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Abstract

For a pair of reductive groups G ⊃ G′, we prove a geometric criterion for the

space Sh(λ, ν) of Shintani functions to be finite-dimensional in the Archimedean

case. This criterion leads us to a complete classification of the symmetric pairs

(G,G′) having finite-dimensional Shintani spaces. A geometric criterion for uni-

form boundedness of dimC Sh(λ, ν) is also obtained. Furthermore, we prove that

symmetry breaking operators of the restriction of smooth admissible represen-

tations yield Shintani functions of moderate growth, of which the dimension is

determined for (G,G′) = (O(n+ 1, 1), O(n, 1)).
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1 Introduction

The object of this article is to investigate Shintani functions for a pair of reductive

groups G ⊃ G′ in the Archimedean case. Among others, we classify the reductive

symmetric pairs (G,G′) such that the Shintani spaces Sh(λ, ν) are finite-dimensional for

all (ZG,ZG′)-infinitesimal character (λ, ν). Explicit dimension formulae for the Shintani

spaces of moderate growth are determined for the pair (G,G′) = (O(n+1, 1), O(n, 1)).

Let G be a real reductive linear Lie group. We write g for the Lie algebra of G, and

U(gC) for the universal enveloping algebra of the complexified Lie algebra gC := g⊗RC.
For X ∈ g and f ∈ C∞(G), we set

(1.1) (LXf)(g) :=
d

dt
|t=0f(exp(−tX)g), (RXf)(g) :=

d

dt
|t=0f(g exp(tX)),
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and extend these actions to those of U(gC).

We denote by ZG the C-algebra of G-invariant elements in U(gC). Let j be a

Cartan subalgebra of g. Then any λ ∈ j∨C gives rise to a C-algebra homomorphism

χλ : ZG → C via the Harish-Chandra isomorphism ZG
∼→ S(jC)

W (jC), where W (jC) is

some finite group (see Section 3.3).

Suppose that G′ is an algebraic reductive subgroup. Analogous notation will be

applied to G′. For instance, HomC-alg(ZG′ ,C) ≃ (j′C)
∨/W (j′C), χν ↔ ν, where j′ is a

Cartan subalgebra of the Lie algebra g′ of G′.

We take a maximal compact subgroup K of G such that K ′ := K ∩G′ is a maximal

compact subgroup. Following Murase–Sugano [19], we call:

Definition 1.1 (Shintani function). We say f ∈ C∞(G) is a Shintani function of

(ZG,ZG′)-infinitesimal characters (λ, ν) if f satisfies the following three properties:

(1) f(k′gk) = f(g) for any k′ ∈ K ′, k ∈ K.

(2) Ruf = χλ(u)f for any u ∈ ZG.

(3) Lvf = χν(v)f for any v ∈ ZG′ .

We denote by Sh(λ, ν) the space of Shintani functions of type (λ, ν).

For G = G′ and λ = −ν, Shintani functions are nothing but Harish-Chandra’s

zonal spherical functions.

In this article, we provide the following three different realizations of the Shintani

space Sh(λ, ν):

• Matrix coefficients of symmetry breaking operators. (See Proposition 7.1.)

• (K ×K ′)-invariant functions on (G×G′)/ diagG′. (See Lemma 5.5.)

• G′-invariant functions on the Riemannian symmetric space (G×G′)/(K ×K ′).

(See Lemma 8.6.)

The first realization constructs Shintani functions having moderate growth (Defi-

nition 3.3) from the restriction of admissible smooth representations of G with respect

to the subgroup G′, whereas the second realization relates Sh(λ, ν) with the theory

of real spherical homogeneous spaces which was studied in [11, 12, 13, 14]. Via the

third realization, we can apply powerful methods (e.g., [9]) of harmonic analysis on

Riemannian symmetric spaces for the study of Shintani functions.

By using these ideas, we give a characterization of the pair (G,G′) for which the

Shintani space Sh(λ, ν) is finite-dimensional for all (λ, ν):
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Theorem 1.2 (see Theorem 4.1). The following four conditions on a pair of real

reductive algebraic groups G ⊃ G′ are equivalent:

(i) (Shintani function) Sh(λ, ν) is finite-dimensional for any pair (λ, ν) of (ZG,ZG′)-

infinitesimal characters.

