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Abstract: We accomplish the classification of the reductive symmetric pairs (G,H) for
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1. Finite-multiplicity in Induction and

Restriction One of the basic problems in repre-

sentation theory is to understand how a given repre-

sentation is decomposed into irreducible representa-

tions. Given a pair of groups G ⊃ H, there are two

important settings for this problem:

I) (Induction) For a simple H-module τ , under-

stand IndGH(τ) as a G-module.

II) (Restriction) For a simple G-module π, under-

stand π|H as an H-module.

We shall highlight the case where G is a real

reductive linear Lie group.

Concerning Induction Problem (I), a special

case is the unitary induction IndGH(τ) from the triv-

ial one-dimensional representation τ = 1 ofH, which

is unitarily equivalent to the regular representation of

G on L2(G/H) if G/H admits a G-invariant Radon

measure. Its irreducible decomposition is called the

Plancherel-type theorem for G/H, and the theory has

been developed extensively for reductive symmetric

pairs (G,H) over several decades since the pioneer-

ing work of the Gelfand school and Harish-Chandra.

Such a successful analysis is built on the following
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finiteness property [1]: For any reductive symmetric

pair (G,H) and for any irreducible admissible repre-

sentation π:

(1.1) dimHomG(π,C
∞(G/H)) < ∞.

We note that the finite-multiplicity property (1.1)

holds not only for irreducible unitary representations

but also for non-unitary representations π. More

strongly, there exists a constant C ≡ C(G,H) < ∞
such that

dimHomG(π,C
∞(G/H)) ≤ C,

for any irreducible smooth representation π of G, as

far as GC/HC is spherical, see [13, Theorem A].

Concerning Restriction Problem (II), the H-

irreducible decomposition of the restriction π|H is

called the branching law.

If H is a maximal compact subgroup K of the

reductive group G, then for any irreducible unitary

representation π of G, we have the following admis-

sibility theorem of Harish-Chandra [4]:

(1.2) dimHomK(τ, π|K) < ∞

for any irreducible (finite-dimensional) representa-

tion τ of K. Equivalently, the condition (1.2) can
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be replaced by

(1.3) dimHomK(π|K , τ) < ∞

because K is compact. Harish-Chandra’s admissibil-

ity theorem has led to the concept of (g,K)-modules,

providing us with an algebraic powerful tool in study-

ing irreducible unitary representations of reductive

Lie groups.

A continuous representation π of a real reductive

group G of finite length on a complete, locally convex

topological vector space is called admissible if (1.2)

is satisfied. We say π is an admissible smooth repre-

sentation (sometimes referred to as a smooth Fréchet

representation of moderate growth [20, Chapter 11])

if π is realized in the space of smooth vectors of

a Banach representation of finite length. An ir-

reducible admissible smooth representation will be

called an irreducible smooth representation in this ar-

ticle for simplicity. By the Casselman–Wallach glob-

alization theory, there is a canonical equivalence of

categories between the category of (g,K)-modules of

finite length and the category of admissible smooth

representations of G.

In contrast to the Riemannian symmetric pair

(G,K), it is notorious that a finite-multiplicity the-

orem for the restriction (see (1.3)) may fail for re-

ductive symmetric pairs (G,H), namely, it may well

happen that

dimHomH(π|H , τ) = ∞

for some irreducible smooth representation π of G

and some irreducible smooth representation τ of H.

Here HomH( , ) denotes the space of continuous H-

homomorphisms.

An opposite extremal case is that the restric-

tion π|H is still irreducible as an H-module. This is

rare but still happens for (infinite-dimensional) irre-

ducible representations π and for reductive symmet-

ric pairs (G,H), see [9].

A special case of a symmetric pair is the group

case

(G,H) = (G′ ×G′, diagG′),

for which the branching problem (II) deals with the

decomposition of the tensor product of two irre-

ducible representations of G′. Even in this case,

the branching laws do not always behave nicely. For

example, the tensor product of two irreducible uni-

tary principal series representations of a simple group

such as SL(n,R) (n ≥ 3) involves infinite multiplic-

ities in the irreducible decomposition. See [7, 9] for

more details about “bad behaviours” and “good be-

haviours” of the restriction with respect to symmet-

ric pairs.

