8. HomG′(Πi,δ|G′ , πi,δ) ̸= {0} for all 0 ≤ i ≤ n and δ ∈ {±}.

Remark 10.9. Obviously Proposition 10.8 holds for i = 0 because Π0,δ|G′ ≃
π0,δ as G′-modules for δ ∈ {±}. Indeed, the G-modules Π0,+ and Π0,− are
the one-dimensional representations 1 and respectively χ+− (Theorem 2.20
(4)), and likewise for the G′-modules π0,±.

Before giving a proof of Proposition 10.8, we show that Proposition 10.8
implies Theorem 4.2.

Proof of Theorem 4.2. By the duality among the spaces of symmetry break-
ing operators (Proposition 3.39), we may and do assume j = i and δ = ε = +
because j̃ := n − j and ĩ := n + 1 − i satisfy j̃ = ĩ − 1 if and only if j = i.
Then Theorem 4.2 follows from Propositions 10.7 (uniqueness) and 10.8 (ex-
istence).
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For later purpose, we need a refinement of Proposition 10.8 by providing
information of (K,K ′)-spectrum in Proposition 10.12 below. For this, we fix
some terminology:

Definition 10.10 (minimal K-type). We set m := [n+1
2
]. Suppose µ ∈ K̂.

To describe an irreducible finite-dimensional representation µ of K = O(n+
1)×O(1), we use the notation in Section 14.1 in Appendix I rather than the
previous one in Section 2.2.1, and write

µ = FO(n+1)(σ1, · · · , σm)ε ⊠ δ

for σ = (σ1, · · · , σm) ∈ Λ+(m) and ε, δ ∈ {±}. We define ∥µ∥ > 0 by

∥µ∥2 =
m∑
j=1

(σj + n+ 1− 2j)2 (= ∥σ + 2ρc∥2),

where 2ρc = (n − 1, n − 3, · · · , n + 1 − 2m) is the sum of positive root for
kC = o(n + 1,C) in the standard coordinates. For a nonzero admissible
representation Π of G, the set of minimal K-types of Π is

{µ ∈ K̂ : µ occurs in Π, and ∥µ∥ is minimal with this property},

see [26, Chap. 2] or [63, Def. 5.4.18].

We then observe:

Remark 10.11 (minimal K-type). The basic K-type (see Definition 2.17) of
the principal series representation Iδ(i, λ) is the unique minimal K-type of
the irreducible G-module Πi,δ, as stated in Theorem 2.20 (3).

Proposition 10.12. Let (G,G′) = (O(n + 1, 1), O(n, 1)), 0 ≤ i ≤ n and
δ ∈ {±}. Then there exists a nonzero symmetry breaking operator

Ai,i : Πi,δ → πi,δ (10.6)

such that its (K,K ′)-spectrum for the minimal K ′- and K-types µ♭(i, δ)′(↪→
µ♭(i, δ)) is nonzero.

Proposition 10.12 is an existence theorem, however, we shall prove it by
constructing nonzero symmetry breaking operators Πi,δ → πi,δ, see Proposi-
tion 10.13 in the next subsection. Alternative constructions are also given in
Sections 10.2.5 and 10.2.6, and thus we construct symmetry breaking oper-
ators Πi,δ → πi,δ in the following three ways:
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• Ãi,i−1
i,n−i,− : Iδ(i, i)→ J−δ(i− 1, n− i), (Proposition 10.13),

• ˜̃Ai,i
i,i,+ : Iδ(i, i)→ Jδ(i, i), (Proposition 10.15),

• Ãi,i
n−i,i,+ : Iδ(i, n− i)→ Jδ(i, i), (Proposition 10.16).

10.2.4 First construction Πi,δ → πi,δ (1 ≤ i ≤ n)

In this subsection, we construct a nonzero symmetry breaking operator

Πi,δ → πi,δ for 1 ≤ i ≤ n, δ ∈ {±},

by using Lemma 10.6.

Proposition 10.13. Suppose 1 ≤ i ≤ n and δ ∈ {±}. Then the normalized
symmetry breaking operator

Ãi,i−1
i,n−i,− : Iδ(i, i)→ J−δ(i− 1, n− i)

satisfies the following:

(1) Image(Ãi,i−1
i,n−i,−)K′ = (πi,δ)K′ as (g′, K ′)-modules;

(2) Ãi,i−1
i,n−i,−|Πi,δ

̸= 0.

In particular, it induces a symmetry breaking operator Πi,δ → πi,δ as in the
diagram below. Moreover, the (K,K ′)-spectrum of the resulting operator for
the minimal K ′- and K-types µ♭(i, δ)′ (↪→ µ♭(i, δ)) is nonzero.

Iδ(i, i)
Ãi,i−1
i,n−i,− // J−δ(i− 1, n− i)∪ ∪

Πi,δ
//__________ πi,δ

Convention 10.14. Hereafter, by abuse of notation, we shall write simply
as Image(Ãi,i−1

i,n−i,−) = πi,δ if their underlying (g′, K ′)-modules coincide (cf.
Proposition 10.13 (1)).
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Proof of Proposition 10.13. (1) First we observe

Image(Ãi,i−1
i,n−i,−) ⊂ Ker(T̃i−1

n−i,i−1)

because Theorem 9.24 with ν = n− i tells the functional equation T̃i−1
n−i,i−1 ◦

Ãi,i−1
i,n−i,− = 0.

When n ̸= 2i− 1, we conclude Image(Ãi,i−1
i,n−i,−) = πi,δ by Proposition 8.11

because πi,δ is irreducible as a G
′-module. When n = 2i−1, the Knapp–Stein

operator T̃i−1
n−i,i−1 vanishes (Proposition 8.12). Instead we use the following

renormalized Knapp–Stein operator (see (8.21)):

˜̃Ti−1
ν,n−1−ν =

1

ν − i+ 1
T̃i−1

ν,n−1−ν .

Then the functional equation given in Theorem 9.24 implies(
˜̃Ti−1
i−1,i−1 +

πi−1

(i− 1)!
id

)
◦ Ãi,i−1

λ,i−1,− = 0.

By Lemma 8.15 applied to the subgroup G′ = O(n, 1) (= O(2i − 1, 1)), we

conclude Image(Ãi,i−1
λ,n−i,−) = Image(Ãi,i−1

λ,i−1,−) = πi,δ in the case n = 2i − 1,
too.
(2) The second statement follows from the fact that the (K,K ′)-spectrum of

Ãi,i−1
λ,ν,− (Theorem 9.8) for the basic K-types (µ, µ′) = (µ♭(i, δ), µ♯(i− 1,−δ)′)

does not vanish. The last assertion is derived from the following observation
(see (2.32)): there are isomorphisms of representations of K ′ = O(n)×O(1),

µ♯(i− 1,−δ)′ ≃ µ♭(i, δ)′.

Hence Proposition 10.13 is proved.

Proof of Proposition 10.12. Clear from Proposition 10.13 and Remark 10.9.

Thus, the proof of Theorem 4.2 has been completed.

For the rest of this chapter, we give alternative constructions of symmetry
breaking operators for later purposes.
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10.2.5 Second construction Πi,δ → πi,δ (0 ≤ i ≤ n− 1)

In this subsection, we provide another construction of a nonzero symmetry
breaking operator

Πi,δ → πi,δ for 0 ≤ i ≤ n− 1, δ ∈ {±},

by using Lemma 10.4 (3).

Proposition 10.15. Suppose 0 ≤ i ≤ n − 1 and δ ∈ {±}. Then the renor-
malized operator

˜̃Ai,i
i,i,+ : Iδ(i, i)→ Jδ(i, i)

satisfies the following:

(1) Image( ˜̃Ai,i
i,i,+) = πi,δ;

(2) ˜̃Ai,i
i,i,+|Πi,δ

̸= 0.

In particular, it induces a symmetry breaking operator Πi,δ → πi,δ as in the
diagram below. Moreover, the (K,K ′)-spectrum of the resulting operator for
the minimal K ′- and K-types µ♭(i, δ)′ (↪→ µ♭(i, δ)) is nonzero.

Iδ(i, i)
˜̃Ai,i
i,i,+ // Jδ(i, i)∪ ∪

Πi,δ
//_______ πi,δ

Proof of Proposition 10.15. (1) By the functional equation (9.40), we have

Image( ˜̃Ai,i
λ,i,+) ⊂ Ker(T̃i

i,n−1−i).

When n ̸= 2i+ 1, we conclude Image( ˜̃Ai,i
λ,i,+) = πi,δ by Proposition 8.11.

When n = 2i + 1, the Knapp–Stein operator T̃i
i,n−1−i ≡ T̃i

i,i vanishes
(Proposition 8.12). Instead we use the functional equation (9.49) for the

renormalized operators ˜̃Ti
i,i and

˜̃Ai,i
λ,i,+, which tells that

Image( ˜̃Ai,i
λ,i,+) ⊂ Ker

(
˜̃Ti
i,i −

πi

Γ(i+ 1)
id

)
.
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By Lemma 8.15, we conclude Image( ˜̃Ai,i
λ,i,+) = πi,δ because ˜̃Ai,i

λ,i,+ is nonzero
and πi,δ is irreducible as a G′-module.
(2) The assertion follows readily from the (K,K ′)-spectrum of the renor-

malized operator ˜̃Ai,i
λ,i,+ (see (9.42)) for the basic K- and K ′-types (µ, µ′) =

(µ♭(i, δ), µ♭(i, δ)′).

10.2.6 Third construction Πi,δ → πi,δ

We give yet another construction of a nonzero symmetry breaking operator
Πi,δ → πi,δ in the case n ̸= 2i. In the case n = 2i, the normalized operator

Ãi,i
n−i,i,+ vanishes. We shall discuss this case separately in Section 10.3.1, see

Proposition 10.19.

Proposition 10.16. If 2i ̸= n, then Ãi,i
n−i,i,+ ∈ HomG′(Iδ(i, n− i)|G′ , Jδ(i, i))

satisfies
Ãi,i

n−i,i,+|Πi+1,−δ
≡ 0 and Image(Ãi,i

n−i,i,+) = πi,δ.

Thus it induces a symmetry breaking operator Πi,δ → πi,δ as in the diagram
below. Moreover, the (K,K ′)-spectrum of the resulting operator for the min-
imal K ′- and K-types µ♭(i, δ)′ (↪→ µ♭(i, δ)) is nonzero.

Iδ(i, n− i)
Ãi,i
n−i,i,+ //

��

Jδ(i, i)∪
Πi,δ ≃ Iδ(i, n− i)/Πi+1,−δ

//______ πi,δ

Proof. Since Ãi,i
i,i,+ = 0 by Theorem 3.19 (1), the composition Ãi,i

n−i,i,+ ◦ T̃i
i,n−i

vanishes by the functional equation (Theorem 9.25). Thus Ãi,i
n−i,i,+ is identi-

cally zero on Image(T̃i
i,n−i) ≃ Πi+1,−δ (see Proposition 8.11).

For the second assertion, we use another functional equation (Theorem

9.24) to get T̃i
i,n−1−i ◦ Ã

i,i
n−i,i,+ = 0. Hence

Image(Ãi,i
n−i,i,+) ⊂ Ker(T̃i

i,n−1−i) ≃ πi,δ

by Proposition 8.11. Since Ãi,i
n−i,i,+ ̸= 0 (see Theorem 3.19 (1)) and since

πi,δ is irreducible, the underlying (g′, K ′)-modules of Image(Ãi,i
n−i,i,+) and πi,δ

coincide.
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10.3 Splitting of Iδ(m,m) and its symmetry breaking
for (G,G′) = (O(2m+ 1, 1), O(2m, 1))

Suppose n is even, say n = 2m. A distinguished feature in this setting is
that the principal series representation Iδ(m,λ) of G = O(2m + 1, 1) splits
into the direct sum of two irreducible G-modules when λ = m: for δ ∈ {±},

Iδ(m,m) ≃ Πm,δ ⊕ Πm+1,−δ, (10.7)

both of which are smooth irreducible tempered representations of G, see
Theorem 2.20 (1) and (8). Accordingly, the space of symmetry breaking
operators has a direct sum decomposition:

HomG′(Iδ(m,m)|G′ , Jε(m,m))

≃ HomG′(Πm,δ|G′ , Jε(m,m))⊕ HomG′(Πm+1,−δ|G′ , Jε(m,m)), (10.8)

for each ε ∈ {±}. The left-hand side of (10.8) has been understood by the
classification of symmetry breaking operators given in Theorem 3.26 (see
(10.11) as below). On the other hand, the target space Jε(m,m) is not irre-
ducible as a G′-module. We recall from Theorem 2.20 (1) that the principal
series representation Jε(m, ν) of G

′ = O(2m, 1) at ν = m has a nonsplitting
exact sequence of G′-modules:

0→ πm,ε → Jε(m,m)→ πm+1,−ε → 0. (10.9)

With this in mind, we shall take a closer look at the right-hand side of (10.8)
and determine each summand as follows:

δε = + δε = −
HomG′(Πm,δ|G′ , Jε(m,m)) C {0}

HomG′(Πm+1,−δ|G′ , Jε(m,m)) C C
(10.10)

See Section 10.3.1 for the left column of (10.10) in detail, and for Section
10.3.2 for the right column.

10.3.1 HomG′(Iδ(m,m)|G′ , Jε(m,m)) with δε = +

We begin with the case δε = +. Without loss of generality, we may and do
assume δ = ε = +.
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Then Lemma 10.4 (3) with Remark 10.5 tells that

HomG′(I+(m,m)|G′ , J+(m,m)) = C ˜̃Am,m
m,m,+ ⊕ CRest. (10.11)

The first generator ˜̃Am,m
m,m,+ is defined as the renormalization (Theorem

5.45)

˜̃Am,m
m,m,+ = lim

λ→m
Γ

(
λ−m

2

)
Ãm,m

λ,m,+ (10.12)

of the normalized regular symmetry breaking operator Ãm,m
λ,m,+ which vanishes

at λ = m (Theorem 3.19). The second generator, Rest ≡ Restxn=0, is the
obvious symmetry breaking operator (cf. Lemma 9.32), given by Restxn=0 in
the N -picture. By using the second generator, we obtain the following.

Proposition 10.17. Let (G,G′) = (O(2m+ 1, 1), O(2m, 1)). Then we have

HomG′(Πm,+|G′ , J+(m,m)) = CRest|Πm,+ ,

HomG′(Πm+1,−|G′ , J+(m,m)) = CRest|Πm+1,− .

Proof. By the direct sum decompositions (10.11) and (10.7), we have

2 =dimC HomG′(I+(m,m)|G′ , J+(m,m))

=dimC HomG′(Πm,+|G′ , J+(m,m)) + dimC HomG′(Πm+1,−|G′ , J+(m,m)).

On the other hand, we know from Lemma 9.32 that Rest|Πm,+ ̸= 0 and
Rest|Πm+1,− ̸= 0. Hence we have proved the proposition.

We have not used the other generator ˜̃Am,m
m,m,+ in (10.11) for the previous

proposition. For the sake of completeness, we investigate its restriction to
each of the irreducible components in (10.7).

Proposition 10.18. Retain the notation as in (10.11).

˜̃Am,m
m,m,+|Πm+1,− ≡ 0.

˜̃Am,m
m,m,+|Πm,+ =

2πm− 1
2

m!
Rest|Πm,+ .

We also determine the image of the nonzero symmetry breaking operators
˜̃Am,m
m,m,+ and Rest on each irreducible summand in (10.7).
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Proposition 10.19. With Convention 10.14, we have

Image( ˜̃Am,m
m,m,+|Πm,+) =Image(Rest|Πm,+) = πm,+,

Image(Rest|Πm+1,−) =J+(m,m).

For the proof of Propositions 10.18 and 10.19, we use Lemma 9.28 about
functional equations with appropriate renormalizations. We set

c(m) :=
πm

m!
. (10.13)

Proof of Proposition 10.18. It follows from the functional equation (9.43) for

the renormalized Knapp–Stein operator ˜̃Tm
m,m that

˜̃Am,m
m,m,+ ◦ (c(m) id− ˜̃Tm

m,m) = 0.

On the other hand, Lemma 8.15 implies that the renormalized Knapp–
Stein operator satisfies

c(m) id− ˜̃Tm
m,m = 0 idΠm,+ ⊕ 2 idΠm+1,− ,

which implies Image(c(m) id− ˜̃Tm
m,m) = Πm+1,−. Therefore,

˜̃Am,m
m,m,+ is identi-

cally zero on the irreducible G-submodule Πm+1,−.
To see the second statement, we use Proposition 10.17, which shows that

˜̃Am,m
m,m,+|Πm,+ must be proportional to Rest|Πm,+ . Comparing the (K,K ′)-

spectrum of the two operators ˜̃Am,m
m,m,+ and Rest with respect to basic K ′-

and K-types µ♭(m,+)′ ↪→ µ♭(m,+) (see the formula (9.42) for ˜̃Am,m
m,m,+ and

Lemma 9.32 for Rest), we get the second statement.

Proof of Proposition 10.19. By the functional equation (9.40),

Image( ˜̃Am,m
m,m,+|Πm,+) ⊂ Ker(T̃m

m,m−1) = πm,+.

Since ˜̃Am,m
m,m,+|Πm,+ is nonzero, and since πm,+ is an irreducible G′-module, we

get the first statement. For the second one, we compare the (K,K ′)-spectrum

of ˜̃Am,m
m,m,+ (see (9.42)) and that of Rest (see (9.51)) in Lemma 9.32.
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10.3.2 HomG′(Iδ(m,m)|G′ , Jε(m,m)) with δε = −

The case δε = − is much simpler because the space of symmetry breaking
operators is one-dimensional:

HomG′(Iδ(m,m)|G′ , Jε(m,m)) = CÃm,m
m,m,−,

see Theorem 3.26. Without loss of generality, we may and do assume (δ, ε) =

(+,−). The restriction of the generator Ãm,m
m,m,− to each irreducible component

in (10.7) is given as follows.

Proposition 10.20. Let (G,G′) = (O(2m+ 1, 1), O(2m, 1)). Then we have

Ãm,m
m,m,−|Πm,+ ≡0.

Image(Ãm,m
m,m,−|Πm+1,−) =πm,−.

The proof of Proposition 10.20 relies on the functional equations given in
Lemma 9.29.

Proof. The functional equation (9.45) implies

Ãm,m
m,m,− ◦ (

˜̃Tm
m,m + c(m)id) = 0.

By Lemma 8.15, Image(˜̃Tm
m,m + c(m)id) = Πm,+. Hence the first statement

is proved.
The second statement follows from the functional equation (9.46) and

Ker(T̃m
m,m−1 : J−(m,m)→ J−(m,m− 1)) = πm,− (see Proposition 8.11).

10.4 Splitting of Jε(m,m) and symmetry breaking op-
erators for (G,G′) = (O(2m+ 2, 1), O(2m+ 1, 1))

Suppose n is odd, say n = 2m + 1. In contrast to the n even case treated
in Section 10.3, a distinguished feature in this setting is that the principal
series representation Jε(m, ν) of the subgroup G′ = O(2m + 1, 1) splits into
the direct sum of two irreducible tempered representations when ν = m: for
ε ∈ {±},

Jε(m,m) ≃ πm,ε ⊕ πm+1,−ε, (10.14)
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see Theorem 2.20 (1) and (8). Accordingly, the space of symmetry breaking
operators has a direct sum decomposition:

HomG′(Iδ(i, λ)|G′ , Jε(m,m))

≃ HomG′(Iδ(i, λ)|G′ , πm,ε)⊕ HomG′(Iδ(i, λ)|G′ , πm+1,−ε) (10.15)

for any λ ∈ C. The left-hand side of (10.15) is understood via explicit
generators given in Theorem 3.26 (classification). In this section, we examine
the following two cases:

HomG′(Iδ(m+ 1,m)|G′ , Jδ(m,m)) =C ˜̃Am+1,m
m,m,+ ⊕ CC̃m+1,m

m,m , (10.16)

HomG′(I−ε(m,m)|G′ , Jε(m,m)) =CÃm,m
m,m,−, (10.17)

in connection with the decomposition in the right-hand side of (10.16).
We retain the notation (10.13) in the previous section, that is,

c(m) =
πm

m!
.

Then the irreducibleG′-modules πm,ε and πm+1,−ε in (10.14) are the eigenspaces

of the renormalized Knapp–Stein operator ˜̃Tm
m,m for the subgroup G′ with

eigenvalues c(m) and −c(m), respectively, by Lemma 8.15.
The case (10.16) will be discussed in Section 10.4.1 and the case (10.17)

in Section 10.4.2. In particular, we shall see in Section 10.5, that both A′ :=
1
2

˜̃Am+1,m
m,m,+ + c(m)C̃m+1,m

m,m in (10.16) and 1
2
(−1)m+1Ãm,m

m,m,− in (10.17) yield the
same symmetry breaking operator

Am+1,m : Πm+1,δ → πm,δ,

which will be utilized in the construction of nonzero periods in Chapter 12,
see Theorem 12.5.

10.4.1 HomG′(Iδ(m+ 1,m)|G′ , Jδ(m,m)) for n = 2m+ 1

We recall from Theorem 3.19 (2) that the regular symmetry breaking opera-

tor Ãi,j
λ,ν,+ vanishes when (n, i, j, λ, ν) = (2m+1,m+1,m,m,m), and there-

fore, the left-hand side of (10.15) at λ = m is two-dimensional by Theorem
3.25 (2). More precisely, the classification of symmetry breaking operators
given in Theorem 3.26 shows (10.16).
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On the other hand, we recall from Theorem 2.20 (1) that the principal
series representation Iδ(m + 1,m) has a nonsplitting exact sequence of G-
modules:

0→ Πm+2,−δ → Iδ(m+ 1,m)→ Πm+1,δ → 0.

The irreducible G-submodule Πm+2,−δ is the image of the Knapp–Stein oper-

ator T̃m+1
m+1,m for the group G. With this in mind, we shall take a closer look

at the right-hand side of (10.15).
We introduce the following element in (10.16):

A′ :=
1

2
˜̃Am+1,m
m,m,+ + c(m)C̃m+1,m

m,m . (10.18)

The main result of this subsection is the following.

Proposition 10.21. Let (G,G′) = (O(2m + 2, 1), O(2m + 1, 1)). Then
A′ : Iδ(m+ 1,m)→ Jδ(m,m) is a symmetry breaking operator satisfying

A′ ◦ T̃m+1
m+1,m =0,

˜̃Tm,m
m,m ◦ A′ =c(m)A′,

S(A′) =c(m)

(
1 0
0 0

)
.

Proposition 10.21 follows from the corresponding results for the renormal-

ized operator ˜̃Am+1,m
m,m,+ (Lemma 10.22 below) and for the differential operator

C̃m+1,m
m,m (Lemmas 10.23, 10.25, and 10.26). We begin with the functional

equations and the (K,K ′)-spectrum of the first generator ˜̃Am+1,m
m,m,+ in (10.16).

Lemma 10.22. Retain the setting where (G,G′) = (O(2m + 2, 1), O(2m +

1, 1)). Then the renormalized regular symmetry breaking operator ˜̃Am+1,m
m,m,+

satisfies the following:

˜̃Am+1,m
m,m,+ ◦ T̃m+1

m+1,m =− 2c(m) ˜̃Am+1,m
m+1,m,+,

˜̃Tm
m,m ◦

˜̃Am+1,m
m,m,+ =− c(m) ˜̃Am+1,m

m,m,+ ,

S( ˜̃Am+1,m
m,m,+ ) =c(m)

(
0 0
0 2

)
.

Proof. See Lemma 9.30 for the first and third equalities, and Lemma 9.31
for the second.
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For the differential symmetry breaking operator C̃m+1,m
m,m in (10.16), we re-

call from [36, Thm. 1.3] the residue formula of the regular symmetry breaking

operators Ãi,j
λ,ν,δε : Iδ(i, λ)→ Jε(j, ν) when (λ, ν, δ, ε) ∈ Ψsp for j = i− 1 and

i, see Fact 9.3. Applying (9.6) to (n, i, j, λ, ν) = (2m+ 1,m+ 1,m, λ, λ), we
obtain

Ãm+1,m
λ,λ,+ =

(m− λ)πm

Γ(λ+ 1)
C̃m+1,m

λ,λ , (10.19)

where we recall from (3.17) that the differential symmetry breaking operator
Ci,i−1

λ,ν vanishes for the parameter that we are dealing with, namely, when

λ = ν = n− i. So we use the renormalized operator C̃i,i−1
λ,ν instead. We note

that C̃i,i−1
λ,λ = Restxn=0 ◦ ι ∂

∂xn
.

Lemma 10.23. The (K,K ′)-spectrum of C̃m+1,m
m,m is given by

S(C̃m+1,m
m,m ) =

(
1 0
0 −1

)
.

Proof. By the residue formula (10.19), we have

lim
λ→m

1

λ−m
Ãm+1,m

λ,λ,+ = −c(m)C̃m+1,m
m,m .

Now the lemma follows from the (K,K ′)-spectrum of the regular symmetry

breaking operator Ãi,j
λ,ν,± given in Theorem 9.8.

The symmetry breaking operator Ãm+1,m
λ,ν,+ vanishes at (λ, ν) = (m,m).

We recall from Lemma 5.43 and Definition 5.44 that

(Ãm+1,m
m,m,+ )k,l :=

∂k+l

∂λk∂ν l

∣∣∣∣
λ=m
ν=m

Ãm+1,m
λ,ν,+ ∈ HomG′(Iδ(m+ 1,m)|G′ , Jδ(m,m))

for (k, l) = (1, 0) and (0, 1).
The base change of the vector space HomG′(Iδ(m + 1,m)|G′ , Jδ(m,m)),

see (10.16), is given as follows.

Lemma 10.24. (1) 2(Ãm+1,m
m,m,+ )1,0 =

˜̃Am+1,m
m,m,+ ,

(2) (Ãm+1,m
m,m,+ )1,0 + (Ãm+1,m

m,m,+ )0,1 = −c(m)C̃m+1,m
m,m .
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Proof. The first assertion is immediate from the definition of the renormal-

ized operator ˜̃Am+1,m
m,m,+ , see (5.57). The second assertion follows from the

residue formula (10.19).

It follows from Lemma 10.24 that

lim
λ→m

1

λ−m
Ãm+1,m

λ,2m−λ,+ = ˜̃Am+1,m
m,m,+ + c(m)C̃m+1,m

m,m . (10.20)

Now we give functional equations of the differential symmetry breaking
operators C̃m+1,m

m,m and the (renormalized) Knapp–Stein operators for G′ and
G as follows.

Lemma 10.25. ˜̃Tm
m,m ◦ C̃m+1,m

m,m = ˜̃Am+1,m
m,m,+ + c(m)C̃m+1,m

m,m .

Proof. By the functional equation in Theorem 9.24, we have

T̃m
λ,2m−λ ◦ Ã

m+1,m
λ,λ,+ =

(m− λ)πm

Γ(λ+ 1)
Ãm+1,m

λ,2m−λ,+.

Hence we get from the residue formula (10.19)

T̃m
λ,2m−λ ◦ C̃

m+1,m
λ,λ = Ãm+1,m

λ,2m−λ,+.

Now Lemma 10.25 follows from (10.20).

Lemma 10.26. C̃m+1,m
m,m ◦ T̃m+1

m+1,m = ˜̃Am+1,m
m+1,m,+.

Proof. By the functional equation in Theorem 9.25, we have

Ãm+1,m
λ,λ,+ ◦ T̃m+1

2m+1−λ,λ =
πm+ 1

2 (m− λ)
Γ(λ+ 1)

Ãm+1,m
2m+1−λ,λ,+.

By the residue formula (10.19) and by analytic continuation, we get

C̃m+1,m
λ,λ ◦ T̃m+1

2m+1−λ,λ = π
1
2 Ãm+1,m

2m+1−λ,λ,+.

Since ˜̃Am+1,m
m+1,m,+ = π

1
2 Ãm+1,m

m+1,m,+ by the definition (9.38) of the renormalized

operator ˜̃Ai,j
λ,ν,±, the lemma is proved.
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10.4.2 HomG′(I−ε(m,m)|G′ , Jε(m,m)) for n = 2m+ 1

In this subsection, we examine

HomG′(I−ε(m,m)|G′ , Jε(m,m)) = CÃm,m
m,m,−,

as stated in (10.17), which is derived from Theorems 3.25 and 3.26. We
recall from Theorem 2.20 (1) that there is a nonsplitting exact sequence of
G-modules:

0→ Πm,−δ → I−δ(m,m)→ Πm+1,δ → 0.

Concerning the regular symmetry breaking operator Ãm,m
m,m,−, we have the

following.

Lemma 10.27. Let (G,G′) = (O(2m+ 2, 1), O(2m+ 1, 1)). Then we have

˜̃Tm
m,m ◦ Ã

m,m
m,m,− =c(m)Ãm,m

m,m,−,

Ãm,m
m,m,− ◦ T̃m

m+1,m =0,

S(Ãm,m
m,m,−) =2(−1)m+1c(m)

(
0 0
1 0

)
.

Proof. The proof of first formula parallels to that of Lemma 9.31, and the
second formula is a special case of Theorem 9.25. The third formula follows
from Theorem 9.8.

10.5 Symmetry breaking operators from Πi,δ to πi−1,δ

In Sections 10.2 and 10.3, we constructed nontrivial symmetry breaking op-
erators from the irreducible representation Πi,δ of G = O(n+ 1, 1) to the ir-
reducible one πi,δ of G

′ = O(n, 1). This is sufficient for the proof of Theorem
4.2 by the duality theorem (Proposition 3.39) between symmetry breaking
operators for the indices:

(i, j) and (̃i, j̃) := (n+ 1− i, n− j).

Nevertheless, we give in this section an explicit construction of the normalized
symmetry breaking operators Πi,δ → πj,ε also for j = i − 1, and determine
their (K,K ′)-spectrum of symmetry breaking operators from Πi,δ to πi−1,δ.
The results will be used in the computation of periods of admissible smooth
representations in Chapter 12.
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We begin with some basic properties of the regular symmetry breaking
operator

Ãi,i−1
λ,ν,δ : Iδ(i, λ)→ Jδ(i− 1, ν)

for (λ, ν) = (n− i, i− 1).

Proposition 10.28. Suppose 1 ≤ i ≤ n and δ ∈ {±}.

(1) Πi+1,−δ ⊂ Ker (Ãi,i−1
n−i,i−1,+).

(2) Image (Ãi,i−1
n−i,i−1,+) ≃ πi−1,δ if n ̸= 2i− 1; Ãi,i−1

n−i,i−1,+ = 0 if n = 2i− 1.

Proof. (1) Applying the functional equation given in Theorem 9.25 with

λ = i, we see that the symmetry breaking operator Ãi,i−1
n−i,ν,γ vanishes on the

image of the Knapp–Stein intertwining operator T̃i
i,n−i : Iδ(i, i)→ Iδ(i, n− i),

namely, on the irreducible submodule Πi+1,−δ (see Theorem 2.20 (1)).

(2) By Theorem 3.19, Ãi,i−1
n−i,i−1,+ = 0 if and only if n = 2i− 1.

Suppose from now that n ̸= 2i − 1. Applying the functional equation
given in Theorem 9.24 with (λ, ν, γ) = (n − i, i − 1,+), we see that the

composition T̃i−1
ν,n−1−ν ◦ Ã

i,i−1
λ,ν,+ is a scalar multiple of the symmetry breaking

operator Ãi,i−1
n−i,n−i,+, which vanishes by Theorem 3.19. In turn, applying

Proposition 8.11 to G′ = O(n, 1), we get

Ker(T̃i−1
ν,n−1−ν : Jδ(i− 1, ν)→ Jδ(i− 1, n− 1− ν)) ≃ πi−1,δ

because i− 1 ̸= 1
2
(n− 1). Hence the second statement is also proved.

Since Ãi,i−1
n−i,i−1,+ = 0 for n = 2i−1, we treat this case separately as follows.

Suppose n = 2m+ 1. We recall that there are a nonsplitting exact sequence
of G-modules

0→ Πm,−δ → I−δ(m,m)→ Πm+1,δ → 0

and a direct sum decomposition of irreducible G′-modules

Jδ(m,m) ≃ πm,δ ⊕ πm+1,−δ.

We use the following regular symmetry breaking operator

Ãm,m
m,m,− : I−δ(m,m)→ Jδ(m,m).

Proposition 10.29. Suppose (G,G′) = (O(2m + 2, 1), O(2m + 1, 1)) and
δ ∈ {±}.
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(1) Ker(Ãm,m
m,m,−) ⊃ Πm,−δ.

(2) Image(Ãm,m
m,m,−) = πm,δ.

Proof. The assertions follow from Lemma 10.27.

It follows from Proposition 10.28 that if n ̸= 2i− 1 then the normalized
symmetry breaking operator Ãi,i−1

n−i,n−i,+ yields a surjective G′-homomorphism

Ai,i−1 : Πi,δ → πi−1,δ (10.21)

by the following diagram.

Iδ(i, n− i)
Ãi,i−1
n−i,n−i,+ //

⟲
����

πi−1,δ
� � // Jδ(i− 1, i− 1)

Πi,δ Iδ(i, n− i)/Πi+1,−δ
∼oo

55llllllll

If n = 2i − 1, we set (n, i) = (2m + 1,m + 1). Then, similarly to the
case n ̸= 2i − 1, Proposition 10.21 shows that the symmetry breaking op-
erator A′ : Iδ(m + 1,m) → Jδ(m,m) defined in (10.18) yields a surjective
G′-homomorphism

Am+1,m : Πm+1,δ → πm,δ (10.22)

by the following diagram.

Iδ(m+ 1,m) A′
//

��

⟲
πm,δ ⊂ Jδ(m,m)

Πm+1,δ Iδ(m+ 1,m)/Πm+2,−δ
∼oo

44iiiiiiiii

In order to define the (K,K ′)-spectrum, we need to fix an inclusive map
from the K ′-type into the K-type, see Definition 9.7. In our setting, we use
the natural embedding of the minimal K- and K ′-types

µ♭(i, δ)←↩ µ♭(i− 1, δ)′ (10.23)

of the irreducible representations Πi,δ and πi−1,δ of G and the subgroup G′,
respectively, as in Section 9.6. Then we get the following formula for the
(K,K ′)-spectrum.
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Proposition 10.30. Let (G,G′) = (O(n+ 1, 1), O(n, 1)) and 1 ≤ i ≤ n+ 1.
Then the symmetry breaking operator

Ai,i−1 : Πi,δ → πi−1,δ

acts on µ♭(i− 1, δ)′ (↪→ µ♭(i, δ)) as the following scalar:π
n−1
2 (n−2i+1)
(n−i)!

if n ̸= 2i− 1,

π
n−1
2

(n−i)!
if n = 2i− 1.

Proof. For n ̸= 2i−1, the assertion follows directly from the (1, 1)-component

of the matrix S(Ãi,i−1
λ,ν,+) in Theorem 9.8 with (λ, ν) = (n − i, i − 1). For

n = 2i − 1, the (1,1)-component of S(A′) in Proposition 10.21 with (n, i) =
(2m+ 1,m+ 1) shows the desired formula.

Remark 10.31. When n = 2i−1, we set (n, i) = (2m+1,m+1) as above. In

this case we may use Ãm,m
m,m,− in Lemma 10.27 for an alternative construction

of Am+1,m ∈ HomG′(Πm+1,δ|G′ , πm,δ). To see this, we recall from Section
10.4.2 the following natural inclusion

HomG′(Πm+1,δ|G′ , πm,δ) ⊂ HomG′(I−δ(m,m)|G′ , Jδ(m,m)) = CÃm,m
m,m,−,

and therefore any element in HomG′(Πm+1,δ|G′ , πm,δ) is proportional to the

one which is induced from Ãm,m
m,m,−. On the other hand, Proposition 10.29

tells that the symmetry breaking operator Ãm,m
m,m,− yields a surjective G′-

homomorphism Πm+1,δ → πm,δ by the following diagram.

I−δ(m,m)
Ãm,m
m,m,− //

����

⟲
πm,δ

� � // Jδ(m,m)

Πm+1,δ I−δ(m,m)/Πm,−δ
∼oo

55kkkkkkkk

By Lemma 10.27, 1
2
(−1)m+1Ãm,m

m,m,− has the (K,K ′)-spectrum for the basic
K- and K ′-types

S

(
1

2
(−1)m+1Ãm,m

m,m,−

)
= c(m)

(
0 0
1 0

)
.
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In view of the (2,1)-component, the resulting symmetry breaking operator
from Πm+1,δ to πm,δ has the (K,K ′)-spectrum c(m) for the embedding of
the K- and K ′-types µ♭(m + 1, δ) ←↩ µ♭(m, δ)′. This is the same with the
(K,K ′)-spectrum of Am+1,m which is induced from A′ ∈ HomG′(Iδ(m +

1,m)|G′ , Jδ(m,m)). Hence 1
2
(−1)m+1Ãm,m

m,m,− induces the same symmetry
breaking operator with Am+1,m.
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11 Application I: Some conjectures by B. Gross

and D. Prasad: Restrictions of tempered

representations of SO(n + 1, 1) to SO(n, 1)

Inspired by automorphic forms and L-functions, B. Gross and D. Prasad
published in 1992 conjectured about the restriction of irreducible tempered
representations of special orthogonal groups SO(p+1, q) to a special orthog-
onal subgroup SO(p, q), see [15]. B. Sun and C.-B. Zhu [59] proved that in
this case the multiplicities are at most one, and B. Gross and D. Prasad con-
jectured that given a Vogan packet of tempered representations of SOn+2 ×
SOn+1 there exist exactly one group SO(p+1, q)×SO(p, q) with p+q = n+1
and one (tempered) representation U1 ⊠ U2 of this group with m(U1 ⊠
U2,C) = 1. They also stated a conjectured algorithm to determine the group
and the representation U1⊠U2 in the Vogan packet with m(U1⊠U2,C) = 1.

In this chapter we prove that the algorithm of B. Gross and D. Prasad
predicts the multiplicity correctly for representations in Vogan packets of
tempered principal series representations of SO(n+1, 1)×SO(n, 1) as well as
for the 3 irreducible representations Π, π,ϖ of SO(2m+2, 1), SO(2m+1, 1),
SO(2m, 1) with trivial infinitesimal character ρ.

The Gross–Prasad conjectures are stated only for representations of spe-
cial orthogonal groups in [15]. Thus we are considering in this chapter sym-
metry breaking for tempered representations of G × G′ = SO(n + 1, 1) ×
SO(n, 1) and not as in the previous chapters forG×G′ = O(n+1, 1)×O(n, 1).
We refer to Appendix II (Chapter 15) for notation and for results about the
restriction of representations from orthogonal groups to special orthogonal
groups.

11.1 Vogan packets of tempered induced representa-
tions

We use a bar over representations to distinguish between representations of
the special orthogonal group and those of the orthogonal group.

Every tempered principal series representation of SO(n + 1, 1) is of the
form

Iδ(V , λ) ≡ IndG
P
(V ⊠ δ, λ) for (σ, V ) ∈ ŜO(n), δ ∈ {±}, λ ∈ n

2
+
√
−1R,
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which is the smooth representation of a unitarily induced principal series rep-
resentation from a finite-dimensional representation of the minimal parabolic
subgroup P of G = SO(n+ 1, 1).

For n even, we assume that the central element −In+2 of the special
orthogonal group G = SO(n + 1, 1) acts nontrivially on the principal series
representation Iδ(V , λ), and thus Iδ(V , λ) is a genuine representation of G,
i.e., that −In+2 is not in the kernel of V ⊠ δ. For n odd, G = SO(n + 1, 1)
does not have a nontrivial center, and we do not need an assumption on the
pair (V , δ).

We observe if n is odd, the Langlands parameter of the representations
of SO(n, 0) factors through the identity component of its L-group, and it
defines a representation of SO(n− 2p, 2p) and not of O(n− 2p, 2p), see [3].

The Langlands parameter of the induced representations Iδ(V , λ) factors
through the Levi subgroup of a maximal parabolic subgroup of the Langlands
dual group LG [51]. This parabolic subgroup corresponds to a maximal
parabolic subgroup of SO(n + 1, 1) whose Levi subgroup L is a real form
of SO(n,C) × SO(2,C) and thus is isomorphic to SO(n, 0) × SO(1, 1) ≃
SO(n) × GL(1,R). Note that SO(1, 1) ≃ GL(1,R) is a disconnected group
and so determines the character δ.

The pure inner real forms of SO(n,C) with a compact Cartan subgroup
are SO(n − 2p, 2p), 0 ≤ p ≤ n

2
. For n even, we assume that the center of

SO(n− 2p, 2p) is not contained in the kernel of the discrete series represen-
tation, see Proposition 15.11 (6).

By [13, p. 35], if G is SO(2m+ 2, 1) or SO(2m+ 1, 1), then there are 2m

representations in the Vogan packet containing a tempered representation
Iδ(V , λ) and they are parametrized by characters of a finite group A1 ≃
(Z/2Z)m. We write V P (Iδ(V , λ)) for this Vogan packet.

The representations in the Vogan packet V P (Iδ(V , λ)) can be described
as follows: we call a real form SO(ℓ, k) of SO(ℓ+ k,C) pure if ℓ is even and
thus admits discrete series representations. We consider parabolic subgroups
of SO(n− 2p+1, 1+ 2p) with Levi subgroups L, which are pure inner forms
of SO(n)×GL(1,R). Hence they are isomorphic to

L ≃ SO(n− 2p, 2p)×GL(1,R).

The Vogan packet V P (Iδ(V , λ)) contains the tempered principal series
representations of SO(n−2p+1, 1+2p) which have the same infinitesimal
character as Iδ(V , λ), and which are induced from the outer tensor product of
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a discrete series representation of SO(n−2p, 2p), with the same infinitesimal
character as V and a one-dimensional representation χλ of GL(1,R), [64].

We use the same conventions for a Vogan packet V P (Jε(W, ν)) of the
tempered principal series representation Jε(W, ν) of G′.

11.2 Vogan packets of discrete series representations
with integral infinitesimal character of SO(2m, 1)

We begin with the case n = 2m− 1. In this case SO(n+ 1, 1) = SO(2m, 1)
has discrete series representations. We fix a set of positive roots ∆+ ⊂ t∗C
for the root system ∆(so(2m + 1,C), tC) and denote by ρ half the sum of
positive roots as before. Let η be an integral infinitesimal character, which
is dominant with respect to ∆+. For ℓ + k = 2m + 1, we call a real form
SO(ℓ, k) pure if ℓ is even. The Vogan packet containing the discrete series
representation with infinitesimal character η is the disjoint union of discrete
series representations with infinitesimal character η of the pure inner forms.
The cardinality of this packet is

2m =
∑

0≤ℓ≤2m
ℓ:even

(
m
ℓ
2

).