(ii) (Symmetry breaking) HomG′(π∞, τ∞) is finite-dimensional for any pair (π∞, τ∞)

of admissible smooth representations of G and G′ (see Section 3.2).

(iii) (Invariant bilinear form) There exist at most finitely many linearly independent

G′-invariant bilinear forms on π∞ ⊗ τ∞ for any pair (π∞, τ∞) of admissible

smooth representations of G and G′.

(iv) (Geometric property (PP)) There exist minimal parabolic subgroups P and P ′ of

G and G′, respectively, such that PP ′ is open in G.

The dimension of the Shintani space Sh(λ, ν) depends on λ and ν in general. We

give a characterization of the uniform boundedness property:

Theorem 1.3. The following four conditions on a pair of real reductive algebraic groups

G ⊃ G′ are equivalent:

(i) (Shintani function) There exists a constant C such that

dimC Sh(λ, ν) ≤ C

for any pair (λ, ν) of (ZG,ZG′)-infinitesimal characters.

(ii) (Symmetry breaking) There exists a constant C such that

dimC HomG′(π∞, τ∞) ≤ C

for any pair (π∞, τ∞) of admissible smooth representations of G and G′.

(iii) (Invariant bilinear form) There exists a constant C such that

dimC HomG′(π∞ ⊗ τ∞,C) ≤ C

for any pair (π∞, τ∞) of admissible smooth representations of G and G′.

(iv) (Geometric property (BB)) There exist Borel subgroups B and B′ of the complex

Lie groups GC ⊃ G′
C with Lie algebras gC ⊃ g′C, respectively, such that BB′ is

open in GC.
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By using the geometric criterion (PP), we give a complete classification of the

reductive symmetric pairs (G,G′) for which one of (therefore any of) the equivalent

conditions in Theorem 1.2 is fulfilled. See Theorem 2.3 for the classification. Among

them, those satisfying the uniform boundedness property in Theorem 1.3 are listed in

Theorem 2.4.

Example 1.4 (see Theorems 2.3 and 2.4). 1) If (G,G′) is

(GL(n+ 1,C), GL(n,C)×GL(1,C)) (n ≥ 1),

(O(n+ 1,C), O(n,C)) (n ≥ 1),

or any real form of them, then we have

(1.2) sup
λ

sup
ν

dimC Sh(λ, ν) <∞.

2) If (G,G′) is

(Sp(n+ 1,C), Sp(n,C)× Sp(1,C)) (n ≥ 2),

or its split real form, then Sh(ρg, ρg′) is infinite-dimensional (see (3.4) for the

notation). On the other hand, if (G,G′) is a non-split real form, then Sh(λ, ν)

is finite-dimensional for all (λ, ν), but the dimension is not uniformly bounded,

namely, (1.2) fails.

3) If (G,G′) is

(GL(n+ 1,H), GL(n,H)×GL(1,H)) (n ≥ 1),

then Sh(λ, ν) is finite-dimensional for all (λ, ν), but (1.2) fails.

This article is organized as follows:

In Section 2, we give a complete list of the reductive symmetric pairs (G,G′) such

that the dimension of the Shintani space is finite/uniformly bounded.

After a brief review on basic results on continuous (infinite-dimensional) represen-

tations of real reductive Lie groups in Section 3, we enrich Theorem 1.2 by adding some

more conditions that are equivalent to the finiteness of dimC Sh(λ, ν) in Theorem 4.1.

The upper estimate of dimC Sh(λ, ν) is proved in Section 5 by using the theory of

real spherical homogeneous spaces which was established in [14].

In Section 7 we give a lower estimate of dimC Sh(λ, ν) by using the intertwining

operators constructed in Section 6.

In Section 8 we apply the theory of harmonic analysis on Riemannian symmetric

spaces, and investigate the relationship between symmetry breaking operators of the

restriction of admissible smooth representations of G to G′ and Shintani functions.