These observations suggest that the condition

that H is a maximal reductive subgroup of G would

be too general to develop a concrete analysis of

branching laws of irreducible unitary representations

of G. In other words, one could expect detailed anal-

ysis on branching laws only if we were able to dis-

cover “very nice frameworks.” Indeed, the analysis

of branching laws has been developed extensively in

the following nice settings:

(1) (Theta correspondence, Howe’s dual pair) π is

the metaplectic representation of G = Mp(n,R)
and H = H1 ·H2 is a dual pair in G [5].

(2) (Admissible restriction) The restriction π|H is

H-admissible, i.e., it decomposes discretely into

a direct sum of irreducible representations of H

with finite multiplicities [7].

These examples impose strong constraints on the

representation π of G. For instance, in the theta cor-

respondence (1), the representation π attains its min-

imum Gelfand–Kirillov dimension among all infinite-

dimensional representations of G. The recent papers

[14, 15] gave a classification of the triples (G,H, π)

for which the admissibility of the restriction (2) holds

in the setting that (G,H) is a reductive symmetric

pair and π is relatively “small” (e.g., Zuckerman’s

derived functor modules, minimal representations,

etc.).

In this article, we consider a more general frame-

work, and try to relax any assumption on π such

as “small” representations. Thus, we wish to un-
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derstand clearly for which pairs (G,H) of reductive

groups we could expect that the branching laws π|H
behave reasonably for arbitrary irreducible represen-

tations π. To be more precise, we ask whether a given

pair (G,H) satisfies the following finite-multiplicity

property for the restriction of admissible representa-

tions:

(FM) (Finite-multiplicity restriction)

dimHomH(π|H , τ) < ∞, for any admissible

smooth representation π of G and for any ad-

missible smooth representation τ of H.

2. Statement of Main Results Here is the

complete classification of the reductive symmetric

pairs (G,H) having the property (FM).

Theorem 1. Suppose (G,H) is a reductive

symmetric pair. Then the following two conditions

are equivalent:

(i) (G,H) satisfies the finite-multiplicity property

(FM) for restriction of admissible smooth rep-

resentations.

(ii) The pair of the Lie algebras (g, h) is isomorphic

(up to outer automorphisms) to the direct sum

of the following pairs:

A) Trivial case: g = h.

B) Abelian case: g = R, h = {0}.
C) Compact case: g is the Lie algebra of a com-

pact simple Lie group.

D) Riemannian symmetric pair: h is the Lie

algebra of a maximal compact subgroup K

of a non-compact simple Lie group G.

E) Split rank one case (rankR G = 1):

E1) (o(p+q, 1), o(p)+o(q, 1)) (p+q ≥ 2).

E2) (su(p+ q, 1), s(u(p) + u(q, 1)))

(p+ q ≥ 1).

E3) (sp(p+ q, 1), sp(p) + sp(q, 1))

(p+ q ≥ 1).

E4) (f4(−20), so(8, 1)).

F) Strong Gelfand pairs and their real forms:

F1) (sl(n+ 1,C), gl(n,C)) (n ≥ 2).

F2) (o(n+ 1,C), o(n,C)) (n ≥ 2).

F3) (sl(n+ 1,R), gl(n,R)) (n ≥ 1).

F4) (su(p+ 1, q), u(p, q)) (p+ q ≥ 1).

F5) (o(p+ 1, q), o(p, q)) (p+ q ≥ 2).

G) Group case: (g, h) = (g′ + g′, diag g′)

G1) g′ is the Lie algebra of a compact sim-

ple Lie group.

G2) g′ ≃ o(n, 1) (n ≥ 2).

H) Other cases:

H1) (o(2n, 2), u(n, 1)).

H2) (su∗(2n+ 2), su(2) + su∗(2n) + R)
(n ≥ 1).

H3) (o∗(2n+ 2), o(2) + o∗(2n)) (n ≥ 1).

H4) (sp(p+ 1, q), sp(p, q) + sp(1)).