There exists a finite group A2 ≃ (Z/2Z)m whose characters parametrize the
representations in the Vogan packet. For the discrete series representation
with parameter χ ∈ Â2 we write π(χ). For more details see [15] or [64]. If
π is a discrete series representation of SO(2m, 1) we write V P (π) for the
Vogan packet containing π.

Example 11.1. Suppose that π is a discrete series representation of SO(2m, 1)
with trivial infinitesimal character ρ.

(1) The trivial one-dimensional representation 1 of the inner form SO(0, 2m+
1) is in V P (π).

(2) We can define similarly a Vogan packet V P (π) containing (SO(1, 2m), π).

11.3 Embedding the group G′ = SO(n− 2p, 2p + 1) into
the group G = SO(n− 2p+ 1, 2p+ 1)

To formulate the Gross–Prasad conjecture we have to fix an embedding of
G′ into G.
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We observe:

(1) The quasisplit forms of the odd special orthogonal group are SO(m,m+
1) and SO(m + 1,m). The pure inner forms in the same class as
SO(m,m+1) are SO(m− 2p,m+2p+1) and those in the same class
as SO(m+ 1,m) are SO(m+ 1− 2p,m+ 2p).

(2) The quasisplit forms of the even special orthogonal group are SO(m,m),
SO(m − 1,m + 1), and SO(m + 1,m − 1). The pure inner forms are
SO(n− 2p, n+2p) and SO(m+1− 2p,m− 1− 2p), respectively, with
p ≤ m

2
.

So

1. if n = 2m, then the orthogonal group SO(2m + 1, 1) is a pure inner
form of SO(m+1,m+1) if m is even and of SO(m+2,m) if m is odd;

2. if n = 2m − 1, then the orthogonal group SO(2m, 1) is a pure inner
form of SO(m+ 1,m) if m is odd and of SO(m,m+ 1) if m is even.

We consider an indefinite quadric form

Qn−2p+1,2p+1(x) = x21 + · · ·+ x2n−2p+1 − x2n−2p+2 − · · · − x2n+2

of signature (n− 2p+1, 2p+1). We assume that n− 2p+1 > 0 and identify
SO(n−2p, 2p+1) with the subgroup of SO(n−2p+1, 2p+1) which stabilizes
the basis vector en−2p+1. This allows us to identify the Levi subgroup of the
maximal parabolic subgroup of SO(n − 2p, 2p + 1) with the intersection of
the corresponding maximal parabolic subgroup of G. This embedding of
SO(n, 1) into SO(n+1, 1) is conjugate to the one we consider in Section 2.1.
We use this embedding in the formulation of the Gross–Prasad conjectures.

For tempered principal series representations we consider symmetry break-
ing operators, namely, SO(n− 2p, 2p+ 1)-homomorphisms from representa-
tions in V P (Iδ(V , λ)) to representations in V P (Jε(W, ν)), see Section 11.4.

If the tempered representation of G or of G′ is a discrete series repre-
sentation, we consider symmetry breaking from a Vogan packet of discrete
series representations to a Vogan packet of tempered principal series rep-
resentations, respectively from a Vogan packet of tempered principal series
representations to a Vogan packet of discrete series representations (Section
11.5).
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11.4 The Gross–Prasad conjecture I: Tempered prin-
cipal series representations

By Theorem 3.30, there is a nontrivial symmetry breaking operator between
the tempered principal representations Iδ(V, λ) of G = O(n + 1, 1) and

Jε(W, ν) of G
′ = O(n, 1) if and only if (σ, V ) ∈ Ô(n) and (τ,W ) ∈ ̂O(n− 1)

satisfy
[V : W ] = dimC HomO(n−1)(V |O(n−1),W ) ̸= 0.

An analogous result holds for a pair of the special orthogonal groups (G,G′) =
(SO(n+ 1, 1), SO(n, 1)). We set

[V : W ] ≡ [V |SO(n−1) : W ] := dimC HomSO(n−1)(V |SO(n−1),W ).

In Theorem 15.14 in Appendix II we prove:

Theorem 11.2. There is a nontrivial symmetry breaking operator between
the tempered principal series representations Iδ(V,λ) of G = SO(n + 1, 1)

and Jε(W, ν) of G′ = O(n, 1) if and only if (σ, V ) ∈ ŜO(n) and (τ ,W ) ∈
̂SO(n− 1) satisfy

[V |SO(n−1) : W ] ̸= 0.

In their article B. Gross and D. Prasad presented a conjectured algorithm
to determine the pair of representations in the Vogan packets V P (Iδ(V , λ))
and V P (Jε(W, ν)) with a nontrivial SO(n, 1)-symmetry breaking operator.
We prove next that the algorithm in fact predicts :

[V |SO(n−1) : W ] ̸= 0 if and only if HomG′(Iδ(V , λ)|G′ , Jε(W, ν)) ̸= {0}.

Observation 11.3. A Levi subgroup L with [L,L] = SO(r, s) of the maxi-
mal parabolic subgroup determines the class of pure inner forms of SO(r +
1, s+1). So for any algorithm to determine the pair (SO(r+1, s), SO(r, s)) of
the groups in the Gross–Prasad conjectures it is enough to determine the pair
of the Levi subgroups and their corresponding discrete series representations.

First case: Suppose that (G,G′) = (SO(2m+ 1, 1), SO(2m, 1)).
Let TC be a torus in SO(2m+2,C)×SO(2m+1,C), andX∗(TC) the character
group. Fix a basis

X∗(TC) = Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zem+1 ⊕ Zf1 ⊕ Zf2 ⊕ · · · ⊕ Zfm
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such that the standard root basis ∆0 is given by

e1 − e2, e2 − e3, . . . , em − em+1, em + em+1, f1 − f2, f2 − f3, . . . , fm−1 − fm, fm

if m ≥ 1.
We fix δ, ε ∈ {±} as in Section 11.1.
Recall that all representations in a Vogan packet have the same Langlands

parameter. We identify the Langlands parameter of the representations in
the same Vogan packet as

(SO(2m+ 1, 1)× SO(2m, 1), Iδ(V , λ)⊠ Jε(W, ν))

for a pair (V ,W ) of irreducible finite-dimensional representations with in-
finitesimal character

(v1 +m− 1)e1 + (v2 +m− 2)e2 + · · ·+ (vm)em − (λ−m)em+1

+(u1 +m− 3

2
)f1 + (u2 +m− 5

2
)f2 + · · ·+ (um−1 +

1

2
)fm−1 − (ν −m+

1

2
)fm,

see (2.26). Here (v1, v2, . . . , vm) is the highest weight of the SO(2m)-module
V , (u1, u2, . . . , um−1) is the highest weight of the SO(2m−1)-module W and
the continuous parameter λ−m and ν−m+ 1

2
are purely imaginary, and thus

Iδ(V , λ) and Jε(W, ν) are (smooth) tempered principal series representations
of G and G′, respectively.

As discussed before, to determine the pair

(SO(n− 2p+ 1, 2p+ 1), SO(n− 2p, 2p− 1))

it suffices to solve this problem for the Levi subgroups. Hence it suffices to
consider the Langlands parameter

(v1 +m− 2)e1 + (v2 +m− 3)e2 + · · ·+ (vm)em

+(u1 +m− 5

2
)f1 + (u2 +m− 7

2
)f2 + · · ·+ (um−1 +

1

2
)fm−1.

Let δi be the element which is −1 in the i-th factor of A1 and equal to 1
everywhere else, and εj the element which is −1 in the j-th factor of A2 and

1 everywhere else. Then the algorithm [15, p. 993] determines χ1 ∈ Â1 and

χ2 ∈ Â2 by

χ1(δi) = (−1)#m−i+1> and χ2(εj) = (−1)#m−j+ 1
2
<,
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where #m− i+ 1 > is the cardinality of the set

{j : vj +m− i > the coefficients of fj},

and #m− j + 1
2
< is the cardinality of the set

{i : vi +m− j − 1 +
1

2
< the coefficients of ei}.

If HomSO(n−1)(V |SO(n−1),W ) ̸= {0}, then v1 ≤ u1 ≤ v2 ≤ · · · ≤ um−1 ≤
|vm|. Hence we deduce that both characters are alternating characters if and
only if HomSO(n−1)(V |SO(n−1),W ) ̸= {0}.

Second case: Suppose that (G,G′) = (SO(2m, 1), SO(2m− 1, 1)).
We use the same arguments for the pair

(G,G′) = (SO(2m, 1), SO(2m− 1, 1)).

We normalize the quasisplit forms by

SO(m+ 1,m)× SO(m,m) if m is even,

SO(m,m+ 1)× SO(m− 1,m+ 1) if m is odd.

Applying the formulæ in [15, (12.21)], we define the integers p and q with
0 ≤ p ≤ m and 0 ≤ q ≤ m by

p = #{i : χ1(δi) = (−1)i} and q = #{j : χ2(εj) = (−1)m+j},

and we get the pure forms

SO(2m− 2p+ 1, 2p)× SO(2q, 2m− 2q) if m is even,

SO(2p+ 1, 2m− 2p+ 1)× SO(2m− 2q, 2q + 1) if m is odd.

In our setting, we get the pair of integers (p, q) = (0,m) for m even; (p, q) =
(m, 0) for m odd. Applying [15, (12.22)] with correction by changing n by

m loc. cit., we deduce that the alternating character χ defines the pure inner
form

SO(2m+ 1, 0)× SO(2m, 0) for m is even and odd.
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Hence
G = SO(2m, 1) and G′ = SO(2m− 1, 1).

The only representation in V P (Iδ(V,λ))×V P (Jε(W, ν)) for this pair of pure
inner forms is

Iδ(V , λ)⊠ Jε(W, ν).

If χ is not the alternating character, the calculation shows that we obtain a
different pair of groups. Thus we can rephrase the conjecture by B. Gross
and D. Prasad as follows:

Conjecture 11.4 (Gross–Prasad conjecture I). Suppose that Iδ(V , λ)⊠
Jε(W, ν) are tempered principal series representations of SO(n + 1, 1) ×
SO(n, 1). Then

HomSO(n,1)(Iδ(V , λ)⊠ Jε(W, ν),C) = C

if and only if V ∈ ŜO(n) and W ∈ ̂SO(n− 1) satisfies

[V |SO(n−1) : W ] ̸= 0.

Theorem 11.5 (see Theorem 15.14). The Gross–Prasad conjecture I holds.

We can deduce Theorem 11.5 from the corresponding results (Theorem
3.30) for the orthogonal groups O(n+ 1, 1)×O(n, 1) by using results about
the reduction from O(N, 1) to the special orthogonal group SO(N, 1). See
the proof of Theorem 15.14 in Section 15.6 of Appendix II for details.

11.5 The Gross–Prasad conjecture II: Tempered rep-
resentations with trivial infinitesimal character ρ

For completeness, we include the discussion of the Gross–Prasad conjectures
for tempered representations with trivial infinitesimal character ρ which we
also discussed in detail in [45].

We modify here the notation from [45] by denoting the restriction of a
representation Π of O(n+ 1, 1) to the subgroup SO(n+ 1, 1) by Π.

The Gross–Prasad conjecture I in the previous section treated the case
where both Π and π are tempered principal series representations of the
group G = SO(n+ 1, 1) and G′ = SO(n, 1), respectively.
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Thus the remaining cases are when Π or π are discrete series representa-
tions. We note that both Π and π cannot be discrete series representations
in our setting because G admit discrete series representations if and only if
n is odd and G′ admit those if and only if n is even. Thus we discuss the
Gross–Prasad conjecture in this case separately depending on the parity of
n, with the following notation.

Consider symmetry breaking operators for tempered representations with
trivial infinitesimal character ρ of the group SO(n+1, 1) for n = 2m, 2m−1,
and 2m − 2. We denote the corresponding representations by Π, π, and ϖ,
respectively, using the subscripts defined in Section 15.5 in Appendix II.
We thus consider symmetry breaking from SO(2m+ 1, 1) to SO(2m, 1) and
further to SO(2m− 1, 1):

Πm,(−1)m+1 → πm → ϖm−1,(−1)m .

Here Πm,(−1)m+1 and ϖm−1,(−1)m are tempered principal series represen-
tations which are nontrivial on the center of SO(2m + 1, 1), respectively
SO(2m−1, 1), and thus are genuine representations of the special orthogonal
groups, see Proposition 15.11 (6). Since πm,+ ≃ πm,− as SO(2m, 1)-modules,
we simply write πm for πm,±, which is a discrete series representation of
SO(2m, 1). All representations have the trivial infinitesimal character ρ.

11.5.1 The Gross–Prasad conjecture II: Symmetry breaking from
Πm,(−1)m+1 to the discrete series representation πm

We consider first the Vogan packet of tempered representations which con-
tains the pair (SO(2m+ 1, 1)× SO(2m, 1),Πm,δ ⊠ πm) or the Vogan packet
which contains the pair (SO(1, 1 + 2m) × SO(1, 2m),Πm,δ ⊠ πm). The rep-
resentations in these packets are parametrized by characters of

A1 ×A2 ≃ (Z/2Z)m × (Z/2Z)m ≃ (Z/2Z)2m.

We recall the algorithm proposed by B. Gross and D. Prasad which deter-
mines a pair (χ1, χ2) ∈ Â1 × Â2, hence representations

(Π(χ1), π(χ2)) ∈ V P (Πm,δ)× V P (πm)

so that
HomG(χ2)

(Π(χ1)|G(χ2)
, π(χ2)) ̸= {0},
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where G(χ2) is the pure inner form determined by χ2.

Let TC be a torus in SO(2m + 2,C) × SO(2m + 1,C), and X∗(TC) the
character group. As before the standard root basis ∆0 is given by

e1 − e2, e2 − e3, . . . , em − em+1, em + em+1, f1 − f2, f2 − f3, . . . , fm−1 − fm, fm

if m ≥ 1.
We fix δ = (−1)m+1 so that Πm,δ is a genuine representation of SO(2m+

1, 1). We can identify the Langlands parameter of the Vogan packet contain-
ing

(SO(2m+ 1, 1)× SO(2m, 1),Πm,δ ⊠ πm)

with

me1 + (m− 1)e2 + · · ·+ em + 0em+1 + (m− 1

2
)f1 + (m− 3

2
)f2 + · · ·+

1

2
fm.

Let δi be the character in Â1 which is −1 in the i-th factor of A1 and
equal to 1 everywhere else, and εj be the character which is −1 in the j-th
factor of A2 and 1 everywhere else.

Then the algorithm by B. Gross and D. Prasad [15, p. 993] determines

characters χ1 ∈ Â1 and χ2 ∈ Â2 by

χ1(δi) = (−1)#m−i+1> and χ2(εj) = (−1)#m−j+ 1
2
<,

where #m− i+ 1 > is the cardinality of the set

{j : m− i+ 1 > the coefficients of fj},

and #m− j + 1
2
< is the cardinality of the set

{i : m− j + 1

2
< the coefficients of ei}.

As discussed before we normalize the quasisplit form by

SO(m+ 1,m+ 1)× SO(m,m+ 1) if m is even,

SO(m+ 2,m)× SO(m+ 1,m) if m is odd.

Applying the formulæ in [15, (12.21)] we define the integers p and q with
0 ≤ p ≤ m and 0 ≤ q ≤ m by

p = #{i : χ1(δi) = (−1)i} and q = #{j : χ2(εj) = (−1)m+j}
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and we get the pure forms

SO(2m− 2p+ 1, 2p+ 1)× SO(2q, 2m− 2q + 1) if m is even, (11.1)

SO(2p+ 1, 2m− 2p+ 1)× SO(2m− 2q, 2q + 1) if m is odd. (11.2)

In our setting, we get the pair of integers (p, q) = (0,m) for m even; (p, q) =
(m, 0) for m odd. Applying [15, (12.22)] with correction by changing n by
m loc.cit., we deduce that this character defines the pure inner form

SO(2m+ 1, 1)× SO(2m, 1) for m even and odd.

The only representation in V P (Πm,δ) × V P (πm) for this pair of pure
inner forms is Πm,δ ⊠ πm. Hence Theorem 15.19 implies the Gross–Prasad
conjecture in that case.

11.5.2 The Gross–Prasad conjecture II: Symmetry breaking from
the discrete series representation πm to ϖm−1,(−1)m

We now consider the Vogan packet of tempered representations containing
the pair (SO(2m, 1)×SO(2m−1, 1), πm⊠ϖm−1,(−1)m), i.e., the Vogan packet

V P (πm ⊠ϖm−1,(−1)m) ⊂ V P (πm)× V P (ϖm−1,(−1)m).

The packet V P (πm) × V P (ϖm,(−1)m) is parametrized by characters of the
finite group

A2 ×A3 ≃ (Z/2Z)m × (Z/2Z)m−1 ≃ (Z/2Z)2m−1.

Again the algorithm by B. Gross and D. Prasad determines a pair (χ2, χ3) ∈
Â2 × Â3 and hence representations

(π(χ2), ϖ(χ3)) ∈ V P (πm)× V P (ϖm−1,(−1)m)

so that
HomG(χ3)

(π(χ2)|G(χ3)
, ϖ(χ3)) ̸= {0},

where G(χ3) is the pure inner form determined by χ3.

Let TC be a torus in SO(2m+1,C)×SO(2m,C) andX∗(TC) the character
group. Fix a basis

X∗(TC) = Zf1 ⊕ Zf2 ⊕ · · · ⊕ Zfm ⊕ Zg1 ⊕ Zg2 ⊕ · · · ⊕ Zgm
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such that the standard root basis ∆0 is given by

f1− f2, f2− f3, · · · , fm−1− fm, fm, g1− g2, g2− g3, · · · , gm−1− gm, gm−1 + gm

for m ≥ 2. Take ε = (−1)m as before.
We identify the Langlands parameter of the Vogan packet

V P (πm)× V P (ϖm,(−1)m)

with

(m− 1

2
)f1+(m− 3

2
)f2+ · · ·+

1

2
fm+(m−1)g1+(m−2)g2+ · · ·+gm−1+0gm.

Again applying [15, Prop. 12.18] we define characters χ2 ∈ Â2, χ3 ∈ Â3 as
follows: Let εj ∈ A2 ≃ (Z/2Z)m be the element which is −1 in the j-th factor
and equal to 1 everywhere else as in Section 11.4; γk ∈ A3 ≃ (Z/2Z)m−1 the

element which is −1 in the k-th factor and 1 everywhere else. Then χ2 ∈ Â2

and χ3 ∈ Â3 are determined by

χ2(εj) = (−1)#m−j+1/2< and χ3(γk) = (−1)#m−k>,

where #m− j + 1
2
< is the cardinality of the set

{k : m− j + 1

2
< the coefficients of gk},

and #m− k > is the cardinality of the set

{j : m− k > the coefficients of fj}.

As discussed we normalize the quasisplit form by

SO(m+ 1,m)× SO(m+ 1,m− 1) if m is even,

SO(m,m+ 1)× SO(m,m) if m is odd.

We define the integers p and q with 0 ≤ p ≤ m and 0 ≤ q ≤ m− 1 by

p = #{j : χ2(εj) = (−1)j} and q = #{k : χ3(γk) = (−1)m+k},

and we get

SO(2m− 2p+ 1, 2p)× SO(2q + 1, 2m− 2q − 1) if m is even,

SO(2p+ 1, 2m− 2p)× SO(2m− 2q − 1, 2q + 1) if m is odd.
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In our setting, the pair of integers (p, q) is given by (p, q) = (m, 0) for m
even; (p, q) = (0,m − 1) for m odd. We deduce that this character defines
the pure inner form

SO(1, 2m)× SO(1, 2m− 1) for m even and odd.

The only representation in V P (πm) × V P (ϖm−1,(−1)m) with this pair of
pure inner forms is (πm, ϖm−1,(−1)m).

In Chapter 4, we have determined

HomG′(Π⊠ π,C) for all Π ∈ Irr(G)ρ and π ∈ Irr(G′)ρ,

see Theorems 4.1 and 4.2 and also Theorem 5.4 for orthogonal groups

G×G′ = O(n+ 1, 1)×O(n, 1),

from which we deduce analogous results about

HomG′(Π⊠ π,C) for all Π ∈ Irr(G)ρ and π ∈ Irr(G′)ρ,

for the special orthogonal groups

G×G′ = SO(n+ 1, 1)× SO(n, 1),

in Theorem 15.19. By the aforementioned argument, Theorem 15.19 implies
the following.

Theorem 11.6. The conjectures by B. Gross and D. Prasad [15] for tempered
representations of special orthogonal groups SO(n + 1, 1) × SO(n, 1) with
trivial infinitesimal character ρ hold.

Remark 11.7. The Gross–Prasad conjectures concern tempered representa-
tions with trivial infinitesimal character ρ, but one may expect similar re-
sults for unitary representations of orthogonal groups with integral infinites-
imal character. Considering “Arthur–Vogan packets” instead of the Vo-
gan packets will include other unitary representations which are of interest
to number theory for example to the representation Aq(λ). Low dimen-
sional examples and our results suggest that there exists pairs of groups
G × G′ = SO(p + 1, q) × SO(p, q) and of representations U1 ⊠ U2 in this
“Arthur–Vogan packet” so that HomG′(U1|G′ ⊠ U2,C) ̸= {0}. The exam-
ples also suggest an algorithm to determine pairs of groups and the pairs of
representations with nontrivial multiplicity.
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12 Application II: Periods, distinguished rep-

resentations and (g, K)-cohomologies

Let H be a subgroup of G. Following the terminology used in automorphic
forms and the relative trace formula, we say that a smooth representation U of
G is H-distinguished if there exists a nontrivial H-invariant linear functional

FH : U → C,

i.e., if U has a nontrivial H-period FH . We consider first irreducible rep-
resentations of G with infinitesimal character ρ which are H-distinguished
for the pair (G,H) = (O(n + 1, 1), O(m + 1, 1)) or for the pair (G,H) =
(O(n, 1)×O(m, 1), O(m, 1)) with m ≤ n. We then discuss a bilinear form on
the (g, K)-cohomology of the representations of (O(n+ 1, 1)×O(n, 1)) with
infinitesimal character ρ which is induced by a symmetry breaking operator.

12.1 Periods and O(n, 1)-distinguished representations

12.1.1 Periods

Let K be a number field, A its adels and let G1 ×G2 be a direct product of
semisimple groups over a number field K. We assume that G2 ⊂ G1. If the
outer tensor product representation ΠA⊠πA is an automorphic representation
of the direct product group G1(A) × G2(A), then the G2-period integral is
defined as ∫

G2(K)\G2(A)
Φ1(h)ϕ2(h)dh.

Here Φ1 and ϕ2 are smooth vectors for the representation ΠA⊠πA. If ΠA⊠πA
is cuspidal, then the integral converges and it defines a G2(A)-invariant linear
functional on the smooth vectors of ΠA ⊠ πA. If this linear functional is not
zero, then ΠA⊠ πA is called G2-distinguished. Conjecturally for certain pairs
of groups the value of this integral is a multiple of the central value of an
L-function, see [13, 20, 21].

Often this period integral factors into a product of local integrals. Follow-
ing the global terminology we say that an admissible smooth representation
Π ⊠ π of the direct product group G1(R) × G2(R) is G2(R)-distinguished if
there is a nontrivial continuous linear functional

FG2(R) : Π⊠ π → C
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which is invariant by G2(R) under the diagonal action. Here we recall Section
5.1.2 for the topology on the tensor product. If Π⊠π is G2(R)-distinguished,
we say that FG2(R) is a period of Π⊠ π. We say that the period is nontrivial
on a vector Φ⊗ϕ ∈ Π⊠π if Φ⊗ϕ is not in the kernel of FG2(R). If the period
is nontrivial on a unit function Φ ⊗ ϕ, we refer to its image as the value of
the period on Φ⊗ ϕ.
Remark 12.1. The integral ∫

G2(R)
Φ(h)ϕ(h)dh

converges for some smooth vectors of discrete series representations Π ⊠ π
for some symmetric pairs (G1(R), G2(R)). This was used by J. Vargas [62] to
determine some subrepresentations in the restriction of some discrete series
representations Π of G1(R) to the subgroup G2(R).

We recall from Theorem 5.4 that the space of symmetry breaking opera-
tors

HomG2(R)(Π|G2(R), π
∨)

and the space of G2(R)-invariant continuous linear functionals

HomG2(R)(Π⊠ π,C)

are naturally isomorphic to each other. Thus, instead of considering a G2(R)-
equivariant continuous linear functional defined by an integral, we may use
symmetry breaking operators to construct G2(R)-invariant continuous linear
functionals. This technique allows us to obtain G2(R)-invariant continuous
linear functionals not only for discrete series representations but also for
nontempered representations. Thus we can determine for the pair (G,G′) =
(O(n + 1, 1), O(n, 1)) the dimension of the space HomG′(Π ⊠ π,C) for all
Π ∈ Irr(G)ρ and π ∈ Irr(G′)ρ as follows.

Corollary 12.2. Suppose 0 ≤ i ≤ n+1, 0 ≤ j ≤ n, and δ, ε ∈ {±}. Let Πi,δ

and πj,ε be irreducible admissible smooth representations of G = O(n + 1, 1)
and G′ = O(n, 1), respectively, that have the trivial infinitesimal character ρ
as in (2.35). Then the following three conditions on (i, j, δ, ε) are equivalent:

(i) HomG′(Πi,δ ⊠ πj,ε,C) ̸= {0};

(ii) dimC HomG′(Πi,δ ⊠ πj,ε,C) = 1;
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(iii) j ∈ {i, i− 1} and δ = ε.

Proof. Owing to Theorem 5.4, this is a restatement of Theorems 4.1 and
4.2.

12.1.2 Distinguished representations

Let G be a reductive group, and H a reductive subgroup. We regard H as
a subgroup of the direct product group G ×H via the diagonal embedding
H ↪→ G×H.

Definition 12.3. Let ψ be a one-dimensional representation of H. We say
an admissible smooth representation Π of G is (H,ψ)-distinguished if

HomH(Π⊠ ψ∨,C) ≃ HomH(Π|H , ψ) ̸= {0}.

If the character ψ is trivial, we say Π is H-distinguished.

In what follows, we deal mainly with the pair

(G,H) = (O(n+ 1, 1), O(m+ 1, 1)) for m ≤ n.

Theorem 12.4. Let 0 ≤ i ≤ n+1. Then the representations Πi,δ (δ ∈ {±})
of G = O(n+ 1, 1) are O(n+ 1− i, 1)-distinguished.

The period is given by the composition of the symmetry breaking opera-
tors that we constructed in Chapter 10 with respect to the chain of subgroups

G = O(n+ 1, 1) ⊃ O(n, 1) ⊃ O(n− 1, 1) ⊃ · · · ⊃ O(m+ 1, 1) = H, (12.1)

as we shall see in the proof in Section 12.2. Without loss of generality,
we consider the case δ = +, and write simply Πi for Πi,+. We recall from
Theorem 2.20 (3) that Πi ≡ Πi,+ has a minimalK-type µ♭(i,+) =

∧
i(Cn+1)⊠

1.
Let v ∈

∧
i(Cn+1) be the image of 1 ∈ C via the following successive

inclusions:∧
i(Cn+1) ⊃

∧
i−1(Cn) ⊃ · · · ⊃

∧
i−l(Cn+1−l) ⊃ · · · ⊃

∧
0(Cn+1−i) ≃ C ∋ 1,

and we regard v as an element of the minimal K-type µ♭(i,+) of Πi.
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Theorem 12.5. Let Πi be the irreducible representation of G = O(n+1, 1),
and v be the normalized element of its minimal K-type as above. For 0 ≤
i ≤ n, the value F (v) of the O(n+ 1− i, 1)-period F on v ∈ Πi is

π
1
4
i(2n−i−1)

((n− i)!)i−1
×

{
1

(n−2i)!
if 2i < n+ 1,

(−1)n+1(2i− n− 1)! if 2i ≥ n+ 1.

12.1.3 Symmetry breaking operators from Πi,δ to πj,δ (j ∈ {i−1, i})

Let (G,G′) = (O(n+ 1, 1), O(n, 1)). We recall from Theorem 2.20 (2) that

Irr(G)ρ ={Πi,δ : 0 ≤ i ≤ n+ 1, δ = ±},
Irr(G′)ρ ={πj,ε : 0 ≤ j ≤ n, ε = ±}.

In Chapter 10, we constructed nontrivial symmetry breaking operators

Ai,j : Πi,δ → πj,ε

for j ∈ {i − 1, i} and δ = ε, and investigated their (K,K ′)-spectrum for
minimal K- and K ′-types,

(µ, µ′) = (µ♭(i, δ), µ♭(j, δ)′),

see Proposition 10.30 in the case j = i− 1 and Proposition 10.12 in the case
j = i.

For the proofs of Theorems 12.4 and 12.5, we use these operators Ai,j in
the case j = i−1. For the study of the bilinear forms on (g, K)-cohomologies
(see Section 12.4 below), we shall use them in the case j = i.

12.2 Proofs of Theorems 12.4 and 12.5

We are ready to prove Theorems 12.4 and 12.5 by using Proposition 10.30
successively.

Proof of Theorem 12.4. Consider the chain (12.1) of orthogonal subgroups
with m = n− i. For 1 ≤ ℓ ≤ i, we denote by

Aℓ,ℓ−1 : Π
O(n−ℓ+2,1)
i−ℓ+1 → Π

O(n−ℓ+1,1)
i−ℓ

the symmetry breaking operator given in Proposition 10.30 for the pair
(O(n − ℓ + 2, 1), O(n − ℓ + 1, 1)) of groups. Here “Π

O(n−ℓ+1,1)
i−ℓ ” stands for
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the irreducible representation “Πi−ℓ,+” of the group O(n− ℓ+ 1, 1) as given
in Theorem 2.20, by a little abuse of notation. Then the composition

F := A1,0 ◦ · · · ◦ Ai−1,i−2 ◦ Ai,i−1 (12.2)

defines a nonzero O(n+ 1− i, 1)-invariant functional on the irreducible rep-
resentation Πi ≡ Πi,+ of G = O(n+ 1, 1).

Proof of Theorem 12.5. The irreducible representation Π
O(n+1−ℓ,1)
i−ℓ , namely,

“Πi−ℓ,+” of the group O(n+ 1− ℓ, 1) has a minimal K-type

µ♭(i− ℓ,+)(ℓ) :=
∧

i−ℓ(Cn+1−ℓ)⊠ 1 ∈ ̂O(n+ 1− ℓ)× Ô(1).

The (K,K ′)-spectrum of the symmetry breaking operatorAℓ,ℓ−1 : Π
O(n−ℓ+2,1)
i−ℓ+1 →

Π
O(n−ℓ+1,1)
i−ℓ for the minimal K-types µ♭(i− ℓ+ 1,+)(ℓ−1) ←↩ µ♭(i− ℓ,+)(ℓ) is

given by

π
n−ℓ
2

(n− i)!
×

{
n− 2i+ ℓ if n ̸= 2i− ℓ,
1 if n = 2i− ℓ,

by Proposition 10.30. Applying this formula successively to the sequence of
minimal K-types:

µ♭(i,+) ≡ µ♭(i,+)(0) ←↩ · · · ←↩ µ♭(i− ℓ,+)(ℓ) ←↩ · · · ←↩ µ♭(0,+)(i) = C,

we get

F (v) =
i∏

ℓ=1

π
n−ℓ
2 (n− 2i+ ℓ)

(n− i)!
=

π
1
4
i(2n−i−1)

((n− i)!)i−1(n− 2i)!

if n > 2i− 1.
On the other hand, if n < 2i− 1 < 2n− 1, then

F (v) =

(
2i−n−1∏
ℓ=1

π
n−ℓ
2 (n− 2i+ ℓ)

(n− i)!

)
· πn−i

(n− i)!
·

(
i∏

ℓ=2i−n+1

π
n−ℓ
2 (n− 2i+ ℓ)

(n− i)!

)

=
π

1
4
i(2n−i−1)

((n− i)!)i
(((−1)2i−n−1(2i− n− 1)!) · 1 · ((n− i)!))

=
(−1)n+1π

1
4
i(2n−i−1)(2i− n− 1)!

((n− i)!)i−1
.

The cases i = n+1
2

(n: odd) or i = n are treated separately, and it turns out
that the formula of F (v) coincides with the one for i < 2i−1 < 2n−1. Thus
we have completed the proof of Theorem 12.5.
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In the next theorem, we consider the pair

(G,H) = (O(n+ 1, 1), O(m+ 1, 1)) with m ≤ n.

We write ΠG
i (0 ≤ i ≤ n + 1) for the irreducible representation Πi,+ of G

(see (2.35)), and write πH
j for the irreducible representation “Πj,+” of the

subgroup H for 0 ≤ j ≤ m + 1. Theorem 12.6 below generalizes Theorem
12.4, which corresponds to the case j = 0.

Theorem 12.6. Let 0 ≤ i ≤ n+ 1 and 0 ≤ j ≤ m+ 1.

(1) The outer tensor product representation ΠG
i ⊠ πH

j of the direct product
group G×H has an H-period if 0 ≤ i− j ≤ n−m.

(2) The period constructed by the composition of the symmetry breaking
operators via the sequence (12.1) is nontrivial on the minimal K-type.

Proof of Theorem 12.6. The proof is essentially the same with the one for
Theorem 12.4 except that we use not only the surjective symmetry breaking
operator Ai,i−1 : Πi,+ → πi−1,+ for the pair (G,G′) = (O(n + 1, 1), O(n, 1))
but also the one

Ai,i : Πi,+ → πi,+

for which the (K,K ′)-spectrum on minimal K-types µ♭(i,+) ←↩ µ♭(i,+)′ is
nonzero by Proposition 10.12.

Composing the symmetry breaking operators Ak,k−1 or Ak,k successively
to the sequence (12.1) of orthogonal groups, we get a nonzero continuous
H-homomorphism ΠG

i → πH
j if 0 ≤ i − j ≤ n − m. Then the first state-

ment follows because πH
j is self-dual. The second statement is clear by the

construction and by the (K,K ′)-spectrum.

12.3 Bilinear forms on (g, K)-cohomologies via symme-
try breaking: General theory for nonvanishing

For the rest of this chapter, we discuss (g, K)-cohomologies via symmetry
breaking. In this section, we deal with a general setting where G ⊃ G′ is a
pair of real reductive Lie groups. We shall define natural bilinear forms on
(g, K)-cohomologies and (g′, K ′)-cohomologies via symmetry breaking G ↓
G′, and prove a nonvanishing result (Theorem 12.11) in the general setting
generalizing a theorem of B. Sun [58].
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12.3.1 Pull-back of (g, K)-cohomologies via symmetry breaking

Let G be a real reductive Lie group, and K a maximal compact subgroup.
We recall that the (g, K)-cohomology groups are the right derived functor of

Homg,K(C, ∗)

from the category of (g, K)-modules. Suppose further that G′ is a real re-
ductive subgroup such that K ′ := K ∩G′ is a maximal compact subgroup of
G′. We write gC = kC + pC and g′C = k′C + p′C for the complexifications of the
corresponding Cartan decompositions. In what follows, we set

d := dimG′/K ′ = dimC p
′
C.

We shall use the Poincaré duality for the subgroup G′, which may be discon-
nected. In order to deal with disconnected groups, we consider the natural
one-dimensional representation of K ′ defined by

χ : K ′ → GLC(
∧

dp′C) ≃ C×. (12.3)

The differential dχ is trivial on the Lie algebra k′. We extend χ to a (g′, K ′)-
module by letting g′ act trivially. Then we have

Hd(g′, K ′;χ) ≃ C. (12.4)

Example 12.7. For G′ = O(n, 1), the adjoint action of K ′ ≃ O(n) × O(1)
on p′C ≃ Cn gives rise to the one-dimensional representation∧

n(p′C) ≃
∧

n(Cn)⊠ (−1)n.

Hence, in terms of the one-dimensional character χab of O(n, 1) defined in
(2.13), the (g′, K ′)-module χ defined in (12.3) is isomorphic to χ−,(−1)n . See
also Example 12.16 below.

Now we recall the Poincaré duality for (g, K)-cohomologies of (g, K)-
modules when G is not necessarily connected:

Lemma 12.8 (Poincaré duality). Let χ be the one-dimensional (g′, K ′)-
module as in (12.3). Then for any irreducible (g′, K ′)-module Y , there is
a canonical perfect pairing

Hj(g′, K ′;Y )×Hd−j(g′, K ′;Y ∨ ⊗ χ)→ Hd(g′, K ′;χ) ≃ C (12.5)

for all j ∈ N.
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Proof. See [26, Cor. 3.6] (see also [9, Chap. I, Sect. 1] when K is connected).

We use the terminology “symmetry breaking operator” also in the cat-
egory of (g, K)-modules, when we are given a pair (g, K) and (g′, K ′) such
that g ⊃ g′ and K ⊃ K ′. We prove the following.

Proposition 12.9. Let X be a (g, K)-module, Y a (g′, K ′)-module, and Y ∨

the contragredient (g′, K ′)-module of Y . Suppose T : X → Y is a (g′, K ′)-
homomorphism, where we regard the (g, K)-module X as a (g′, K ′) by re-
striction. Then the symmetry breaking operator T induces a canonical ho-
momorphism

T∗ : H
j(g, K;X)→ Hj(g′, K ′;Y ) (12.6)

and a canonical bilinear form

BT : H
j(g, K;X)×Hd−j(g′, K ′;Y ∨ ⊗ χ)→ C (12.7)

for all j ∈ N.

Proof. The (g, K)-module X is viewed as a (g′, K ′)-module by restriction.
Then the map of pairs (g′, K ′) ↪→ (g, K) induces natural homomorphisms

Hj(g, K;X)→ Hj(g′, K ′;X) for all j ∈ N.

On the other hand, since T : X → Y is a (g′, K ′)-homomorphism, it
induces natural homomorphisms

Hj(g′, K ′;X)→ Hj(g′, K ′;Y ) for all j ∈ N.

Composing these two maps, we get the homomorphisms (12.6).
In turn, combining the morphism (12.6) with the Poincaré duality in

(12.5) in Lemma 12.8, we get the bilinear map BT as desired.

12.3.2 Nonvanishing of pull-back of (g, K)-cohomologies of Aq via
symmetry breaking

Retain the setting where (G,G′) is a pair of real reductive Lie groups. In
this subsection, we discuss a nonvanishing result for morphisms between
(g, K)-cohomologies and (g′, K ′)-cohomologies under certain assumption on
the (K,K ′)-spectrum of the symmetry breaking operator, see Theorem 12.11
and Remark 12.12 below.
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In order to formulate a nonvanishing theorem, we begin with a setup
for finite-dimensional representations of compact Lie groups. Let U be a
K-module, U ′ a K ′-module, and φ : U → U ′ a K ′-homomorphism. Via the
inclusion map p′ ↪→ p, the composition of the following two morphisms

HomK(
∧

jpC, U)→ HomK′(
∧

jpC, U
′)→ HomK′(

∧
jp′C, U

′)

induces natural homomorphisms

φ∗ : HomK(
∧

jpC, U)→ HomK′(
∧

jp′C, U
′) (12.8)

for all j ∈ N.

Definition 12.10. A K ′-homomorphism φ is said to be p-nonvanishing at
degree j if the induced morphism φ∗ in (12.8) is nonzero.

By a theorem of Vogan–Zuckerman [65] every irreducible representation
of G with nontrivial (g, K)-cohomology is equivalent to the representation, to
be denoted usually by Aq for some θ-stable parabolic subalgebra q. Here Aq

is a (g, K)-module cohomologically induced from the trivial one-dimensional
representation of the Levi subgroup L = NG(q) := {g ∈ G : Ad(g)q = q}.
Suppose q = lC + u and q′ = l′C + u′ be θ-stable parabolic subalgebras of gC
and g′C, respectively. In general, we do not assume an inclusive relation of
q and q′. We shall work with a symmetry breaking operator T : X → Y ,
where X is a (g, K)-module Aq and Y is a (g′, K ′)-module Aq′ . We note that
Y contains a unique minimal K ′-type, say µ′. Let Y ′ be the K ′-submodule
containing all the remaining K ′-types in Y , and

pr : Y → µ′

be the first projection of the direct sum decomposition Y = µ′ ⊕ Y ′.

Theorem 12.11. Let T : X → Y be a (g′, K ′)-homomorphism, where X is a
(g, K)-module Aq and Y is a (g′, K ′)-module Aq′. Let U be the representation
space of the minimal K-type µ in X, and U ′ that of the minimal K ′-type µ′

in Y . We define a K ′-homomorphism by

φT := pr ◦ T |U : U → U ′. (12.9)

(1) If φT is zero, then the homomorphisms T∗ : H
j(g, K;X)→ Hj(g′, K ′;Y )

(see (12.6)) and the bilinear form BT (see (12.7)) vanish for all degrees
j ∈ N.
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(2) If φT is p-nonvanishing at degree j, then T∗ and the bilinear forms BT

are nonzero for this degree j.

Proof of Theorem 12.11. By Vogan–Zuckerman [65, Cor. 3.7 and Prop. 3.2],
we have natural isomorphisms:

HomK(
∧

jpC, U)
∼→ HomK(

∧
jpC, X)

∼→ Hj(g, K;Aq). (12.10)

By the definition (12.6) of T∗ in Proposition 12.9 and φ∗ (see (12.8)), the
following diagram commutes:

HomK(
∧

jpC, U)
∼→ HomK(

∧
jpC, X)

∼→Hj(g, K;X)

(T |U)∗ ↓ ⟳ ↓ T∗
HomK′(

∧
jp′C, T (U)) ⊂ HomK′(

∧
jp′C, Y )

∼→Hj(g′, K ′;Y ).

Since HomK′(
∧

jp′C, Y
′) = {0} for all j where Y = µ′ ⊕ Y ′ is the de-

composition as a K ′-module as before, we obtain the following commutative
diagram by replacing (T |U)∗ with (φT )∗:

HomK(
∧

jpC, U)
∼→ HomK(

∧
jpC, X)

∼→Hj(g, K;X)

(φT )∗ ↓ ⟳ ↓ T∗
HomK′(

∧
jp′C, U

′)
∼→ HomK′(

∧
jp′C, Y )

∼→Hj(g′, K ′;Y ).

Hence T∗ is a nonzero map if and only if (φT )∗ is nonzero. Since the bilinear
map (12.5) is a perfect pairing, we conclude Theorem 12.11.

Remark 12.12. (1) The nonvanishing assumption of φT in the first state-
ment of Theorem 12.11 can be reformulated as the nonvanishing of the
(K,K ′)-spectrum (see Section 9.3) of the symmetry breaking operator
T at (µ, µ′).