Section 9 provides an example for (G,G′) = (O(n + 1, 1), O(n, 1)) by using a recent

work [16] with B. Speh on symmetry breaking operators.
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2 Classification of (G,G′) with dimC Sh(λ, ν) <∞
This section gives a complete classification of the reductive symmetric pairs (G,G′) such

that the dimension of the Shintani space Sh(λ, ν) is finite/bounded for any (ZG,ZG′)-

infinitesimal characters (λ, ν). Owing to the criteria in Theorems 1.2 and 1.3, the

classification is reduced to that of (real) spherical homogeneous spaces of the form

(G×G′)/ diagG′, which was accomplished in [13].

Definition 2.1 (Symmetric pair). Let G be a real reductive Lie group. We say (G,G′)

is a reductive symmetric pair if G′ is an open subgroup of the fixed point subgroup Gσ

of some involutive automorphism σ of G.

Example 2.2. 1) (Group case) Let G1 be a Lie group. Then the pair

(G,G′) = (G1 ×G1, diagG1)

forms a symmetric pair with the involution σ ∈ Aut(G) defined by σ(x, y) = (y, x).

Since the homogeneous space G/G′ is isomorphic to the group manifold G1 with (G1×
G1)-action from the left and the right, the pair (G1×G1, diagG1) is sometimes referred

to as the group case.

2) (Riemannian symmetric pair) Let K be a maximal compact subgroup of a real

reductive linear Lie group G. Then the pair (G,K) is a symmetric pair because K

is the fixed point subgroup of a Cartan involution θ of G. Since the homogeneous

space G/K becomes a symmetric space with respect to the Levi-Civita connection of

a G-invariant Riemannian metric on G/K, the pair (G,K) is sometimes referred to as

a Riemannian symmetric pair.

The classification of reductive symmetric pairs was established by Berger [2] on the

level of Lie algebras. Among them we list the pairs (G,G′) such that the space of

Shintani functions is finite-dimensional as follows:

Theorem 2.3. Suppose (G,G′) is a reductive symmetric pair. Then the following two

conditions are equivalent:

(i) Sh(λ, ν) is finite-dimensional for any (ZG,ZG′)-infinitesimal characters (λ, ν).

(ii) The pair (g, g′) of the Lie algebras is isomorphic (up to outer automorphisms) to

the direct sum of the following pairs:

A) Trivial case: g = g′.

B) Abelian case: g = R, g′ = {0}.
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C) Compact case: g is the Lie algebra of a compact simple Lie group.

D) Riemannian symmetric pair: g′ is the Lie algebra of a maximal compact

subgroup K of a non-compact simple Lie group G.

E) Split rank one case (rankRG = 1):

E1) (o(p+ q, 1), o(p) + o(q, 1)) (p+ q ≥ 2).

E2) (su(p+ q, 1), s(u(p) + u(q, 1))) (p+ q ≥ 1).

E3) (sp(p+ q, 1), sp(p) + sp(q, 1)) (p+ q ≥ 1).

E4) (f4(−20), o(8, 1)).

F) Strong Gelfand pairs and their real forms:

F1) (sl(n+ 1,C), gl(n,C)) (n ≥ 2).

F2) (o(n+ 1,C), o(n,C)) (n ≥ 2).

F3) (sl(n+ 1,R), gl(n,R)) (n ≥ 1).

F4) (su(p+ 1, q), u(p, q)) (p+ q ≥ 1).

F5) (o(p+ 1, q), o(p, q)) (p+ q ≥ 2).

G) (g, g′) = (g1 + g1, diag g1) Group case:

G1) g1 is the Lie algebra of a compact simple Lie group.

G2) (o(n, 1) + o(n, 1), diag o(n, 1)) (n ≥ 2).

H) Other cases:

H1) (o(2n, 2), u(n, 1)) (n ≥ 1).

H2) (su∗(2n+ 2), su(2) + su∗(2n) + R) (n ≥ 1).

H3) (o∗(2n+ 2), o(2) + o∗(2n)) (n ≥ 1).

H4) (sp(p+ 1, q), sp(p, q) + sp(1)).

H5) (e6(−26), so(9, 1) + R).

We single out those pairs (G,G′) having the uniform boundedness property as

follows:

Theorem 2.4. Suppose (G,G′) is a reductive symmetric pair. Then the following

conditions are equivalent:

(i) There exists a constant such that

dimC Sh(λ, ν) ≤ C

for any (ZG,ZG′)-infinitesimal characters (λ, ν).