H5) (e6(−26), so(9, 1) + R).
For the “group case” (G), Theorem 1 implies the

following:

Corollary 2. Suppose G is a simple Lie

group. Then the following three conditions on G are

equivalent:

(i) For any triple of admissible smooth representa-

tions π1, π2, and π3 of G,

dimHomG(π1 ⊗ π2, π3) < ∞.

(ii) For any triple of admissible smooth represen-

tations π1, π2 and π3 of G, invariant trilinear

forms are finite-dimensional:

dimHomG(π1 ⊗ π2 ⊗ π3,C) < ∞.

(iii) Either G is compact or g is isomorphic to o(n, 1)

(n ≥ 2).

3. Uniformly Bounded Multiplicities

In addition to the aforementioned finite-multiplicity

property (FM), we consider the following two prop-

erties on a pair of reductive groups (G,H):

(BM) (Bounded-multiplicity restriction) There exists

a constant C ≡ C(G,H) < ∞ such that

dimHomH(π|H , τ) ≤ C,

for any irreducible admissible representations π

and τ of G and H, respectively.

(MF) (Multiplicity-free restriction) One can take C to

be 1 in (BM), namely,
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dimHomH(π|H , τ) ≤ 1

for any irreducible admissible representations π

and τ of G and H, respectively.

Clearly, we have

(MF) ⇒ (BM) ⇒ (FM).

We note that the properties (FM) and (BM) depend

only on the Lie algebra (g, h). Moreover, we have

discovered in [13, Theorem D] that the bounded-

multiplicity property (BM) depends only on the com-

plexified Lie algebra (gC, hC) ≡ (g⊗RC, h⊗RC). On

the other hand, the multiplicity-free property (MF)

is not determined by the pair of Lie algebras (g, h),

but depends on the groups G andH (e.g., the discon-

nectedness of the groups may affect the best constant

C in (BM)).

Here is the classification of symmetric pairs

(g, h) satisfying the property (BM) as a subclass of

(FM):

Proposition 3. Suppose (g, h) is a real reduc-

tive symmetric pair. Then the following three condi-

tions are equivalent:

(i) For any real reductive Lie groups G ⊃ H with

Lie algebras g ⊃ h, respectively, the pair (G,H)

satisfies the bounded multiplicity property (BM)

for restriction.

(ii) There exists a pair of (possibly disconnected)

real reductive Lie groups G ⊃ H such that

(G,H) satisfies the multiplicity-free property

(MF) for restriction.

(iii) The pair of the Lie algebras (g, h) is isomorphic

(up to outer automorphisms) to the direct sum

of pairs (A), (B) and (F1) – (F5).

The implication (ii) ⇒ (i) is obvious as men-

tioned. The equivalence (i) ⇔ (iii) was proved in

[13, Theorem D]. The implication (iii) ⇒ (ii) was

proved in Sun–Zhu [19]. (Thus there are two differ-

ent proofs for the implication (iii) ⇒ (i).) As a more

refined form of the implication (iii) ⇒ (ii), Gross and

Prasad formulated a conjecture about the restriction

of an irreducible admissible tempered representation

of an inner form G of the group O(n) over a local

field to a subgroup which is an inner form O(n− 1)

(cf. (F2) and (F4) for the Archimedian field), [3].

Similarly to Corollary 2, we apply Proposition 3

to the group case and get the following (see [8], [11,

Corollary 4.2] for further equivalence, e.g. the finite-

dimensionality of the space of Shintani functions):

Corollary 4. Suppose G is a simple Lie

group. Then the following three conditions on G are

equivalent:

(i) There exists a constant C < ∞ such that

dimHomG(π1 ⊗ π2, π3) ≤ C,

for any irreducible smooth representations π1,

π2, and π3 of G.

(ii) There exists a constant C < ∞ such that

dimHomG(π1 ⊗ π2 ⊗ π3,C) ≤ C,

for any irreducible smooth representations π1,

π2, and π3 of G.

(iii) The Lie algebra g is isomorphic to one of

su(2) ≃ o(3), su(1, 1) ≃ sl(2,R) ≃ o(2, 1) or

sl(2,C) ≃ o(3, 1).