(2) The verification of the p-vanishing assumption of φT in the second state-
ment of Theorem 12.11 reduces to a computation of finite-dimensional
representations of compact Lie groups K and K ′.

(3) If we set R := dimC(u ∩ pC) and R
′ := dimC(u

′ ∩ p′C), then the isomor-
phisms [65, Cor. 3.7] show

HomK(
∧

jpC, µ) ≃ HomL∩K(
∧

j−R(lC ∩ pC),C),
HomK′(

∧
jp′C, µ

′) ≃ HomL′∩K′(
∧

j−R′
(l′C ∩ p′C),C).

232



12.4 Nonvanishing bilinear forms on (g, K)-cohomologies
via symmetry breaking for (G,G′) = (O(n+1, 1), O(n, 1))

12.4.1 Nonvanishing theorem for O(n+ 1, 1) ↓ O(n, 1)

In this section, we apply the general result (Theorem 12.11) to the pair
(G,G′) = (O(n+ 1, 1), O(n, 1)).

In Proposition 14.45 in Appendix I, we shall see that if Π is an irreducible
unitary representation of G = O(n+1, 1) with H∗(g, K; ΠK) ̸= {0}, then the
smooth representation Π∞ must be isomorphic to Πℓ,δ defined in (2.35) for
some 0 ≤ ℓ ≤ n+1 and δ ∈ {±}. Thus, we shall apply Theorem 12.11 to the
representations Πℓ,δ of G and similar representations πm,ε of the subgroup
G′ = O(n, 1).

In what follows, by abuse of notation, we denote an admissible smooth
representation and its underlying (g, K)-module by the same letter when we
discuss their (g, K)-cohomologies.

.

Theorem 12.13. Let (G,G′) = (O(n + 1, 1), O(n, 1)), 0 ≤ i ≤ n, and
δ ∈ {±}. Let T := Ai,i be the symmetry breaking operator Πi,δ → πi,δ given
in Proposition 10.12.

(1) T induces bilinear forms

BT : H
j(g, K; Πi,δ)×Hn−j(g′, K ′; πn−i,(−1)nδ)→ C for all j.

(2) The bilinear form BT is nonzero if and only if j = i and δ = (−1)i.

Remark 12.14. A similar theorem was proved by B. Sun [58] for the (g, K)-
cohomology with nontrivial coefficients of a tempered representation of the
pair (GL(n,R), GL(n− 1,R)).

We begin with the computation of the (g, K)-cohomologies of the irre-
ducible representation Πℓ,δ of G = O(n+ 1, 1).

Lemma 12.15. Suppose 0 ≤ ℓ ≤ n+ 1, j ∈ N, and δ ∈ {±}. Then

Hj(g, K; Πℓ,δ) =

{
C if j = ℓ and δ = (−1)ℓ,
{0} otherwise.

In view of Theorem 2.20 (4), we have:
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Example 12.16. For G′ = O(n, 1), we have πn,(−1)n ≃ χ−,(−1)n from The-
orem 2.20 (4). In turn, the assertion Hn(g′, K ′;χ−,(−1)n) ≃ C from Lemma
12.15 corresponds to the equation (12.4) by Example 12.7.

By Proposition 14.44 in Appendix I, Lemma 12.15 may be reformulated
in terms of the cohomologically induced representations

(Aqi)ab = Aqi ⊗ χab ≃ RSi
qi
(χab ⊗ Cρ(ui))

(see Section 14.9.1 for notation) as follows:

Lemma 12.17. Suppose 0 ≤ i ≤ [n+1
2
] and j ∈ N. Then we have

Hj(g, K; (Aqi)++) =C if j = i ∈ 2N; = {0} otherwise,

Hj(g, K; (Aqi)+−) =C if j = i ∈ 2N+ 1; = {0} otherwise,

Hj(g, K; (Aqi)−+) =C if j = n+ 1− i ∈ 2N; = {0} otherwise,

Hj(g, K; (Aqi)−−) =C if j = n+ 1− i ∈ 2N+ 1; = {0} otherwise.

Proof of Lemma 12.17. We recall from Theorem 2.20 (3) (see also Propo-
sition 14.44 in Appendix I) that the irreducible G-module Πi,δ contains
µ♭(i, δ) ≃

∧
i(Cn+1) ⊠ δ as its minimal K-type. By [65], we have then a

natural isomorphism

HomK(
∧

jpC, µ
♭(i, δ)) ≃ Hj(g, K; Πi,δ).

On the other hand, the adjoint action of K = O(n + 1) × O(1) on pC ≃
Cn+1 gives rise to the j-th exterior tensor representation∧

j(pC) ≃
∧

j(Cn+1)⊠ (−1)j.

Now the lemma follows.

Lemma 12.18. Let φT be the K ′-homomorphism defined in (12.9) for the
symmetry breaking operator T : Πi,δ → πi,δ in Theorem 12.13. Then φT

is p-nonvanishing at degree j (Definition 12.10) if and only if j = i and
δ = (−1)i.

Proof. Similarly to the G-module Πi,δ, the G
′-module πi,δ contains µ

♭(i, δ)′ ≃∧
i(Cn)⊠ δ as its minimal K-type. Then φT in Theorem 12.11 amounts to a

nonzero multiple of the projection (see (7.2)),

pri→i :
∧

i(Cn+1)⊠ δ →
∧

i(Cn)⊠ δ.
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Then (φT )∗ is a nonzero multiple of the natural map from

HomO(n+1)×O(1)(
∧

j(Cn+1)⊠ (−1)j,
∧

i(Cn+1)⊠ δ)

to

HomO(n)×O(1)(
∧

j(Cn)⊠ (−1)j,
∧

i(Cn)⊠ δ)

induced by the projection pri→i. Now the lemma is clear.

We are ready to apply the general result (Theorem 12.11) to prove The-
orem 12.13.

Proof of Theorem 12.13. By Example 12.7, we have an isomorphism χ ≃
χ−,(−1)n as (g′, K ′)-modules. Then it follows from Theorem 2.20 (5) and (6)
that there are natural G′-isomorphisms:

π∨
i,δ ⊗ χ−,(−1)n ≃ πi,δ ⊗ χ−,(−1)n ≃ πn−i,(−1)nδ.

Thus Theorem 12.13 (1) follows from Proposition 12.9. It then follows from
Lemma 12.18 that Theorem 12.13 (2) holds as a special case of Theorem
12.11.

In Proposition 14.44, we shall see that the underlying (g′, K ′)-module
of πn−i,(−1)nδ is isomorphic to (Aq′i

)−,(−1)nδ if 0 ≤ i ≤ [n
2
]. The symme-

try breaking operator Ai,i : Πi,δ → πi,δ given in Proposition 10.12 induces a
(g′, K ′)-homomorphism (Aqi)+,δ → (Aq′i

)+,δ.

Corollary 12.19. If 0 ≤ 2i ≤ n, then the symmetry breaking operator
Ai,i : Πi,δ → πi,δ induces bilinear forms

Hj(g, K; (Aqi)+,δ)×Hn−j(g′, K ′; (Aq′i
)−,(−1)nδ)→ C

and linear maps

Hj(g, K; (Aqi)+,δ)→ Hj(g′, K ′; (Aq′i
)+,δ)

for all j. They are nontrivial if and only if j = i and δ = (−1)i.

Composing the symmetry breaking operators we deduce the following.

235



Corollary 12.20. If 0 ≤ 2i ≤ n and H = O(n+1−i, 1), then the composition
of the symmetry breaking operators induces a linear map

Hj(g, K; (Aqi)+,δ)→ Hj(h, K ∩H ′; (Aqi∩h)+,δ) for all j.

It is nontrivial if and only if j = i and δ = (−1)n+1−i.

Remark 12.21. Y. Tong and S. P. Wang [60] considered representations of
SO(n+1, 1) with nontrivial (g, K)-cohomology which are SO(n−i)×SO(n+
1 − i, 1)-distinguished. Independently S. Kudla and J. Millson [48] consid-
ered representations of O(n+ 1, 1) with nontrivial (g, K)-cohomology which
are O(n− i)×O(n+ 1− i, 1)-distinguished. Since O(n− i) commutes with
O(n− i+ 1, 1), we have an action of O(n− i) on HomO(n−i+1,1)(Πi,δ,C) and
HomO(n−i+1,1)(Πi,δ,C)O(n−i) is isomorphic to HomO(n−i)×O(n−i+1,1)(Πi,δ,C). By
results in [48] this induces a nontrivial linear map on the (g, K)-cohomology.

12.4.2 Special Cycles

Geometric, topological and arithmetic properties of hyperbolic symmetric
spaces XΓ = Γ\O(n+1, 1)/K for a discrete subgroup Γ have been studied ex-
tensively using representation theoretic and geometric techniques. See for ex-
ample [5, 6] and references therein. If XΓ is compact, then the Matsushima–
Murakami formula ([9, Chap. VII, Thm. 3.2]) shows

H∗(XΓ,C) ≃
⊕
Π∈Ĝ

m(Γ,Π)H∗(g, K; ΠK),

where Ĝ is the set of equivalence classes of irreducible unitary representations
of G (i.e., the unitary dual of G), and we set for Π ∈ Ĝ

m(Γ,Π) := dimC HomG(Π, L
2(Γ\G)).

By abuse of notation, we shall omit the subscript K in the underlying (g, K)-
module ΠK of Π when we discuss its (g, K)-cohomologies.

In Proposition 14.45 in Appendix I, we shall show that every irreducible
unitary representations with nontrivial (g, K)-cohomology is isomorphic to a
representations Πi,δ for some i and δ ∈ {±}, see also Theorem 2.20 (9). Thus

H∗(XΓ,C) =
⊕
i,δ

m(Γ,Πi,δ)H
∗(g, K; Πi,δ).
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To obtain arithmetic information about the cohomology and the homol-
ogy of XΓ, special cycles, i.e., orbits of subgroups H ⊂ G on XΓ, and their
homology classes are frequently used. Suppose 0 ≤ 2i ≤ n+ 1. We let

Gi = O(n+ 1− i, 1), Ki := K ∩Gi ≃ O(n+ 1− i)×O(1),

and Xi be the Riemannian symmetric space Gi/Ki. Let bi := n+ 1− i, the
dimension of Xi. We set δ = (−1)n+1−i. By Corollary 12.20 there exists a
nontrivial linear map An+1−i,n+1−i :

Hn+1−i(g, K; (Aqn+1−i
)+,δ)→ Hn+1−i(gi, Ki; (Aqn+1−i∩(gi)C)+,δ).

Note that (Aqn+1−i∩(gi)C)+,δ is one-dimensional and the image of An+1−i,n+1−i

is isomorphic to

HomKi
(
∧

n+1−i(pC ∩ (gi)C), χ+,δ) ≃ HomKi
(
∧

n+1−i(Cn+1−i)⊠ 1,1).

Since the nonzero element of

HomKi
(
∧

n+1−i(Cn+1−i)⊠ 1,1)

gives a volume form on the symmetric space Xi = Gi/Ki, this suggests that
the homology classes defined by the orbits of O(n+1−i, 1) for 0 ≤ 2i ≤ n+1
on XΓ are related to the contribution of Hn+1−i(g, K; Πi,δ) to the cohomology
of XΓ. The work of S. Kudla and J. Millson confirms this. We sketch their
results following the exposition in [48, 49, 50].

We have an embedding

ιXi
: Xi ↪→ X = G/K.

We fix an orientation of X and Xi which is invariant under the connected
component of G respectively Gi. Let A be the adels of the real number field
K. Then

XA = X ⊗G(Af )

is the adelic symmetric space. We set G+ :=
∏
SO0(p, q) where we take the

product over all real places of K and G+(K) := G(K) ∩G+G(Af ). Then

H∗(G(K)\G(Af );C) = H∗(g, K;C∞(G(Q)\G(A)))

and
H∗(G+(K)\G(A)/KKf ;C) = H∗(XA;C)Kf .
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The cohomology here is the de Rham cohomology ifXA is compact, otherwise
the cohomology with compact support.

Following the exposition and notation in [50, Sect. 2] we have an inclusion

ιXi
: Xi ×Gi(Af )→ X ×G(Af )

which is equivariant under the right action of G(Af ). For g ∈ G(Af ) we
obtain a special cycle

Xi,g = XiGi(Af )/(gKfg
−1 ∩Gi(Af )).

Consider the subspace SXi(XA) spanned by special cycles in the homology
group Hi(XA).

We now assume that all but one factor of G∞ is compact and thus that
XA/Kf is compact. Using the theta correspondence, S. Kudla and J. Millson
show that there exist a subgroup Kf and nontrivial homomorphisms

Ψ: Hbi(g, K; Π)→ Hbi(XA/Kf ;C) ⊂ Hbi(XA)

for some irreducible representation Π of G.

Using integration, S. Kudla and J. Millson [48], [50, Thm. 7.1] prove the
following:

Theorem 12.22. There exists a nontrivial pairing

Ψ(Hn+1−i(g, K; Π))× SXi(XA)→ C.

Remark 12.23. (1) As we see in Theorem 2.20 (9), Lemma 12.17 and Propo-
sition 14.44, the irreducible representation Π ofG withHn+1−i(g, K; Π) ̸=
{0} must be of the form

Π ≃ Πn+1−i,(−1)n+1−i ,

namely, ΠK ≃ (Aqi)−,(−1)n+1−i .

(2) The nontrivial pairing in Theorem 12.22 defines an O(n + 1 − i, 1)-
invariant linear functional on the irreducible G-module Πn+1−i,(−1)n+1−i

which is nontrivial on the minimal K-type.
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13 A conjecture: Symmetry breaking for ir-

reducible representations with regular in-

tegral infinitesimal character

We conjecture that Theorems 4.1 and 4.2 hold in more generality. We will
formalize and explain this conjecture in this chapter more precisely and pro-
vide some supporting evidence.

As before we assume that G = O(n+ 1, 1) and G′ = O(n, 1).

13.1 Hasse sequences and standard sequences of irre-
ducible representations with regular integral in-
finitesimal character and their Langlands param-
eters

Before stating the conjecture we define Hasse sequences and standard se-
quences of irreducible representations, and collect more information about
the representations which occur in the Hasse and standard sequences. In
Chapter 14 (Appendix I) we determine their θ-stable parameters.

13.1.1 Definition of Hasse sequence and standard sequence

Definition-Theorem 13.1 (Hasse sequence). Let n = 2m or 2m − 1. For
every irreducible finite-dimensional representation F of the group G = O(n+
1, 1), there exists uniquely a sequence

U0 , . . . , Um−1 , Um

of irreducible admissible smooth representations Ui ≡ Ui(F ) of G such that

1. U0 ≃ F ;

2. consecutive representations are composition factors of a principal series
representation;

3. Ui (0 ≤ i ≤ m) are pairwise inequivalent as G-modules.

We refer to the sequence

U0 , . . . , Um−1 , Um
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as the Hasse sequence of irreducible representations starting with the finite-
dimensional representation U0 = F . We shall write Uj(F ) for Uj if we em-
phasize the sequence {Uj(F )} starts with U0 = F .

Sketch of the proof. D. Collingwood [11, Chap. 6] computed embeddings of
irreducible Harish-Chandra modules into principal series representations for
all connected simple groups of real rank one, which allowed him to define a
diagrammatic description of irreducible representations with regular integral
infinitesimal character of the connected group G0 = SO0(n + 1, 1). For the
disconnected group G = O(n+1, 1), we can determine similarly the composi-
tion factors of principal series representations, as in Theorems 13.7 and 13.9
below (see Sections 15.1–15.5 in Appendix II for the relationship between ir-
reducible representations of the disconnected group G = O(n+1, 1) and those
of a normal subgroup of finite index). To show the existence and the unique-
ness of the Hasse sequence, we note that there exists uniquely a principal
series representation that contains a given irreducible finite-dimensional rep-
resentation F as a subrepresentation. Then there exists only one irreducible
composition factor other than F , which is defined to be U1. Repeating this
procedure, we can find irreducible representations U2, U3, · · · , whence the
existence and the uniqueness of the Hasse sequence is shown for the discon-
nected group G = O(n+ 1, 1).

As we have seen in Theorem 2.20 (1) when F is the trivial one-dimensional
representation 1, the representations Ui and Ui+1 in this sequence have differ-
ent signatures. The standard sequence (Definition 2.21) starting with 1 has
given an adjustment for the different signatures. Extending this definition
for the sequence starting with an arbitrary irreducible finite-dimensional rep-
resentation F , we define the standard sequence of irreducible representations
starting with F as follows:

Definition 13.2 (standard sequence). If

U0 , . . . , Um−1 , Um

is the Hasse sequence starting with an irreducible finite-dimensional repre-
sentation F of G, then we refer to

Π0 := U0 , . . . , Πm−1 := Um−1 ⊗ (χ+−)
m−1 , Πm := Um ⊗ (χ+−)

m
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as the standard sequence of irreducible representations Πi = Πi(F ) starting
with Π0 = U0 = F , where χ+− is the one-dimensional representation of G
defined in (2.13).

Remark 13.3. Clearly, any Uj(F ) in the Hasse sequence (or any Πj(F ) in the
standard sequence) starting with an irreducible finite-dimensional represen-
tation F of G has a regular integral ZG(g)-infinitesimal character (Definition
2.1).

The next proposition follows readily from the definition.

Proposition 13.4 (tensor product with characters). Let F be an irreducible
finite-dimensional representation of G, and χ a one-dimensional represen-
tation of G. Then the representations in the Hasse sequences (and in the
standard sequence) starting with F and F ⊗ χ have the following relations:

(Hasse sequence) Ui(F )⊗ χ ≃ Ui(F ⊗ χ),
(standard sequence) Πi(F )⊗ χ ≃ Πi(F ⊗ χ).

The Hasse sequences and the standard sequences starting with one-dimensional
representations of G are described as follows.

Example 13.5. We recall from Theorem 2.20 that Πℓ,δ (0 ≤ ℓ ≤ n + 1,
δ ∈ {±}) are irreducible representations of G = O(n + 1, 1) with ZG(g)-
infinitesimal character ρG. Then for each one-dimensional representation
F ≃ χ±± of G (see (2.13)), the Hasse sequence Ui(F ) (0 ≤ i ≤ [n+1

2
]) that

starts with U0(F ) ≃ F , and the standard sequence Πi(F ) := Ui(F )⊗ (χ+−)
i

are given as follows.

Ui(1) = Πi,(−1)i , Πi(1) = Πi,+,

Ui(χ+−) = Πi,(−1)i+1 , Πi(χ+−) = Πi,−,

Ui(χ−+) = Πn+1−i,(−1)i , Πi(χ−+) = Πn+1−i,+,

Ui(χ−−) = Πn+1−i,(−1)i+1 , Πi(χ−−) = Πn+1−i,−.

13.1.2 Existence of Hasse sequence

In Section 13.2, we formalize a conjecture about when

HomG′(Π|G′ , π) ̸= {0}

for Π ∈ Irr(G) and π ∈ Irr(G′) that have regular integral infinitesimal char-
acters by using the standard sequence (Definition 13.2). The formulation is
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based on the following theorem which asserts that the converse statement to
Remark 13.3 is also true.

Theorem 13.6. Any irreducible admissible representation of G of moderate
growth with regular integral ZG(g)-infinitesimal character is of the form Uj(F )
in the Hasse sequence for some j (0 ≤ j ≤ [n+1

2
]) and for some irreducible

finite-dimensional representation F of G.
Similarly, any irreducible admissible representation of G of moderate growth

with regular ZG(g)-infinitesimal character is of the form Πj(F
′) in the stan-

dard sequence for some j (0 ≤ j ≤ [n+1
2
]) and for some irreducible finite-

dimensional representation F ′ of G.

The proof of Theorem 13.6 follows from the classification of Irr(G) (Theo-
rem 14.36 in Appendix I) and the Langlands parameter of the representations
in the Hasse sequence below (see also Theorem 14.35).

13.1.3 Langlands parameter of the representations in the Hasse
sequence

Let F be an irreducible finite-dimensional representation of G = O(n+1, 1).
We now determine the Langlands parameter of the representations in the
Hasse sequence {Ui(F )} (and the standard sequence {Πi(F )}) for 0 ≤ i ≤
[n+1

2
] and their K-types.
We use the parametrization of the finite-dimensional representation of

O(n, 1) introduced in Section 14.1 in Appendix I.
We begin with the case where F is obtained from an irreducible repre-

sentation of O(n + 2) of type I (Definition 2.4) via the unitary trick. The
description of Ui(F ) and Πi(F ) for more general F can be derived from this
case by taking the tensor product with one-dimensional representations χ±±
of G, see Theorem 13.11 below.

Case 1. n = 2m and G = O(2m+ 1, 1).

For F ∈ ̂O(n+ 2) of type I, we define σ(i) ≡ σ(i)(F ) ∈ Ô(n) of type I for
0 ≤ i ≤ m = n

2
as follows. We write F = FO(n+2,C)(s) with

s = (s0, · · · , sm, 0m+1) ∈ Λ+(n+ 2) ≡ Λ+(2m+ 2)

as in (2.20), and regard it as an irreducible finite-dimensional representation
of G = O(n+ 1, 1). We set

σ(i) := FO(n)(s(i)) ∈ Ô(n) for 0 ≤ i ≤ m,
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where s(i) ∈ Λ+(n) ≡ Λ+(2m) is given for 0 ≤ i ≤ m as follows:

s(i) := (s0 + 1, · · · , si−1 + 1, ŝi, si+1, · · · , sm, 0m). (13.1)

It is convenient to introduce the extended Hasse sequence {Ui ≡ Ui(F )}
(0 ≤ i ≤ 2m+ 1) by defining

Ui(F ) := Un+1−i(F )⊗ χ−− for m+ 1 ≤ i ≤ n+ 1 = 2m+ 1. (13.2)

Theorem 13.7 (n = 2m). Given an irreducible finite-dimensional represen-
tation FO(n+2,C)(s)of G = O(n+ 1, 1) with

s = (s0, s1, · · · , sm, 0, · · · , 0) ∈ Λ+(n+ 2)(= Λ+(2m+ 2)),

there exists uniquely an extended Hasse sequence U0, U1, · · · , U2m+1 start-
ing with the irreducible finite-dimensional representation U0 = FO(n+2,C)(s).
Moreover, the extended Hasse sequence U0, · · · , U2m+1 satisfies the following
properties.

(1) There exist exact sequences of G-modules:

0→ Ui → I(−1)i−si (σ
(i), i− si)→ Ui+1 → 0 (0 ≤ i ≤ m),

0→ Ui → I(−1)n−i−sn−i (σ
(n−i) ⊗ det, i+ sn−i)→ Ui+1 → 0 (m ≤ i ≤ 2m).

(2) The K-type formula of the irreducible G-module Ui (0 ≤ i ≤ m) is
given by ⊕

b

FO(n+1)(b)⊠ (−1)
∑m

k=0(bk−sk),

where b = (b0, b1, · · · , bm, 0, · · · , 0) runs over Λ+(n+ 1) ≡ Λ+(2m+ 1)
subject to

b0 ≥ s0 + 1 ≥ b1 ≥ s1 + 1 ≥ · · · ≥ bi−1 ≥ si−1 + 1,

si ≥ bi ≥ si+1 ≥ bi+1 ≥ · · · ≥ sm ≥ bm ≥ 0,

bm ∈ {0, 1}.

In particular, the minimal K-type(s) of the G-module Ui (0 ≤ i ≤ m)
are given as follows:
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for sm = 0,

FO(n+1)(s(i), 0)⊠ (−1)i−si

= FO(n+1)(s0 + 1, · · · , si−1 + 1, ŝi, si+1, · · · , sm, 0m+1)⊠ (−1)i−si ;

for sm > 0,

FO(n+1)(s(i), 0)⊠ (−1)i−si and (FO(n+1)(s(i), 0)⊗ det)⊠ (−1)i−si+1.

Sketch of the proof. (1) By the translation principle, the first exact se-
quence follows from Theorem 2.20 (1) which corresponds to the case
F ≃ 1. Taking its dual, we obtain another exact sequence

0→ Ui+1 → I(−1)i−si (σ
(i), n− i+ si)→ Ui → 0 for 0 ≤ i ≤ m,

because Ui is self-dual. Taking the tensor product with the one-dimensional
representation χ−− of G, we obtain by (13.2) and by Lemma 2.14 an-
other exact sequence of G-modules:

0→ Un−i → I(−1)i−si (σ
(i) ⊗ det, n− i+ si)→ Un+1−i → 0.

Replacing i (0 ≤ i ≤ m) by n − i (m ≤ n − i ≤ 2m), we have shown
the second exact sequence.

(2) TheK-type formula of the irreducible finite-dimensional representation
U0 = FO(n+1,1)(s) of G is known by the classical branching law (see Fact
2.12). Since the K-type formula of the principal series representation
is given by the Frobenius reciprocity which we can compute by using
Fact 2.12 again, the K-type formula of Ui+1 follows inductively from
that of Ui by the exact sequence in the first statement.

See also Theorem 14.50 in Appendix I for another description of the
irreducible representation Ui(F ) in terms of θ-stable parameters.

Remark 13.8. When i = m and n = 2m, s(i) is of the form

s(m) = (s0 + 1, · · · , sm−1 + 1, 0m) ∈ Λ+(2m),

and therefore the irreducible O(n)-module σ(m) = FO(2m)(s(m)) is of type Y
(Definition 2.6). Hence we have an isomorphism

σ(m) ≃ σ(m) ⊗ det (13.3)
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as O(2m)-modules by Lemma 2.9. We recall from Theorem 13.7 (1) that
there is an exact sequence of G-modules as follows:

0→ Um → I(−1)m−sm (σ(m),m− sm)→ Um+1 → 0.

Taking the tensor product with the character χ−− ≃ det, we obtain from
(13.2) and Lemma 2.14 another exact sequence of G-modules:

0→ Um+1 → I(−1)m−sm (σ(m) ⊗ det,m− sm)→ Um → 0.

By (13.3), the principal series representations

I(−1)m−sm (FO(2m)(s(m)),m− sm) ≃ I(−1)m−sm (FO(2m)(s(m))⊗ det,m− sm)

split into a direct sum of two irreducible G-modules Um and Um+1 (see also
Theorem 14.46 (3) in Appendix I).

Case 2. n = 2m− 1 and G = O(2m, 1).

For F ∈ ̂O(n+ 2) of type I, we define σ(i) ≡ σ(i)(F ) ∈ Ô(n) for 0 ≤ i ≤
m− 1 = 1

2
(n− 1) as follows. We write F = FO(n+2)(s) with

s = (s0, s1, · · · , sm−1, 0
m+1) ∈ Λ+(n+ 2) ≡ Λ+(2m+ 1),

as in (2.20). Then we define s(i) ∈ Λ+(n) ≡ Λ+(2m− 1) (0 ≤ i ≤ m− 1) by

s(i) := (s0 + 1, · · · , si−1 + 1, ŝi, si+1, · · · , sm−1, 0
m), (13.4)

and define irreducible finite-dimensional representations by

σ(i) := FO(n)(s(i)) ∈ Ô(n) for 0 ≤ i ≤ m− 1.

For later purpose, we set

s(m) := (s0 + 1, · · · , sm−2 + 1, 1, 0m−1) ∈ Λ+(n).

Then there is an isomorphism as O(n)-modules:

σ(m−1) ⊗ det ≃ FO(n)(s(m)).

It is convenient to introduce the extended Hasse sequence {Ui ≡ Ui(F )}
(0 ≤ i ≤ 2m) by defining for m+ 1 ≤ i ≤ 2m

Ui(F ) := Un+1−i(F )⊗ χ−+. (13.5)
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Implicitly, the definition (13.5) includes a claim that there is an isomorphism
of discrete series representations (cf. Remark 13.10 below):

Um(F ) ≃ Um(F )⊗ χ−+ (13.6)

when G = O(n+ 1, 1) with n = 2m− 1.
We note that the one-dimensional representations χ−− and χ−+ in (13.2)

and (13.5) are chosen differently according to the parity of n.
The proof of the following theorem goes similarly to that of Theorem

13.7.

Theorem 13.9 (n = 2m − 1). Given an irreducible finite-dimensional rep-
resentation FO(n+2,C)(s) of G = O(n+ 1, 1) with

s = (s0, s1, · · · , sm−1, 0
m+1) ∈ Λ+(n+ 2)(= Λ+(2m+ 1)),

there exists uniquely an extended Hasse sequence U0, U1, · · · , U2m of G =
O(2m, 1) starting with the irreducible finite-dimensional representation U0 =
FO(n+2,C)(s). Moreover, the extended Hasse sequence U0, U1, · · · , U2m satis-
fies the following properties.

(1) There exist exact sequences of G-modules:

0→ Ui → I(−1)i−si (σ
(i), i− si)→ Ui+1 → 0 (0 ≤ i ≤ m− 1),

0→ Ui → I(−1)n−i−sn−i (σ
(n−i) ⊗ det, i+ sn−i)→ Ui+1 → 0 (m ≤ i ≤ 2m− 1).

(2) The K-type formula of the irreducible G-module Ui (0 ≤ i ≤ m) is
given by ⊕

b

FO(n+1)(b)⊠ (−1)
∑m

k=0 bk−
∑m−1

k=0 sk ,

where b = (b0, b1, · · · , bm−1, 0, · · · , 0) runs over Λ+(n + 1) ≡ Λ+(2m)
subject to the following conditions:

b0 ≥ s0 + 1 ≥ b1 ≥ s1 + 1 ≥ · · · ≥ bi−1 ≥ si−1 + 1,

si ≥ bi ≥ si+1 ≥ bi+1 ≥ · · · ≥ sm−1 ≥ bm−1 ≥ 0.

In particular, the minimal K-type of the G-module Ui (0 ≤ i ≤ m) is
given by

FO(n+1)(s(i), 0)⊠ (−1)i

= FO(n+1)(s0 + 1, · · · , si−1 + 1, ŝi, si+1, · · · , sm−1, 0
m+1)⊠ (−1)i−si .
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Remark 13.10. Um is a discrete series representation of G = O(2m, 1).

See also Theorem 14.51 in Appendix I for another description of the
irreducible representation Ui(F ) in terms of θ-stable parameters.

By applying Proposition 13.4 and Lemma 2.14, we may unify the first
statement of Theorems 13.7 and 13.9 as follows.

Theorem 13.11. Let F be an irreducible finite-dimensional representation of
G = O(n+1, 1) of type I (see Definition 14.2 in Appendix I), and a, b ∈ {±}.
Then for Fa,b := F ⊗ χab, there exists uniquely a Hasse sequence Ui(Fa,b)
(0 ≤ i ≤ [n+1

2
]) starting with U0(Fa,b) = Fa,b. Moreover, the irreducible

G-modules Ui(Fa,b) occur in the following exact sequence of G-modules

0→ Ui(Fa,b)→ Iab(−1)i−si (σ
(i)
a , i− si)→ Ui+1(Fa,b)→ 0

for 0 ≤ i ≤ [n−1
2
]. Here σ

(i)
a = σ(i) if a = +; σ(i) ⊗ det if a = −.

Remark 13.12. By (3.22), we have linear bijections for all i, j:

HomG′(Ui(F )|G′ , U ′
j(F

′)) ≃ HomG′(Un+1−i(F )|G′ , U ′
n−j(F

′)⊗ χ+−).

Remark 13.13. Using the definition of the extended Hasse sequence we also
define an extended standard sequence.

By abuse of notation we will from now on not distinguish between Hasse
sequences and extended Hasse sequences and refer to both as Hasse se-
quences. A similar convention applies to standard sequences.

The following observation will be used in Section 13.3.4 for the proof of
Evidence E.4 of Conjecture 13.15 below.

Proposition 13.14. Suppose F and F ′ are irreducible finite-dimensional
representations of G = O(n + 1, 1) and G′ = O(n, 1), respectively, such that
HomG′(F |G′ , F ′) ̸= {0}. Suppose the principal series representations Iδ(V, λ)
of G and Jε(W, ν) of G

′ contain F and F ′, respectively, as subrepresentations.
Then the following hold.

(1) [V : W ] = 1;

(2) (λ, ν, δ, ε) ∈ Ψsp (see (1.3)), namely, the quadruple (λ, ν, δ, ε) does not
satisfy the generic parameter condition (3.2).
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Proof. For the proof, we use a description of irreducible finite-dimensional
representations of the disconnected group G = O(n+ 1, 1) in Section 14.1 of
Appendix I. In particular, using Lemma 14.3, we may write

F = FO(n+1,1)(λ0, · · · , λ[n
2
])a,b

for some (λ0, · · · , λ[n
2
]) ∈ Λ+([n

2
] + 1) and a, b ∈ {±}. By the branching rule

for O(n + 1, 1) ↓ O(n, 1) (see Theorem 14.7), an irreducible summand F ′ of
F |O(n,1) is of the form

F ′ = FO(n,1)(ν0, · · · , ν[n−1
2

])a,b

for some (ν0, · · · , ν[n−1
2

]) ∈ Λ+([n+1
2
]) such that

λ0 ≥ ν0 ≥ λ1 ≥ · · · ≥ ν[n−1
2

] ≥ 0 for n odd,

λ0 ≥ ν0 ≥ λ1 ≥ · · · ≥ ν[n−1
2

] ≥ λ[n
2
] for n even.

We recall that for every irreducible finite-dimensional representation F of a
real reductive Lie group there exists only one principal series representation
that contains F as a subrepresentation. By Theorem 13.11 with i = 0, the
unique parameter (V, δ, λ) is given by

V = FO(n)(λ1, · · · , λ[n
2
]) (⊗ det if a = −), λ = −λ0 and δ = ab(−1)−λ0 .

Likewise, the unique parameter (W, ε, ν) for F ′ is given by

W = FO(n−1)(ν1, · · · , ν[n−1
2

]) (⊗ det if a = −), ν = −ν0, and ε = ab(−1)−ν0 .

Hence [V : W ] ̸= 0, or equivalently, [V : W ] = 1 by the branching rule for
O(n) ↓ O(n− 1). Moreover, δε = (−1)ν0+λ0 and ν − λ = λ0− ν0 ∈ N. Hence
the generic parameter condition (3.2) fails, or equivalently, (λ, ν, δ, ε) ∈ Ψsp.

13.2 The Conjecture

We propose a conjecture about when

HomG′(Π|G′ , π) = C

where Π ∈ Irr(G) and π ∈ Irr(G′) have regular integral infinitesimal charac-
ters (Definition 2.1). We give two formulations of the conjecture, see Con-
jectures 13.15 and 13.17 below. Supporting evidence is given in Section 13.3.
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13.2.1 Conjecture: Version 1

We begin with a formulation of the conjecture in terms of a standard sequence
(Definition-Theorem 13.1) of irreducible representations Πi ofG = O(n+1, 1)
and that of irreducible representations πj of the subgroup G′ = O(n, 1). We
note that both Πi and πj have regular integral infinitesimal characters be-
cause both F := Π0 and F

′ := π0 are irreducible finite-dimensional represen-
tations of G and G′, respectively.

Conjecture 13.15. Let F be an irreducible finite-dimensional representa-
tions of G = O(n + 1, 1), and {Πi(F )} be the standard sequence starting at
Π0(F ) = F . Let F ′ be an irreducible finite-dimensional representation of
the subgroup G′ = O(n, 1), and {πj(F ′)} the standard sequence starting at
π0(F

′) = F ′. Assume that

HomG′(F |G′ , F ′) ̸= {0}.

Then the symmetry breaking for representations Πi(F ), πj(F
′) in the stan-

dard sequences is represented graphically in Diagrams 13.1 and 13.2. In the
first row are representations of G, in the second row are representations of
G′. Symmetry breaking operators are represented by arrows, namely, there
exist nonzero symmetry breaking operators if and only if there are arrows in
the diagram.

Diagram 13.1: Symmetry breaking for O(2m+ 1, 1) ↓ O(2m, 1)

Π0(F ) Π1(F ) . . . Πm−1(F ) Πm(F )
↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓

π0(F
′) π1(F

′) . . . πm−1(F
′) πm(F

′)

Diagram 13.2: Symmetry breaking for O(2m+ 2, 1) ↓ O(2m+ 1, 1)

Π0(F ) Π1(F ) . . . Πm−1(F ) Πm(F ) Πm+1(F )
↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓ ↙

π0(F
′) π1(F

′) . . . πm−1(F
′) πm(F

′)

249



Remark 13.16. Instead of using standard sequences to state the conjecture it
may be also useful to rephrase it using extended Hasse sequences.

13.2.2 Conjecture: Version 2

We rephrase the conjecture using θ-stable parameters, which will be intro-
duced in Section 14.9 of Appendix I, and restate Conjecture 13.15 as an
algorithm in this notation.

In Theorems 14.50 and 14.51 of Appendix I, we shall give the θ-stable
parameters of the representations of the standard sequence starting with an
irreducible finite-dimensional representation F summarized as follows.

1. Suppose that n = 2m. Let

F = FO(2m+1,1)(µ)a,b = FO(2m+1,1)(µ)⊗ χab

for µ ∈ Λ+(m+ 1) and a, b ∈ {±} be an irreducible finite-dimensional
representation of O(2m + 1, 1), see Section 14.1 in Appendix I. Its θ-
stable parameter is

( || µ1, µ2, . . . , µm, µm+1)a,b

and we have the θ-stable parameters of the representations in the stan-
dard sequence (written in column).

Π0(F ) = ( || µ1, µ2, . . . , µm, µm+1)a,b

Π1(F ) = (µ1 || µ2, . . . , µm, µm+1)a,b
...

...

Πm(F ) = (µ1, µ2, . . . , µm || µm+1)a,b.

2. Suppose that n = 2m+ 1. Let

F = FO(2m+2,1)(µ)a,b = FO(n+1,1)(µ)⊗ χab

for µ ∈ Λ+(m+1) and a, b ∈ {±} be an irreducible finite-dimensional
representation of O(2m+ 2, 1). Its θ-stable parameter is

(|| µ1, µ2, . . . , µm, µm+1)a,b
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and we have the θ-stable parameters of the representations in standard
sequence (written in column).

Π0(F ) = (|| µ1, µ2, . . . , µm+1)a,b

Π1(F ) = (µ1 || µ2, . . . , µm+1)a,b
...

...

Πm+1(F ) = (µ1, µ2, . . . , µm+1 ||)a,b.

We refer to the finite-dimensional representation Π0(F ) = F as the start-
ing representation of the standard sequence and to the tempered represen-
tation Πm(F ) (when n = 2m) or the discrete series representation Πm+1(F )
(when n = 2m + 1) as the last representation of the standard sequence (see
Remarks 13.8 and 13.10).

Conjecture 13.17. Let FG(µ)a,b be an irreducible finite-dimensional repre-
sentation of G = O(n+1, 1), and FG′

(ν)a,b be an irreducible finite-dimensional
representation of the subgroup G′ = O(n, 1), where µ ∈ Λ+([n+2

2
]), ν ∈

Λ+([n+1
2
]), and a, b, c, d ∈ {±}, see (14.5) and (14.8) in Appendix I. Assume

that
HomG′(FG(µ)a,b|G′ , FG′

(ν)c,d) ̸= {0}. (13.7)

In (1) and (2) below, nontrivial symmetry breaking operators are repre-
sented by arrows connecting the θ-stable parameters of the representations.

(1) Suppose that n = 2m. Then µ = (µ1, · · · , µm+1) ∈ Λ+(m + 1) and
ν = (ν1, · · · , νm) ∈ Λ+(m). Then two representations in the standard
sequences have a nontrivial symmetry breaking operator if and only if
the θ-stable parameters of the representations satisfy one of the follow-
ing conditions.

(µ1, . . . , µi || µi+1, . . . , µm+1)a,b

⇓
(ν1, . . . , νi || νi+1, . . . , νm)c,d

or
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(µ1, . . . , µi || µi+1, . . . , µm+1)a,b

⇓
(ν1, . . . , νi−1 || νi, νi+1, . . . , νm)c,d

(2) Suppose that n = 2m + 1. Then two infinite-dimensional representa-
tions in the standard sequences have a nontrivial symmetry breaking
operator if and only if the θ-stable parameters of the representations
satisfy one of the following conditions:

(µ1, . . . , µi || µi+1, . . . , µm+1)a,b

⇓
(ν1, . . . , νi || νi+1, . . . , νm+1)c,d

or

(µ1, . . . , µi || µi+1, . . . , µm+1)a,b

⇓
(ν1, . . . , νi−1 || νi, . . . , νm+1)c,d

Remark 13.18. See Theorem 14.7 in Appendix I for the condition on the
parameters µ, ν, and a, b, c, d such that (13.7) holds. In particular, (13.7)
implies either (a, b) = (c, d) or (a, b) = (−c,−d). See also Lemma 14.4 (2) for
the description of overlaps in the expressions of irreducible finite-dimensional
representations of O(N − 1, 1) when N is even.

13.3 Supporting evidence

In this section, we provide some evidence supporting our conjecture.

E.1 If F ∈ Irr(G)ρ and F ′ ∈ Irr(G′)ρ, the Conjecture 13.15 is true. (Equiv-
alently, if FO(n+1,1)(µ)+,+ and FO(n,1)(ν)+,+ are both the trivial one-
dimensional representations, Conjecture 13.17 is true.)

E.2 Some vanishing results for symmetry breaking operators.

E.3 Our conjecture is consistent with the Gross–Prasad conjecture for tem-
pered representations of the special orthogonal group.

E.4 There exists a nontrivial symmetry breaking operator Π1 → π1.
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13.3.1 Evidence E.1

This was proved in Theorems 4.1 and 4.2.

13.3.2 Evidence E.2

Detailed proofs of the following propositions will be published in a sequel to
this monograph.

Recall from Definition-Theorem 13.1 that Ui(Fa,b) refers to the i-th term
in the Hasse sequence starting with the finite-dimensional representation
Fa,b = F ⊗ χab of G and Uj(F

′
c,d) to the j-th term in the Hasse sequence

starting with the finite-dimensional representation F ′
c,d = F ′ ⊗ χcd of G′.

Proposition 13.19. Let a, b, c, d ∈ {±}, 0 ≤ i ≤ [n+1
2
] and 0 ≤ j ≤ [n

2
].

Then
HomG′(Ui(Fa,b)|G′ , Uj(F

′
c,d)) = {0} if j ̸= i− 1, i.

If one of the representations of G = O(n + 1, 1) respectively of G′ =
O(n, 1) is tempered then the following vanishing theorems hold.

• Assume first (G,G′) = (O(2m, 1), O(2m− 1, 1)).
Let s = (s0, · · · , sm−1, 0

m+1) ∈ Λ+(2m + 1) and t = (t0, · · · , tm−1, 0
m) ∈

Λ+(2m) satisfy t ≺ s (see Definition 2.11 for the notation).