7



(ii) The pair of the Lie algebras (g, g′) is isomorphic (up to outer automorphisms) to

the direct sum of the pairs in (A), (B) and (F1) – (F5).

Example 2.5. In connection with branching problems, some of the pairs appeared

earlier in the literatures. For instance,

1) (Strong Gelfand pairs [18]) (F1), (F2).

2) (the Gross–Prasad conjecture [4]) (F2), (F5).

3) (Finite-multiplicity for tensor products [11]) (G2).

4) (Multiplicity-free restriction [1, 21]) (F1)–(F5).

Remark 2.6. The following pairs (G,G′) are non-symmetric pairs such that (G,G′)

satisfies the condition (i) of Theorem 2.4.

(G,G′) = (SO(8,C), Spin(7,C)), (SO(4, 4), Spin(4, 3)).

In fact the Lie algebras (g, g′) are symmetric pairs, but the involution of g does not lift

to the group G.

Proof of Theorem 2.3. Direct from Theorem 1.2 and [13, Theorem 1.3].

Proof of Theorem 2.4. Direct from Theorem 1.3 and [13, Proposition 1.6].

3 Preliminary results

We begin with a quick review of some basic results on (infinite-dimensional) continuous

representations of real reductive Lie groups.

3.1 Continuous representations and the Frobenius reciprocity

By a continuous representation π of a Lie group G on a topological vector space V we

shall mean that π : G→ GLC(V ) is a group homomorphism such that the induced map

G×V → V , (g, v) 7→ π(g)v is continuous. We say π is a (continuous) Hilbert [Banach,

Fréchet, · · · ] representation if V is a Hilbert [Banach, Fréchet, · · · ] space. We note

that a continuous Hilbert representation is not necessarily a unitary representation; a

Hilbert representation π of G is said to be a unitary representation provided that all

the operators π(g) (g ∈ G) are unitary.
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Suppose π is a continuous representation of G on a Banach space V . A vector

v ∈ V is said to be smooth if the map G → V , g 7→ π(g)v is of C∞-class. Let V ∞

denote the space of smooth vectors of the representation (π, V ). Then V ∞ carries

a Fréchet topology with a family of semi-norms ∥v∥i1···ik := ∥dπ(Xi1) · · · dπ(Xik)v∥,
where {X1, · · · , Xn} is a basis of g. Then V ∞ is a G-invariant subspace of V , and we

obtain a continuous Fréchet representation (π∞, V ∞) of G.

Suppose that G′ is another Lie group. If π and τ are Hilbert representations of G

and G′ on the Hilbert spaces Hπ and Hτ , respectively, then we can define a continuous

Hilbert representation π ⊠ τ of the direct product group on the Hilbert completion on

Hπ⊗̂Hτ of the pre-Hilbert space Hπ ⊗Hτ .

Suppose further that G′ is a subgroup of G. Then we may regard π as a represen-

tation of G′ by the restriction. The resulting representation is denoted by π|G′ . The

restriction of the outer tensor product π ⊠ τ of G × G′ to the subgroup diagG′ =

{(g′, g′) : g′ ∈ G′} is denoted by π ⊗ τ . By a symmetry breaking operator we mean

a continuous G′-homomorphism from the representation space of π to that of τ . We

write HomG′(π|G′ , τ) for the vector space of continuous G′-homomorphisms. Analogous

notation is applied to smooth representations.

For the convenience of the reader, we review some basic properties of the restriction:

Lemma 3.1. Suppose that π and τ are Hilbert representations of G and G′ on Hilbert

spaces Hπ and Hτ , respectively.

1) There is a canonical injective homomorphism:

(3.1) HomG′(π|G′ , τ) ↪→ HomG′(π∞|G′ , τ∞), T 7→ T |H∞
π
.

2) Let τ∨ be the contragredient representation of τ . Then we have a canonical iso-

morphism:

(3.2) HomG′(π|G′ , τ) ≃ HomG′(π ⊗ τ∨,C).

3) There is a canonical injective homomorphism if G and G′ are real reductive:

HomG′(π∞|G′ , τ∞) ↪→ HomG′(π∞ ⊗ (τ∨)∞,C).