4. Strategy of Proof A complex manifold

XC with action of a complex reductive group GC is

called spherical if a Borel subgroup ofGC has an open

orbit inXC, and there is a vast literature on spherical

varieties. In the real setting, in search of a good

framework for global analysis on homogeneous spaces

which are broader than the usual (e.g. symmetric

spaces), we emphasised in [8] the importance of the

following notion and proposed to call:

Definition 5. A smooth manifold X with ac-

tion of a real reductive group G is real spherical if a

minimal parabolic subgroup P ofG has an open orbit

in X.

In the case where G acts transitively on X, a

minimal parabolic subgroup P has finitely many or-

bits in X if and only if P has an open orbit in X by
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the works of Kimelfeld [6] and Matsuki [18], see also

[13, Remark 2.5] and references therein.

Representation theoretic properties (FM) or

(BM) are characterised by the geometric conditions

on real or complex flag varieties, respectively, as fol-

lows:

Fact 6 ([13, Theorems C and D]). Suppose G

is a real reductive Lie group, and H a reductive sub-

group defined algebraically over R.
1) The finite-multiplicity property (FM) holds if

and only if (G×H)/diagH is real spherical.

2) The bounded-multiplicity property (BM) holds if

and only if (GC ×HC)/diagHC is spherical.

Here GC is a complexification of G, and HC a

subgroup of GC with complexified Lie algebra hC =

h⊗R C.
Therefore, we can reduce the proof of Theorem

1 to a purely algebraic question, namely, the clas-

sification of real spherical variety of the form (G ×
H)/ diagH.

For this, it is sufficient to deal with the case

where (g, h) is an irreducible symmetric pair, which

consists of two families:

1) (group case) (g′ + g′, diag g′) with g′ simple,

2) (g, h) with g simple.

In the sequel, we say (G,H) satisfies (PP) if

(G×H)/diagH is real spherical, and (BB) if (GC×
HC)/diagHC is spherical.

The classification of real spherical homogeneous

spaces of the form (G×H)/diagH with (G,H) irre-

ducible symmetric pairs was accomplished as follows:

Theorem 7 ([12]). For irreducible symmetric

pairs (g, h), the following two conditions are equiva-

lent:

(i) (G×H)/ diagH is real spherical.

(ii) (g, h) is isomorphic to one of (C)–(H) up to

outer automorphisms.

Remark 8. In connection with branching

problems, the classification in Theorem 7 was estab-

lished earlier in the following special cases:

1) (g, h): complex pairs (PP) ⇔ (BB) ⇔ (F1)

or (F2) ([17]).

2) (g, h) = (g′ + g′,diag g′) (group case) (PP) ⇔
(G) ([8]).

The case (1) was studied in connection with

finite-dimensional representations of compact Lie

groups, and the case (2) with the tensor product of

two representations as we saw in Corollary 2. We

also notice that (g′+ g′, g′) satisfies (PP) if and only

if the homogeneous space (G′ × G′ × G′)/diagG′ is

a real spherical variety in view of the following iso-

morphism:

(PG′ × PG′ × PG′)\(G′ ×G′ ×G′)/diagG′

≃ (PG′ × PG′)\(G′ ×G′)/PG′ .

5. Concluding Remarks As mentioned at

the beginning of this article, the original motivation

of this work is to single out good pairs (G,H) of re-

ductive groups, with which we hope to open a new

theory of geometric analysis of the branching laws

π|H of arbitrary irreducible smooth representations π

of G. We mention here some few examples of the re-

cent progress in this direction for some specific pairs

(G,H) that appear in the list of Theorem 1:

• Analysis on invariant trilinear forms [2]

– (G,H) = (G′×G′, diagG′) with G′ = O(n, 1),

see Corollary 2.

• Classification and explicit construction of con-

formally covariant (integral, differential, ...) op-

erators [10, 16].

– (G,H) = (O(n + 1, 1), O(n, 1)), see (E1) or

(F5) in Theorem 1.

The main results of this paper were announced

in the conferences “Group Actions with Applica-

tions in Geometry and Analysis” at Reims University

(France) in June, 2013 and in “Representations of

Reductive Groups” at the University of Utah (USA)

in July, 2013.

Detailed proofs are given in [11, 12, 13].
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