Proposition 13.20. Let U0, · · · , Um, Um+1 be the Hasse sequence of G =
O(2m, 1) with U0 = FO(2m+1,C)(s), and U ′

0, · · · , U ′
m−1 be that of G

′ = O(2m−
1, 1) with U ′

0 = FO(2m,C)(t). Then

HomG′(Um|G′ , U ′
j) = {0} if 0 ≤ j ≤ m− 2.

• Assume now (G,G′) = (O(2m+ 1, 1), O(2m, 1)).
Let s = (s0, · · · , sm, 0m+1) ∈ Λ+(2m + 2) and t = (t0, · · · , tm−1, 0

m+1) ∈
Λ+(2m+ 1) satisfy t ≺ s.

Proposition 13.21. Let U0, · · · , Um be the Hasse sequence of G = O(2m+
1, 1) with U0 = FO(2m+2,C)(s), and U ′

0, · · · , U ′
m be that of G′ = O(2m, 1) with

U ′
0 = FO(2m+1,C)(t). Then

HomG′(Ui|G′ , U ′
m) = {0} if 0 ≤ i ≤ m− 1.
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Remark 13.22. These propositions prove only part of the vanishing statement
of symmetry breaking operators formulated in Conjecture 13.17.

13.3.3 Evidence E.3

We use the notations and assumptions of the previous section, and show
that our conjecture is consistent with the original Gross–Prasad conjec-
ture on tempered representations [15]. For simplicity, we treat here only
for (G,G′) = (O(n + 1, 1), O(n, 1)) with n = 2m. We shall see that a spe-
cial case of Conjecture 13.17 (i.e., the conjecture for the last representation
of the standard sequence) implies some results (see (13.9) below) that were
predicted by the original conjecture of Gross and Prasad for tempered rep-
resentations of special orthogonal groups.

Assume that the irreducible finite-dimensional representations Π0 of G
and π0 of G′ are of type I (Definition 14.2) and that (µ1, . . . , µm, µm+1) and
(ν1, . . . , νm) are their highest weights.

By the branching law for finite-dimensional representations with respect
to G ⊃ G′ (see Theorem 14.7 in Appendix I), the condition

HomO(n,1)(Π0|G′ , π0) ̸= {0}

is equivalent to

µ1 ≥ ν1 ≥ µ2 ≥ · · · ≥ νm ≥ µm+1 ≥ 0. (13.8)

Let Um (resp. Πm = Um⊗ (χ+−)
m) be the m-th term of the Hasse sequence

(resp. the standard sequence) starting with the irreducible finite-dimensional
representation Π0 = U0 (see Definitions 13.1 and 13.2). Then we have a direct
sum decomposition of the principal series representation

I(−1)m−µm+1 (F
O(2m)(µ1 + 1, · · · , µm + 1, 0m),m− µm+1) ≃ Um ⊕ (Um ⊗ det)

by Theorem 13.7 (1) and Remark 13.8. Assume that Πm is tempered. Then
Um is also tempered, and the continuous parameter of the principal series
representation must lie on the unitary axis, that is, m−µm+1 ∈ m+

√
−1R.

Hence µm+1 = 0.
Since µm+1 = 0, the θ-stable parameters of the tempered representations

Πm, Πm ⊗ det are given by

(µ1, . . . , µm||0)+,+, (µ1, · · · , µm || 0)−,−,
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whereas the θ-stable parameter of the discrete series representation of G′ =
O(2m, 1) is given by

(ν1, . . . , νm ||)+,+.

In view of the K-type formula in Theorem 13.7 (2), we see

Um ̸≃ Um ⊗ det

as G-modules, and thus Πm ̸≃ Πm ⊗ det. Therefore, the restriction of the
principal series representation Πm of G = O(2m + 1, 1) to the subgroup
G = SO(2m+1, 1) is irreducible by Lemma 15.2 (1) in Appendix II. We set

Πm := Πm|G,

which is an irreducible tempered representation of G.
We now consider representations of the subgroups G′ = O(2m, 1) and

G′ = SO(2m, 1). We observe that there is at most one discrete series repre-
sentation of G′ = SO(n, 1) for each infinitesimal character (see Proposition
14.41 in Appendix I). Therefore the restriction of the discrete series represen-
tation πm of G′ = O(2m, 1) to the subgroup G′ = SO(2m, 1) is irreducible,
which is denoted by πm.

With these notations, Proposition 15.13 in Appendix II yields a natural
linear isomorphism:

HomG′(Πm|G′ , πm)⊕ HomG′((Πm ⊗ det)|G′ , πm) ≃ HomG′(Πm|G′ , πm).

Conjecture 13.17 for the pair (G,G′) = (O(n + 1, 1), O(n, 1)) is applied to
this specific situation; the first term in the left-hand side equals C and the
second term vanishes. Thus Conjecture 13.17 in this case implies the fol-
lowing statement for the pair (G,G′) = (SO(n + 1, 1), SO(n, 1)) of special
orthogonal groups:

HomG′(Πm|G′ , πm) = C if µm+1 = 0 and (13.8) is satisfied. (13.9)

We now assume that the representation Πm is nontrivial on the center.
This determines the Langlands parameters of the Vogan packets V P (Πm)
and V P (πm) of G respectively G′, and we follow exactly the steps of the
algorithm by Gross and Prasad outlined in Chapter 11. We conclude again
that the Gross–Prasad conjecture predicts that {Πm, πm} is the unique pair
of representation in V P (Πm)×V P (πm) with a nontrivial symmetry breaking
operator.
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13.3.4 Evidence E.4

We will prove the existence of a nontrivial symmetry breaking operator

Π1 → π1.

We first introduce graphs to encode information about the images and
kernels of symmetry breaking operators between reducible principal series
representations as well as information about the images of the subrepresen-
tation under the symmetry breaking operators. This will be helpful to visu-
alize the composition of an symmetry breaking operator with a Knapp–Stein
operator.

Admissible graphs
Consider the vertices of a square. We call the following set of directed graphs
admissible:

O → O
↗

O → O

O O
↗

O → O

O → O

O → O

O O
↘

O → O

O → O
↘

O O

O O
↘

O O

O O

O → O

and the zero graph without arrows:

O O

O O

Admissible graphs will encode information about the images and kernels of
symmetry breaking operators. In the setting we shall use later, it is conve-
nient to define the following equivalence relation among graphs, see Lemma
13.28.

Convention 13.23. We identify two graphs G1 and G2 if

G1 = G2 ∪ {ℓ}

where ℓ is an arrow ending at the lower right vertex and G2 already contains
an arrow which starts from the same vertex as ℓ and which ends at the upper
right vertex.
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Example 13.24. The following graphs are pairwise equivalent.

O → O
↘

O O
≡

O → O

O O
,

O → O

O → O
≡

O → O
↘

O → O
,

O → O
↗

O → O
≡

O → O
↗↘

O → O
≡

O → O
↗

O O
,

O O
↗

O → O
≡

O O
↗

O O
.

We obtain a colored graph by coloring the vertices of the graph by 4
different colors, each with a different color. We typically use the colors blue
and red for the vertices in the left column and green and magenta for the
vertices in the right column.

Mutation of admissible graphs
We obtain a new colored graph G2 from a graph G1 by “mutation”. The rules
of the mutation are given as follows.

Rule 1. Consider the colored vertices on the right. Remove any arrow which
ends at the lower right vertex. Interchange the two colored vertices on
the right. The arrows which used to end at the upper right vertex now
end at the lower right vertex.

Rule 2. Consider the colored vertices on the left. Remove any arrow which
starts at the upper left corner. Interchange the two colored vertices on
the left. The arrows which used to start at the lower left vertex now
start at the upper left vertex.

Rule 3. If the mutated graph G2 has no arrows, i.e., G2 is the zero graph, the
mutation is not allowed.
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We write R for the mutation on the right column and L for the mutation
on the left column. We sometimes refer to R and L as mutation rules.

It is easy to see the following.

Lemma 13.25. (1) The mutated graph is again admissible.

(2) Mutation is well-defined for the equivalence relations given in Conven-
tion 13.23.

(3) Admissible graphs for which no mutation is allowed do not have an
arrow except for the one from the upper left vertex to the lower right
vertex.

(4) R ◦R and L ◦ L are not allowed mutations.

(5) R ◦ L = L ◦R.

Definition 13.26 (source and sink). We call an admissible graph G a source
of a set of graphs if all other graphs of the set are obtained through mutations
of G. We call a graph G a sink in a set of admissible graphs if neither R nor
L is an allowed mutation of G.

Applying these rules, we obtain the following families of mutated graphs
with one source. The source for the first, second, and third types is at the top
right corner, applying R changes the right column and applying L changes
the left column.

First type

O O
↘

O O

L⇐=
O → O

O → O

⇐
= R

O O
↘

O O

Second type
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O → O
↘

O O

L⇐=
O → O
↗

O → O

R ⇐
=

⇐
= R

O O
↘

O O
⇐=
L

O O
↘

O → O

Third type

O → O
↘

O O

L⇐=
O O
↗

O → O

R ⇐
=

⇐
= R

O O
↘

O O
⇐=
L

O O

O → O

Type A

O → O
↘

O O

⇐
= R

O O
↘

O O

Type B

O O
↘

O O

L⇐=
O O
↘

O → O

Type C
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O O
↘

O O

L⇐=
O O

O → O

This proves the following.

Lemma 13.27. Let F be the family of admissible graphs that are obtained
through mutations of a nonzero admissible graph.

(1) If F is not a singleton, it is one of the above six types.

(2) If F is a singleton, it is a coloring of the following graph.

O O
↘

O O

From symmetry breaking operators to admissible graphs

Assume that a principal series representation Iδ(V, λ) of G has exactly
two composition factors Π1 and Π2, which are not equivalent to each other.
(The assumption is indeed satisfied for G = O(n+ 1, 1) whenever Iδ(V, λ) is
reducible.) Thus there is an exact sequence of G-modules:

0→ Π1 → Iδ(V, λ)→ Π2 → 0. (13.10)

Graphically, the irreducible inequivalent composition factors are represented
by circles with different colors. The bottom circle represents the socle as
follows.

O

O

Later we shall assume in addition that the exact sequence (13.10) does not
split. (The assumption is satisfied if one of Π1 or Π2 is finite-dimensional.
More generally, the assumption is indeed satisfied for most of the pairs of the
composition factors of the principal series representations of G = O(n+1, 1)
with regular integral infinitesimal characters, see Theorem 2.20 for example.)
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An analogous notation will be applied to principal series representations
Jε(W, ν) of the subgroup G′ = O(n, 1) with two composition factors. Thus
we represent the two composition factors of the reducible principal series
representations Iδ(V, λ) and of Jε(W, ν) by four differently colored circles in
a square; both the composition factors of a principal series representation are
represented by circles vertically.

We have the convention that the composition factors of the representation
Iδ(V, λ) of G are represented by the circles on the left, those of Jε(W, ν) of
the subgroup on the right. Using this convention we get four squares with
colored circles which are obtained by changing the colors in each vertical
column.

To a symmetry breaking operator

BV,W
λ,ν : Iδ(V, λ)→ Jε(W, ν)

we associate a graph which encodes information about the image and kernel
of the symmetry breaking operator BV,W

λ,ν as well as information about the im-
age of the irreducible subrepresentation of the principal series representation
Iδ(V, λ) of G under the symmetry breaking operator. We proceed as follows:
we obtain the arrows of the graph by considering the action of symmetry
breaking operator BV,W

λ,ν on the composition factors. If no arrow starts at a
circle, then this means that the corresponding composition factor is in the
kernel of the symmetry breaking operator. If no arrow ends at a circle, then
this means that the G′-submodule of Jε(W, ν) corresponding to the circle is
not in the image of the symmetry breaking operator. Then we have:

Lemma 13.28. Assume that both principal series representations Iδ(V, λ)
and Jε(W, ν) have exactly two inequivalent composition factors with nontriv-
ial extensions. Then with Convention 13.23 the graph associated to our sym-
metry breaking operator BV,W

λ,ν ∈ HomG′(Iδ(V, λ)|G′ , Jε(W, ν)) is an admissible
graph.

The proof of Lemma 13.28 is straightforward. We illustrate it by examples
as below.

Example 13.29 (Graph of symmetry breaking operators). (1) Suppose that
the symmetry breaking operator is surjective and its restriction to the socle
O is also surjective. Then the associated graph is given by
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O → O
↗↘

O → O

by definition. With Convention 13.23, we have

O → O
↗

O → O
≡

O → O
↗↘

O → O
,

see Example 13.24. Then the graph in the left-hand side is admissible.
(2) Suppose that the symmetry breaking operator is zero. Then it is depicted
by the zero graph.

O O

O O

To reduce the clutter in a digram representing a set of mutated graphs
we often omit the zero graph, i.e., the zero symmetry breaking operator.

We would like to encode information about a symmetry breaking oper-
ator and all its compositions with the Knapp–Stein operators at the same
time. Composing symmetry breaking operators BV,W

λ,ν with a Knapp–Stein
intertwining operator

T̃V
λ,n−λ : Iδ(V, λ)→ Iδ(V, n− λ)

for the group G (see (8.12)), respectively

T̃W
ν,n−1−ν : Jε(W, ν)→ Jε(W,n− 1− ν)

for the subgroup G′, we obtain another symmetry breaking operator. If this
new operator is not zero then it can be represented again by an admissi-
ble graph. The graphs of these operators are arranged compatible with our
previous article [44, Figs. 2.1–2.5] where we draw ν-value on the x-axis and
the λ-value on the y-axis. We place the corresponding symmetry breaking
operator in the corresponding quadrant. For example, if λ ≥ n

2
and ν ≥ n−1

2
,

then the parameters are arranged as

(n− 1− ν, λ) (ν, λ)

(n− 1− ν, n− λ) (ν, n− λ)
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in the (ν, λ)-plane, and accordingly these symmetry breaking operators are
arranged as follows.

T̃W
ν,n−1−ν ◦ B

V,W
λ,ν BV,W

λ,ν

T̃W
ν,n−1−ν ◦ B

V,W
λ,ν ◦ T̃

V
n−λ,λ BV,W

λ,ν ◦ T̃
V
n−λ,λ

Accordingly, we shall consider four graphs of these four symmetry break-
ing operators.

By the definition of the mutation rule, we obtain:

Lemma 13.30. Assume that a principal series representation Iδ(V, λ) has
two irreducible composition factors Π1 and Π2 with nonsplitting exact se-
quence (13.10) and that the Knapp–Stein operator T̃V

λ,n−λ : Iδ(V, λ)→ Iδ(V, n−
λ) is nonzero but vanishes on the subrepresentation Π1. Then the graph as-

sociated to a symmetry breaking operator composed with T̃V
n−λ,λ for the group

G is obtained by using the mutation rule L for graphs. Similarly, the graph
associated to a symmetry breaking operator composed with a nonzero Knapp–
Stein operator T̃W

ν,n−1−ν : Jε(W, ν)→ Jε(W,n−1−ν) for the subgroup G′ (with
an analogous assumption on Jε(W, ν)) is obtained by using the mutation rule
R for graphs.

Example 13.31. In the Memoirs article [44] we considered the case of two
spherical principal series representations I(λ) and J(ν) for integral parame-
ters i, j. If (−i,−j) ∈ Leven, namely, if i ≥ j ≥ 0 and i ≡ j mod 2, then the
normalized regular symmetry breaking operator I(−i) → J(−j) is zero [44,
Thm. 8.1]. The other symmetry breaking operators for spherical principal se-
ries representations with the same infinitesimal character are nonzero and we
have functional equations with nonvanishing coefficients [44, Thm. 8.5]. Thus
the family of mutated graphs associated to the regular symmetry breaking
operators is given as follows.

263



O O
↘

O O

L⇐=
O → O

O → O

⇐
= R

O O
↘

O O

We recall from [44, Chap. 1] (or from Theorem 2.20 in a more general
setting) that both the G-module I(−i) and the G′-module J(−j) contain
irreducible finite-dimensional representations as their subrepresentations (red
and magenta circles) and irreducible infinite-dimensional representations T (i)
and T (j) (blue and green) as their quotients, respectively. The corresponding
socle filtrations are given graphically as follows.

I(−i) =
O

O
J(−j) =

O

O

Note that, under the assumption i ≥ j ≥ 0 and i ≡ j mod 2, we have a
nontrivial symmetry breaking operator between the two finite-dimensional
representations (red and magenta circles) and as well as between the non-
trivial composition factors T (i) → T (j) (blue and green circles), see [44,
Thm 1.2 (1-a)].

Example 13.32. More generally in Corollary 3.18 we proved that

ÃV,W
λ0,ν0,γ

= 0

for negative integers λ0, ν0 implies that

ÃV,W
n−λ0,n−1−ν0,γ

̸= 0.

Since (n− 1− ν0, n− λ0) ∈ N2, we may place the graph associated to

the regular symmetry breaking operator ÃV,W
n−λ0,n−1−ν0,γ

in the NE corner ac-
cording to the position in the (ν, λ)-plane as in [44, Fig. 2.1, III.A or III.B].

On the other hand, since (ν0, λ0) ∈ (−N)2, we may place a zero graph

associated to the zero operator ÃV,W
λ0,ν0,γ

in the SW corner according to the
position in the (ν, λ)-plane as in [44, Fig. 2.1, I.A. or I.B.].
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Example 13.33. In the Memoirs article [44, Thm. 11.1] we prove that there
is a differential symmetry breaking operator in the SW corner if the regular
symmetry breaking operator is zero. To this operator and its composition
with the Knapp–Stein operators the assigned graph is given as follows.

O O
↘

O O

L
=⇒

O O

O O

R
=
⇒

=
⇒ R

O → O

O → O
=⇒
L

O O
↘

O O

Note that the differential operator gives a source in the mutation graphs in
the SW corner in this setting.

Existence of a nontrivial symmetry breaking operators Π1 → π1.
Recall that we assume that

m(Π0, π0) = 1

for the irreducible finite-dimensional representations Π0 of G and π0 of the
subgroup G′. We consider now a pair of reducible principal series represen-
tations Iδ(V, λ) of G and Jε(W, ν) of G

′ with finite-dimensional composition
factors Π0, π0, respectively.

Lemma 13.34. Suppose that both O and O are representing irreducible
finite-dimensional representations of G and G′. We assume that O and O
respectively O and O are representing the composition factors of a principal
series representation of G, respectively G′. Then the following graphs are not
associated to a symmetry breaking operator.

O O
↘

O O

O O
↘

O → O

O O
↗

O → O

O → O
↗

O → O

Proof. The representations O and O are finite-dimensional. The image of a
finite-dimensional representation by a symmetry breaking operator is finite-
dimensional.
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Lemma 13.35. We keep Convention 13.23 and the assumptions of Lemma
13.34.

(1) Suppose that O and O stand for both irreducible subrepresentations of
the principal series representations of G and G′, respectively. The graph
associated to a nontrivial symmetry breaking operator is one of the
following.

O O
↗

O → O

O → O
↗

O → O

O → O

O → O

(2) Suppose that O and O stand for both irreducible finite-dimensional sub-
representations of the principal series representations. The graph asso-
ciated to a nontrivial symmetry breaking operator is one of the follow-
ing.

O → O

O → O

O → O
↘

O O

O O
↘

O → O

O O
↘

O O

Using the composition with the Knapp–Stein operators we obtain an ac-
tion of the (little) Weyl group of O(n + 1, 1) × O(n, 1) on the continuous
parameters of the symmetry breaking operators, hence on the symmetry
breaking operators and also on their associated admissible graphs through
the mutation rules.

Example 13.36. Let F be a family of mutated graphs such that the graph
associated to the symmetry breaking operator ÃV,W

n−λ0,n−1−ν0,γ
is a source. If

F is of first type, then the graph in the SE corner shows that there is a
nontrivial symmetry breaking operator Π1 → π1.

Using functional equations and the information about (K,K ′)-spectrum
of regular symmetry breaking operators it is in some cases possible (see for
example [44]) to show that the associated graph is of first type, but in gen-
eral we do not have such explicit information about the regular symmetry
breaking operators and so we have to proceed differently.
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Suppose that Π0 and π0 are irreducible finite-dimensional subrepresenta-
tions of Iδ(V, λ) and Jε(W, ν) with HomG′(Π0|G′ , π0) ̸= {0}. By Proposition
13.14 [V : W ] ̸= 0 and (λ, ν, δ, ε) ∈ Ψsing, namely, the quadruple (λ, ν, δ, ε)
does not satisfy the generic parameter condition (3.2). By Theorem 3.5 (see
also Theorem 6.1 (1)), there exists a nonzero differential symmetry breaking
operator

D : Iδ(V, λ)→ Jε(W, ν),

which we denote by D. The image of D is infinite-dimensional by Theorem
6.8. Thus by Lemma 13.35 (2), we obtain the following.

Lemma 13.37. The graph associated to D is one of the following.

O → O

O → O

O → O
↘

O O

Mutating the graph of D by R we get the following.

O O
↘

O O

Thus composing the differential symmetry breaking operator with a Knapp–
Stein operator on the right we obtain a nontrivial symmetry breaking oper-
ator with this diagram and thus a symmetry breaking operator U1(F ) →
U1(F

′). We are ready to prove the following theorem, which gives evidence
of our conjecture.

Theorem 13.38. Suppose that F and F ′ are irreducible finite-dimensional
representations of G and G′, respectively. Let Πi, πj be the standard se-
quences starting at F , F ′, respectively. Then there exists a nontrivial sym-
metry breaking operator

Π1 → π1

if HomG′(F |G′ , F ′) ̸= {0}.

Proof. Recall from Definition 13.2 that Π0 = F , π0 = F ′ and Π1 = U1(F )⊗
χ+−, π1 = U1(F

′)⊗ χ+− and so

HomG′(Π1|G′ , π1) ≃ HomG′(U1(F )|G′ , U1(F
′)).
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14 Appendix I: Irreducible representations of

G = O(n + 1, 1), θ-stable parameters, and

cohomological induction

In Appendix I, we give a classification of irreducible admissible representa-
tions of G = O(n+1, 1) in Theorem 14.36. In particular, we give a number of
equivalent descriptions of irreducible representations with integral infinites-
imal character (Definition 2.1) by means of Langlands quotients (or sub-
representations), coherent continuation starting at Πi,δ, and cohomologically
induced representations from finite-dimensional representations of θ-stable
parabolic subalgebras, see Theorem 14.35. Our results include a description
of the following irreducible representations:

• “Hasse sequence” starting with arbitrary finite-dimensional irreducible
representations (Theorems 14.50 and 14.51);

• complementary series representations with singular integral infinitesi-
mal character (Theorem 14.53).

Since the Lorentz group G = O(n+1, 1) has four connected components, we
need a careful treatment even in dealing with finite-dimensional representa-
tions because not all of them extend holomophically to O(n + 2,C). Thus
Appendix I starts with irreducible finite-dimensional representations (Sec-
tion 14.1), and then discuss infinite-dimensional admissible representations
for the rest of the chapter.

14.1 Finite-dimensional representations of O(N − 1, 1)

In this section we give a parametrization of irreducible finite-dimensional
representations of the disconnected groups O(N − 1, 1) and O(N). The de-
scription here fits well with the θ-stable parameters (Definition 14.42) for the
Hasse sequence, see Theorem 14.50. We note that the parametrization here
for irreducible finite-dimensional representations of O(N) is different from
what was defined in Section 2.2.1, although the “dictionary” is fairly simple,
see Remark 14.1.

There are two connected components in the compact Lie group O(N).
We recall from Definition 2.4 that the set of equivalence classes of irreducible
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finite-dimensional representations of the orthogonal group O(N) can be di-
vided into two types, namely, type I and II. On the other hand, there are
four connected components in the noncompact Lie group O(N − 1, 1), and
the division into two types is not sufficient for the classification of irreducible
finite-dimensional representations of O(N − 1, 1). We observe that some of
the irreducible finite-dimensional representations of O(N − 1, 1) cannot be
extended to holomorphic representations of O(N,C). For example, neither
the one-dimensional representation χ+− nor χ−+ of O(N − 1, 1) (see (2.13))
comes from a holomorphic character of O(N,C). We shall use only represen-
tations of “type I” and tensoring them with four characters χab (a, b ∈ {±})
to describe all irreducible finite-dimensional representations of O(N − 1, 1).

First of all, we recall from (2.17) that Λ+(k) is the set of λ ∈ Zk with
λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

Let N ≥ 2. For λ ∈ Λ+([N
2
]), we extend it to

λ̃ := (λ1, · · · , λ[N
2
], 0, · · · , 0︸ ︷︷ ︸

[N+1
2

]

) ∈ ZN , (14.1)

and define
FO(N,C)(λ)+ ≡ FO(N,C)(λ̃), (14.2)

to be the unique irreducible summand of O(N,C) in the irreducible finite-

dimensional representation FGL(N,C)(λ̃) of GL(N,C) that contains a highest

weight vector corresponding to λ̃, see (2.20). Its restriction to the real forms
O(N) and O(N−1, 1) will be denoted by FO(N)(λ)+ and FO(N−1,1)(λ)+,+, re-
spectively. Then the irreducible O(N)-module FO(N)(λ)+ is a representation
of type I. We may summarize these notations as follows.

FO(N)(λ)+
∼←−

restO(N)

FO(N,C)(λ̃)
∼−→

restO(N−1,1)

FO(N−1,1)(λ)+,+. (14.3)

Remark 14.1. With the notation as in (2.20), we have

FO(N)(λ)+ ≃ FO(N)(λ̃)

for λ ∈ Λ+([N
2
]). This is a general form of representations of O(N) of type

I (Definition 2.4). Then other representations of O(N), i.e., representations
of type II are obtained from the tensor product of those of type I with the
one-dimensional representation, det, as we recall now.
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Suppose 0 ≤ 2ℓ ≤ N . If λ ∈ Λ+([N
2
]) is of the form

λ = (λ1, · · · , λℓ, 0, · · · , 0︸ ︷︷ ︸
[N
2
]−ℓ

)

with λℓ > 0, then by (2.23), we have an isomorphism as representations of
O(N):

FO(N)(λ)+ ⊗ det ≃ FO(N)(λ1, · · · , λℓ︸ ︷︷ ︸
ℓ

, 1, · · · , 1︸ ︷︷ ︸
N−2ℓ

, 0, · · · , 0︸ ︷︷ ︸
ℓ

),

which is of type II if N ̸= 2ℓ. We shall denote this representation by
FO(N)(λ)− as (14.4) below.

Analogously, FO(N−1,1)(λ)+,+ is a general form of representations of the
Lorentz group O(N − 1, 1) of type I in the following sense.

Definition 14.2 (representation of type I for O(N − 1, 1)). An irreducible
finite-dimensional representation of O(N − 1, 1) is said to be of type I if it is
obtained as the holomorphic continuation of an irreducible representation of
O(N) of type I (see Definition 2.4).

We define for λ ∈ Λ+([N
2
])

FO(N)(λ)− :=FO(N)(λ)+ ⊗ det, (14.4)

FO(N−1,1)(λ)a,b :=F
O(N−1,1)(λ)+,+ ⊗ χab (a, b ∈ {±}). (14.5)

These are irreducible representations of O(N) and O(N − 1, 1), respectively.
With the notation (14.4) and (14.5), irreducible finite-dimensional repre-

sentations of O(N) and of O(N −1, 1), respectively, are described as follows:

Lemma 14.3. (1) Any irreducible finite-dimensional representation of O(N)
is of the form FO(N)(λ)+ or FO(N)(λ)− for some λ ∈ Λ+([N

2
]).

(2) Suppose N ≥ 3. Any irreducible finite-dimensional representation of
O(N − 1, 1) is of the form FO(N−1,1)(λ)a,b for some λ ∈ Λ+([N

2
]) and

a, b ∈ {±}.

The point of Lemma 14.3 (2) is that an analogous statement of Weyl’s
unitary trick may fail for the disconnected group O(N − 1, 1), that is, not all
irreducible finite-dimensional representations of O(N − 1, 1) cannot extend
to holomorphic representations of O(N,C).
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Proof of Lemma 14.3. (1) This is a restatement of Weyl’s description (2.20)

of Ô(N).
(2) Take any irreducible finite-dimensional representation σ of O(N − 1, 1).
By the Frobenius reciprocity, σ occurs as an irreducible summand of the
induced representation Ind

O(N−1,1)
SO0(N−1,1)(σ|SO0(N−1,1)). Since N ≥ 3, the funda-

mental group of SO(N,C)/SO0(N − 1, 1) is trivial because it is homotopic
to SO(N)/SO(N − 1) ≃ SN−1, see [28, Lem. 6.1]. Hence the irreducible
finite-dimensional representation τ of SO0(N − 1, 1) extends to a holomor-
phic representation of SO(N,C), which we shall denote by τC.

Let λ ∈ Λ+([N
2
]) be the highest weight of the irreducible SO(N,C)-

module τC. Then τC occurs in the restriction FO(N,C)(λ̃)|SO(N,C), and therefore
the SO0(N−1, 1)-module τ occurs in the restriction FO(N−1,1)(λ)+,+|SO(N−1,1).
Hence σ occurs as an irreducible summand of the induced representation

Ind
O(N−1,1)
SO0(N−1,1)(F

O(N−1,1)(λ)+,+|SO0(N−1,1)). (14.6)

In light that FO(N−1,1)(λ)+,+ is a representation of O(N − 1, 1), we can com-
pute the induced representation (14.6) as follows.

(14.6) ≃ FO(N−1,1)(λ)+,+ ⊗ Ind
O(N−1,1)
SO0(N−1,1)(1)

≃ FO(N−1,1)(λ)+,+ ⊗ (
⊕

a,b∈{±}

χab)

≃
⊕

a,b∈{±}

FO(N−1,1)(λ)a,b.

Thus Lemma 14.3 is proved.

There are a few overlaps in the expressions (14.4) for O(N)-modules and
(14.5) for O(N − 1, 1)-modules. We give a necessary and sufficient condition
for two expressions, which give the same irreducible representation as follows.

Lemma 14.4. (1) The following two conditions on λ, µ ∈ Λ+([N
2
]) and

a, b ∈ {±} are equivalent:

(i) FO(N)(λ)a ≃ FO(N)(µ)b as O(N)-modules;

(ii) “λ = µ and a = b” or the following condition holds:

λ = µ, N is even, λN
2
> 0, and a = −b. (14.7)
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(2) Suppose N ≥ 2. Then the following two conditions on λ, µ ∈ Λ+([N
2
])

and a, b, c, d ∈ {±} are equivalent:

(i) FO(N−1,1)(λ)a,b ≃ FO(N−1,1)(µ)c,d as O(N − 1, 1)-modules;

(ii) “λ = µ and (a, b) = (c, d)” or the following condition holds:

λ = µ, N is even, λN
2
> 0, and (a, b) = −(c, d). (14.8)

Proof. (1) The O(N)-isomorphism FO(N)(λ)a ≃ FO(N)(µ)b implies an ob-
vious isomorphism FO(N)(λ)a|SO(N) ≃ FO(N)(µ)b|SO(N) as SO(N)-modules,
whence λ = µ by the classical branching law (Lemma 2.7) for the restriction
O(N) ↓ SO(N). Then the equivalence (i)⇔ (ii) follows from the equivalence
(i) ⇔ (iii) in Lemma 2.13.
(2) Similarly to the proof for the first statement, we may and do assume
λ = µ by considering of the restriction O(N − 1, 1) ↓ SO(N − 1, 1). Then
the proof of the equivalence (i)⇔ (ii) for O(N − 1, 1) reduces to the case for
O(N, 1) and the following lemma.

Lemma 14.5. Suppose σ is an irreducible finite-dimensional representation
of O(N − 1, 1).

(1) Suppose N ≥ 2. If σ is extended to a holomorphic representation of
O(N,C), then neither σ⊗χ+− nor σ⊗χ−+ can be extended to a holo-
morphic representation of O(N,C).

(2) Suppose N ≥ 3. If σ cannot be extended to a holomorphic representa-
tion of O(N,C), then both σ ⊗ χ+− and σ ⊗ χ−+ can be extended to a
holomorphic representation of O(N,C).

Proof. (1) If σ ⊗ χab extends to a holomorphic representation of O(N,C),
then so does the subrepresentation χab in the tensor product (σ⊗ χab)⊗ σ∨,
where σ∨ stands for the contragredient representation of σ. Since χab is the
restriction of some holomorphic character of O(N,C) if and only if (a, b) =
(+,+) or (−,−), the first statement is proved.
(2) As in the proof of Lemma 14.3 (2), we see that at least one element in
{σ ⊗ χab : a, b ∈ {±}} can be extended to a holomorphic representation of
O(N,C). Then the second statement follows from the first one.
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Example 14.6. The natural action of O(N) on i-th exterior algebra
∧

i(CN)
is given as

∧
i(CN) ≃

{
FO(N)(1i, 0[

N
2
]−i)+ if i ≤ N

2
,

FO(N)(1N−i, 0i−[N+1
2

])− if i ≥ N
2
,

with the notation in this section, whereas the same representation was de-
scribed as ∧

i(CN) ≃ FO(N)(1, · · · , 1︸ ︷︷ ︸
i

, 0, · · · , 0︸ ︷︷ ︸
N−i

)

with the notation (2.20) in Section 2.2.

As in the classical branching rule for O(N) ↓ O(N−1) given in Fact 2.12,
we give the irreducible decomposition of finite-dimensional representations of
O(N, 1) when restricted to the subgroup O(N − 1, 1) as follows:

Theorem 14.7 (branching rule for O(N, 1) ↓ O(N−1, 1)). Let N ≥ 2. Sup-
pose that (λ1, · · · , λ[N+1

2
]) ∈ Λ+([N+1

2
]) and a, b ∈ {±}. Then the irreducible

finite-dimensional representation FO(N,1)(λ1, · · · , λ[N+1
2

])a,b of O(N, 1) decom-

poses into a multiplicity-free sum of irreducible representations of O(N−1, 1)
as follows:

FO(N,1)(λ1, · · · , λ[N+1
2

])a,b|O(N−1,1) ≃
⊕

FO(N−1,1)(ν1, · · · , ν[N
2
])a,b,

where the summation is taken over (ν1, · · · , ν[N
2
]) ∈ Z[N

2
] subject to

λ1 ≥ ν1 ≥ λ2 ≥ · · · ≥ νN
2
≥ 0 for N even,

λ1 ≥ ν1 ≥ λ2 ≥ · · · ≥ νN−1
2
≥ λN+1

2
for N odd.

Proof. The assertion follows in the case (a, b) = (+,+) from Fact 2.12. The
general case follows from the definition (14.5) and from the observation that
the restriction χa,b|G′ of the G-character χa,b gives the same type of a char-
acter for G′ = O(N − 1, 1), see (3.23).

14.2 Singular parameters for V ∈ Ô(n): S(V ) and SY (V )

In this section we prepare some notation that describes the parameters of
reducible principal series representations Iδ(V, λ) of G = O(n+ 1, 1).
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We recall from Lemma 2.14 that both of the following subsets

{(δ, V, λ) : Iδ(V, λ) has regular integral ZG(g)-infinitesimal character},
{(δ, V, λ) : Iδ(V, λ) is reducible}

of {±} × Ô(n)× C are preserved under the following transforms:

(δ, V, λ) 7→ (−δ, V, λ),
(δ, V, λ) 7→ (δ, V ⊗ det, λ).

Thus we omit the signature δ in our notation, and focus on the second and
third components.

Definition 14.8. We define two subsets of Ô(n)×C (actually, of Ô(n)×Z)
by

RInt := {(V, λ) : Iδ(V, λ) has regular integral ZG(g)-infinitesimal character},
Red := {(V, λ) : Iδ(V, λ) is reducible}. (14.9)

Both the sets RInt and Red are preserved by the transformations

(V, λ) 7→(V ⊗ det, λ),

(V, λ) 7→(V, n− λ).

This is clear for RInt, whereas the assertions for Red follows from the G-
isomorphism Iδ(V, λ) ⊗ χ−− ≃ Iδ(V ⊗ det, λ) by Lemma 2.14 and from the
fact that Iδ(V, n − λ) is isomorphic to the contragredient representation of

Iδ(V, λ). We shall introduce two discrete sets S(V ) and SY (V ) for V ∈ Ô(n)
in Definition 14.10 below, and prove in Lemma 14.12 and in Theorem 14.15

RInt ={(V, λ) ∈ Ô(n)× Z : λ ̸∈ S(V )}
∪ ∪

Red ={(V, λ) ∈ Ô(n)× Z : λ ̸∈ S(V ) ∪ SY (V )},

see also Convention 14.11.
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14.2.1 Infinitesimal character r(V, λ) of Iδ(V, λ)

Suppose that V ∈ Ô(n) is given as

V = FO(n)(σ)ε for some σ ∈ Λ+
(
[
n

2
]
)

and ε ∈ {±}

with the notation as in Section 14.1. We define an element of h∗C ≃ C[n
2
]+1

by

r(V, λ) := (σ1 +
n

2
− 1, σ2 +

n

2
− 2, · · · , σ[n

2
] +

n

2
− [

n

2
], λ− n

2
). (14.10)

The ordering in (14.10) will play a crucial role in a combinatorial argument in
later sections, whereas, up to the action of the Weyl group WG, r(V, λ) gives
the ZG(g)-infinitesimal character of the unnormalized induced representation
Iδ(V, λ) of G = O(n+ 1, 1), see (2.26).

Example 14.9. For 0 ≤ i ≤ n, we set ℓ := min(i, n− i) and

ρ(i) :=r(
∧

i(Cn), i)

=(
n

2
,
n

2
− 1, · · · , n

2
− ℓ+ 1︸ ︷︷ ︸

ℓ

,
n

2
− ℓ− 1, · · · , n

2
− [

n

2
]︸ ︷︷ ︸

[n
2
]−ℓ

, i− n

2
)

=



(
n

2
, · · · , n

2
− i+ 1︸ ︷︷ ︸

i

,
n

2
− i− 1, · · · , n

2
− [

n

2
]︸ ︷︷ ︸

[n
2
]−i

, i− n
2
) for i ≤ [

n

2
],

(
n

2
, · · · ,−n

2
+ i+ 1︸ ︷︷ ︸

n−i

,−n
2
+ i− 1, · · · , n

2
− [

n

2
]︸ ︷︷ ︸

i−[n+1
2

]

, i− n

2
) for [

n+ 1

2
] ≤ i.

Here are some elementary properties.

(1) The following equations hold:

ρ(i) − ρ(0) =(1, · · · , 1︸ ︷︷ ︸
ℓ

, 0, · · · , 0︸ ︷︷ ︸
[n
2
]−ℓ

, i) (14.11)

=


(1, · · · , 1︸ ︷︷ ︸

i

, 0, · · · , 0︸ ︷︷ ︸
[n
2
]−i

, i) for 0 ≤ i ≤ [n
2
],

(1, · · · , 1︸ ︷︷ ︸
n−i

, 0, · · · , 0︸ ︷︷ ︸
i−[n+1

2
]

, i) for [n+1
2
] ≤ i ≤ n.
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(2) Let r(V, λ) be defined as in (14.10). Then for any i (0 ≤ i ≤ n), we
have

r(V, λ) =(σ1, · · · , σ[n
2
], λ) + ρ(0)

=(σ1 − 1, · · · , σℓ − 1, σℓ+1, · · · , σ[n
2
], λ− i) + ρ(i),

where we retain the notation ℓ = min(i, n− i).

(3) For all i (0 ≤ i ≤ n),

ρG ≡ ρ(i) mod WG. (14.12)

14.2.2 Singular integral parameter: S(V ) and SY (V )

Retain the setting as in Section 14.2.1. Let G = O(n + 1, 1) and m = [n
2
].

Suppose V ∈ Ô(n) is given as V = FO(n)(σ)ε with σ = (σ1, · · · , σm) and
ε ∈ {±}. Since σ1, · · · , σm ∈ Z, the following three conditions on λ ∈ C are
equivalent:

(i) The ZG(g)-infinitesimal character of Iδ(V, λ) is integral in the sense of
Definition 2.1;

(ii) ⟨r(V, λ), α∨⟩ ∈ Z for any α ∈ ∆(gC, hC);

(iii) λ ∈ Z.

For each V ∈ Ô(n), we introduce a subset S(V ) in Z (and a subset SY (V )
in Z for V of type Y) as follows.

Definition 14.10 (S(V ) and SY (V )). Let m = [n
2
]. For V = FO(n)(σ)ε with

σ = (σ1, · · · , σm) ∈ Λ+(m) and ε ∈ {±}, we define a finite subset of Z by

S(V ) := {j − σj, n+ σj − j : 1 ≤ j ≤ m}. (14.13)

When the irreducible O(n)-module V is of type Y (see Definition 2.6),
namely, when n is even (= 2m) and σm > 0, we define also the following
finite set

SY (V ) := {λ ∈ Z : 0 < |λ−m| < σm}. (14.14)

We note that
S(V ) ∩ SY (V ) = ∅

by definition. We shall sometimes adopt the following convention:
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Convention 14.11. When V is of type X (see Definition 2.6), we set

SY (V ) = ∅.

The definitions imply the following lemma.

Lemma 14.12. The ZG(g)-infinitesimal character of Iδ(V, λ) is regular in-
tegral (see Definition 2.1) if and only if λ ∈ Z− S(V ). Thus, we have

RInt = {(V, λ) ∈ Ô(n)× Z : λ ̸∈ S(V )}.

We refer to S(V ) as the set of singular integral parameters. It should be
noted that Iδ(V, λ) has regular integral infinitesimal character if λ ∈ SY (V ),
since SY (V ) ⊂ Z− S(V ).

We shall see in Theorem 14.15 below that the principal series represen-
tation Iδ(V, λ) is irreducible if and only if λ ∈ (C− Z) ∪ S(V ) ∪ SY (V ).

We end this section with a lemma that will be used in Appendix III
(Chapter 16) when we discuss translation functors.

Lemma 14.13. Let V ∈ Ô(n) and λ ∈ Z− S(V ).

(1) Suppose V is of type X (Definition 2.6). Then the Wg- and WG-orbits
through r(V, λ) ∈ h∗C ≃ C[n

2
]+1 coincide:

Wg r(V, λ) = WG r(V, λ). (14.15)

(2) Suppose V is of type Y. Then (14.15) holds if and only if λ = n
2
.