Proof. 1) See [14, Lemma 5.1], for instance. 2) We have a canonical isomorphism

between HomC(Hπ,Hτ ) and HomC(Hπ⊗̂H∨
τ ,C), where HomC( , ) denotes the space of

continuous linear maps. Taking G′-invariant elements, we get (3.2). 3) See [1, Lemma

A.0.8], for instance.
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Proposition 3.2 (Frobenius reciprocity). Let H be a closed subgroup of a Lie group

G. Suppose that π is a continuous representation of G on a topological vector space V .

Then there is a canonical bijection

(3.3) HomH(π|H ,C) ≃ HomG(π,C(G/H)), λ 7→ T

defined by

T (v)(g) = λ(π(g−1)v) v ∈ V.

Furthermore, if π∞ is a smooth representation, then we have

HomH(π
∞|H ,C) ≃ HomG(π

∞, C∞(G/H)).

Proof. The linear map T : V → C(G/H) is continuous because G× V → V , (g, v) 7→
π(g−1)v is continuous. The last statement follows because G → V , g 7→ π(g)−1v is a

C∞-map.

3.2 Admissible representations

In this subsection we review some basic terminologies for Harish-Chandra modules.

Let G be a real reductive linear Lie group, and K a maximal compact subgroup

of G. Let HC denote the category of Harish-Chandra modules where the objects are

(g, K)-modules of finite length, and the morphisms are (g, K)-homomorphisms.

Let π be a continuous representation of G on a Fréchet space V . Suppose that π is

of finite length, namely, there are at most finitely many closed G-invariant subspaces

in V . We say π is admissible if

dimHomK(τ, π|K) <∞

for any irreducible finite-dimensional representation τ of K. We denote by VK the

space of K-finite vectors. Then VK ⊂ V ∞ and the Lie algebra g leaves VK invariant.

The resulting (g, K)-module on VK is called the underlying (g, K)-module of π, and

will be denoted by πK .

An admissible representation (π, V ) is said to be spherical if V contains a nonzero

K-fixed vector, or equivalently, the underlying (g, K)-module VK contains a nonzero

K-fixed vector.

A vector v ∈ V is said to be cyclic if the vector space C-span{π(g)v : g ∈ G}
is dense in V . If W is a proper G-invariant closed subspace of V , then v mod W is

a cyclic vector in the quotient representation on V/W . For a K-finite vector v, v is

cyclic in π if and only if v is cyclic in the underlying (g, K)-module πK in the sense

that U(gC)v = VK .
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3.3 Harish-Chandra isomorphism

We review the standard normalization of the Harish-Chandra isomorphism of the C-
algebra ZG, where we recall from Introduction that

ZG = U(gC)
G ≡ {u ∈ U(gC) : Ad(g)u = u for all g ∈ G}.

For a connected G, ZG is equal to the center Z(gC) of U(gC).

Let j be a Cartan subalgebra of g, jC = j⊗R C, and j∨C = HomC(jC,C). We set

W (jC) := NG̃(jC)/ZG̃(jC),

where G̃ is the group generated by Ad(G) and the group Int(gC) of inner automor-

phisms. For a connected G, W (jC) is the Weyl group for the root system ∆(gC, jC).

Fix a positive system ∆+(gC, jC), and write n+C for the sum of the root spaces

belonging to ∆+(gC, jC), and n−C for ∆−(gC, jC). We set

(3.4) ρg :=
1

2

∑
α∈∆+(gC,jC)

α ∈ j∨C.

Let γ′ : U(gC) → U(jC) ≃ S(jC) be the projection to the second factor of the

decomposition U(gC) = (n−CU(gC) + U(gC)n
+
C) ⊕ U(jC). Then we have the Harish-

Chandra isomorphism

(3.5) ZG = U(gC)
G ∼→

γ
S(jC)

W (jC),

where γ : U(gC)→ S(jC) is defined by ⟨γ(u), λ⟩ = ⟨γ′(u), λ− ρg⟩ for all λ ∈ j∨C.