Proof. (1) The assertion is obvious when n is odd because Wg = WG in this
case. Suppose n is even, say, n = 2m. It is sufficient to show that r(V, λ)
contains zero in its entries. Since V is of type X, we have σm = 0, and
therefore, the m-th entry of r(V, λ) amounts to σm + m − m = 0 by the
definition (14.10). Thus the lemma is proved.
(2) Since V is of type Y, n is even (= 2m) and WG ⫌ Wg. Since λ ̸∈ S(V ),
r(V, λ) is Wg-regular. Hence (14.15) holds if and only if at least one of the
entries in r(V, λ) equals zero. Since σ1 ≥ σ2 ≥ · · · ≥ σm > 0, this happens
only when the (m+ 1)-th entry of r(V, λ) vanishes, i.e., λ = n

2
(= m). Hence

Lemma 14.13 is proved.

Remark 14.14. For n = 2m (even), if V is of type X or if λ = m, then
the ZG(g)-infinitesimal character (14.10) is regular for Wg in the sense of
Definition 2.1, but is “singular” with respect to the Weyl group WG for the
disconnected group G = O(n+1, 1) which is not in the Harish-Chandra class.
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14.3 Irreducibility condition of Iδ(V, λ)

We are ready to state a necessary and sufficient condition for the principal
series representation Iδ(V, λ) of G = O(n+ 1, 1) to be irreducible.

We recall from (14.13) and (14.14) the definitions of S(V ) and SY (V ),
respectively.

Theorem 14.15 (irreducibility criterion of Iδ(V, λ)). Let G = O(n + 1, 1),

δ ∈ {±}, V ∈ Ô(n), and λ ∈ C.

(1) If λ ∈ C − Z, then the principal series representation Iδ(V, λ) of G is
irreducible.

(2) Suppose λ ∈ Z. Then Iδ(V, λ) is irreducible if and only if

λ ∈ S(V ) when V is of type X,

λ ∈ S(V ) ∪ SY (V ) when V is of type Y.

Thus Red (see (14.9)) is given by

Red = {(V, λ) ∈ Ô(n)× Z : λ ̸∈ S(V ) ∪ SY (V )} (14.16)

with Convention 14.11.

The proof of Theorem 14.15 will be given in Section 15.3 in Appendix II
by inspecting the restriction of Iδ(V, λ) of G = O(n + 1, 1) to its subgroups
G = SO(n+ 1, 1) and G0 = SO0(n+ 1, 1).

Example 14.16. Let 0 ≤ i ≤ n. The exterior tensor representation on∧
i(Cn) is of type X if and only if n ̸= 2i (see Example 2.8). A simple

computation shows

S(
∧

(i)(Cn)) =Z− ({i, n− i} ∪ (−N+) ∪ (n+ N+)) for 0 ≤ i ≤ n,

SY (
∧

(m)(Cn)) =∅ for n = 2m,

see also Example 14.25. Hence Iδ(i, λ) is reducible if and only if

λ ∈ {i, n− i} ∪ (−N+) ∪ (n+ N+)

by Theorem 14.15. See Theorem 2.20 for the socle filtration of Iδ(i, λ) for
λ = i or n− i.
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For later purpose, we decompose Red into two disjoint subsets as follows:

Definition 14.17. We recall from Definition 2.6 that any V ∈ Ô(n) is either
of type X or of type Y for Ô(n). We set

RedI :={(V, λ) ∈ Red : V is of type X or λ =
n

2
},

RedII :={(V, λ) ∈ Red : V is of type Y and λ ̸= n

2
}.

Then we have a disjoint union

Red = RedI ⨿RedII.

Remark 14.18. If n is odd, then

RedII = ∅ and Red = RedI.

14.4 Subquotients of Iδ(V, λ)

By Theorem 14.15, the principal series representation Iδ(V, λ) of G = O(n+
1, 1) is reducible i.e., (V, λ) ∈ Red if and only if

λ ∈ Z− (S(V ) ∪ SY (V ))

with Convention 14.11. In this section, we explain the socle filtration of
Iδ(V, λ). A number of different characterizations of the subquotients will
be given in later sections, see Theorem 14.35 for summary. We divide the
arguments into the following two cases:
Case 1. λ ̸= n

2
, see Section 14.4.1;

Case 2. λ = n
2
, see Section 14.4.2.

14.4.1 Subquotients of Iδ(V, λ) for V of type X

We begin with the case where λ ̸= n
2
. This means that we treat the following

cases:

• V is of type X, and λ ∈ Z− S(V );

• V is of type Y, and λ ∈ Z− (S(V ) ∪ SY (V ) ∪ {n
2
}).
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Proposition 14.19. Let G = O(n + 1, 1), V ∈ Ô(n), δ ∈ {±}, and λ ∈
Z− (S(V )∪SY (V )). Assume further that λ ̸= n

2
. Then there exists a unique

proper submodule of the principal series representation Iδ(V, λ), to be denoted
by Iδ(V, λ)

♭. In particular, the quotient G-module

Iδ(V, λ)
♯ := Iδ(V, λ)/Iδ(V, λ)

♭

is irreducible.

The proof of Proposition 14.19 will be given in Section 15.4 of Appendix
II.

Remark 14.20. The K-type formulæ and the minimal K-types of the irre-
ducible G-modules Iδ(V, λ)

♭ and Iδ(V, λ)
♯ will be given in Proposition 14.30

and Proposition 14.34, respectively.

14.4.2 Subrepresentations of Iδ(V,
n
2
) for V of type Y

Next we discuss the case:

• V is of type Y and λ = n
2
.

In this case Iδ(V, λ) is the smooth representation of a tempered unitary
representation.

Proposition 14.21 (reducible tempered principal series representation). Let

G = O(n + 1, 1) with n = 2m, V ∈ Ô(n) be of type Y, and δ ∈ {±}. Then
the principal series representation Iδ(V,m) of G is decomposed into the direct
sum of two irreducible representations of G, to be written as:

Iδ(V,m) ≃ Iδ(V,m)♭ ⊕ Iδ(V,m)♯.

If we express V = FO(n)(σ)ε by σ = (σ1, · · · , σm) ∈ Λ+(m) with σm > 0
and ε ∈ {±}, then the irreducible G-modules Iδ(V,m)♭ and Iδ(V,m)♯ are
characterized by their minimal K-types given respectively by the following:

FO(n+1)(σ1, · · · , σm)ε ⊠ δ,
FO(n+1)(σ1, · · · , σm)−ε ⊠ (−δ).

Proof. This is proved in Proposition 15.5 (2) except for the assertion on the
K-types. The last assertion on the minimal K-types follow from the K-type
formula of Iδ(V,m)♭ and Iδ(V,m)♯ in Proposition 14.30 (2).
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14.4.3 Socle filtration of Iδ(V, λ)

By Theorem 14.15 together with Propositions 14.19 and 14.21, we obtain the
following:

Corollary 14.22. Let G = O(n+ 1, 1) for n ≥ 2. Then the principal series

representation Iδ(V, λ) (δ ∈ {±}, V ∈ Ô(n), λ ∈ C) of G is either irreducible
or of composition series of length two.

14.5 Definition of the height i(V, λ)

In this section we introduce the “height”

i : RInt→ {0, 1, . . . , n}, (V, λ) 7→ i(V, λ)

which plays an important role in the study of the principal series representa-
tion Iδ(V, λ) of G. For instance, we shall see in Section 14.7 that the K-type
formula for subquotients of Iδ(V, λ) is described by using the height i(V, λ)
when (V, λ) ∈ Red (Definition 14.8). Moreover, we shall prove in Theo-
rem 16.6 that the G-module Iδ(V, λ) is obtained by the translation functor
applied to the principal series representation I±(i, i) with the trivial infinites-
imal character ρG without “crossing the wall” if we take i to be the height
i(V, λ), see Theorem 16.6. We note that the group G = O(n + 1, 1) is not
in the Harish-Chandra class when n is even, and will discuss carefully a
translation functor in Appendix III (Chapter 16).

We recall from (14.10) that

r(V, λ) = (σ1 +
n

2
− 1, σ2 +

n

2
− 2, · · · , σm +

n

2
−m,λ− n

2
),

where m := [n
2
]. To specify the Weyl chamber for Wg that r(V, λ) ∈ (1

2
Z)m+1

belongs to, we label the places where λ − n
2
is located with respect to the

following inequalities.
Case 1. n = 2m:

−σ1−m+1 < −σ2−m+2 < · · · < −σm ≤ σm < · · · < σ2+m−2 < σ1+m−1;

Case 2. n = 2m+ 1:

−σ1−m+
1

2
< −σ2−m+

3

2
< · · · < −σm−

1

2
< 0 < σm+

1

2
< · · · < σ1+m−

1

2
.
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Unifying these inequalities by adding n
2
to each term, we may write as

1−σ1 < 2−σ2 < · · · < m−σm ≤
n

2
≤ σm+n−m < · · · < σ2+n−2 < σ1+n−1.

Definition 14.23. For 0 ≤ i ≤ n, we define the following subsets R(V ; i) of
Z:

{λ ∈ Z : i− σi < λ < i+ 1− σi+1} for 0 ≤ i <
n− 1

2
,

{λ ∈ Z :
n− 1

2
− σn−1

2
< λ <

n

2
} for i =

n− 1

2
(n odd),

{λ ∈ Z :
n

2
− σn

2
< λ < σn

2
+
n

2
} for i =

n

2
(n even),

{λ ∈ Z :
n

2
< λ < σn−1

2
+
n+ 1

2
} for i =

n+ 1

2
(n odd),

{λ ∈ Z : σn−i+1 + i− 1 < λ < σn−i + i} for
n+ 1

2
< i ≤ n.

Here we regard σ0 =∞.

Lemma 14.24. Let V ∈ Ô(n). We recall from (14.13) that S(V ) is the set
of singular integral parameters.

(1) The set of regular integral parameters has the following disjoint decom-
position:

Z− S(V ) =
n⨿

i=0

R(V ; i).

In particular, there exists a map

i(V, ·) : Z− S(V )→ {0, 1, . . . , n} (14.17)

such that λ ∈ R(V ; i(V, λ)).

(2) The set S(V ) is preserved by the transformations λ 7→ n− λ and V 7→
V ⊗ det, and we have

i(V, n− λ) =n− i(V, λ)
i(V ⊗ det, λ) = i(V, λ)

for any λ ∈ Z− S(V ).
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(3) R(V ; n
2
) ̸= ∅ if and only if n is even and the irreducible O(n)-module

V is of type Y. In this case, we have

R(V ;
n

2
) = {n

2
} ∪ SY (V ) (disjoint union). (14.18)

Example 14.25. Let 0 ≤ i ≤ n. For the i-th exterior tensor representation
V =

∧
i(Cn) of O(n), we have

S(
∧

(i)(Cn)) = Z− ({i, n− i} ∪ (−N+) ∪ (n+ N+)).

Furthermore, we see from Example 14.6 that the set R(V ; j) is given as
follows.

(1) For 1 ≤ i ≤ n− 1,

R(
∧

i(Cn); j) =


−N+ if j = 0,

{j} if j = i or n− i,
n+ N+ if j = n,

∅ otherwise.

(2) For i = 0 or n,

R(
∧

i(Cn); j) =


−N if j = 0,

n+ N if j = n,

∅ otherwise.

We recall from Definition 14.8 that RInt is a subset of Ô(n)× Z.

Definition 14.26 (height i(V, λ)). By (14.17) in Lemma 14.24, we define a
map

i : RInt→ {0, 1, . . . , n},

see Lemma 14.12. We refer to i(V, λ) as the height of (V, λ). We also refer it
to as the height of the principal series representation Iδ(V, λ).

Example 14.27. We illustrate the definition of the height i(V, λ) ∈ {0, 1, . . . , n}
for (V, λ) ∈ RInt by a graphic description whenm(= [n

2
]) = 1, namely, when
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n = 2 or 3. In this case G = O(n + 1, 1) is either O(3, 1) or O(4, 1), and

V ∈ Ô(n) is given by V = FO(n)(σ1)ε with σ1 ∈ N and ε ∈ {±}. Then

RInt ≃

{
{(σ1, ε, λ) ∈ N× {±} × Z : λ− 1 ̸= ±σ1} if n = 2,

{(σ1, ε, λ) ∈ N× {±} × Z : λ− 2 ̸= ±σ1, λ ̸= 2} if n = 3.

In the (σ1, λ)-plane, the height i(V, λ) is given as in Figure 14.1.

Figure 14.1: The height i = i(V, λ) for (V, λ) ∈ RInt when n = 2, 3.

The red dots stand for (V, λ) = (
∧

j(Cn), j) when j = 0, 1, . . . , n.

The case where the height i(V, λ) is equal to n
2
requires a special attention.

Lemma 14.28. Let m := [n
2
]. Suppose that V = FO(n)(σ)ε with σ ∈ Λ+(m)

and ε ∈ {±}, and λ ∈ Z− S(V ).

(1) The height i(V, λ) is equal to n
2
if and only if n is even (= 2m) and

σm > |λ−m|.

(2) If λ ∈ SY (V ) (see (14.14)), then n is even (= 2m) and i(V, λ) = m.
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(3) Suppose that V is of type Y (Definition 2.6). Then, for (V, λ) ∈ Red,
the following two conditions are equivalent:

(i) i(V, λ) = n
2
;

(ii) n is even and λ = n
2
.

14.6 K-type formulæ of irreducible G-modules

In this section we provide explicit K-type formulæ of irreducible representa-
tions of G = O(n+1, 1). The height i(V, λ) plays a crucial role in describing
the K-type formulæ of irreducible subquotients of Iδ(V, λ), see Proposition
14.30 (1).

14.6.1 K-type formula of Iδ(V, λ)

We begin with the K-type formula of the principal series representation
Iδ(V, λ) which generalizes Lemma 2.16 for Iδ(i, i) in the setting that V =∧

i(Cn).

Proposition 14.29 (K-type formula of Iδ(V, λ)). Let G = O(n + 1, 1) and
m = [n

2
]. Suppose that V = FO(n)(σ)ε with σ = (σ1, · · · , σm) ∈ Λ+(m) and

ε ∈ {±}.

(1) For n = 2m+1, the K-type formula of the principal series representa-
tion Iδ(V, λ) is given by⊕

µ

FO(n+1)(µ1, · · · , µm+1)ε ⊠ δ(−1)
∑m+1

j=1 µj−
∑m

j=1 σj ,

where µ = (µ1, · · · , µm+1) runs over Λ+(m+ 1) subject to

µ1 ≥ σ1 ≥ µ2 ≥ σ2 ≥ · · · ≥ µm ≥ σm ≥ µm+1 ≥ 0. (14.19)

(2) For n = 2m and V ∈ Ô(n) of type X (Definition 2.6), the K-type
formula of Iδ(V, λ) is given by⊕

µ

FO(n+1)(µ1, · · · , µm)ε ⊠ δ(−1)
∑m

j=1 µj−
∑m

j=1 σj ,

where µ = (µ1, · · · , µm) runs over Λ+(m+ 1) subject to

µ1 ≥ σ1 ≥ · · · ≥ µm ≥ σm(= 0). (14.20)
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(3) For n = 2m and V ∈ Ô(n) of type Y, the K-type formula of Iδ(V, λ) is
given by⊕

κ=±

⊕
µ

FO(n+1)(µ1, · · · , µm)κε ⊠ κδ(−1)
∑m

j=1 µj−
∑m

j=1 σj ,

where µ = (µ1, · · · , µm) runs over Λ+(m) subject to

µ1 ≥ σ1 ≥ · · · ≥ µm ≥ σm(> 0). (14.21)

Proof. By the Frobenius reciprocity, Proposition 14.29 follows from the clas-
sical branching rule for the restriction O(n+ 1) ↓ O(n), see Fact 2.12.

Since the principal series representation Iδ(V, λ) of G is multiplicity-free
as a K-module, any subquotient of Iδ(V, λ) can be characterized by its K-
types. In the next subsection, we provide K-type formulæ of subquotients
of Iδ(V, λ) based on Proposition 14.29.

14.6.2 K-types of subquotients Iδ(V, λ)
♭ and Iδ(V, λ)

♯

We recall from (14.9) and Theorem 14.15 that the following two conditions

on (V, λ) ∈ Ô(n)× C are equivalent.

(i) (V, λ) ∈ Red, i.e., the G-module Iδ(V, λ) is reducible;

(ii) λ ∈ Z− (S(V ) ∪ SY (V )).

We note that λ = n
2
belongs to Z− (S(V ) ∪ SY (V )) when n is even.

In this section, we describe the K-types of the subquotients Iδ(V, λ)
♭ and

Iδ(V, λ)
♯ when the principal series representation Iδ(V, λ) is reducible, i.e.,

when (V, λ) ∈ Red, see (14.16).
We shall see that the description depends on the height i(V, λ) (Definition

14.26) when λ = n
2
. To be more precise, let m = [n

2
] and V ∈ Ô(n). Suppose

λ ∈ Z−(S(V )∪SY (V )) and we define i to be the height i(V, λ) ∈ {0, 1, . . . , n}.
We write V = FO(n)(σ)ε with σ = (σ1, · · · , σm) ∈ Λ+(m) and ε ∈ {±} as
before. We observe the following:

• if i < n−1
2
, then 1 ≤ i+1 ≤ m and the condition i−σi < λ < i+1−σi+1

(Definition 14.23) amounts to

σi+1 ≤ i− λ and i− λ+ 1 ≤ σi; (14.22)
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• if i = n−1
2
, then n is odd (= 2m+ 1) and we have

0 ≤ m− λ and m− λ+ 1 ≤ σm; (14.23)

• if i = n+1
2
, then n is odd (= 2m+ 1) and we have

0 ≤ λ−m− 1 and λ−m ≤ σm; (14.24)

• if n+1
2
< i, then 1 ≤ n− i+ 1 ≤ m and the condition σn−i+1 + i− 1 <

λ < σn−i + i amounts to

σn−i+1 ≤ λ− i and λ− i+ 1 ≤ σn−i. (14.25)

We recall that the principal series representation Iδ(V, λ) of G = O(n +
1, 1) is K-multiplicity-free, and its K-type formula is given explicitly in
Proposition 14.29. To describe theK-type formulæ of subquotients of Iδ(V, λ),
we use the inequalities (14.22)–(14.25) in Proposition 14.30 (1) below.

Proposition 14.30 (K-type formulæ of subquotients). Suppose that (V, λ) ∈
Red, or equivalently, V ∈ Ô(n) and λ ∈ Z − (S(V ) ∪ SY (V )), see Theorem
14.15. Let i := i(V, λ) ∈ {0, 1, . . . , n} be the height of (V, λ) as in Definition
14.26.

(1) Suppose λ ̸= n
2
. In this case i ̸= n

2
. Then the K-types of the submodule

Iδ(V, λ)
♭ and the quotient Iδ(V, λ)

♯ of Iδ(V, λ), see Proposition 14.19,
are subsets of the K-types of Iδ(V, λ) (Proposition 14.29) characterized
by the following additional inequalities:

• for i ≤ n−1
2
, the condition σi+1 ≤ µi+1 ≤ σi in (14.19)–(14.21) is

divided as follows:

(σi+1 ≤) µi+1 ≤ i− λ for Iδ(V, λ)
♭,

i− λ+ 1 ≤ µi+1 ( ≤ σi) for Iδ(V, λ)
♯;

• for n+1
2
≤ i, the condition σn−i+1 ≤ µn−i+1 ≤ σn−i in (14.19)–(14.21)

is divided as follows:

λ− i+ 1 ≤ µn−i+1( ≤ σn−i) for Iδ(V, λ)
♭,

(σn−i+1 ≤) µn−i+1 ≤ λ− i for Iδ(V, λ)
♯.

Here we regard σm+1 = 0 (this happens when i = n±1
2
).
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(2) Suppose λ = n
2
. In this case n is even (= 2m) and i = m. Then

the K-types of the submodules Iδ(V, λ)
♭ and Iδ(V, λ)

♯ of the (tempered)
principal series representation Iδ(V, λ), see Proposition 14.21, are given
by⊕

µ

FO(n+1)(µ1, · · · , µm)ε ⊠ δ(−1)
∑m

j=1 µj−
∑m

j=1 σj for Iδ(V, λ)
♭,⊕

µ

FO(n+1)(µ1, · · · , µm)−ε ⊠ δ(−1)
∑m

j=1 µj−
∑m

j=1 σj−1 for Iδ(V, λ)
♯

where µ = (µ1, · · · , µm) runs over Λ+(m) subject to (14.21).

Proof. The K0-types for all irreducible subquotients of principal series rep-
resentations of the connected Lie group G0 = SO0(n+1, 1) were obtained in
Hirai [17], from which analogous results for the group G = SO(n+ 1, 1) are
easily shown. Our concern is with the group G = O(n+1, 1). Then the first
assertion follows from Proposition 14.29 on the K-type formula of Iδ(V, λ)
and from the branching rule for the restriction G ↓ G in Propositions 15.7
and 15.8 in Appendix II. The second assertion follows from the branching
rule of Iδ(V,

n
2
) for the restriction G ↓ G in Proposition 15.5.

14.7 (δ, V, λ)⇝ (δ↑, V ↑, λ↑) and (δ↓, V ↓, λ↓)

In this section, we introduce a correspondence

δ ∈ {±}, V ∈ Ô(n), and λ ∈ Z− (S(V ) ∪ SY (V ))

⇝

δ↑ ∈ {±}, V ↑ ∈ Ô(n), and λ↑ ∈ Z− (S(V ↑) ∪ SY (V
↑))

satisfying the following two properties (Proposition 14.33):

i(V ↑, λ↑) = i(V, λ) + 1

Iδ↑(V
↑, λ↑)♭ ≃ Iδ(V, λ)♯.

We retain the notation that G = O(n+ 1, 1) and m = [n
2
].

Definition 14.31. Suppose that V = FO(n)(σ)ε with σ ∈ Λ+(m) and ε ∈
{±}, and λ ∈ Z − S(V ). Let i := i(V, λ) ∈ {0, 1, . . . , n} be the height of
(V, λ) as in Lemma 14.24.
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(1) We assume 0 ≤ i ≤ n− 1, or equivalently, λ ≤ σ1 + n− 1. We define

(δ, V, λ)↑ ≡ (δ↑, V ↑, λ↑) ∈ Z/2Z× Ô(n)× Z (14.26)

with V ↑ := FO(n)(σ↑)ε as follows:

• For λ < n
2
, we have 0 ≤ i < n

2
and set

δ↑ :=δ(−1)i+1−σi+1−λ,

σ↑ :=(σ1, · · · , σi, i+ 1− λ, σi+2, · · · , σm),
λ↑ :=i+ 1− σi+1.

• For n
2
≤ λ ≤ σ1 + n− 1, we have n

2
≤ i ≤ n− 1 and set

δ↑ :=δ(−1)λ−σn−i−i,

σ↑ :=(σ1, · · · , σn−i−1, λ− i, σn−i+1, · · · , σm),
λ↑ :=σn−i + i.

(2) Conversely, for 1 ≤ i ≤ n, namely, for 1− σ1 ≤ λ, we define

(δ, V, λ)↓ ≡ (δ↓, V ↓, λ↓) (14.27)

as the inverse of the correspondence

(δ, V, λ) 7→ (δ, V, λ)↑.

A prototype for Definition 14.31 appeared implicitly in Theorem 2.20 for
the principal series representations Iδ(i, i) having the trivial ZG(g)-infinitesimal
character ρG. We now explain this explicitly as an example for (V, λ) =
(
∧

i(Cn), i) (1 ≤ i ≤ n):

Example 14.32. For the exterior representations
∧

i(Cn) of O(n), we have

(δ,
∧

i(Cn), i)↑ =(−δ,
∧

i+1(Cn), i+ 1) for 0 ≤ i ≤ n− 1,

(δ,
∧

i(Cn), i)↓ =(−δ,
∧

i−1(Cn), i− 1) for 1 ≤ i ≤ n.

The proof follows directly from the definition, see Example 14.6.
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Here are basic properties of the correspondence

(δ, V, λ) 7→ (δ↑, V ↑, λ↑) or (δ↓, V ↓, λ↓).

Proposition 14.33. Suppose that (V, λ) ∈ RInt, i.e., V ∈ Ô(n) and λ ∈
Z − S(V ). In what follows, we assume the height i(V, λ) is not equal to n
when we consider (V ↑, λ↑), and is nonzero when we consider (V ↓, λ↓).

(1) r(V ↑, λ↑), r(V ↓, λ↓) ∈ WG r(V, λ), see (14.10). In particular, (V ↑, λ↑),
(V ↓, λ↓) ∈ RInt.

(2) i(V ↑, λ↑)− 1 = i(V, λ) = i(V ↓, λ↓) + 1.

(3) δ↑(−1)λ↑
= δ(−1)λ = δ↓(−1)λ↓

.

(4) (V ↑, λ↑), (V ↓, λ↓) ∈ Red, if (V, λ) ∈ Red, see (14.9).

(5) Suppose that (V, λ) ∈ Red and λ ̸= n
2
. Then the unique submodule of

I−δ(V
↑, λ↑) is isomorphic to the unique quotient of Iδ(V, λ), that is, we

have the following G-isomorphisms with the notation as in Proposition
14.19:

Iδ↑(V
↑, λ↑)♭ ≃Iδ(V, λ)♯,

Iδ↓(V
↓, λ↓)♯ ≃Iδ(V, λ)♭.

With these notations, we give the formulæ for the minimal K-types of
the irreducible subquotients Iδ(V, λ)

♭ and Iδ(V, λ)
♯ in Iδ(V, λ) in the setting

of Proposition 14.19.

Proposition 14.34. Let G = O(n + 1, 1) and m = [n
2
]. Suppose V =

FO(n)(σ)ε with σ = (σ1, · · · , σm) ∈ Λ+(m) and ε ∈ {±}. Let δ ∈ {±} and
λ ∈ Z− (S(V ) ∪ SY (V ) ∪ {n

2
}).

(1) The minimal K-types of Iδ(V, λ)
♭ for λ < n

2
and of Iδ(V, λ)

♯ for λ > n
2

are given by

FO(n+1)(σ)ε ⊠ δ for n = 2m and σm = 0,

FO(n+1)(σ)ε ⊠ δ, FO(n+1)(σ)−ε ⊠ (−δ) for n = 2m and σm > 0,

FO(n+1)(σ, 0)ε ⊠ δ for n = 2m+ 1.
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(2) The minimal K-types of Iδ(V, λ)
♯ for λ < n

2
and of Iδ(V, λ)

♭ for λ > n
2

are given by

FO(n+1)(σ↑)ε ⊠ δ↑ for n = 2m and σm = 0,

FO(n+1)(σ↑)ε ⊠ δ↑, FO(n+1)(σ↑)−ε ⊠ (−δ↑) for n = 2m and σm > 0,

FO(n+1)(σ↑, 0)ε ⊠ δ↑ for n = 2m+ 1.

14.8 Classification of irreducible admissible represen-
tations of G = O(n+ 1, 1)

Irreducible admissible representations of the connected group G0 = SO0(n+
1, 1) were classified infinitesimally (i.e., on the level of (g, K0)-modules) by
Hirai [17], see also Borel–Wallach [9] and Collingwood [11, Chap. 5]. How-
ever, we could not find in the literature a classification of irreducible ad-
missible representations of the indefinite orthogonal group G = O(n + 1, 1),
which is not in the Harish-Chandra class when n is even. For the sake of
completeness, we give an infinitesimal classification of irreducible admissi-
ble representations of G, or equivalently, give a classification of irreducible
(g, K)-modules in this section. Moreover we give three characterizations of
the irreducible representations of G when they are neither principal series
representations nor tempered representations, see Theorem 14.35.

14.8.1 Characterizations of the irreducible subquotients Πδ(V, λ)

We recall from Section 2.4.5 the irreducible representations Πℓ,δ of G that
have the trivial ZG(g)-infinitesimal character ρG. Analogously to the notation
Πℓ,δ in (2.35) for Irr(G)ρ, we set

Πδ(V, λ) := Iδ(V, λ)
♭ (14.28)

for δ ∈ {±} and (V, λ) ∈ Red. If i(V, λ) ̸= 0, then we have a G-isomorphism

Πδ(V, λ) ≃ Iδ↓(V
↓, λ↓)♯, (14.29)

where (δ↓, V ↓, λ↓) is given in Definition 14.31. We also have a G-isomorphism

Πδ(V, λ) ≃ Iδ(V, n− λ)♯. (14.30)

We have already discussed in Proposition 14.21 irreducible subquotients of
reducible tempered principal series representations Iδ(V, λ) under the as-
sumption that (V, λ) ∈ Red with λ = n

2
. This assumption implies that n is
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even, V is of type Y and λ = n
2
. The next theorem discusses the remaining

(and the important) case when the principal series representation Iδ(V, λ) is
reducible, namely, (V, λ) ∈ Red with an additional condition λ ̸= n

2
.

Theorem 14.35 (characterizations of Πδ(V, λ)). Let G = O(n + 1, 1), and

we set m := [n
2
]. Assume that (V, λ) ∈ Red. This means that V ∈ Ô(n) and

λ ∈

{
Z− S(V ) if n = 2m+ 1,

Z− (S(V ) ∪ SY (V )) if n = 2m,

see Theorem 14.15. We further assume that λ ̸= n
2
.

(1) (Langlands subrepresentation of principal series) For δ ∈ {±}, Πδ(V, λ)
is the unique proper G-submodule of Iδ(V, λ).

(2) (θ-stable parameter) Let i := i(V, λ) ∈ {0, 1, . . . , n} be the height of
(V, λ) as in (14.17). We write V = FO(n)(σ)ε with σ = (σ1, · · · , σm) ∈
Λ+(m) and ε ∈ {±}. Then the underlying (g, K)-module of Πδ(V, λ) is
given by means of θ-stable parameter (see Section 14.9) as

Πδ(V, λ)K ≃

{
(σ1 − 1, · · · , σi − 1 || i− λ, σi+1, · · · , σm)ε,δε if λ < n

2
,

(σ1 − 1, · · · , σn−i − 1, λ− i || σn−i+1, · · · , σm)ε,−δε if n
2
< λ.

(3) (coherent family starting at Πi,δ ∈ Irr(G)ρ) We set

r(V, λ) ∈ Cm+1 (≃ h∗C) as in (14.10).

Denote by Pµ the projection to the primary component with the general-
ized ZG(g)-infinitesimal character µ ∈ h∗C mod WG (see Section 16.2.1
in Appendix III). Let F (V, λ) be the irreducible finite-dimensional rep-
resentation of G = O(n+1, 1), which will be defined in Definition 16.17
in Appendix III. Then there is a natural G-isomorphism:

Πδ(V, λ) ≃ Pr(V,λ)(Πi,δ ⊗ F (V, λ)).

(4) (Hasse sequence and standard sequence starting at F (V, λ)) Let Πj(F )
(j = 0, 1, · · · , n) be the standard sequence starting with an irreducible
finite-dimensional representation F of G (Definition 13.2), and i =
i(V, λ) the height of (V, λ). Then there is a natural G-isomorphism:

Πδ(V, λ) ≃ Πi(F (V, λ))⊗ χ+δ.

See Proposition 14.19 for (1), Theorem 14.46 for (2), Theorem 16.6 for
(3) in Chapter 16 (Appendix III), and Theorems 14.50 and 14.51 for (4).
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14.8.2 Classification of Irr(G)

We give an infinitesimal classification of irreducible admissible representa-
tions of G = O(n+1, 1). One may reduce the proof to the case of connected
groups, by inspecting the restriction to the subgroups G = SO(n + 1, 1) or
G0 = SO0(n+ 1, 1), see Chapter 15 (Appendix II).

Theorem 14.36 (classification of Irr(G)). Irreducible admissible represen-
tations of moderate growth of G = O(n+ 1, 1) are listed as follows:

• Iδ(V, λ) λ ∈ (C− Z) ∪ S(V ) ∪ SY (V ),

• Πδ(V, λ) λ ∈ Z− (S(V ) ∪ SY (V )) and λ ≤ n

2
,

where V ∈ Ô(n) and δ ∈ {±}.

We note that there is an isomorphism of irreducible G-modules:

Iδ(V, λ) ≃ Iδ(V, n− λ)

when λ ∈ (C− Z) ∪ S(V ) ∪ SY (V ).

14.9 θ-stable parameters and cohomological parabolic
induction

In this section we give a parametrization of irreducible subquotients of the
principal series representations

Iδ(V, λ) = IndG
P (V ⊗ δ ⊗ Cλ)

of the group G = O(n+ 1, 1) in terms of cohomological parabolic induction.

14.9.1 Cohomological parabolic induction Aq(λ) = RS
q (Cλ+ρ(u))

We fix some notation of cohomological parabolic induction. A basic refer-
ence is Vogan [63] and Knapp–Vogan [26]. We begin with a connected real
reductive Lie group G. Let K be a maximal compact subgroup, and θ the
corresponding Cartan involution. Given an element X ∈ k, the complexi-
fied Lie algebra gC = Lie(G) ⊗R C is decomposed into the eigenspaces of√
−1ad(X), and we write

gC = u− + lC + u
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for the sum of the eigenspaces with negative, zero, and positive eigenvalues.
Then q := lC + u is a θ-stable parabolic subalgebra with Levi subgroup

L = {g ∈ G : Ad(g)q = q}. (14.31)

The homogeneous space G/L is endowed with a G-invariant complex mani-
fold structure with holomorphic cotangent bundle G ×L u. As an algebraic
analogue of Dolbeault cohomology groups for G-equivariant holomorphic vec-
tor bundle over G/L, Zuckerman introduced a cohomological parabolic in-
duction functor Rj

q(·⊗Cρ(u)) (j ∈ N) from the category of (l, L∩K)-modules
to the category of (g, K)-modules. We adopt here the normalization of the
cohomological parabolic induction Rj

q from a θ-stable parabolic subalgebra
q = lC+u so that the Z(g)-infinitesimal character of the (g, K)-moduleRj

q(F )
equals

the Z(l)-infinitesimal character of the l-module F

modulo the Weyl group via the Harish-Chandra isomorphism.
We note that if F ′ is an (l, L ∩ K)-module then F := F ′ ⊗ Cρ(u) may

not be defined as an (l, L ∩ K)-module, but can be defined as a module of
the metaplectic covering group of L. When F satisfies a positivity condition
called “good range of parameters”, the cohomology Rj

q(F ) concentrates on
the degree

S := dimC(u ∩ kC).

For a one-dimensional representation F , we also use another convention
“Aq(λ)”. Following the normalization of Vogan–Zuckerman [65], we set

Aq(λ) := RS
q (Cλ+ρ(u))

for a one-dimensional representation Cλ of L. In particular, we set

Aq := Aq(0) = RS
q (Cρ(u)),

which is an irreducible (g, K)-module with the same Z(g)-infinitesimal char-
acter ρ as that of the trivial one-dimensional representation 1 of G.

Similar notation will be used for disconnected groups G. For a character
χ of the component group G/G0, we have an isomorphism of (g, K)-modules:

(Aq)χ := Aq ⊗ χ ≃ RS
q (χ⊗ Cρ(u)).
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14.9.2 θ-stable parabolic subalgebra qi for G = O(n+ 1, 1)

We apply the general theory reviewed in Section 14.9.1 to the group G =
O(n + 1, 1). For this, we set up some notation for θ-stable parabolic subal-
gebra qi and q±n+1

2

of gC = Lie(G)⊗R C ≃ o(n+ 2,C) as follows.
We take a Cartan subalgebra tc of k, and extend it to a fundamental

Cartan subalgebra h = tc + ac. If n is odd then ac = {0}. Choose the
standard coordinates {fk : 1 ≤ k ≤ [n

2
] + 1} on h∗C such that the root system

of g and k are given by

∆(gC, hC) ={±(fi ± fj) : 1 ≤ i < j ≤ [
n

2
] + 1}(

∪{±fℓ : 1 ≤ ℓ ≤ [
n

2
] + 1} (n: odd)

)
,

∆(kC, tC) ={±(fi ± fj) : 1 ≤ i < j ≤ [
n+ 1

2
]}(

∪{±fℓ : 1 ≤ ℓ ≤ [
n+ 1

2
]} (n: even)

)
.

For 1 ≤ i ≤ [n+1
2
], we define elements of t∗C by

µi :=
i∑

k=1

(
n

2
+ 1− k)fk,

µ−
i :=µi − (n+ 2− 2i)fi.

It is convenient to set µ0 = µ−
0 = 0. (We shall use µ−

i only when we consider
the identity component group G0 = SO0(n + 1, 1) with n odd and when
n + 1 = 2i for later arguments.) Let ⟨ , ⟩ be the standard bilinear form on
h∗C ≃ C[n

2
]+1.

Definition 14.37 (θ-stable parabolic subalgebra qi). For 0 ≤ i ≤ [n+1
2
], we

define θ-stable parabolic subalgebras qi ≡ q+i = (li)C+ui and q−i = (li)C+u−i
in gC = Lie(G)⊗RC by the condition that qi and q−i contain the fundamental
Cartan subalgebra h and that their nilradicals ui and u−i are given respectively
by

∆(ui, hC) ={α ∈ ∆(gC, hC) : ⟨α, µi⟩ > 0},
∆(u−i , hC) ={α ∈ ∆(gC, hC) : ⟨α, µ−

i ⟩ > 0}.
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Then the Levi subgroup of q = qi and q−i is given by

Li := NG(q) ≡ {g ∈ G : Ad(g)q = q} ≃ SO(2)i ×O(n− 2i+ 1, 1). (14.32)

We note that Li is not in the Harish-Chandra class if n is even, as is the case
G = O(n+ 1, 1).

If we write ρ(ui) and ρ(u
−
i ) for half the sum of roots in ui and u−i , respec-

tively, then
ρ(ui) = µi and ρ(u−i ) = µ−

i .

We suppress the superscript + for q+i except for the case n+1 = 2i. For later
purpose, we compare the following three groups with the same Lie algebras:

G0 =SO0(n+ 1, 1) ↪→ G = SO(n+ 1, 1) ↪→ G = O(n+ 1, 1) (14.33)

with maximal compact subgroups

K0 =SO(n+ 1) ↪→ K = O(n+ 1) ↪→ K = O(n+ 1)×O(1).

Lemma 14.38. (1) A complete system of the K0-conjugacy classes of θ-
stable parabolic subalgebras of gC with Levi subgroup Li (14.32) is given
by

{qi} for 0 ≤ i < [
n+ 1

2
],

{q+n+1
2

, q−n+1
2

} for i =
n+ 1

2
(n:odd).

(2) The θ-stable parabolic subalgebra qi with the property (14.32) is unique
up to conjugation by the disconnected group K (and therefore, also by
K) for all i (0 ≤ i ≤ [n+1

2
]).

We also make the following two observations:

Lemma 14.39. Li is compact if and only if n is odd and 2i = n+1. In this
case, Li ≃ SO(2)

n+1
2 ×O(1).

Lemma 14.40. The inclusion maps (14.33) induce the following inclusion
and bijection:

G0/NG0(qi) ↪→ G/NG(qi)
∼→ G/NG(qi) = G/Li

for all i (0 ≤ i ≤ [n+1
2
]). The first inclusion is bijective if n+ 1 ̸= 2i.
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The second bijection is reflected by the irreducibility of the G-module
Πℓ,δ when restricted to the subgroup G = SO(n+1, 1), see Proposition 15.11
(1) in Appendix II.

Lemmas 14.38 and 14.39 yield the following (well-known) representation
theoretic results:

Proposition 14.41. (1) G (or G, G0) admits a discrete series represen-
tation if and only if n is odd.

(2) Suppose n is odd. Then there exists only one discrete series represen-
tation of G for each regular integral infinitesimal character; there exist
exactly two discrete series representations of G (also of G0) for each
regular integral infinitesimal character.

For n = 2m − 1 in the second statement of Proposition 14.41, we note
the following properties for the three groups G ⊃ G ⊃ G0:

• Lm ≃ SO(2)m ×O(1) has two connected components;

• Lm ∩G = Lm ∩G0 are connected;

• q+m and q−m are not conjugate by G0; they are conjugate by G or G.

See [29, Thm. 3 (0)] for results in a more general setting of the indefinite
orthogonal group O(p, q).

For ν = (ν1, · · · , νi) ∈ Zi, µ ∈ Λ+([n
2
]− i+1), and a, b ∈ {±}, we consider

an irreducible finite-dimensional Li-module

FO(n−2i+1,1)(µ)a,b ⊗ Cν

and define an admissible smooth representation of G of moderate growth, to
be denoted by

(ν1, · · · , νi ||µ1, · · · , µ[n
2
]−i+1)a,b,

whose underlying (g, K)-module is given by the cohomological parabolic in-
duction

RSi
qi
(FO(n−2i+1,1)(µ)a,b ⊗ Cν+ρ(ui)) (14.34)

of degree Si, where we set

Si := dimC(ui ∩ kC) = i(n− i). (14.35)

We note that if i = 0 then ( ||µ1, · · · , µ[n
2
]+1)a,b is finite-dimensional.
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Definition 14.42 (θ-stable parameter). We call (ν1, · · · , νi ||µ1, · · · , µ[n
2
]−i+1)a,b

the θ-stable parameter of the representation (14.34).

If the θ-stable parameter of a representation Π of G is given by

(ν1, · · · , νi ||µ1, · · · , µ[n
2
]−i+1)a,b,

then that of Π⊗ χcd for c, d ∈ {±} is given by

(ν1, · · · , νi ||µ1, · · · , µ[n
2
]−i+1)ac,bd. (14.36)

The ZG(g)-infinitesimal character of (ν1, · · · , νi ||µ1, · · · , µ[n
2
]−i+1)a,b is given

by

(ν1, · · · , νi, µ1, · · · , µ[n
2
]−i+1) + (

n

2
,
n

2
− 1, · · · , n

2
− [

n

2
]).

In particular, the G-module

(0, · · · , 0︸ ︷︷ ︸
i

|| 0, · · · , 0︸ ︷︷ ︸
[n
2
]−i+1

)a,b

has the trivial infinitesimal character ρG. In this case we shall write

(Aqi)a,b := RSi
qi
(χab ⊗ Cρ(ui)) (14.37)

for its underlying (g, K)-module, see Proposition 14.44 below.
Sometimes we suppress the subscript +,+ and write simply Aqi to denote

the (g, K)-module (Aqi)+,+.

Remark 14.43. (1) (good range) The irreducible finite-dimensional repre-
sentation FO(n−2i+1,1)(µ)a,b ⊗ Cν+ρ(u) of the metaplectic cover of Li is
in the good range with respect to the θ-stable parabolic subalgebra qi
(see [26, Def. 0.49] for the definition) if and only if

ν1 ≥ ν2 ≥ · · · ≥ νi ≥ µ1.

In this case, the (g, K)-module (14.34) is nonzero and irreducible, and
therefore (ν1, · · · , νi ||µ1, · · · , µ[n

2
]−i+1)a,b is a nonzero irreducible G-

module. For the description of the Hasse sequence (Theorem 14.46
below), we need only the parameter in the good range.
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(2) (weakly fair range) If µ = (0, · · · , 0), then the (g, K)-module (14.34)
reduces to

Aqi(ν)a,b := RSi
qi
(χab ⊗ Cν+ρ(ui))

cohomologically induced from the one-dimensional representation χab⊗
Cν+ρ(u). We note that χab ⊗ Cν+ρ(u) is in the weakly fair range with
respect to qi (see [26, Def. 0.52] for the definition) if and only if

ν1 +
n

2
≥ ν2 +

n

2
− 1 ≥ · · · ≥ νi +

n

2
− i+ 1 ≥ 0. (14.38)

In this case the (g, K)-module Aqi(ν)a,b may or may not vanish. See
[29, Thm. 3] for the conditions on ν ∈ Zi in the weakly fair range
that assure the nonvanishing and the irreducibility of ASi

qi
(Cν)a,b. We

shall see in Section 14.11 that the underlying (g, K)-modules of singular
complementary series representations are isomorphic to these modules.

14.9.3 Irreducible representations Πℓ,δ and (Aqi)±,±

In this subsection, we give a description of the underlying (g, K)-modules of
the subquotients Πℓ,δ of the principal series representation of the disconnected
group G = O(n + 1, 1) in terms of the cohomologically parabolic induced
modules (Aqi)±,±.

We recall from (2.35) the definition of the irreducible representations Πℓ,δ

(0 ≤ ℓ ≤ n+ 1, δ = ±) of G = O(n+ 1, 1). The set

{Πℓ,δ : 0 ≤ ℓ ≤ n+ 1, δ = ±}

exhausts irreducible admissible representations of moderate growth having
ZG(g)-infinitesimal character ρG, see Theorem 2.20 (2). Their underlying
(g, K)-modules (Πℓ,δ)K can be given by cohomologically parabolic induced
modules as follows.

Proposition 14.44. For 0 ≤ i ≤ [n+1
2
], let qi be the θ-stable parabolic subal-

gebras with the Levi subgroup Li ≃ SO(2)i×O(n− 2i+1, 1) as in Definition
14.37.

(1) The underlying (g, K)-modules of the irreducible G-modules Πℓ,δ (0 ≤
ℓ ≤ n+ 1, δ ∈ {±}) are given by the cohomological parabolic induction
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as follows:

(Πi,+)K ≃(Aqi)+,+ ⊃
∧

i(Cn+1)⊠ 1,

(Πi,−)K ≃(Aqi)+,− ⊃
∧

i(Cn+1)⊠ sgn,

(Πn+1−i,+)K ≃(Aqi)−,+ ⊃
∧

n+1−i(Cn+1)⊠ 1,

(Πn+1−i,−)K ≃(Aqi)−,− ⊃
∧

n+1−i(Cn+1)⊠ sgn.

For later purpose, we also indicated their minimal K-types in the right
column (see Theorem 2.20 (3)).

(2) If n is even or if 2i ̸= n + 1, then the four (g, K)-modules (Aqi)a,b
(a, b ∈ {±}) are not isomorphic to each other.

If 2i = n+ 1, then there are isomorphisms

(Aqn+1
2

)+,+ ≃ (Aqn+1
2

)−,+ and (Aqn+1
2

)+,− ≃ (Aqn+1
2

)−,−

as (g, K)-modules for the disconnected group O(n+ 1, 1).

Thus the left-hand sides of the formulæ in Proposition 14.44 (1) have
overlaps when n is odd and i = n+1

2
. In fact, the Levi part in this case is

of the form Ln+1
2
≃ SO(2)

n+1
2 × O(0, 1), and χ−+ ≃ 1 and χ+− ≃ χ−− as

O(0, 1)-modules.

14.9.4 Irreducible representations with nonzero (g, K)-cohomologies

In this section, we prove Theorem 2.20 (9) on the classification of irreducible
unitary representations of G = O(n+1, 1) with nonzero (g, K)-cohomologies.
We have already seen in Lemma 12.15 that H∗(g, K; (Πℓ,δ)K) ̸= {0} for all
0 ≤ ℓ ≤ n + 1 and δ ∈ {±}. Hence the proof of Theorem 2.20 (9) will be
completed by showing the following.

Proposition 14.45. Let Π be an irreducible unitary representation of G =
O(n + 1, 1) such that H∗(g, K; ΠK) ̸= {0}. Then the smooth representation
Π∞ is isomorphic to Πℓ,δ (see (2.35)) for some 0 ≤ ℓ ≤ n+ 1 and δ ∈ {±}.

Proof. We begin with representations of the identity componentG0 = SO0(n+
1, 1). In this case, we write A0

q by putting superscript 0 to denote the (g, K0)-
module which is cohomologically induced from the trivial one-dimensional
representation of a θ-stable parabolic subalgabra q.
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By a theorem of Vogan and Zuckerman [65], any irreducible unitary repre-
sentation Π0 of G0 with H∗(g, K0; (Π

0)K0) ̸= {0} is of the form (Π0)K0 ≃ A0
q

for some θ-stable parabolic subalgebra q in gC. We recall from Definition
14.37 that qi (0 ≤ i < n+1

2
) and q±i (i = n+1

2
) are θ-stable parabolic subal-

gebras such that the Levi subgroup NG0(qi) (or NG0(q
±
i )) are isomorphic to

SO(2)i×SO0(n− 2i+1, 1). They exhaust all θ-stable parabolic subalgebras
up to inner automorphisms and up to cocompact Levi factors, namely, there
exists 0 ≤ i ≤ [n+1

2
] such that

qi ⊂ q and NG0(q)/NG0(qi) is compact

if we take a conjugation of q by an element of G0. (For i = n+1
2
, qi is

considered as either q+i or q−i .) Then we have a (g, K0)-isomorphism

(Π0)K0 ≃ A0
q ≃

{
A0

qi
if 2i < n+ 1,

A0
q+i

or A0
q−i

if 2i = n+ 1.
(14.39)

Now we consider an irreducible unitary representation Π of the disconnected
group G = O(n + 1, 1) such that H∗(g, K; ΠK) ̸= {0}. The assumption
implies H∗(g, K0; ΠK) ̸= {0}, and therefore there exists a G0-irreducible
submodule Π0 of the restriction Π|G0 such that H∗(g, K0; (Π

0)K0) ̸= {0}.
By the reciprocity, the underlying (g, K)-module ΠK must be an irreducible
summand in the induced representation

indg,K
g,K0

((Π0)K0).

It follows from (14.39) and from Proposition 14.44 (2) that

indg,K
g,K0

((Π0)K0) ≃


⊕

a,b∈{±}
(Aqi)a,b if 2i < n+ 1,

(Aqn+1
2

)+,+ ⊕ (Aqn+1
2

)−,− if 2i = n+ 1.

Thus Proposition 14.45 follows from Proposition 14.44 (1).

14.9.5 Description of subquotients in Iδ(V, λ)

We use the θ-stable parameter for the description of irreducible subquotients
of the principal series representations Iδ(V, λ) of G = O(n+1, 1) with regular
integral infinitesimal character.
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Theorem 14.46. Suppose V ∈ Ô(n) and λ ∈ Z − S(V ). Let i := i(λ, V )
be the height as in Lemma 14.24. We write V = FO(n)(σ)ε with σ =
(σ1, · · · , σ[n

2
]) ∈ Λ+([n

2
]) and ε ∈ {±}. Let δ ∈ {±}.

(1) Suppose λ ≥ n
2
. Then n

2
≤ i ≤ n.

If i ̸= n
2
, then we have the following nonsplit exact sequence of G-

modules of moderate growth:

0→(σ1 − 1, · · · , σn−i − 1, λ− i ||σn−i+1, · · · , σ[n
2
])ε,−δε

→Iδ(V, λ)
→(σ1 − 1, · · · , σn−i − 1 ||λ− i, σn−i+1, · · · , σ[n

2
])ε,δε → 0. (14.40)

(2) Suppose λ ≤ n
2
. Then 0 ≤ i ≤ n

2
.

If i ̸= n
2
, then we have the following nonsplit exact sequence of G-

modules of moderate growth:

0→(σ1 − 1, · · · , σi − 1 || i− λ, σi+1, · · · , σ[n
2
])ε,δε

→Iδ(V, λ)
→(σ1 − 1, · · · , σi − 1, i− λ ||σi+1, · · · , σ[n

2
])ε,−δε → 0. (14.41)

(3) Suppose i = n
2
, or equivalently, suppose that n is even and σn

2
> |λ− n

2
|.

If λ ̸= n
2
, then λ ∈ SY (V ) (see (14.18)). In this case, Iδ(V, λ) is

irreducible and we have a G-isomorphism:

Iδ(V, λ) ≃ (σ1 − 1, · · · , σn
2
− 1 || |λ− n

2
|)a,b

whenever a, b ∈ {±} satisfies ab = δ.

If λ = n
2
, then Iδ(V, λ) splits into the direct sum of two irreducible

representations of G:

Iδ(V, λ) ≃
⊕

a,b∈{±},ab=δ

(σ1 − 1, · · · , σn
2
− 1 || 0)a,b. (14.42)

Remark 14.47. In Theorem 14.46 (3), we have a G-isomorphism

Iδ(F
O(n)(σ)+, λ) ≃ Iδ(F

O(n)(σ)−, λ) for each δ = ±.
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In fact, by Lemma 14.28, i(λ, V ) = n
2
implies that V is of type Y, hence there

is an O(N)-isomorphism FO(N)(σ)+ ≃ FO(N)(σ)− by Lemma 2.9.
Moreover, the restriction of each irreducible summand in (14.42) to the

special orthogonal group SO(n + 1, 1) is irreducible (see Lemma 15.2 (1) in
Appendix II).

14.9.6 Proof of Theorem 14.46

Sketch of the proof of Theorem 14.46. If the ZG(g)-infinitesimal character of
the principal series representation Iδ(F

O(n)(σ)ε, λ) is ρG, then Theorem 14.46
is a reformulation of Theorem 2.20 in terms of θ-stable parameters. This is
done in Proposition 14.49 below.

The general case is derived from the above case by the translation princi-
ple, see Theorems 16.22 and 16.24, and also the argument there (e.g., Lemma
16.12) in Appendix III.

Suppose V =
∧

i(Cn). By Example 14.6, the principal series representa-
tion Iδ(i, λ) = IndG

P (
∧

i(Cn)⊗ δ ⊗ Cλ) is expressed as follows.

Lemma 14.48. There are natural G-isomorphisms:

Iδ(ℓ, ℓ) ≃Iδ(FO(n)(1ℓ, 0[
n
2
]−ℓ)+, ℓ) if ℓ ≤ n

2
,

Iδ(ℓ, ℓ) ≃Iδ(FO(n)(1n−ℓ, 0ℓ−[n+1
2

])−, ℓ) if ℓ ≥ n

2
.

Proposition 14.49. Suppose 0 ≤ ℓ ≤ n
2
. Then Theorem 14.46 holds for

λ = ℓ and σ = (1ℓ, 0[
n
2
]−ℓ) ∈ Λ+([n

2
]).

Proof. By Theorem 2.20 (1), we have an exact sequence of G-modules

0→ Πℓ,δ → Iδ(ℓ, ℓ)→ Πℓ+1,−δ → 0,

which does not split as far as ℓ ̸= n
2
. By Proposition 14.44, this yields an

exact sequence of (g, K)-modules:

0→ (Aqℓ)+,δ → Iδ(ℓ, ℓ)K → (Aqℓ+1
)+,−δ → 0.

By Lemma 14.48 and the definition of θ-stable parameters, this exact se-
quence can be written as

0→ (0ℓ || 0[
n
2
]−ℓ+1)+,δ → Iδ(F

O(n)(σ)+, ℓ)→ (0ℓ+1 || 0[
n
2
]−ℓ)+,−δ → 0.
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Since the height of (FO(n)(σ)+, ℓ) = (
∧

ℓ(Cn), ℓ) is given by i(
∧

ℓ(Cn), ℓ) = ℓ.
i(ℓ, σ) = ℓ by Example 14.25, we get Proposition 14.49 from Lemma 2.14
and (14.36).

14.10 Hasse sequence in terms of θ-stable parameters

This section gives a description of the Hasse sequence (Definition-Theorem
13.1) and the standard sequence (Definition 13.2) in terms of θ-stable pa-
rameters.

We set m := [n+1
2
], namely n = 2m − 1 or 2m. Let F be an irreducible

finite-dimensional representation of G = O(n + 1, 1), and Ui ≡ Ui(F ) (0 ≤
i ≤ [n+1

2
]) be the Hasse sequence with U0 ≃ F . We write

F = FO(n+1,1)(s0, · · · , s[n
2
])a,b

as in Lemma 14.3 (2).

Theorem 14.50. Let n = 2m and 0 ≤ i ≤ m.

(1) (Hasse sequence) Ui(F ) ≃ (s0, · · · , si−1 || si, · · · , sm)a,(−1)i−sib.

(2) (standard sequence) Ui(F )⊗ χi
+− ≃ (s0, · · · , si−1 || si, · · · , sm)a,(−1)sib.

Proof. (1) We begin with the case a = b = +. Let s := (s0, · · · , sm, 0m+1) ∈
Λ+(2m + 2). As in (13.1) of Section 13.1, we define s(ℓ) ∈ Λ+(2m) for
0 ≤ ℓ ≤ m. Then by Theorem 13.7, there is an injective G-homomorphism

Uℓ(F ) ↪→ I(−1)ℓ−sℓ (F
O(n)(s(ℓ)), ℓ− sℓ).

The O(n)-module FO(n)(s(ℓ)) is of type I (Definition 2.4), and we have

i(FO(n)(s(ℓ)), ℓ− sℓ)) = ℓ

with the notation of Lemma 14.24.
By Theorem 14.46, we get the theorem for a = b = + case. The general

case follows from the case (a, b) = (+,+) by the tensoring argument given in
Proposition 13.4.
(2) The second statement follows from Definition 13.2 and (14.36).

The case n odd is given similarly as follows.

Theorem 14.51. Let n = 2m− 1, and 0 ≤ i ≤ m− 1.
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(1) (Hasse sequence) Ui(F ) ≃ (s0, · · · , si−1 || si, · · · , sm−1)a,(−1)i−sib.

(2) (standard sequence) Ui(F )⊗χi
+− ≃ (s0, · · · , si−1 || si, · · · , sm−1)a,(−1)sib.

Proof. (1) We begin with the case a = b = +. Let s := (s0, · · · , sm−1, 0
m+1) ∈

Λ+(2m+1). As in (13.4), we define s(ℓ) ∈ Λ+(2m−1) for 0 ≤ ℓ ≤ m−1.
Then by Theorem 13.9,

Uℓ(F ) ⊂ I(−1)ℓ−sℓ (F
O(n)(s(ℓ)), ℓ− sℓ).

The O(n)-module FO(n)(s(ℓ)) is of type I, and we obtain

i(FO(n)(s(ℓ)), ℓ− sℓ) = ℓ

with the notation of Lemma 14.24.

By Theorem 14.46, we get the theorem for a = b = + case. The general
case follows from the case (a, b) = (+,+) by the tensoring argument
given in Proposition 13.4.

(2) The second statement follows from Definition 13.2 and (14.36).

14.11 Singular integral case

We end this chapter with cohomologically induced representations with sin-
gular parameter, and give a description of complementary series representa-
tions with integral parameter (see Section 3.6.3) in terms of θ-stable param-
eters.

For 0 ≤ r ≤ [n+1
2
], we define qr = (lr)C + ur to be the θ-stable parabolic

subalgebra with Levi subgroups Lr ≃ SO(2)r × O(n + 1 − 2r, 1) in G =
O(n+ 1, 1) as in Definition 14.37. We set Sr = r(n− r).

For ν = (ν1, · · · , νr) ∈ Zr ≃ (SO(2)r)̂ and a, b ∈ {±}, we consider the
underlying (g, K)-modules of the admissible smooth representations of G:

(ν1, · · · , νr || 0, · · · , 0︸ ︷︷ ︸
[n
2
]−r+1

)a,b,

namely, the following (g, K)-modules

Aqr(ν)a,b = RSr
qr (χab ⊗ Cν+ρ(u)) ≃ RSr

qr (Cν+ρ(ur))⊗ χab,
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which are cohomologically induced from the one-dimensional representations
Cν ⊠ χab of the Levi subgroup Lr, see Remark 14.43 for our normalization
about “ρ-shift”.

Sometimes we suppress the subscript +,+ and write simply Aqr(ν) for
Aqr(ν)+,+.

For a description of singular integral complementary series representations
Iδ(i, s) in terms of θ-stable parameters, we need to treat the parameter ν
outside the good range ([26, Def. 0.49]) relative to the θ-stable parabolic
subalgebra qr with r = i+1 (see Theorem 14.53 below), for which the general
theory about the nonvanishing and irreducibility (e.g. [26, Thm. 0.50]) does
not apply. For instance, the condition on the parameter ν for which Aqr(ν) ̸=
0 is usually very complicated when ν wanders outside the good range. In our
setting, we use the following results from [29]:

Fact 14.52. Let 0 ≤ r ≤ [n+1
2
], and qr be the θ-stable parabolic subalgebra

as defined in Definition 14.37. Suppose that ν = (ν1, · · · , νr) ∈ Zr satisfies
the weakly fair condition (14.38) relative to qr. Let a, b ∈ {±}.

(1) The G-module (ν1, · · · , νr || 0, · · · , 0)a,b is nonzero if and only if r = 1
or νr−1 ≥ −1.

(2) If the condition (1) is fulfilled, then (ν1, · · · , νr || 0, · · · , 0)a,b is irre-
ducible and unitarizable.

Proof. This is a special case of [29, Thm. 3] for the indefinite orthogonal
group O(p, q) with (p, q) = (n+ 1, 1) with the notation there.

Assume now ν1 = · · · = νr−1 = 0. Then the necessary and sufficient
condition for the parameter ν = (0, · · · , 0, νr) ∈ Zr to be in the weakly fair
range but outside the good range is given by

νr ∈ {−1,−2, · · · , r − 1− [
n

2
]}.

In this case, the G-module (0, · · · , 0, νr || 0, · · · , 0)a,b is nonzero, irreducible,
and unitarizable for a, b ∈ {±} as is seen in Fact 14.52. It turns out that
these very parameters give rise to the complementary series representations
with integral parameter stated in Section 3.6.3 as follows:
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Theorem 14.53. Let 0 ≤ i ≤ [n
2
] − 1. Then the underlying (g, K)-modules

of the complementary series representations I±(i, s) and I±(n − i, s) with
integral parameter s ∈ {i+ 1, i+ 2, · · · , [n

2
]} are given by

I+(i, s)K ≃ Aqi+1
(0, · · · , 0, s− i)+,+;

I−(i, s)K ≃ Aqi+1
(0, · · · , 0, s− i)+,−;

I+(n− i, s)K ≃ Aqi+1
(0, · · · , 0, s− i)−,−;

I−(n− i, s)K ≃ Aqi+1
(0, · · · , 0, s− i)−,+.

Hence, their smooth globalizations are described by θ-stable parameters as
follows:

I+(i, s) ≃ (0, · · · , 0, s− i︸ ︷︷ ︸
i+1

|| 0, · · · , 0︸ ︷︷ ︸
[n
2
]−i

)+,+;

I−(i, s) ≃ (0, · · · , 0, s− i || 0, · · · , 0)+,−;

I+(n− i, s) ≃ (0, · · · , 0, s− i || 0, · · · , 0)−,−;

I−(n− i, s) ≃ (0, · · · , 0, s− i || 0, · · · , 0)−,+.
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15 Appendix II: Restriction to G = SO(n+1, 1)

So far we have been working with symmetry breaking for a pair of the or-
thogonal groups (O(n+1, 1), O(n, 1)). On the other hand, the Gross–Prasad
conjectures (Chapters 11 and 13) are formulated for special orthogonal groups
rather than orthogonal groups. In this chapter, we explain how to translate
the results for (G,G′) = (O(n+1, 1), O(n, 1)) to those for the pair of special
orthogonal groups (G,G′) = (SO(n + 1, 1), SO(n, 1)). A part of the results
here (e.g., Theorem 15.16) was announced in [45].

In what follows, we use a bar over representations of special orthogonal
groups to distinguish them from those of orthogonal groups.

15.1 Restriction of representations of G = O(n+1, 1) to
G = SO(n+ 1, 1)

It is well-known that any irreducible admissible representation Π of a real
reductive group G is decomposed into the direct sum of finitely many irre-
ducible admissible representations of G if G is an open normal subgroup of
G (see [9, Chap. II, Lem. 5.5]). In order to understand how the restriction
Π|G decomposes, we use the action of the quotient group G/G on the ring
EndG(Π|G) = HomG(Π|G,Π|G).

We apply this general observation to our setting where

(G,G) = (O(n+ 1, 1), SO(n+ 1, 1)).

In this case, the quotient group G/G ≃ Z/2Z. With the notation (2.13) of
the characters χab of G,

{χ++, χ−−} = {1, det}

is the set of irreducible representations of G = O(n + 1, 1) which are trivial
on G = SO(n + 1, 1). In other words, we have a direct sum decomposition
as G-modules:

IndG
G
1 ≃ 1⊕ det .

Then we have the following:

Lemma 15.1. Let Π be a continuous representation of G = O(n + 1, 1).
Then there is a natural linear bijection:

EndG(Π|G) ≃ HomG(Π,Π)⊕ HomG(Π,Π⊗ det).
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Proof. Clear from the following linear bijections:

EndG(Π|G) ≃ HomG(Π, Ind
G
G
(Π|G)) ≃ HomG(Π,Π⊗ IndG

G
1).

We examine the restriction of irreducible representations of G to the
subgroup G:

Lemma 15.2. Suppose that Π is an irreducible admissible representation of
G = O(n+ 1, 1).

(1) If Π ̸≃ Π⊗ det as G-modules, then the restriction Π|G is irreducible.

(2) If Π ≃ Π ⊗ det as G-modules, then the restriction Π|G is the direct
sum of two irreducible admissible representations of G that are not
isomorphic to each other.

Proof. By Lemma 15.1, we have

dimC HomG(Π|G,Π|G) =dimC HomG(Π,Π) + dimC HomG(Π,Π⊗ det)

=

{
1 if Π ̸≃ Π⊗ det,

2 if Π ≃ Π⊗ det.

Since the restriction Π|G is the direct sum of irreducible admissible represen-
tations of G, we may write the decomposition as

Π|G ≃
N⊕
j=1

mjΠj,

where Πj are (mutually inequivalent) irreducible admissible representations
of G and mj ∈ N+ denote the multiplicity of Πj in Π|G for 1 ≤ j ≤ N . By
Schur’s lemma,

dimC EndG(Π|G) =
N∑
j=1

m2
j .

This is equal to 1 or 2 if and only if N = m1 = 1 or N = 2 and m1 = m2 = 1,
respectively. Hence we get the conclusion.
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15.2 Restriction of principal series representation of
G = O(n+ 1, 1) to G = SO(n+ 1, 1)

This section discusses the restriction of the principal series representation
Iδ(V, λ) of G = O(n+1, 1) to the normal subgroup G = SO(n+1, 1) of index
two. First of all, we fix some notation for principal series representations of
G. We set P := P ∩G. Then P is a minimal parabolic subgroup of G, and
its Langlands decomposition is given by P =MAN+, where

M :=M ∩G = {

ε B
ε

 : B ∈ SO(n), ε = ±1} ≃ SO(n)×O(1)

is a subgroup of M of index two. For an irreducible representation (σ, V )
of SO(n), δ ∈ {±}, and λ ∈ C, we denote by Iδ(V , λ) the (unnormalized)

induced representation IndG
P
(V ⊗ δ ⊗ Cλ) of G = SO(n+ 1, 1).

Let us compare principal series representations ofG regarded asG-modules
by restriction with principal series representations of G. For this, we suppose
V is an irreducible representation of O(n), δ ∈ {±}, and λ ∈ C, and form a
principal series representation Iδ(V, λ) of G = O(n + 1, 1). Then its restric-

tion to the subgroup G = SO(n+1, 1) is isomorphic to IndG
P
(V |SO(n)⊗δ⊗Cλ)

as a G-module, because the inclusion G ↪→ G induces an isomorphism
G/P

∼→ G/P .
Concerning the SO(n)-module V |SO(n), we recall from Definition 2.6 that

V ∈ Ô(n) is said to be of type X or of type Y according to whether V is
irreducible or reducible when restricted to SO(n). In the latter case, n is even
(see Lemma 2.7) and V is decomposed into the direct sum of two irreducible
representations of SO(n):

V = V (+) ⊕ V (−), (15.1)

where V (−) is isomorphic to the contragredient representation of V (+). Ac-
cordingly, we have an isomorphism as G-modules:

Iδ(V, λ)|G ≃

{
Iδ(V, λ) if V is of type X,

Iδ(V
(+), λ)⊕ Iδ(V (−), λ) if V is of type Y.

(15.2)

By using (15.2), we obtain the structural results of the restriction of the
principal series representation Iδ(V, λ) ofG = O(n+1, 1) to the subgroupG =
SO(n+1, 1) and further to the identity component group G0 = SO0(n+1, 1).
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15.2.1 Restriction Iδ(V, λ)|G when Iδ(V, λ) is irreducible

We begin with the case where Iδ(V, λ) is irreducible as a G-module.

Lemma 15.3. Let (σ, V ) ∈ Ô(n), δ ∈ {±} and λ ∈ C. Suppose Iδ(V, λ) is
irreducible as a module of G = O(n+ 1, 1).
(1) Suppose V is of type X. Then the following three conditions on (δ, V, λ)
are equivalent:

(i) Iδ(V, λ) is irreducible as a G-module;

(ii) The restriction Iδ(V, λ)|G is irreducible as a G-module;

(iii) The restriction Iδ(V, λ)|G0 is irreducible as a G0-module.

(2) Suppose V is of type Y. If Iδ(V, λ) is irreducible as a G-module, then
Iδ(V, λ)|G splits into the direct sum of two irreducible G-modules that are
not isomorphic to each other. In this case, n is even and we may write the
irreducible decomposition of V |SO(n) as in (15.1). Then there is a natural
isomorphism

Iδ(V, λ)|G ≃ Iδ(V
(+), λ)⊕ Iδ(V (−), λ)

as G-modules. Moreover, both Iδ(V
(+), λ) and Iδ(V

(−), λ) stay irreducible
when restricted to G0, and they are not isomorphic to each other also as
G0-modules.

Proof. We observe that the first factor of M is isomorphic to O(n), whereas
that of M ∩ G (= M) and of M ∩ G0 is isomorphic to SO(n). Since the
crucial part is the restriction from the Levi subgroup MA of G to that of G
or of G0, we focus on the restriction G ↓ G, which involves the restriction of
V with respect to the inclusion O(n) ⊃ SO(n). The restriction G ↓ G0 can
be analyzed similarly by using the four characters χab (a, b ∈ {±}) instead
of χ−− = det as in [37, Chap. 2, Sect. 5].

From now on, we consider the restriction G ↓ G. We recall from Lemma
2.14 the following isomorphism of G-modules:

Iδ(V, λ)⊗ χ−− ≃ Iδ(V ⊗ det, λ).

(1) If V is of type X, then V ̸≃ V ⊗ det as O(n)-modules. In turn, the
G-modules Iδ(V, λ) and Iδ(V ⊗ det, λ) are not isomorphic to each other,
because their K-structures are different by the Frobenius reciprocity and the
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branching rule for O(n) ↓ O(n − 1) (Fact 2.12). Therefore, Iδ(V, λ)|G is
irreducible by Lemma 15.2 (1).
(2) If V is of type Y, then V ⊗ det ≃ V by Lemma 2.9, and therefore
Lemma 15.2 (2) concludes the first assertion. The remaining assertions are
now clear.

15.2.2 Restriction Iδ(V, λ)|G when V is of type Y

We take a closer look at the case where V ∈ Ô(n) is of type Y (Definition
2.6). This means that n is even, say n = 2m, and the representation V is of
the form

V = FO(2m)(σ1, · · · , σm)ε
with σ1 ≥ · · · ≥ σm ≥ 1 and ε ∈ {±}, see Section 14.1 for the notation.
Then the restriction V |SO(n) decomposes as

V |SO(n) = V (+) ⊕ V (−)

as in (15.1), where the highest weights of the irreducible SO(2m)-modules
V (±) are given by (σ1, · · · , σm−1,±σm). We recall from Definition 14.10 for
the subsets S(V ) and SY (V ) of Z.

Proposition 15.4. Suppose G = O(n+1, 1) with n = 2m and (σ, V ) ∈ Ô(n)
is of type Y. Let δ ∈ {±}.

(1) The following four conditions on λ ∈ C are equivalent.

(i) Iδ(V
(+), λ) is reducible as a representation of G = SO(n+ 1, 1);

(ii) Iδ(V
(−), λ) is reducible as a G-module;

(iii) ±(λ−m) ∈ Z−({σj+m−j : j = 1, · · · ,m}∪{0, 1, 2, · · · , σm−1});
(iv) λ ∈ Z− (S(V ) ∪ SY (V ) ∪ {m}).

(2) Suppose that λ satisfies one of (therefore any of) the above equivalent
conditions. Then, for ε ∈ {±}, the principal series representation
Iδ(V

(ε), λ) of G has a unique G-submodule, to be denoted by Iδ(V
(ε), λ)♭,

such that the quotient G-module

Iδ(V
(ε), λ)♯ := Iδ(V

(ε), λ)/Iδ(V
(ε), λ)♭
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is irreducible. Moreover we have

Iδ(V
(+), λ)♭ ̸≃ Iδ(V

(−), λ)♭,

Iδ(V
(+), λ)♯ ̸≃ Iδ(V

(−), λ)♯

as G-modules.

Proof. Since G = SO(2m + 1, 1) is generated by the identity component
G0 = SO0(2m + 1, 1) and a central element −I2m+2, any irreducible G-
module remains irreducible when restricted to the connected subgroup G0.
Then the equivalence (i) ⇔ (iii) (also (ii) ⇔ (iii)) and the last assertion in
Proposition 15.4 follows from Hirai [17]. See also Collingwood [11, Lem. 4.4.1
and Thm. 5.2.1] for the computation of τ -invariants of irreducible represen-
tations and a graphic description of the socle filtrations of principal series
representations. Finally the equivalence (iii) ⇔ (iv) is immediate from the
definitions (14.13) and (14.14) of S(V ) and SY (V ), respectively.

The last assertion about the G-inequivalence follows from the Langlands
theory [52] because Reλ ̸= m and V (+) ̸≃ V (−) as SO(2m)-modules.

In the following proposition, we treat the set of the parameters λ com-
plementary to the one in Proposition 15.4.

Proposition 15.5. Suppose G = O(n+1, 1) with n = 2m and V ∈ Ô(n) is of
type Y. Let δ ∈ {±}. Assume that Iδ(V

(±), λ) are irreducible representations
of G = SO(2m+ 1, 1), or equivalently, assume that

λ ∈ (C− Z) ∪ S(V ) ∪ SY (V ) ∪ {m}.

(1) The following two conditions on λ ∈ C are equivalent:

(i) The two G-modules Iδ(V
(+), λ) and Iδ(V

(−), λ) are isomorphic to
each other;

(ii) λ = m.

(2) If λ = m then the principal series representation Iδ(V, λ) of G is de-
composed into the direct sum of two irreducible representations of G.

(3) If λ ̸= m, then Iδ(V, λ) is irreducible as a representation of G.
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Proof. (1) As in the proof of Proposition 15.4 (2), if Reλ ̸= m, then the
Langlands theory [52] implies Iδ(V

(+), λ) ̸≃ Iδ(V
(−), λ) because V (+) ̸≃ V (−)

as SO(2m)-modules.
If Reλ = m, then Iδ(V

(±), λ) are (smooth) irreducible tempered repre-
sentations, and the equivalence (i)⇔ (ii) follows from Hirai [17]. This would
follow also from the general theory of the “R-group” (Knapp–Zuckerman
[27]).
(2) Since Reλ = m is the unitary axis of the principal series representation
Iδ(V, λ) in our normalization (Section 2.3.1), the G-module Iδ(V, λ) decom-
poses into the direct sum of irreducible G-modules, say, Π(1), . . . , Π(k), and
then decomposes further into irreducible G-modules when restricted to the
subgroup G = SO(2m + 1, 1). Therefore the cardinality k of irreducible
G-summands satisfies either k = 1 (i.e., Iδ(V, λ) is G-irreducible) or k = 2
because the summands Iδ(V

(±), λ) in (15.2) are irreducible as G-modules
by assumption. Since Iδ(V

(+),m) ≃ Iδ(V
(−),m) by the first statement, we

conclude k ̸= 1 by Lemma 15.3 (2). Thus the second statement is proved.
(3) We prove that Iδ(V, λ) is irreducible by reductio ad absurdum. Suppose
there were an irreducible proper submodule Π of Iδ(V, λ). Then Π would re-
main irreducible when restricted to the subgroup G = SO(2m+1, 1) because
the restriction Π|G must be isomorphic to one of the G-irreducible summands
Iδ(V

(±), λ) in (15.2). Then Π ̸≃ Π ⊗ det as G-modules by Lemma 15.1.
Therefore the direct sum Π⊕ (Π⊗ det) would be a G-submodule of Iδ(V, λ)
because Iδ(V, λ) ≃ Iδ(V, λ)⊗det when V is of type Y. In turn, its restriction
to the subgroup G would yield an isomorphism Iδ(V

(+), λ) ≃ Iδ(V
(−), λ)

of G-modules, contradicting the statement (1) of the proposition. Hence
Iδ(V, λ) must be irreducible.

Applying Propositions 15.4 and 15.5 to the middle exterior representation∧
m(Cn) of O(n) when n = 2m, we obtain the following.

Example 15.6. LetG = O(n+1, 1) with n = 2m, and δ ∈ {±}. As in (15.5),

we write I
(±)

δ (m,λ) for the G-modules Iδ(V
(±), λ) when V =

∧
m(C2m).

(1) The G-modules I
(±)

δ (m,λ) are reducible if and only if λ ∈ (−N+)∪(n+
N+).

(2) TheG-module Iδ(m,m) decomposes into a direct sum of two irreducible
G-modules (see also Theorem 2.20 (1)).
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(3) Iδ(m,λ) is irreducible if λ ∈ Z satisfies 0 ≤ λ ≤ n (= 2m) and λ ̸= m.

We refer to Theorem 2.20 (also to Example 14.16) for the irreducibility
condition of Iδ(i, λ) for general i (0 ≤ i ≤ n); to Theorem 14.15 for that of
Iδ(V, λ), which will be proved in the next section.

15.3 Proof of Theorem 14.15: Irreducibility criterion
of Iδ(V, λ)

As an application of the results in the previous sections, we give a proof of
Theorem 14.15 on the necessary and sufficient condition for the principal
series representation Iδ(V, λ) of G = O(n+ 1, 1) to be irreducible.

Proof of Theorem 14.15. Suppose first that V is of type X (Definition 2.6).
Then the restriction V |SO(n) is irreducible as an SO(n)-module, and Iδ(V, λ)
is G-irreducible if and only if the restriction Iδ(V, λ)|G0 is G0-irreducible by
Lemma 15.3 (1). The latter condition was classified in Hirai [17], which
amounts to the condition that λ ̸∈ Z or λ ∈ S(V ). Thus Theorem 14.15 for
V of type X is proved.

Next suppose V is of type Y. As in (15.1), we write V |SO(n) ≃ V (+) ⊕
V (−) for the irreducible decomposition as SO(n)-modules. If Iδ(V, λ) is G-
irreducible, then Iδ(V

(±), λ) are G-irreducible by Lemma 15.3 (2). Then the
condition (iv) in Proposition 15.4 (1) implies that

λ ̸∈ Z or λ ∈ S(V ) ∪ SY (V ) ∪ {m}. (15.3)

Conversely, under the condition (15.3), Proposition 15.5 tells that Iδ(V, λ) is
irreducible if and only if λ ̸∈ Z or λ ∈ S(V ) ∪ SY (V ). Thus Theorem 14.15
is proved also for V of type Y.

15.4 Socle filtration of Iδ(V, λ): Proof of Proposition
14.19

In this section, we complete the proof of Proposition 14.19 about the socle
filtration of the principal series representation Iδ(V, λ) of G = O(n + 1, 1)
when it is reducible and λ ̸= n

2
by using the restriction to the subgroups

G = SO(n+ 1, 1) or G0 = SO(n+ 1, 1).

We begin with the case that V ∈ Ô(n) is of type X (Definition 2.6).
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Proof of Proposition 14.19 when V is of type X. In this case, for any nonzero
subquotient Π of the principal series representation Iδ(V, λ) of G = O(n +
1, 1), we have

Π ̸≃ Π⊗ det

as G-modules because their K-types are different by Proposition 14.29. In
turn, Lemma 15.2 implies that Π is irreducible as a G-module if and only if
the restriction Π|G is irreducible.

For n even, the restriction Π|G0 further to the identity component G0 =
SO0(n + 1, 1) is still irreducible because G = SO(n + 1, 1) is generated by
G0 and a central element −In+2. Thus the assertion follows from the socle
filtration of the principal series representation of G0 in Hirai [17].

For n odd, since the restriction V |SO(n) stays irreducible, Iδ(V, λ)|G0 is a
principal series representation of G0 = SO0(n + 1, 1). Therefore the restric-
tion Π|G0 is a G0-subquotient of a principal series representation of G0, of
which the length of composition series is either 2 or 3 by Hirai [17]. Inspecting
theK-structure of Iδ(V, λ) from Proposition 14.29 again and theK0-structure
of subquotients of the principal series representation of G0 = SO0(n + 1, 1)
in [17], we see that the restriction Π|G0 is irreducible as a G0-module if Π is
not (the smooth representation of) a discrete series representation, whereas
it is a sum of two (holomorphic and anti-holomorphic) discrete series repre-
sentations of G0 if Π is a discrete series representation.

Alternatively, one may reduce the proof for type X to the case (V, λ) =
(
∧

i(Cn), i) by using the translation functor, see Theorems 16.6 and 16.8 (1)
in Appendix III.

As the above proof shows, we obtain the restriction formula of irreducible
subquotients Iδ(V, λ)

♭ and Iδ(V, λ)
♯ of the G-module Iδ(V, λ) (Proposition

14.19) to the normal subgroup G = SO(n+ 1, 1) as follows.

Proposition 15.7. Suppose V ∈ Ô(n) is of type X and λ ∈ Z− S(V ). Let
δ ∈ {±}.

(1) The principal series representation Iδ(V, λ) of G has a unique proper
submodule, to be denoted by Iδ(V, λ)

♭. In particular, the quotient G-
module Iδ(V, λ)

♯ := Iδ(V, λ)/Iδ(V, λ)
♭ is irreducible.

(2) The restriction of the irreducible G-modules Iδ(V, λ)
♭ and Iδ(V, λ)

♯ to
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the normal subgroup G is given by

Iδ(V, λ)
♭|G ≃ Iδ(V, λ)

♭,

Iδ(V, λ)
♯|G ≃ Iδ(V, λ)

♯.

We end this section with the restriction of Iδ(V, λ)
♭ and Iδ(V, λ)

♯ to the
subgroup G when V is of type Y:

Proposition 15.8. Suppose G = O(n + 1, 1) with n = 2m. Assume that

V ∈ Ô(n) is of type Y, δ ∈ {±}, and λ ∈ Z−(S(V )∪SY (V )∪{m}). Then the
restriction of Iδ(V, λ)

♭ and Iδ(V, λ)
♯ to the normal subgroup G = SO(n+1, 1)

decomposes into the direct sum of two irreducible G-modules:

Iδ(V, λ)
♭|G ≃ Iδ(V

(+), λ)♭ ⊕ Iδ(V (−), λ)♭,

Iδ(V, λ)
♯|G ≃ Iδ(V

(+), λ)♯ ⊕ Iδ(V (−), λ)♯,

where we recall from Proposition 15.4 for the definition of the irreducible
G-modules Iδ(V

(±), λ)♭ and Iδ(V
(±), λ)♯.

Proof of Proposition 14.19 for V of type Y. By Lemma 15.2 and by the struc-
tural results on G-modules Iδ(V

(±), λ) in Proposition 15.4, the proof is re-
duced to the following lemma.

Lemma 15.9. Under the assumption of Proposition 15.8, any G-submodule
Π of Iδ(V, λ) satisfies

Π ≃ Π⊗ det (15.4)

as G-modules.

Proof. Since V is of type Y, V ≃ V ⊗ det as O(n)-modules, hence we have
natural G-isomorphisms

Iδ(V, λ) ≃ Iδ(V, λ)⊗ det

by Lemma 2.14. We prove (15.4) by reductio ad absurdum. Suppose that
the G-module Π were not isomorphic to Π ⊗ det. Then the direct sum
representation Π ⊕ (Π ⊗ det) would be a G-submodule of Iδ(V, λ). In turn,
the G-module Π|G would occur in Iδ(V, λ)|G ≃ Iδ(V

(+), λ) ⊕ Iδ(V (−), λ) at
least twice. But this is impossible by Proposition 15.4. Thus Lemma 15.9 is
proved.
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15.5 Restriction of Πℓ,δ to SO(n+ 1, 1)

In this section we treat the case where Iδ(V, λ) is not irreducible as a G-
module. We discuss the restriction of G-irreducible subquotients of Iδ(V, λ)
to the subgroup G = SO(n+ 1, 1).

We focus on the case when (σ, V ) is the exterior representation on V =∧
i(Cn). In particular, irreducible representations that have the ZG(g)-infinitesimal

character ρ, namely, the irreducible G-modules Πℓ,δ (0 ≤ ℓ ≤ n+1, δ ∈ {±})
arise as G-irreducible subquotients of Iδ(V, λ). To be more precise, we re-
call from (2.35) that Πℓ,δ are the irreducible subrepresentations of Iδ(ℓ, ℓ) for
0 ≤ ℓ ≤ n and coincidently those of I−δ(ℓ− 1, ℓ− 1) for 1 ≤ ℓ ≤ n+ 1.

Lemma 15.10. For all 0 ≤ ℓ ≤ n + 1 and δ = ±, the restriction of Πℓ,δ to
the subgroup G = SO(n+ 1, 1) stays irreducible.

Proof. The restriction Πℓ,δ|G is irreducible by the criterion in Lemma 15.2
(1) because Πℓ,δ ⊗ det ≃ Πn+1−ℓ,−δ ̸≃ Πℓ,δ by Theorem 2.20 (5).

We denote by Πℓ,δ the restriction of the irreducible G-module Πℓ,δ (0 ≤
ℓ ≤ n + 1, δ = ±) to the subgroup G = SO(n + 1, 1). By a little abuse of
notation, we write Iδ(i, λ) for the restriction of Iδ(i, λ), to the subgroup G.
Then the SO(n)-isomorphism

∧
i(Cn) ≃

∧
n−i(Cn) induces a G-isomorphism

Iδ(i, λ) ≃ Iδ(n− i, λ).

Special attention is needed in the case when n is even and n = 2i. In this
case, the O(n)-module

∧
i(Cn) is of type Y (see Example 2.8), and it splits

into the direct sum of two irreducible SO(n)-modules:∧n
2 (Cn) ≃

∧n
2 (Cn)(+) ⊕

∧n
2 (Cn)(−).

We set
I
(±)

δ (
n

2
, λ) := IndG

P
(
∧n

2 (Cn)(±) ⊗ δ ⊗ Cλ).

As in (15.2), the restriction Iδ(
n
2
, λ)|G is the direct sum of two G-modules:

Iδ(
n

2
, λ) ≃ I

(+)

δ (
n

2
, λ)⊕ I(−)

δ (
n

2
, λ) for all λ ∈ C. (15.5)

If Iδ(
n
2
, λ) is G-irreducible, then Lemma 15.3 (2) tells that the represen-

tations I
(±)

δ (n
2
, λ) of the subgroup G are irreducible, and that they are not

isomorphic to each other.
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On the other hand, if λ = i (= n
2
), then the principal series representation

Iδ(i, λ) is not irreducible as a G-module but splits into the direct sum of two
irreducible G-modules (see Theorem 2.20 (1)):

Iδ(
n

2
,
n

2
) ≃ Πn

2
+1,−δ ⊕ Πn

2
,δ,

which are not isomorphic to each other. Moreover, the tensor product with
χ−− switches Πn

2
+1,−δ and Πn

2
,δ (Theorem 2.20 (5)). Hence we have a G-

isomorphism Πn
2
+1,−δ ≃ Πn

2
,δ, which are G-irreducible by Lemma 15.2 (1).

Therefore, for n even, we have the following isomorphisms as G-modules:

Πn
2
,δ ≃ Πn

2
+1,−δ ≃ I

(+)

δ (
n

2
,
n

2
) ≃ I

(−)

δ (
n

2
,
n

2
) for δ = ±. (15.6)

Similarly to Theorem 2.20 about the O(n+1, 1)-modules Πℓ,δ, we summarize
the properties of the restriction Πℓ,δ = Πℓ,δ|G as follows.

Proposition 15.11. Let G = SO(n+ 1, 1) with n ≥ 1.

(1) Πℓ,δ is irreducible as a G-module for all 0 ≤ ℓ ≤ n+ 1 and δ = ±.

(2) Πℓ,δ ≃ Πn+1−ℓ,−δ as G-modules for all 0 ≤ ℓ ≤ n+ 1 and δ = ±.

(3) Irreducible representations of G with Z(g)-infinitesimal character ρG
can be classified as

{Πℓ,δ : 0 ≤ ℓ ≤ n− 1

2
, δ = ±} ∪ {Πn+1

2
,+} if n is odd,

{Πℓ,δ : 0 ≤ ℓ ≤ n

2
, δ = ±} if n is even.

(4) Every Πℓ,δ (0 ≤ ℓ ≤ n+ 1, δ = ±) is unitarizable.

In the next statement, we use the same symbol Πℓ,δ to denote the irreducible
unitary representation obtained by the Hilbert completion of Πℓ,δ with respect
to a G-invariant inner product.

(5) For n odd, Πn+1
2

,+ is a discrete series representation of G = SO(n +

1, 1). For n even, Πn
2
,δ (δ = ±) are tempered representations. All the

other representations in the list (2) are nontempered representations of
G.
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(6) For n even, the center of G = SO(n+ 1, 1) acts nontrivially on Πℓ,δ if
and only if δ = (−1)ℓ+1. For n odd, the center of G is trivial, and thus
acts trivially on Πℓ,δ for any ℓ and δ.

In Proposition 14.44, we gave a description of the underlying (g, K)-
module of the irreducible G-module Πℓ,δ in terms of cohomological parabolic
induction. We end this section with analogous results for the irreducible
G-module Πℓ,δ = Πℓ,δ|G (see Proposition 15.11 (1)).

Proposition 15.12. For 0 ≤ i ≤ [n+1
2
], let qi be the θ-stable parabolic subal-

gebras with the Levi subgroup Li ≃ SO(2)i×SO(n−2i+1, 1) as in Definition
14.37 and write Si = i(n − i), see (14.35). Then the underlying (g, K)-
modules of the irreducible G-modules Πℓ,δ (0 ≤ ℓ ≤ n+1, δ ∈ {±}) are given
by the cohomological parabolic induction as follows:

(Πi,+)K ≃ (Πn+1−i,−)K ≃RSi
qi
(Cρ(u)) ≃ (Aqi)+,+|(g,K) ≃ (Aqi)−,−|(g,K),

(Πi,−)K ≃ (Πn+1−i,+)K ≃RSi
qi
(Cρ(u) ⊗ χ+−) ≃ (Aqi)+,−|(g,K) ≃ (Aqi)−,+|(g,K).

We notice that the four characters χ±± of O(n+1, 1) induce the following
isomorphisms χ−− ≃ 1 and χ+− ≃ χ−+ when restricted to the last factor
SO(n − 2i + 1, 1) of the Levi subgroup Li, whence Proposition 15.12 gives
an alternative proof for the isomorphism

Πi,δ ≃ Πn+1−i,−δ

as G-modules for 0 ≤ i ≤ n+ 1 and δ = ±.

15.6 Symmetry breaking for tempered principal series
representations

In this section, we deduce a multiplicity-one theorem for tempered principal
series representations Iδ(V , λ) and Jε(W, ν) of G = SO(n + 1, 1) and G′ =
SO(n, 1), respectively, from the corresponding result (see Theorem 3.30) for
the pair (G,G′) = (O(n+ 1, 1), O(n, 1)).

In [37, Chap. 2, Sect. 5], a trick analogous to Lemma 15.1 was used to
deduce symmetry breaking for the pair (G0, G

′
0) = (SO0(n+1, 1), SO0(n, 1))

from that for the pair (G,G′) by using an observation that G0 and G′
0 are

normal subgroups of G and G′, respectively (cf. [37, page 26]). This is for-
mulated in our setting as follows:
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Proposition 15.13. Let Π and π be continuous representations of G =
O(n+1, 1) and G′ = O(n, 1), respectively. Let (G,G′) = (SO(n+1, 1), SO(n, 1)).
Then we have natural isomorphisms:

HomG′(Π|G′ , π|G′) ≃ HomG′(Π|G′ , π)⊕ HomG′(Π|G′ , χ−− ⊗ π)
≃ HomG′(Π|G′ , π)⊕ HomG′((Π⊗ χ−−)|G′ , π).

For V ∈ ŜO(n) and W ∈ ̂SO(n− 1), we set

[V |SO(n−1) : W ] := dimC HomSO(n−1)(V |SO(n−1),W ).

The main result of this section is the following.

Theorem 15.14 (tempered principal series representation). Let V ∈ ŜO(n),
W ∈ ̂SO(n− 1), δ, ε ∈ {±}, and (λ, ν) ∈ (

√
−1R + n

2
,
√
−1R + 1

2
(n −

1)) so that Iδ(V , λ) and Jε(W, ν) are irreducible tempered principal series
representations of G = SO(n + 1, 1) and G′ = SO(n, 1), respectively. Then
the following conditions are equivalent:

(i) [V |SO(n−1) : W ] ̸= 0.

(ii) HomSO(n,1)(Iδ(V , λ)|SO(n,1), Jε(W, ν)) ̸= {0}.

(iii) dimC HomSO(n,1)(Iδ(V , λ)|SO(n,1), Jε(W, ν)) = 1.

For the proof, we use the following elementary lemma on branching rules
of finite-dimensional representations of O(n).

Lemma 15.15. Suppose σ ∈ Ô(n) and τ ∈ ̂O(n− 1) are of both type X
(Definition 2.6). If [σ|O(n−1) : τ ] ̸= 0, then [σ|O(n−1) : τ ⊗ det] = 0.

Proof of Lemma 15.15. Easy from Fact 2.12 and from the characterization
in Lemma 2.7 of representations of type X by means of the Cartan–Weyl
bijection (2.20).

Proof of Theorem 15.14. There exist unique V ∈ Ô(n) and W ∈ ̂O(n− 1)
such that [V |SO(n) : V ] ̸= 0 and [W |SO(n−1) : W ] ̸= 0. We divide the argument
into the following three cases:

Case XX: Both V and W are of type X.
Case XY: V is of type X and W is of type Y.
Case YX: V is of type Y and W is of type X.
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Then we have from (15.2)

Iδ(V, λ)|G ≃

{
Iδ(V , λ) if V is of type X,

Iδ(V , λ)⊕ Iδ(V
∨
, λ) if V is of type Y,

and similarly for the restriction Jε(W, ν)|G′ .
By Proposition 15.13, we have

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)|G′) ≃
⊕

χ∈{1,det}

HomG′(Iδ(V, λ)|G′ , Jε(W, ν)⊗ χ).

Applying the multiplicity-one theorem (Theorem 3.30) for tempered repre-
sentations of the pair (G,G′) = (O(n+ 1, 1), O(n, 1)) to the right-hand side,
we get the following multiplicity formula:

dimC HomG′(Iδ(V, λ)|G′ , Jε(W, ν)|G′)

= [V |O(n−1) : W ] + [V |O(n−1) : W ⊗ det]. (15.7)

The right-hand side of (15.7) does not vanish if and only if [V |SO(n−1) : W ] ̸=
0. In this case, we have

(15.7) =

{
1 Case XX,

2 Case XY or Case YX,

by Lemmas 2.13 and 15.15. Thus the conclusion holds in Case XX.
If V is of type Y, then the two G-irreducible summands Iδ(V , λ) and

Iδ(V
∨
, λ) in the restriction Iδ(V, λ)|G′ are switched if we apply the outer

automorphism of G by an element g0 := diag(1, · · · , 1,−1, 1) ∈ G = O(n +
1, 1). Since g0 commutes with G′, we obtain an isomorphism

HomG′(Iδ(V , λ)|G′ , Jε(W, ν)) ≃ HomG′(Iδ(V
∨
, λ)|G′ , Jε(W, ν)).

Hence the conclusion holds for Case YX.
Similar argument holds for Case XY where W is of type Y. Therefore

Theorem 15.14 is proved.
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15.7 Symmetry breaking from Iδ(i, λ) to Jε(j, ν)

In this section, we give a closed formula of the multiplicity for the restriction
G ↓ G′

when (σ, V ) is the exterior tensor
∧

i(Cn). For the admissible smooth
representations Iδ(i, λ) of G = SO(n + 1, 1) and Jε(j, ν) of G′ = SO(n, 1),
we set

m(i, j) ≡ m(Iδ(i, λ), Jε(j, ν)) := dimCHomG′(Iδ(i, λ)|G′ , Jε(j, ν)).

In order to state a closed formula for the multiplicity m(i, j) as a function
of (λ, ν, δ, ε), we introduce the following subsets of Z2 × {±1}:

L :={(−i,−j, (−1)i+j) : (i, j) ∈ Z2, 0 ≤ j ≤ i} = Leven ∪ Lodd,

L′ :={(λ, ν, γ) ∈ L : ν ̸= 0}.

In the theorem below, we shall see

m(i, j) ∈{1, 2, 4} if j = i− 1 or i,

m(i, j) ∈{0, 1, 2} if j = i− 2 or i+ 1,

m(i, j) =0 otherwise.

By Proposition 15.13 and Lemma 3.36, the multiplicity formula for (G,G′) is
derived from the one for (G,G′) by using Proposition 15.13, which amounts
to

HomG′(Iδ(i, λ)|G′ , Jε(j, ν))

≃ HomG′(Iδ(i, λ)|G′ , Jε(j, ν))⊕ HomG′(Iδ(n− i, λ)|G′ , Jε(j, ν)).

The right-hand side was computed in Theorem 3.25. Hence we get an explicit
formula of the multiplicity for the restriction of nonunitary principal series
representations in this setting:

Theorem 15.16 (multiplicity formula). Suppose n ≥ 3, 0 ≤ i ≤ [n
2
], 0 ≤

j ≤ [n−1
2
], δ, ε ∈ {±} ≡ {±1}, and λ, ν ∈ C.

Then the multiplicity m(i, j) = dimC HomG′(Iδ(i, λ)|G′ , Jε(j, ν)) is given
as follows.

(1) Suppose j = i.
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(a) Case i = 0.

m(0, 0) =

{
2 if (λ, ν, δε) ∈ L,
1 otherwise.

(b) Case 1 ≤ i < n
2
− 1.

m(i, i) =

{
2 if (λ, ν, δε) ∈ L′ ∪ {(i, i,+)},
1 otherwise.

(c) Case i = n
2
− 1 (n: even).

m(
n

2
−1, n

2
−1) =

{
2 if (λ, ν, δε) ∈ L′ ∪ {(i, i,+)} ∪ {(i, i+ 1,−)},
1 otherwise.

(d) Case i = n−1
2

(n: odd).

m(
n− 1

2
,
n− 1

2
) =

{
4 if (λ, ν, δε) ∈ L′ ∪ {(i, i,+)},
2 otherwise.

(2) Suppose j = i− 1.

(a) Case 1 ≤ i < n−1
2
.

m(i, i− 1) =

{
2 if (λ, ν, δε) ∈ L′ ∪ {(n− i, n− i,+)},
1 otherwise.

(b) Case i = n−1
2

(n: odd).

m(
n− 1

2
,
n− 3

2
) =


2 if (λ, ν, δε) ∈ L′,

2 if (λ, ν, δε) ∈ {(n− i, n− i,+)} ∪ {(i, i+ 1,−)},
1 otherwise.

(c) Case i = n
2
(n: even).

m(
n

2
,
n

2
− 1) =

{
4 if (λ, ν, δε) ∈ L′ ∪ {(n− i, n− i,+)},
2 otherwise.
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(3) Suppose j = i− 2.

(a) Case 2 ≤ i < n
2
.

m(i, i− 2) =

{
1 if (λ, ν, δε) = (n− i, n− i+ 1,−),
0 otherwise.

(b) Case i = n
2
(n: even).

m(
n

2
,
n

2
− 2) =

{
2 if (λ, ν, δε) = (n

2
, n
2
+ 1,−),

0 otherwise.

(4) Suppose j = i+ 1.

(a) Case i = 0 and n > 3.

m(0, 1) =

{
1 if λ ∈ −N, ν = 1, and δε = (−1)λ+1,

0 otherwise.

(b) Case 1 ≤ i < n−3
2
.

m(i, i+ 1) =

{
1 if (λ, ν, δε) = (i, i+ 1,−),
0 otherwise.

(c) Case i = n−3
2

and n > 3, odd.

m(
n− 3

2
,
n− 1

2
) =

{
2 if (λ, ν, δε) = (n−3

2
, n−1

2
,−),

0 otherwise.

(d) Case i = 0 and n = 3.

m(0, 1) =

{
2 if λ ∈ −N, ν = 1, and δε = (−1)λ+1,

0 otherwise.

(5) Suppose j ̸∈ {i− 2, i− 1, i, i+ 1}. Then m(i, j) = 0 for all λ, ν, δ, ε.
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Remark 15.17 (multiplicity-one property). In [59] it is proved that

dimC HomG′(Π|G′ , π) ≤ 1

for any irreducible admissible smooth representations Π and π ofG = SO(n+
1, 1) and G′ = SO(n, 1), respectively. Thus Theorem 3.25 fits well with their
multiplicity-free results for λ, ν ∈ C − Z, where Iδ(i, λ) and Jε(j, ν) are
irreducible admissible representations of G and G′, respectively, except for
the cases n = 2i or n = 2j + 1. In the case n = 2i or n = 2j + 1, the
multiplicity is counted twice as we saw in (15.5) and (15.6), and thus the
statements (1-d), (2-c), (3-b), and (4-c) in Theorem 3.25 fit again with [59].

Remark 15.18 (generic multiplicity-two phenomenon). In addition to the sub-
group G′ = SO(n, 1), the Lorentz group O(n, 1) contains two other sub-
groups of index two, that is, O+(n, 1) (containing orthochronous reflections)
and O−(n, 1) (containing anti-orthochronous reflections) with terminology
in relativistic space-time for n = 3. Our results yield also the multiplicity
formula for such pairs by using an analogous result to Proposition 15.13,
and it turns out that a generic multiplicity-one statement fails if we replace
(G,G′) = (SO(n + 1, 1), SO(n, 1)) by (O−(n + 1, 1), O−(n, 1)). In fact, the
multiplicity m(Π, π) is generically equal to 2 for irreducible representations
Π and π of O−(n + 1, 1) and O−(n, 1), respectively, as is expected by the
general theory [41, 44] because there are two open orbits in P ′−\G−/P− in
this case.

15.8 Symmetry breaking between irreducible repre-
sentations of G and G′ with trivial infinitesimal
character ρ

Similar to the notation Πi,δ for the restriction of the irreducible representation
Πi,δ of G = O(n+1, 1) to the special orthogonal group G = SO(n+1, 1), we
denote by πj,ε the restriction of the irreducible representation πj,ε (0 ≤ j ≤ n,
ε = ±) of G′ = O(n, 1) to the special orthogonal group G′ = SO(n, 1). Then
Πi,δ (0 ≤ i ≤ n+1, δ = ±) and πj,ε (0 ≤ j ≤ n, ε = ±) exhaust irreducible ad-
missible smooth representations of G and G′ having Z(g)-infinitesimal char-
acter ρG and Z(g′)-infinitesimal character ρG′ respectively, by Lemma 15.10.

In this section, we deduce the formula of the multiplicity

dimC HomG′(Πi,δ|G′ , πj,ε)
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for the symmetry breaking for (G,G′) = (SO(n + 1, 1), SO(n, 1)) from the
one for (G,G′) = (O(n+ 1, 1), O(n, 1)).

In view of the G-isomorphism Πn+1
2

,+ ≃ Πn+1
2

,− for n even and the G′-

isomorphism π n
2
,+ ≃ π n

2
,− for n odd, we shall use the following convention

+ ≡ − for δ if n+ 1 = 2i; + ≡ − for ε if n = 2j (15.8)

when we deal with the representations Πi,δ (0 ≤ i ≤ [n+1
2
]) and πj,ε (0 ≤ j ≤

[n
2
]).
Owing to Proposition 15.13, Theorem 2.20 tells that

HomG′(Πi,δ|G′ , πj,ε) ≃ HomG′(Πi,δ|G′ , πj,ε)⊕ HomG′(Πn+1−i,−δ|G′ , πj,ε).

Applying Theorems 4.1 and 4.2 about symmetry breaking for the pair (G,G′) =
(O(n+ 1, 1), O(n, 1)) to the right-hand side, we determine the multiplicity

m(Π, π) for all Π ∈ Irr(G)ρ and π ∈ Irr(G′)ρ

for the pair (G,G′) = (SO(n + 1, 1), SO(n, 1)) of special orthogonal groups
as follows.

Theorem 15.19. Suppose 0 ≤ i ≤ [n+1
2
], 0 ≤ j ≤ [n

2
], and δ, ε = ± with the

convention (15.8). then

dimC HomG′(Πi,δ|G′ , πj,ε) =

{
1 if δ ≡ ε and j ∈ {i− 1, i},
0 otherwise.
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16 Appendix III: A translation functor for

G = O(n + 1, 1)

In this chapter, we discuss a translation functor for the group G = O(n+1, 1),
which is not in the Harish-Chandra class if n is even, in the sense that Ad(G)
is not contained in the group Int(gC) of inner automorphisms. Then the
“Weyl group” WG is larger than the group generated by the reflections of
simple roots. This causes some technical difficulties when we extend the idea
of translation functor which is usually formulated for reductive groups in
the Harish-Chandra class or reductive Lie algebras, see [22, 57, 63, 69] for
instance.

16.1 Some features of translation functors for reduc-
tive groups that are not of Harish-Chandra class

For n even, say n = 2m, we write hC (≃ Cm+1) for a Cartan subalgebra of
gC. Then we recall from Section 2.1.4:

• the Weyl group Wg ≃ Sm+1 ⋉ (Z/2Z)m for the root system ∆(gC, hC)
is of index two in the Weyl group WG ≃ Sm+1 ⋉ (Z/2Z)m+1 for the
disconnected group G;

• the ZG(g)-infinitesimal character for the irreducible admissible repre-
sentation of G is parametrized by h∗C/WG, but not by h∗C/Wg;

• ρG = (m, · · · , 1, 0) is not “WG-regular”, although it is “Wg-regular”
(Definition 2.1).

We can still use the idea of a translation functor, but we need a careful
treatment for disconnected groups G which are not in the Harish-Chandra
class. In fact, differently from the usual setting for reductive Lie groups in
the Harish-Chandra class, we are faced with the following feature:

• translation from a WG-regular (in particular, Wg-regular) dominant
parameter to the trivial infinitesimal character ρG does not necessarily
preserve irreducibility, see Theorem 16.8.

This means that translation inside the same “Wg-regular Weyl chamber”
may involve a phenomenon as if it were “translation from the wall to regular
parameter”, cf., [57].
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In what follows, we retain the terminology “regular” for Wg but not for
WG as in Definition 2.1 (in particular, ρG is regular in our sense), whereas
we need to use WG (not Wg) in describing ZG(g)-infinitesimal characters of
G-modules.

16.2 Translation functor for G = O(n+ 1, 1)

In this section we fix some notation for a translation functor for the group
G = O(n + 1, 1). Usually, a translation functor is defined in the category
of (g, K)-modules of finite length. However, we also consider a translation
functor in the category of admissible representations of finite length
of moderate growth.

16.2.1 Primary decomposition of admissible smooth representa-
tions

Let Π be an admissible smooth representation of G of finite length. For
µ ∈ h∗C/WG, we define the µ-primary component Pµ(Π) of Π by

Pµ(Π) :=
∪
N>0

∩
z∈ZG(g)

Ker(z − χµ(z))
N ,

where we recall the Harish-Chandra isomorphism (2.15)

HomC-alg(ZG(g),C) ≃ h∗C/WG, χµ ↔ µ.

Then Pµ(Π) is a G-module with generalized ZG(g)-infinitesimal character µ,
and Π is decomposed into a direct sum of finitely many primary components:

Π =
⊕
µ

Pµ(Π) (finite direct sum).

By abuse of notation, we use the letter Pµ to denote the G-equivariant pro-
jection Π→ Pµ(Π) with respect to the direct sum decomposition.

16.2.2 Translation functor ψµ+τ
µ for G = O(n+ 1, 1)

Let G = O(n+ 1, 1) and m = [n
2
]. We recall that WG ≃ Sm+1 ⋉ (Z/2Z)m+1

acts on h∗C ≃ Cm+1 as a permutation group and by switching the signatures
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of the standard coordinates. For τ ∈ Zm+1, we define τdom to be the unique
element in Λ+(m+ 1) (see (2.17)) in the WG-orbit through τ , i.e.,

τdom = w τ for some w ∈ WG. (16.1)

Let FO(n+1,1)(τdom)+,+ be the irreducible finite-dimensional representation of
G = O(n+ 1, 1) of type I (Definition 14.2) defined as in (14.3).

Definition 16.1 (translation functor ψµ+τ
µ ). For µ ∈ Cm+1 and τ ∈ Zm+1,

we define translation functor ψµ+τ
µ by

ψµ+τ
µ (Π) := Pµ+τ (Pµ(Π)⊗ FO(n+1,1)(τdom)+,+). (16.2)

Then ψµ+τ
µ is a covariant functor in the category of admissible smooth

representations of G of finite length, and also in the category of (g, K)-
modules of finite length. Clearly, we have

ψµ+τ
µ = ψwµ+wτ

wµ for all w ∈ WG. (16.3)

In defining the translation functor ψµ+τ
µ in (16.2), we have used only finite-

dimensional representations of type I (Definition 14.2) of the disconnected
group G = O(n + 1, 1). We do not lose any generality because taking the
tensor product with the one-dimensional characters χab (a, b ∈ {±}) yields
the following isomorphism as G-modules:

ψµ+τ
µ (Π)⊗ χab ≃ Pµ+τ (Pµ(Π)⊗ FO(n+1,1)(τdom)a,b). (16.4)

We shall use a finite-dimensional representation F (V, λ) (Definition 16.17)
which is not necessarily of type I in Theorems 16.22 and 16.23, which are a
reformulation of the properties (Theorems 16.6 and 16.8, respectively) of the
translation functor (16.2) via (16.4).

The translation functor ψµ
µ+τ is the adjoint functor of ψ

µ+τ
µ . In our setting,

since (−τ)dom = τdom, the functor ψµ
µ+τ takes the following form:

ψµ
µ+τ (Π) = Pµ(Pµ+τ (Π)⊗ FO(n+1,1)(τdom)+,+).

16.2.3 The translation functor and the restriction G ↓ G

We retain the notation of Appendix II, and denote by G the subgroup SO(n+
1, 1) in G = O(n + 1, 1). Then G = SO(n + 1, 1) is in the Harish-Chandra
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class for all n. For the groupG, we shall use the notation P µ and ψ
µ+τ

µ instead
of Pµ and ψµ+τ

µ , respectively. To be precise, for τ ∈ Zm+1 where m = [n
2
], we

write τdom for the unique element in the orbit Wg τ which is dominant with
respect to the positive system ∆+(gC, hC). We denote by F SO(n+1,1)(τdom)+
the irreducible representation of G = SO(n+1, 1) obtained by the restriction
of the irreducible holomorphic representation of SO(n+2,C) having τdom as
its highest weight. For an admissible smooth representation Π of G of finite

length, the translation functor ψ
µ+τ

µ is defined by

ψ
µ+τ

µ (Π) := P µ+τ (P µ(Π)⊗ F SO(n+1,1)(τdom)+). (16.5)

We collect some basic facts concerning the primary components forG-modules
and G-modules. The following lemma is readily shown by comparing (2.15)
of the Harish-Chandra isomorphisms for G and G.

Lemma 16.2. Let Π be an admissible smooth representation of finite length
of G = O(n+ 1, 1). We set m := [n

2
] as before. Suppose µ ∈ h∗C ≃ Cm+1.

(1) If n is odd or if n is even and at least one of the entries µ1, · · · , µm+1

is zero, then there is a natural isomorphism of G-modules:

Pµ(Π)|G ≃ P µ(Π|G).

(2) If n is even and all of µj are nonzero, then we have a direct sum
decomposition of a G-module:

Pµ(Π)|G = P µ(Π|G)⊕ P µ′(Π|G),

where we set µ′ := (µ1, · · · , µm,−µm+1).

Now the following lemma is an immediate consequence of Lemma 16.2

and of the definition of the translation functors ψµ+τ
µ and ψ

µ+τ

µ , see (16.2)
and (16.5).

Lemma 16.3. Let G = O(n + 1, 1) and G = SO(n + 1, 1). Let Π be an
admissible smooth representation of G of finite length.

(1) Suppose n is odd. Then we have a canonical G-isomorphism:

ψµ+τ
µ (Π)|G ≃ ψ

µ+τ

µ (Π|G). (16.6)

(2) Suppose that n is even. If all of µ, τ and µ + τ contain 0 in their
entries, then we have a canonical G-isomorphism (16.6).
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16.2.4 Some elementary properties of translation functor ψµ+τ
µ

Some of the properties of the translation functors remain true for the discon-
nected group G = O(n+ 1, 1).

Proposition 16.4. Suppose µ ∈ h∗C(≃ Cm+1) and τ ∈ Zm+1.

(1) ψµ+τ
µ is a covariant exact functor.

(2) Suppose µ and µ+ τ belong to the same Weyl chamber with respect to
Wg. If µ+ τ is regular (Definition 2.1), then ψµ+τ

µ (Π) is nonzero if Π
is nonzero.

Proof. (1) The first statement follows directly from the definition, see Zuck-
erman [69].
(2) By Lemma 16.2 and the branching law from G = O(n + 1, 1) to the
subgroup G = SO(n+ 1, 1), we have

ψµ+τ
µ (Π)|G ⊃ ψ

µ+τ

µ (Π|G).

Since G is in the Harish-Chandra class, ψ
µ+τ

µ (Π|G) is nonzero under the
assumption on µ and τ . Hence ψµ+τ

µ (Π) is a nonzero G-module.

Remark 16.5. The regularity assumption for µ + τ in Proposition 16.4 is
in the weaker sense (i.e., Wg-regular), and not in the stronger sense (i.e.,
WG-regular).

16.3 Translation of principal series representation Iδ(V, λ)

We discuss how the translation functors affect induced representations of
G = O(n + 1, 1). We recall that G is not in the Harish-Chandra class when
n is even.

16.3.1 Main results: Translation of principal series representa-
tions

Theorem 16.6. Suppose G = O(n + 1, 1) and (V, λ) ∈ Red, see (14.9), or

equivalently, V ∈ Ô(n) and λ ∈ Z − (S(V ) ∪ SY (V )), see Theorem 14.15.
Let i := i(V, λ) ∈ {0, 1, . . . , n} be the height of (V, λ) as in (14.17), and
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r(V, λ) ∈ Zm+1 as in (14.10). We write V = FO(n)(σ)ε with σ ∈ Λ+(m) and
ε ∈ {±}, where m := [n

2
]. We define a character χ of G by

χ ≡ χ(V, λ) :=

{
1 if ε(n

2
− i) ≥ 0,

det if ε(n
2
− i) < 0.

(16.7)

Then there is a natural G-isomorphism:

ψ
r(V,λ)

ρ(i)
(Iδ(i, i))⊗ χ ≃ I(−1)λ−iδ(V, λ).

Remark 16.7. The conclusion of Theorem 16.6 does not change if we replace
the definition (16.7) with χ = det when i = n

2
. In fact, V is of type Y if

the height i(V, λ) equals n
2
, and thus V ⊗ det ≃ V as O(n)-modules (Lemma

2.9). Then there is an isomorphism of G-modules

Iδ(V, λ)⊗ det ≃ Iδ(V, λ)

for any δ ∈ {±} by Lemmas 2.14 and 14.28.

The translation functor ψρ(i)

r(V,λ) is the adjoint functor of ψ
r(V,λ)

ρ(i)
. Even

when the infinitesimal character of Iδ(V, λ) is WG-regular (in particular, Wg-

regular) (Definition 2.1), the translation functor ψρ(i)

r(V,λ) does not always pre-
serve irreducibility if G is not of Harish-Chandra class as in the following
theorem.

Theorem 16.8. Retain the setting and notation of Theorem 16.6. In par-
ticular, we recall that (V, λ) ∈ Red, i = i(V, λ) is the height of (V, λ), and
χ ≡ χ(V, λ), see (16.7).

(1) If (V, λ) ∈ RedI (Definition 14.17), i.e., if V is of type X (in particular,
if n is odd) or if λ = n

2
, then there is a natural G-isomorphism:

ψρ(i)

r(V,λ)(I(−1)λ−iδ(V, λ))⊗ χ ≃ Iδ(i, i).

(2) If (V, λ) ∈ RedII, i.e., if V is of type Y and λ ̸= n
2
, then n is even,

i ̸= n
2
and there is a natural G-isomorphism:

ψρ(i)

r(V,λ)(I(−1)λ−iδ(V, λ))⊗ χ ≃ Iδ(i, i)⊕ Iδ(n− i, i).

In Section 16.4, we introduce an irreducible finite-dimensional represen-
tation F (V, λ) by taking the tensor product of FO(n+1,1)(τdom)+,+ with an
appropriate one-dimensional character of G, see Definition 16.17. Then, by
using F (V, λ), Theorems 16.6 and 16.8 can be reformulated in a simpler form
about signatures, see Theorems 16.22 and 16.23.
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16.3.2 Strategy of the proof for Theorems 16.6 and 16.8

If n is odd, then G = ⟨SO(n+ 1, 1),−I2n+2⟩ is in the Harish-Chandra class,
and therefore Theorems 16.6 and 16.8 are a special case of the general theory,
see [63, Chap. 7] for instance. Moreover, the translation functor behaves as
we expect from the general theory for reductive groups in the Harish-Chandra
class when it is applied to the induced representation Iδ(V, λ) if (V, λ) ∈ RedI,
see Theorem 16.8 (1). We note that Red = RedI and RedII = ∅ if n is odd
(Remark 14.18).

On the other hand, its behavior is somewhat different if (V, λ) ∈ RedII,
see Theorem 16.8 (2) and Proposition 16.31 for instance. Main technical
complications arise from the fact that we need the primary decomposition
for the generalized ZG(g)-infinitesimal characters parametrized by h∗C/WG

where WG is larger than the group generated by the reflections of simple
roots if n is even, for which G = O(n + 1, 1) is not in the Harish-Chandra
class.

Our strategy is to use partly the relation of translation functors for G =
O(n+1, 1) and the subgroupG = SO(n+1, 1) which is in the Harish-Chandra
class.

Theorem 16.6 is proved in Section 16.6 as a consequence of the following
two propositions.

Proposition 16.9. Suppose that (V, λ) ∈ Red. Retain the notation as in

Theorem 16.6. Then the G-module ψ
r(V,λ)

ρ(i)
(Iδ(i, i))⊗χ contains I(−1)λ−iδ(V, λ)

as a subquotient. Equivalently, the G-module Pr(V,λ)(Iδ(i, i) ⊗ F (V, λ)), see
Definition 16.17 below, contains Iδ(V, λ) as a subquotient.

We recall from (16.7) that the character χ ≡ χ(V, λ) is trivial when
restricted to the subgroup G = SO(n+ 1, 1).

Proposition 16.10. Suppose that (V, λ) ∈ Red. Retain the notation as in

Theorem 16.6. Then ψ
r(V,λ)

ρ(i)
(Iδ(i, i))|G is isomorphic to I(−1)λ−iδ(V, λ)|G as a

G-module.

Similarly, Theorem 16.8 is proved in Section 16.7 by using analogous
results, namely, Propositions 16.33 and 16.34 in Section 16.7.
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16.3.3 Basic lemmas for the translation functor

We use the following well-known lemma, which holds without the assumption
that G is of Harish-Chandra class.

Lemma 16.11. Let F be a finite-dimensional representation of G, V ∈
Ô(n), δ ∈ {±}, and λ ∈ C. Then there is a G-stable filtration

{0} = I0 ⊂ I1 ⊂ · · · ⊂ Ik = Iδ(V, λ)⊗ F

such that
Ij/Ij−1 ≃ IndG

P (Vλ,δ ⊗ F (j)) (1 ≤ j ≤ k)

where F (j) is a P -module such that the unipotent radical N+ acts trivially and
that F (j)|MA is isomorphic to a subrepresentation of the restriction F |MA to
the Levi subgroup MA.

For the sake of completeness, we give a proof.

Proof. Take a P -stable filtration

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F

such that the unipotent radical N+ of P acts trivially on

F (j) := Fj/Fj−1 (1 ≤ j ≤ k).

As in (2.25), we denote by Vλ,δ the irreducible P -module which is an
extension of the MA-module V ⊠ δ ⊠ Cλ with trivial N+ action. We define
G-modules Ij (0 ≤ j ≤ k) by

Ij := IndG
P (Vλ,δ ⊗ Fj|P ).

Then there is a natural filtration of G-modules

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ik = IndG
P (Vλ,δ ⊗ F |P )

such that
Ij/Ij−1 ≃ IndG

P (Vλ,δ ⊗ (Fj/Fj−1))

as G-modules. Since the finite-dimensional representation F of G is com-
pletely reducible when viewed as a representation of the Levi subgroup MA,
the MA-module F (j) = Fj/Fj−1 is isomorphic to a subrepresentation of
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the restriction F |MA. Now Lemma 16.11 follows from the following G-
isomorphism:

IndG
P (Vλ,δ ⊗ F |P ) ≃ IndG

P (Vλ,δ)⊗ F.

Similarly to Lemma 16.11, we have the following lemma for cohomological
parabolic induction. Retain the notation as in Section 14.9.1.

Lemma 16.12. Suppose that q = lC + u is a θ-stable parabolic subalgebra
of gC with Levi subgroup L, see (14.31), and that W a finite-dimensional
(l, L ∩K)-module. Let F be a finite-dimensional representation of G, and

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F

a (q, L)-stable filtration such that the nilpotent radical u acts trivially on
F (j) := Fj/Fj−1. Then there is a natural spectral sequence

Rp
q(W ⊗ F (j) ⊗ Cρ(u))⇒Rp

q(W ⊗ F ⊗ Cρ(u)) ≃ Rp
q(W ⊗ Cρ(u))⊗ F

as (g, K)-modules.

The proof is similar to the case where G is in the Harish-Chandra class,
see [63, Lem. 7.23].

By the definition (16.2) of the translation functor ψµ+τ
µ , we need to esti-

mate possible ZG(g)-infinitesimal characters of IndG
P (Vλ,δ ⊗ F (j)) in Lemma

16.11 or that of Rp
q(W ⊗ F (j) ⊗ Cρ(u)) in Lemma 16.12.

In order to deal with reductive groups that are not in the Harish-Chandra
class, we use the following lemma which is formulated in a slightly stronger
form than [63, Lem. 7.2.18], but has the same proof.

Lemma 16.13. Let hC be a Cartan subalgebra of a complex semisimple Lie
algebra gC, Wg the Weyl group of the root system ∆(gC, hC), ∆

+(gC, hC) a
positive system, ⟨ , ⟩ a Wg-invariant inner product on h∗R := SpanR∆(gC, hC),
and || · || its norm.

Suppose that ν and τ ∈ h∗R satisfy

⟨ν, α∨⟩ ∈ N+ (∀α ∈ ∆+(gC, hC)),

⟨ν + τ, α∨⟩ ∈ N (∀α ∈ ∆+(gC, hC)).
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If γ ∈ h∗C satisfies the following two conditions:

ν + γ =w(ν + τ) for some w ∈ Wg, (16.8)

||γ|| ≤||τ ||, (16.9)

then γ = τ .

Remark 16.14. In [63, Lem. 7.2.18], γ is assumed to be a weight occurring in
the irreducible finite-dimensional representation of G (in the Harish-Chandra
class) with extremal weight τ instead of our assumption (16.9).

16.4 Definition of an irreducible finite-dimensional
representation F (V, λ) of G = O(n+ 1, 1)

For (V, λ) ∈ RInt, i.e., for V ∈ Ô(n) and λ ∈ Z − S(V ), we defined in
Chapter 14

i(V, λ) ∈ {0, 1, . . . , n}, height of (V, λ) (Definition 14.26),

r(V, λ) ∈ C[n
2
]+1, giving the ZG(g)-infinitesimal character of Iδ(V, λ),

see (14.10).

In this section we introduce an irreducible finite-dimensional representation
F (V, λ) of G = O(n + 1, 1) which contains important information on signa-
tures.

16.4.1 Definition of σ(i)(λ) and σ̂(i)

We begin with some combinatorial notation.

Definition 16.15. Let m := [n
2
]. For 1 ≤ i ≤ n, σ = (σ1, · · · , σm) ∈ Λ+(m),

and λ ∈ Z, we define σ(i)(λ) ∈ Zm+1 as follows.
Case 1. n = 2m

σ(i)(λ) :=


(σ1 − 1, · · · , σi − 1, i− λ, σi+1, · · · , σm) for 0 ≤ i ≤ m− 1,

(σ1 − 1, · · · , σm − 1, |λ−m|) for i = m,

(σ1 − 1, · · · , σn−i − 1, λ− i, σn−i+1, · · · , σm) for m+ 1 ≤ i ≤ n.

Case 2. n = 2m+ 1

σ(i)(λ) :=

{
(σ1 − 1, · · · , σi − 1, i− λ, σi+1, · · · , σm) for 0 ≤ i ≤ m,

(σ1 − 1, · · · , σn−i − 1, λ− i, σn−i+1, · · · , σm) for m+ 1 ≤ i ≤ n.
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Moreover we define σ̂(i) ∈ Zm to be the vector obtained by removing the
min(i+ 1, n− i+ 1)-th component from σ(i)(λ) ∈ Zm+1.

Case 1. n = 2m

σ̂(i) :=


(σ1 − 1, · · · , σi − 1, σi+1, · · · , σm) for 0 ≤ i ≤ m− 1,

(σ1 − 1, · · · , σm − 1) for i = m,

(σ1 − 1, · · · , σn−i − 1, σn−i+1, · · · , σm) for m+ 1 ≤ i ≤ n.

Case 2. n = 2m+ 1

σ̂(i) :=

{
(σ1 − 1, · · · , σi − 1, σi+1, · · · , σm) for 0 ≤ i ≤ m,

(σ1 − 1, · · · , σn−i − 1, σn−i+1, · · · , σm) for m+ 1 ≤ i ≤ n.

Definition-Lemma 16.16. Let m := [n
2
]. For (V, λ) ∈ RInt, i.e., for

V ∈ Ô(n) and λ ∈ Z− S(V ), we write V = FO(n)(σ)ε with σ ∈ Λ+(m) and
ε ∈ {±}. We set

σ(λ) := σ(i)(λ), (16.10)

where i := i(V, λ) ∈ {0, 1, . . . , n} is the height of (V, λ) as in (14.17). Then
we have

σ(λ) ∈ Λ+(m+ 1).

Proof. Suppose n = 2m (even). Let λ ∈ Z. By the definition of R(V ; i)
(Definition 14.23), we have the following equivalences:

• for 0 ≤ i ≤ m− 1,

λ ∈ R(V ; i) ⇔ σi − i > −λ > σi+1 − i− 1

⇔ σi − 1 ≥ i− λ ≥ σi+1;

• for i = m,

λ ∈ R(V ;m) ⇔ − σm < λ−m < σm

⇔ σm − 1 ≥ |λ−m|;

• for m+ 1 ≤ i ≤ n,

λ ∈ R(V ; i) ⇔ σn−i+1 − 1 < λ− i < σn−i

⇔ σn−i − 1 ≥ λ− i ≥ σn−i+1.

Thus in all cases σ(i)(λ) ∈ Λ+(m+ 1).
The proof for n odd is similar.
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16.4.2 Definition of a finite-dimensional representation F (V, λ) of
G

We are ready to define a finite-dimensional representation, to be denoted by
F (V, λ), for (V, λ) ∈ RInt.

Definition 16.17 (a finite-dimensional representation F (V, λ)). Suppose

that (V, λ) ∈ RInt, i.e., V ∈ Ô(n) and λ ∈ Z − S(V ). We write V =
FO(n)(σ)ε with σ ∈ Λ+(m) and ε ∈ {±} where m := [n

2
]. We set i := i(V, λ),

the height of (V, λ) as in (14.17), and σ(λ) ∈ Λ+(m + 1) as in Definition-
Lemma 16.16.

We define an irreducible finite-dimensional representation F (V, λ) of G =
O(n+ 1, 1) as follows:

• for V of type Y and λ = n
2
(= m),

F (V, λ) :=FO(n+1,1)(σ(λ))+,+

=FO(n+1,1)(σ1 − 1, · · · , σm − 1, 0)+,+;

• for V of type X or λ ̸= n
2
,

F (V, λ) :=

{
FO(n+1,1)(σ(λ))ε,(−1)λ−iε if i ≤ n

2
,

FO(n+1,1)(σ(λ))−ε,(−1)λ−i−1ε if i > n
2
,

(16.11)

see (14.5) for notation.

By using the character χ ≡ χ(V, λ) of G as defined in (16.7), we obtain a
unified expression

F (V, λ) ≃ F (σ(λ))+,(−1)λ−i ⊗ χ. (16.12)

Remark 16.18. We note that (16.11) is well-defined. In fact, if V is of type
Y (Definition 2.6), then ε is not uniquely determined because there are two
expressions for V :

V ≃ FO(n)(σ)+ ≃ FO(n)(σ)−,

see Lemma 14.4 (1). On the other hand, the (m + 1)-th component of σ(λ)
does not vanish except for the case i = λ = m by Definition 16.15. Hence we
obtain an isomorphism of O(n+ 1, 1)-modules:

FO(n+1,1)(σ(λ))a,b ≃ FO(n+1,1)(σ(λ))−a,−b

for any a, b ∈ {±} by Lemma 14.4 (2).
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By Definition 14.2, the following lemma is clear.

Lemma 16.19. Suppose that V is of type X or λ ̸= n
2
. Then there is a

natural isomorphism of O(n+ 1, 1)-modules:

F (V ⊗ det, λ) ≃ F (V, λ)⊗ det .

Lemma 16.20. The following two conditions on (V, λ) ∈ RInt (i.e., V ∈
Ô(n) and λ ∈ Z− S(V )) are equivalent:

(i) F (V, λ)⊗ det ≃ F (V, λ) as G-modules;

(ii) V is of type Y (Definition 2.6) and λ ̸= n
2
.

In particular, for (V, λ) ∈ Red, (i) holds if and only if (V, λ) ∈ RedII (Defi-
nition 14.17).

Proof. Any of the conditions (i) or (ii) implies that n is even, say, n =
2m. Let us verify (ii) ⇒ (i). If we write V = FO(n)(σ)ε for some σ =
(σ1, · · · , σm) ∈ Λ+(m) and ε ∈ {±}, then σm ̸= 0 because V is of type Y.
On the other hand, the height i := i(V, λ) is not equal to m because λ ̸= m,
hence the (m + 1)-th component of σ(i)(λ) equals σm( ̸= 0) by Definition
16.15. Thus there is a natural G-isomorphism F (V, λ)⊗ det ≃ F (V, λ). The
converse implication is similarly verified.

Example 16.21. Let (V, λ) = (
∧

ℓ(Cn), ℓ) for ℓ = 0, 1, · · · , n. We set m =
[n
2
] as usual. Then

i(V, λ) = ℓ, σ(λ) = 0 (∈ Zm+1), and σ̂(i) = 0 ∈ Zm.

Moreover, we have an isomorphism of G-modules:

F (V, λ) ≃ 1 for 0 ≤ ℓ ≤ n.

16.4.3 Reformulation of Theorems 16.6 and 16.8

By using the finite-dimensional representation F (V, λ) of G = O(n + 1, 1)
(Definition 16.17), Theorems 16.6 and 16.8 may be reformulated in simpler
forms, respectively, as follows.
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Theorem 16.22. For (V, λ) ∈ Red (Definition 14.8), we set i := i(V, λ),
the height of (V, λ) as in (14.17). Then there is a natural G-isomorphism:

Pr(V,λ)(Iδ(i, i)⊗ F (V, λ)) ≃ Iδ(V, λ).

Theorem 16.23. Suppose (V, λ) ∈ Red. Retain the notation as in Theorem
16.22.

(1) If (V, λ) ∈ RedI (Definition 14.17), then there is a natural G-isomorphism:

Pr(V,λ)(Iδ(V, λ)⊗ F (V, λ)) ≃ Iδ(i, i).

(2) If (V, λ) ∈ RedII, then there is a natural G-isomorphism:

Pr(V,λ)(Iδ(V, λ)⊗ F (V, λ)) ≃ Iδ(i, i)⊕ Iδ(n− i, i).

16.4.4 Translation of irreducible representations Πℓ,δ

We recall from (2.35) that Πℓ,δ (0 ≤ ℓ ≤ n + 1, δ ∈ {±}) are irreducible
admissible smooth representations of G with trivial infinitesimal character
ρG, and from (14.28) that Πδ(V, λ) is an irreducible admissible smooth repre-
sentation of G with ZG(g)-infinitesimal character r(V, λ) mod WG. We also
recall that ρ(i) ≡ ρG mod WG for all 0 ≤ i ≤ n. In this section, we determine
the action of translation functor ψ

r(V,λ)

ρ(i)
on irreducible representations.

Theorem 16.24. Suppose that (V, λ) ∈ Red. Let i := i(V, λ) be the height
of (V, λ), and F (V, λ) be the irreducible finite-dimensional representation of
G (Definition 16.17). Then there is a natural G-isomorphism:

Pr(V,λ)(Πi,δ ⊗ F (V, λ)) ≃ Πδ(V, λ).

Proof. Since the translation functor is a covariant exact functor (Proposition
16.4 (1)), the exact sequence of G-modules

0→ Πi,δ → Iδ(i, i)→ Πi+1,−δ → 0

(Theorem 2.20 (1)) yields an exact sequence of G-modules

0→ Pr(V,λ)(Πi,δ ⊗ F (V, λ))→ Iδ(V, λ)→ Pr(V,λ)(Πi+1,−δ ⊗ F (V, λ))→ 0,
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where we have used Theorem 16.22 for the middle term. Since the first and
third terms do not vanish by Proposition 16.4 (2), we conclude the following
isomorphisms of G-modules:

Iδ(V, λ)
♭ ≃ Pr(V,λ)(Πi,δ ⊗ F (V, λ)),

Iδ(V, λ)
♯ ≃ Pr(V,λ)(Πi+1,−δ ⊗ F (V, λ))

because Iδ(V, λ) has composition series of length two (Corollary 14.22). Hence
Theorem 16.24 follows from the definition (14.28) of Πδ(V, λ).

16.4.5 Proof of Theorems 16.22 and 16.23

In this subsection, we explain that Theorem 16.6 is equivalent to Theorem
16.22; Theorem 16.8 is equivalent to Theorem 16.23.

For this we begin with the following lemma which clarifies some combina-
torial meaning of the height i(V, λ) ∈ {0, 1, . . . , n} and the dominant integral
weight σ(λ) ∈ Λ+(m+ 1) in Definition 16.17. Here we recall m = [n

2
].

Lemma 16.25. Suppose V = FO(n)(σ)ε with σ ∈ Λ+(m) and ε ∈ {±}. For
0 ≤ i ≤ n and λ ∈ Z, we set

τ (i)(V, λ) := r(V, λ)− ρ(i) ∈ (
1

2
Z)m+1, (16.13)

see (14.10) and Example 14.9 for the notation.

(1) Then τ (i)(V, λ) ∈ Zm+1 is given by{
(σ1 − 1, · · · , σi − 1, σi+1, · · · , σm, λ− i) for 0 ≤ i ≤ m,

(σ1 − 1, · · · , σn−i − 1, σn−i+1, · · · , σm, λ− i) for m+ 1 ≤ i ≤ n.

(2) Assume that λ ∈ Z − S(V ), and we take i to be the height i(V, λ) of
(V, λ) as in (14.17). Then,

r(V, λ) and ρ(i) belong to the same Weyl chamber for Wg.

(3) Let σ(λ) be as defined in Definition 16.17. Then we have

τ (i)(V, λ)dom = σ(λ). (16.14)
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Proof. (1) Clear from the definition (14.10) of r(V, λ) and ρ(i). (2) The
assertion is verified by inspecting the definition (14.17) of the height i(V, λ).
(3) The statement follows from Definition-Lemma 16.16.

Now we determine the action of the translation functor ψ
r(V,λ)

ρ(i)
. We recall

that the principal series representation Iδ(i, i) (0 ≤ i ≤ n) has the triv-
ial ZG(g)-infinitesimal character, which is Wg-regular but not always WG-
regular. We apply the translation functor (16.2) to Iδ(i, i) for an appropriate
choice of i.

Proposition 16.26. Let m = [n
2
]. Suppose G = O(n + 1, 1), δ ∈ {±},

V = FO(n)(σ)ε with σ ∈ Λ+(m) and ε ∈ {±}, and λ ∈ Z− (S(V ) ∪ SY (V )).
Let i := i(V, λ) ∈ {0, 1, . . . , n} be as in (14.17). We define r(V, λ) ∈ Cm+1 as
in (14.10) and σ(λ) ∈ Λ+(m+ 1). Then we have

ψ
r(V,λ)

ρ(i)
(Iδ(i, i)) = Pr(V,λ)(Iδ(i, i)⊗ FO(n+1,1)(σ(λ))+,+).

Proof. Since Iδ(i, i) has the trivial ZG(g)-infinitesimal character, Pρ(i)(Iδ(i, i)) =

Iδ(i, i) by (14.12). Since r(V, λ) = ρ(i) + τ (i)(V, λ) by (16.13), and since
σ(λ) = τ (i)(V, λ)dom by (16.14), the definition of the translation functor shows

ψ
ρ(i)+τ (i)(V,λ)

ρ(i)
(Iδ(i, i)) = Pr(V,λ)(Iδ(i, i)⊗ FO(n+1,1)(σ(λ))+,+).

Thus Proposition 16.26 is proved.

It follows from Proposition 16.26 and from the definition of F (V, λ) (Defi-
nition 16.17) that Theorem 16.6 is equivalent to Theorem 16.22 and Theorem
16.8 is equivalent to Theorem 16.23.

16.5 Proof of Proposition 16.9

In this section we complete the proof of Proposition 16.9. By Lemma 16.11,
the proof reduces to some branching laws for the restriction of finite-dimensional
representations of G = O(n+1, 1) with respect toMA ≃ O(n)×SO(1, 1) and
to the study of their tensor product representations, see Proposition 16.29.
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16.5.1 Irreducible summands for O(n + 2) ↓ O(n) × O(2) and for
tensor product representations

Before working with Proposition 16.29 in the noncompact setting, we first
discuss analogous branching rules for the restriction with respect to a pair of
compact groups O(n+ 2) ⊃ O(n)×O(2):

Lemma 16.27 (O(n+2) ↓ O(n)×O(2)). Let µ = (µ1, · · · , µm+1) ∈ Λ+(m+
1), where m := [n

2
] as before. For 1 ≤ k ≤ m+ 1, we set

µ′
(k) := (µ1, · · · , µk−1, µ̂k, µk+1, · · · , µm+1) ∈ Λ+(m).

Then the O(n + 2)-module FO(n+2)(µ)+ (see (14.3)) contains the (O(n) ×
O(2))-module

m+1⊕
k=1

FO(n)(µ′
(k))+ ⊠ FO(2)(µk)+

when restricted to the subgroup O(n)×O(2).

Proof. Take a Cartan subalgebra hC of gl(n+2,C) such that hC∩o(n+2,C) is
a Cartan subalgebra of o(n+2,C). We identify h∗C with Cn+1 via the standard
basis {fj} as before, and choose a positive system ∆+(gl(n + 2,C), hC) =
{fi − fj : 1 ≤ i < j ≤ n+ 2}. Then

µ̃ := (µ1, · · · , µm+1, 0
n+1−m) ∈ Λ+(n+ 2)

is a dominant integral with respect to the positive system. Let vµ̃ be a
(nonzero) highest weight vector of the irreducible representation (τ, FU(n+2)(µ̃))
of the unitary group U(n+2). By definition, theO(n+2)-module FO(n+2)(µ)+,
see (14.3), is the unique irreducible O(n + 2)-summand of FU(n+2)(µ̃) con-
taining the highest weight vector vµ̃. We now take a closer look at the
U(n + 2)-module FU(n+2)(µ̃). Fix 1 ≤ k ≤ m + 1. Iterating the classical
branching rule for U(N) ⊃ U(N − 1) × U(1) for N = n + 2, n + 1, we see
that the restriction FU(n+2)(µ̃)|U(n)×U(2) contains

FU(n)(µ̃′
(k))⊠W

as an irreducible summand, where

µ̃′
(k) := (µ1, · · · , µ̂k, · · · , µm+1, 0

n−m) ∈ Λ+(n)
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and W is an irreducible representation of U(2) which has a weight (µk, 0).
Since all the weights of an irreducible finite-dimensional representation are
contained in the convex hull of the Weyl group orbit through the highest
weight, we conclude that (µk, 0) is actually the highest weight of the U(2)-
module W . Hence the (U(n)× U(2))-module

FU(n)(µ̃′
(k))⊠ FU(2)(µk, 0)

occurs as an irreducible summand of the U(n + 2)-module FU(n+2)(µ̃). We
now consider the following diagram of subgroups of U(n+2), and investigate
the restriction of the U(n+ 2)-module FU(n+2)(µ̃).

U(n+ 2) ⊃ U(n)× U(2)
∪ ∪

O(n+ 2) ⊃ O(n)×O(2)

By our choice of the Cartan subalgebra hC, we observe that there exists
wk ∈ O(n+ 2) such that Ad(wk)hC = hC and

wkµ̃ = (µ1, · · · , µ̂k, · · · , µm+1, 0
n−m, µk, 0) ∈ Zn+2,

where we write wkµ̃ simply for the contragredient action of Ad(wk) on µ̃ ∈ h∗C
(≃ Cn+2). In particular, the O(n + 2)-submodule FO(n+2)(µ)+ of the re-
striction FU(n+2)(µ̃)|O(n+2) contains the weight vector vwkµ̃ := τ(wk)vµ̃ for
the weight wkµ̃. Since wkµ̃ is an extremal weight, the weight vector in
FU(n+2)(µ̃)|O(n+2) is unique up to scalar multiplication. Hence vwkµ̃ is con-

tained also in the submodule FU(n)(µ̃′
(k)) ⊠ FU(2)(µk, 0). Thus we conclude

that the irreducible O(n+ 2)-module FO(n+2)(µ)+ contains

FO(n)(µ′
(k))⊠ FO(2)(µk)

as an (O(n)×O(2))-summand when restricted to the subgroup O(n)×O(2)
of O(n+ 2).

Let m = [n
2
] as before. Let V = FO(n)(σ)ε with σ ∈ Λ+(m) and ε ∈ {±}.

Suppose λ ∈ Z− S(V ). We recall from Definition-Lemma 16.16 that σ(λ) ∈
Λ+(m+ 1).
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Lemma 16.28. For 0 ≤ i ≤ n, the following (O(n)×O(2))-module

(
∧

i(Cn)⊠ 1)⊗ FO(n+2)(σ(λ))ε|O(n)×O(2)

contains

V ⊠ FO(2)(|λ− i|)+ if i ≤ n

2

(V ⊗ det)⊠ FO(2)(|λ− i|)+ if i ≥ n

2

as an irreducible summand.

We note that V ≃ V ⊗ det as O(n)-modules if i = n
2
by Lemmas 2.9 and

14.28.

Proof. It suffices to prove Lemma 16.28 for ε = + by using a similar argument
to (3.22) for the pair (O(n+2), O(n)×O(2)) and for χ = det. Then Lemma
16.28 is derived from the following two branching laws of compact Lie groups.

• O(n+ 2) ↓ O(n)×O(2):
By Lemma 16.27, the O(n+ 2)-module FO(n+2)(σ(λ))+ contains

FO(n)(σ̂(i))+ ⊠ FO(2)(|λ− i|)

as an irreducible summand when restricted to the subgroup O(n) ×
O(2), see Definition 16.15 for the notation σ̂(i).

• Tensor product for O(n):

The tensor product representation∧
i(Cn)⊗ FO(n)(σ̂(i))+

contains

V ≃ FO(n)(σ)+ if i ≤ n

2
,

V ⊗ det ≃ FO(n)(σ)− if i ≥ n

2

as an irreducible component.
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16.5.2 Irreducible summand for the restriction G ↓ MA and for
tensor product representations

We recall that the Levi subgroup MA of the parabolic subgroup P in G =
O(n+ 1, 1) is expressed as

MA ≃ O(n)× SO(1, 1) ≃ O(n)× Z/2Z× R.

The goal of the subsection is to prove the following proposition.

Proposition 16.29 (tensor product and the restriction O(n+ 1, 1) ↓MA).

Suppose that (V, λ) ∈ Red, i.e., V ∈ Ô(n) and λ ∈ Z− (S(V )∪SY (V )). Let
i = i(V, λ) be the height of (V, λ) (see (14.17)), and F (V, λ) be the irreducible
O(n+ 1, 1)-module as in Definition 16.17. Then the MA-module

(
∧

i(Cn)⊠ δ ⊠ Ci)⊗ F (V, λ)|MA (16.15)

contains
V ⊠ δ ⊠ Cλ

as an irreducible component.

In what follows, we use a mixture of notations in describing irreducible
finite-dimensional representations (see Sections 2.2 and 14.1). To be precise,
we shall use:

• Λ+(O(n + 2)) (⊂ Zn+2), see (2.20), to denote irreducible holomorphic
finite-dimensional representations of the complex Lie group O(n+1,C)
as in Section 2.2;

• Λ+(m+1) (⊂ Zm+1) and signatures to denote irreducible finite-dimensional
representations of the real groups O(n + 2) and O(n + 1, 1) where
m := [n

2
], as in Section 14.1.

See (14.3) for the relationship among these representations.

Proof of Proposition 16.29. We write V = FO(n)(σ)ε as before where σ ∈
Λ+(m), ε ∈ {±}, and m = [n

2
]. By Weyl’s unitary trick for the disconnected

group O(n+ 1, 1), see (14.3), the restrictions of the holomorphic representa-
tion FO(n+2,C)(σ(λ), 0n+1−m) to the subgroups O(n + 2) and O(n + 1, 1) are
given respectively by

FO(n+2)(σ(λ))+,

FO(n+1,1)(σ(λ))+,+.
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Then Lemma 16.28 implies that the holomorphic (O(n,C)×O(2,C))-representation

(
∧

i(Cn)⊠ 1)⊗ FO(n+2,C)(σ(λ), 0n+1−m)|O(n,C)×O(2,C)

contains

FO(n,C)(σ, 0n−m)⊠ FO(2,C)(|λ− i|, 0) if i ≤ n

2
,

(FO(n,C)(σ, 0n−m)⊗ det)⊠ FO(2,C)(|λ− i|, 0) if i ≥ n

2

as an irreducible summand. Because the restriction of the first factor to
compact real from O(n) is isomorphic to FO(n)(σ)+ or FO(n)(σ)− according
to whether i ≤ n

2
or i ≥ n

2
. Taking the restriction to another real form

O(n)×O(1, 1) of O(n,C)×O(2,C), we set that the (O(n)×O(1, 1))-module

(
∧

i(Cn)⊠ 1)⊗ FO(n+1,1)(σ(λ))+,+|O(n)×O(1,1)

contains

FO(n)(σ)+ ⊠ FO(2,C)(|λ− i|, 0)|O(1,1) if i ≤ n

2
,

FO(n)(σ)− ⊠ FO(2,C)(|λ− i|, 0)|O(1,1) if i ≥ n

2

as an irreducible summand.
Since V = FO(n)(σ)ε, the definition of F (V, λ) (Definition 16.17) implies

that the MA-module

(
∧

i(Cn)⊠ 1)⊗ F (V, λ)|MA

contains
V ⊠ (FO(2,C)(|λ− i|, 0)|SO(1,1) ⊗ χε,(−1)λ−iε|SO(1,1))

as an MA-module. Here we have used that MA ≃ O(n) × SO(1, 1) and
that χa,b|SO(1,1) ≃ χ−a,−b|SO(1,1). Hence Proposition 16.29 is derived from the
following lemma on the restriction O(2,C) ↓ SO(1, 1).

Let Ck denote the holomorphic character of SO(2,C) on Ceikθ.

Lemma 16.30 (O(2,C) ↓ SO(1, 1)).

FO(2,C)(k, 0)|Z/2Z×R ≃

{
(−1)k ⊠ (Ck ⊕ C−k) for k ∈ N+,

1⊠ 1 for k = 0,
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where we identify SO(1, 1) ≃ {±I2}×SO0(1, 1) with Z/2Z×R. In particular,
the SO(1, 1)-module

FO(2,C)(|λ− i|, 0)|SO(1,1) ⊗ χε,(−1)λ−iε|SO(1,1)

≃FO(2,C)(|λ− i|, 0)|SO(1,1) ⊗ χ−ε,(−1)λ−i−1ε|SO(1,1)

contains
1⊠ Cλ−i

as an irreducible summand.

Proof. For k ∈ N+, the holomorphic representation FO(2,C)(k, 0) is a two-

dimensional representation ofO(2,C), which is isomorphic to Ind
O(2,C)
SO(2,C)(Ce

ikθ).

Its restriction to the connected subgroup SO(2,C) decomposes into a sum of
two characters of SO(2,C):

FO(2,C)(k, 0)|SO(2,C) ≃ Ceikθ ⊕ Ce−ikθ,

on which the central element −I2 acts as the scalar multiplication of (−1)k =
(−1)−k. Since SO(1, 1) is generated by the central element −I2 and the
identity component SO0(1, 1), Lemma 16.30 follows.

16.5.3 Proof of Proposition 16.9

Proof of Proposition 16.9. Let F (V, λ) be the finite-dimensional representa-
tion of G as in Definition 16.17. Filter F (V, λ) as in Lemma 16.11. We may
assume in addition that each F (j) = F (V, λ)j/F (V, λ)j−1 is irreducible as an
MA-module. Then by Proposition 16.29, Iδ(V, λ) occurs as a subquotient of
the G-module Pr(V,λ)(Iδ(i, i)⊗F (V, λ)). Hence the second assertion of Propo-
sition 16.9 is shown. By Proposition 16.26, the first assertion follows.

16.6 Proof of Theorem 16.6

In this section we complete the proof of Theorem 16.6 and also its reformu-
lation Theorem 16.22. By Proposition 16.9, it suffices to show Proposition
16.10 is an isomorphism in the level of G-modules instead of the isomorphism
in Theorem 16.6 as G-modules.

We divide the argument according to the decomposition

Red = RedI ⨿RedII,

where we recall from Definition 14.17:
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• (V, λ) ∈ RedI, if V is of type X or λ = n
2
;

• (V, λ) ∈ RedII, if V is of type Y and λ = n
2
.

As we shall show in the proof of Proposition 16.10 below, the following
assertion holds with the notation therein.

Proposition 16.31. There is a natural isomorphism, as G-modules

ψ
r(V,λ)

ρ(i)
(Iδ(i, i))|G ≃

{
ψ

r(V,λ)

ρ(i) (Iδ(i, i)|G) if (V, λ) ∈ RedI,⊕
ξ=± ψ

r(V (ξ),λ)

ρ(i) (Iδ(i, i)|G) if (V, λ) ∈ RedII.

16.6.1 Case: (V, λ) ∈ RedI
In this subsection, we discuss the case where V is of type X or λ = n

2
.

Proof of Proposition 16.10 for (V, λ) ∈ RedI. If n is odd, then Proposition
16.10 follows from Lemma 16.3 (1).

Hereafter we assume n is even, say n = 2m. We claim that Proposition
16.10 follows from Lemma 16.3 (2) if V is of type X (Definition 2.6) or
λ = m. To see this, it is enough to verify that all of ρ(i), r(V, λ), and
τ (i)(V, λ) = r(V, λ) − ρ(i), see (16.13), contain 0 in their entries. This is
automatically true for ρ(i) as ρ(i) ∈ WGρ

G (Example 14.9 (3)) and n is even.
For r(V, λ), one sees from (14.10) that the m-th component vanishes if V is
of type X and the (m + 1)-th component vanishes if λ = m. For τ (i)(V, λ),
one see from the formula of τ (i)(V, λ) in Lemma 16.25 that an analogous
assertion holds because λ = m (= n

2
) implies that the height i(V, λ) equals m

by Definition 14.26. Hence Proposition 16.10 for (V, λ) ∈ RedI is shown.

16.6.2 Case: (V, λ) ∈ RedII
In this subsection, we discuss the case where V is of type Y and λ ̸= n

2
. In

this case, n is even (= 2m), i := i(V, λ) = m, and the restriction of V to
SO(n) is a sum of two irreducible representations of SO(n):

V = V (+) ⊕ V (−),

as in (15.1). We extend the definition (14.10) of r(V, λ) to irreducible repre-
sentations V (±) of SO(n) with n = 2m by

r(V (±), λ) := (σ1 +m− 1, · · · , σm−1 + 1,±σm, λ−m) ∈ Zm+1.
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Then r(V (±), λ) viewed as an element of h∗C/Wg is the Z(g)-infinitesimal char-
acter of the principal series representation Iδ(V

(±), λ) of G = SO(n+ 1, 1).
As in (16.13), we set

τ (i)(V (±), λ) := r(V (±), λ)− ρ(i).

Inspecting the definition (14.17) of the height i := i(V, λ), we see that both
r(V (±), λ) and ρ(i) belong to the same Weyl chamber with respect to the
Weyl group Wg (not WG) as in Lemma 16.25.

By Lemma 16.20, the irreducible finite-dimensional G-module F (V, λ)
decomposes into a direct sum of two irreducible G-modules, which we may
write as

F (V, λ)|G = F (V (+), λ)⊕ F (V (−), λ).

To be precise, we set σ(+)(λ) := σ(λ) (Definition 16.17), and define σ(−)(λ)
by replacing the (m+1)-th component σm with −σm. For instance, if λ < m,
then the height i = i(V, λ) is smaller than m and

σ(+)(λ) =(σ1 − 1, · · · , σi − 1, i− λ, σi+1, · · · , σm−1, σm),

σ(−)(λ) =(σ1 − 1, · · · , σi − 1, i− λ, σi+1, · · · , σm−1,−σm).

Then F (V (±), λ) are the irreducible G-modules such that

F (V (±), λ)⊗ χ+,(−1)λ−i|SO(n+1,1)

extends to irreducible holomorphic finite-dimensional representations of the
connected complex Lie group SO(n+ 2,C) with highest weights σ(±)(λ).

Proof of Proposition 16.10 for (V, λ) ∈ RedII. By the definition (16.2) of the
translation functor and by Lemma 16.2, there is a natural G-isomorphism:

ψ
r(V,λ)

ρ(i)
(Iδ(i, i))|G

≃ (P r(V (+),λ) + P r(V (−),λ))(Iδ(i, i)|G ⊗ (F (V (+), λ)⊕ F (V (−), λ))). (16.16)

We claim for ξ, η ∈ {±}:

P r(V (ξ),λ)(Iδ(i, i)|G ⊗ F (V (η), λ)) =ψ
r(V (ξ),λ)

ρ(i) (Iδ(i, i)|G) if ξη = +, (16.17)

P r(V (ξ),λ)(Iδ(i, i)|G ⊗ F (V (η), λ)) =0 if ξη = −. (16.18)
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The first claim (16.17) holds by definition (16.5). To see the vanishing (16.18)
of the cross terms in (16.18), suppose that

ρ(i) + γ = w(ρ(i) + τ (i)(V (ξ), λ))

for some weight γ in F (V (η), λ) and for some w ∈ Wg. Then we have

||γ|| ≤ ||τ (i)(V (η), λ)|| = ||τ (i)(V (ξ), λ)||.

Hence we can apply Lemma 16.13 and conclude

γ = τ (i)(V (ξ), λ).

By the vanishing (16.18) of the cross terms in (16.16), we obtain the following
G-isomorphisms:

ψ
r(V,λ)

ρ(i)
(Iδ(i, i))|G ≃

⊕
ξ∈{±}

ψ
r(V (ξ),λ)

ρ(i) (Iδ(i, i)|G)

≃
⊕
ξ∈{±}

I(−1)λ−iδ(V
(ξ), λ),

which is isomorphic to the restriction of the principal series representation
I(−1)λ−iδ(V, λ) of G to the subgroup G by (15.2).

16.7 Proof of Theorem 16.8

In this section, we show Theorem 16.8, or its reformulation, Theorem 16.23.
The proof is similar to that of Theorem 16.6, hence we give only a sketch of
the proof with focus on necessary changes. A part of the proof is carried out
separately according to the decomposition

Red = RedI ⨿RedII (Definition 14.17).

The following lemma is a counterpart of Proposition 16.29.

Lemma 16.32 (tensor product and G ↓ MA). Suppose (V, λ) ∈ Red. Let
i := i(V, λ) be the height of (V, λ), see (14.17), and F (V, λ) be the irreducible
finite-dimensional representation of G = O(n + 1, 1) as in Definition 16.17.
Then the MA-module

(V ⊠ δ ⊠ Cλ)⊗ F (V, λ)|MA
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contains∧
i(Cn)⊠ δ ⊠ Ci if (V, λ) ∈ RedI,

(
∧

i(Cn)⊠ δ ⊠ Ci)⊕ (
∧

n−i(Cn)⊠ δ ⊠ Ci) if (V, λ) ∈ RedII,

as an irreducible component.

Proof. The proof is similar to that of Proposition 16.29 except that there is
a G-isomorphism F (V, λ)⊗ det ≃ F (V, λ) by Lemma 16.20 if (V, λ) ∈ RedII.
In this case, the height i = i(V, λ) is not equal to n

2
by Lemma 14.28 (3).

Thus both the O(n)-modules
∧

i(Cn) and
∧

n−i(Cn) ≃
∧

i(Cn) ⊗ det occur
simultaneously in V ⊗ F (V, λ)|O(n).

Theorem 16.23, or equivalently, Theorem 16.8 is deduced from the fol-
lowing two propositions.

Proposition 16.33. Suppose (V, λ) ∈ Red. (Definition 14.8), equivalently,

V ∈ Ô(n) and λ ∈ Z−(S(V )∪SY (V )). Then the G-module Pr(V,λ)(Iδ(V, λ)⊗
F (V, λ)) contains

Iδ(i, i) for (V, λ) ∈ RedI,
Iδ(i, i) and Iδ(n− i, i) for (V, λ) ∈ RedII,

as subquotients.

Proof. As in the proof of Proposition 16.9 in Section 16.5.3, Proposition 16.33
follows readily from Lemma 16.11 by using Lemma 16.32.

Proposition 16.34. Suppose (V, λ) ∈ Red, namely, V ∈ Ô(n) and λ ∈
Z− (S(V ) ∪ SY (V )). Then there is a natural isomorphism of G-modules:

Pr(V,λ)(Iδ(V, λ)⊗F (V, λ))|G ≃

{
Iδ(i, i)|G for (V, λ) ∈ RedI,
Iδ(i, i)|G ⊕ Iδ(n− i, i)|G for (V, λ) ∈ RedII.

Proof. The proof is similar to that of Proposition 16.10, again by showing
the vanishing of the cross terms as in (16.18).
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1I 136
1I
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(δ, V, λ)↓ = (δ↓, V ↓, λ↓) 289
εI 128, 130
ιK 137
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Λ+(O(N)) 34, 102∧

ℓ(CN), exterior tensor 36
Λ+(N), dominant weight 34, 242,

269
Πi = Πi,+ 46
Πi,δ, irreducible representations of

G 44, 241, 268, 299, 300,
318

Πi(F ), standard sequence starting
with F 241, 249, 292

Πδ(V, λ) 291, 293
χ+− 72
χ−− = det 31, 72, 243, 308, 311
χ−+ 246
χ±±, one-dimensional representation

of O(n+ 1, 1) 20, 30, 31,
45, 74, 229, 270, 308

χ(V, λ) 333, 334
ρG 33, 45, 75, 241, 276
ρ(i) 275
σ(λ) (= σ(i)(λ)) 339
τ ≺ σ 37
τdom 330
τ (i)(V, λ) 342
Ψsp, special parameter in C2×{±}2

15, 55, 114, 124, 154, 203,
247, 267

ψn 53, 53, 86, 100, 130, 152
ψn(·;λ) 129
ψµ+τ
µ 330

A

ai,j+ (λ, ν) 160

Ãλ,ν,+ 98, 162, 165

Ãλ,ν,− 98, 168, 169

ÃV,W
λ,ν,+ 53, 104

ÃV,W
λ,ν,− 53, 104

Ãi,j
λ,ν,± 152

˜̃AV,W
λ,ν,± 92

( ˜̃AV,W
λ,ν,±)∞ 92

ÃV,W
λ,ν,± 54, 78
∂k+l

∂λk∂νl
|λ=λ0
ν=ν0

ÃV,W
λ,ν,γ 109

Ãi,j
λ,ν,± 152, 158

Ãi,j
λ,ν,+ 160

Ãi,j
λ,ν,− 167

˜̃AV,W
λ,ν,± 56, 111

˜̃Ai,j
λ,ν,+ 65, 175, 178

˜̃Ai,j
λ,ν,− 65
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Aq(λ) 47, 68, 222, 298, 300, 320
Aqi 298
(Aq)±,± 298
(Aq)±± 69

B

bi,i−1
− (λ, ν) 168

C

C̃α
l (z), normalized Gegenbauer poly-

nomial 61,
100

Cλ, character of A 38
C̃λ,ν , Juhl’s operator 61

Ci,j
λ,ν , matrix-valued differential op-

erator 61, 62, 153,
201

C̃i,i+1
λ,i+1 62

C̃i,i−2
λ,n−i+1 62

C̃i,i
λ,ν 62, 181

C̃i,i−1
λ,ν 62, 181

c♭(i, λ) 144, 174
c♯(i, λ) 144, 174
ci,i− (λ, ν) 174

D

di,j+ (λ, ν) 160, 174
DiffG′(Iδ(V, λ)|G′ , Jε(W, ν)) 50, 55,

60
D′, distribution 85

E

U(g), enveloping algebra 116
E, Euler homogeneity operator 88,

94

F

FO(N,C)(λ) 35, 269

FO(N)(λ) 34
FO(N)(λ)± 270
FO(N−1,1)(λ)±± 270
FU(N)(λ), irreducible representation

of U(N) with highest weight
λ 34

F (V, λ) 292, 339, 341, 347

G

Ĝ, unitary dual 236
G = O(n+ 1, 1), Lorentz group 27
G = SO(n+ 1, 1) 210, 308
G0 = SO0(n + 1, 1), the identity

component of O(n + 1, 1)
30, 310, 316

G′ = O(n, 1) 27
LG, Langlands dual group 211
gV,W 103, 105

H

H 27, 38, 88
hI 136
hIλ 140, 143, 161
Hs(CN), spherical harmonics 36

I

Iδ(i, λ) 41, 60, 139, 143
Iδ(i)

♭, submodule of Iδ(i, i) 44
Iδ(i)

♯, quotient of Iδ(i, i) 44
Iδ(V, λ) 37, 39, 49, 50, 78, 142
Iδ(V, λ)

♭ 280, 316
Iδ(V, λ)

♯ 280, 316
Iδ(V, λ) 310
Iδ(V

(±), λ) 310
Iδ(V

(±), λ)♭ 312, 316
Iδ(V

(±), λ)♯ 312, 316
indg

h(V ) = U(g)⊗U(h) V 116
In,i, index set 127
Irr(G) 12, 39
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Irr(G)ρ, set of irreducible admissi-
ble smooth representation
of G with trivial infinites-
imal character ρ 19, 33,
39, 45, 75, 187

i(V, λ), height 283, 287, 333, 341

J

Jε(j, ν) 41, 60
Jε(W, ν) 37, 49, 50, 78

K

k(b) 84, 138, 140
K = O(n + 1) × O(1), maximal

compact subgroup of G 27
K ′ = K ∩G′ 27, 33

L

ℓ(σ) 35, 102
Leven 57, 58, 107, 181, 263, 323
Lodd 57, 58, 107, 181, 323
Li = SO(2)i×O(n−2i+1, 1), Levi

subgroup of qi 296

M

M = O(n) × O(1), the centralizer
of a in K 29, 34

M ′ = O(n− 1)×O(1) 29, 34, 52
M = SO(n)×O(1) 310
m− = diag(−1, 1, · · · , 1,−1) 29,

38, 88
m(Π, π), multiplicity 12, 63

N

N 26
N+ = exp(n+) 28
n+ : Rn → N+ 28, 83, 86
N ′

+ = N+ ∩G′ 28
N− = exp(n−) 28

n− : Rn → N− 28, 83, 84, 86, 138
N ′

− = N− ∩G′ 28
N+

j 28, 89
N−

j 28
N(σ) 57, 102, 105, 107

O

|| · ||op, operator norm 101

P

p+ = t(1, 0, · · · , 0, 1) 30, 84, 87
p+,N(λ, ν) 99, 103
p−,N(λ, ν) 99, 103
P = MAN+, Langlands decompo-

sition of a minimal parabolic
subgroup of G 29

P =MAN+ 211, 310
P ′ =M ′AN ′

+ 29
Pµ 292, 329
pri→j, projection 127, 152, 158,

160

Q

qAC 100
qi, θ-stable parabolic subalgebra68,

295, 299, 320
q±i 296
QI(b), quadratic polynomial 128,

161
q(m) 154, 182
q+ = t(0, · · · , 0, 1, 1) 107

R

R+ 26
Ri,j 152, 162, 169
R(V ; i) 282
r(V, λ) 275
RV,W 53, 100, 103
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RS
q , cohomological parabolic induc-

tion 297,
336

Red (⊂ Ô(n)× Z) 274, 333
RedI 279, 333, 350
RedII 279, 333, 350

RInt (⊂ Ô(n)× Z) 274

S

S(Ãi,j
λ,ν,ε), (K,K

′)-spectrum 155,
158

sgn(I; p) 128
sgn(I; p, q) 128
SIJ 129, 130
Sol(Rn;Vλ,δ,Wν,ε) 89
S(V ) 276, 278
SY (V ) 276, 278

T

T̃i
λ,n−λ 143, 143, 172

(T∞, T ) 90

T̃V
λ,n−λ, normalized Knapp–Stein in-

tertwining operator 142
˜̃T

n
2
λ,n−λ, renormalized Knapp–Stein

intertwining operator 147,
176, 179

U

U(g), enveloping algebra 31
Ui(F ), Hasse sequence starting with

F 239

V

Vλ,δ = V ⊗ δ ⊗ Cλ, representation
of P 38, 117, 335

Vδ := V ⊠ δ 52
Vλ,δ, homogeneous vector bundle over

G/P 39, 85
V∗
λ,δ, dualizing bundle 85, 142

V P (·), Vogan packet 211
[V : W ] 49, 52, 55, 67, 108, 114
V ∨, contragredient representation

of V 85

W

WG, Weyl group for G = O(n +
1, 1) 32, 277, 328

Wg, Weyl group for gC = o(n +
2,C) 32, 277, 328

w, inversion element 83, 86, 88
Wν,ε =W ⊗ ε⊗Cν , representation

of P ′ 48, 117
Wν,ε, homogeneous vector bundle

over G′/P ′ 49

Z

Z(g) 31
ZG(g) 31, 275, 329
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Index

Symbols

θ-stable parameter 250, 298

A

admissible graph 256
admissible smooth representation12

B

basic K-type 42, 139, 143, 155
branching rule, for O(N) ↓ O(N −

1) 37, 121
branching rule, forO(N, 1) ↓ O(N−

1, 1) 273
Bruhat cell 86
Bruhat decomposition 83

C

classication scheme, symmetry break-
ing operators 14,
54

cohomological parabolic induction
293

complementary series representation
67, 268, 307

component group G/G0 30, 71

D

differential symmetry breaking op-
erator 50, 55, 63, 114,
114

discrete series representation 45,
224

distinguished, H- 22, 225
distinguished, (H,ψ)- 225
duality theorem, between differen-

tial symmetry breaking op-

erators and Verma modules
95

E

Euler homogeneity operator 125

F

factorization identity 172
F-method 63, 123
functional equation 14, 172, 175,

176

G

Gegenbauer polynomial 61
generically regular symmetry break-

ing operator 106
generic multiplicity-one theorem15,

108, 171, 326
generic multiplicity-one theorem, for

differential symmetry break-
ing operator 122

generic parameter condition 49,
94, 108

(g, K)-cohomology 223
good range 68, 294, 298, 306
Gross–Prasad conjecture 254

H

Harish-Chandra isomorphism 31,
39

Hasse sequence240, 243, 246, 268,
292

height, of (V, λ) 281
height, of Iδ(V, λ) 283
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I

infinitesimal character 32, 38, 41,
45, 75, 121, 275, 298

Iwasawa decomposition 84

J

jet prolongation 115

K

Knapp–Stein operator 142, 171
Knapp–Stein operator, renormalized—

148, 176, 199
K-picture 137
K-spectrum 143
(K,K ′)-spectrum 19, 155, 175,

207, 230, 232
K-type formula 42, 243, 285

L

localness theorem 16, 51, 55, 57,
65, 95, 124

M

minimal K-type 22, 45, 189, 192,
225, 243, 300

multiplicity 12
multiplicity-one theorem 20, 76,

322
mutation 257

N

N -picture 39, 137

P

period 22, 76, 223, 224
Poincaré duality 230
pure inner form 211, 213

R

Rankin–Cohen bracket 63

regular integral infinitesimal char-
acter 33, 44, 239,
277

regular symmetry breaking opera-
tor 54, 78, 85, 106, 106,
152

regular symmetry breaking opera-
tor, renormalized— 56, 92,
111, 175

residue formula 153, 203

S

signature of the induced represen-
tation 38

singular integral infinitesimal char-
acter 33, 268, 277,
305

sink 258
source 258
sporadic symmetry breaking oper-

ator 14,
51

standard sequence46, 76, 241, 292
symmetry breaking operators 12,

48, 230

T

tempered representation 39, 45,
66, 148, 197, 210, 319

translation functor 329
trivial infinitesimal character 33
type I, representation of O(N) 35,

103, 242, 270
type I, representation ofO(N−1, 1)

270, 330
type I, for Λ+(O(N)) 34
type II, for Λ+(O(N)) 34
type X, representation ofO(N) 35,

67, 279, 310
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type Y, representation ofO(N) 35,
276, 280, 310

V

vanishing theorem 20, 76

W

weakly fair range 299
WG-regular 33, 328
Wg-regular 33, 328

Z

ZG(g)-infinitesimal character 31,
275, 337

367