Then any element λ ∈ j∨C gives a C-algebra homomorphism χλ : ZG → C via the

isomorphism (3.5), and χλ = χλ′ if and only if λ′ = wλ for some w ∈ W (jC). This

correspondence yields a bijection:

(3.6) HomC-alg(ZG,C) ≃ j∨C/W (jC), χλ ↔ λ.

In our normalization, the ZG-infinitesimal character of the trivial representation 1

of G is given by ρg.

For λ ∈ j∨C/W (jC), we set

C∞(G;χRλ ) :={f ∈ C∞(G) : Ruf = χλ(u)f for any u ∈ ZG},
C∞(G;χLλ) :={f ∈ C∞(G) : Luf = χλ(u)f for any u ∈ ZG}.

Then we have C∞(G;χRλ ) = C∞(G;χL−λ).
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Let H be a closed subgroup of G. Since the action of ZG on C∞(G) via R (and via

L) commutes with the right H-action, Ru and Lu (u ∈ ZG) induce differential operators

on G/H. Thus, for λ ∈ j∨C/W (jC), we can define

C∞(G/H;χRλ ) :={f ∈ C∞(G/H) : Ruf = χλ(u)f for any u ∈ ZG},
C∞(G/H;χLλ) :={f ∈ C∞(G/H) : Luf = χλ(u)f for any u ∈ ZG}.

3.4 Shintani functions of moderate growth

Without loss of generality, we may and do assume that a real reductive linear Lie group

G is realized as a closed subgroup of GL(n,R) such that G is stable under the transpose

of matrix g 7→ tg and K = O(n) ∩G. For g ∈ G we define a map ∥ · ∥ : G→ R by

∥g∥ := ∥g ⊕ tg−1∥op

where ∥ · ∥op is the operator norm of M(2n,R). A continuous representation π of G

on a Fréchet space V is said to be of moderate growth if for each continuous semi-norm

| · | on V there exist a continuous semi-norm | · |′ on V and a constant d ∈ R such that

|π(g)u| ≤ ∥g∥d|u|′ for g ∈ G, u ∈ V.

For any admissible representation (π,H) such that H is a Banach space, the smooth

representation (π∞,H∞) has moderate growth. We say (π∞,H∞) is an admissible

smooth representation. By the Casselman–Wallach globalization theory, there is a

canonical equivalence of categories between the category HC of (g, K)-modules of finite

length and the category of admissible smooth representations of G ([22, Chapter 11]).

In particular, the Fréchet representation π∞ is uniquely determined by its underlying

(g, K)-module. We say π∞ is the smooth globalization of πK ∈ HC.
For simplicity, by an irreducible smooth representation we shall mean an irreducible

admissible smooth representation of G.

Definition 3.3. A smooth function f on G is said to have moderate growth if f satisfies

the following three properties:

(1) f is right K-finite.

(2) f is ZG-finite.

(3) There exists a constant d ∈ R (depending on f) such that if u ∈ U(gC) then

there exists C ≡ C(u) satisfying

|(Ruf)(x)| ≤ C∥x∥d (x ∈ G).
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We denote by C∞
mod(G) the space of all f ∈ C∞(G) having moderate growth.

If (π, V ) is an admissible representation of moderate growth, then the matrix co-

efficient G → C, g 7→ ⟨π(g)v, u⟩ belongs to C∞
mod(G) for any v ∈ VK and any linear

functional u of the Fréchet space V .

We define the space of Shintani functions of moderate growth by

(3.7) Shmod(λ, ν) := Sh(λ, ν) ∩ C∞
mod(G).

4 Finite-multiplicity properties of branching laws

We are ready to make a precise statement of Theorem 1.2, and enrich it by adding

some more equivalent conditions. The main results of this section is Theorem 4.1.

4.1 Finite-multiplicity properties of branching laws

Theorem 4.1. The following twelve conditions on a pair of real reductive algebraic

groups G ⊃ G′ are equivalent:

(i) (PP) There exist minimal parabolic subgroups P and P ′ of G and G′, respectively,

such that PP ′ is open in G.

(ii) (Sh) dimC Sh(λ, ν) <∞ for any pair (λ, ν) of (ZG,ZG′)-infinitesimal characters.

(iii) (Shmod) dimC Shmod(λ, ν) <∞ for any pair (λ, ν) of (ZG,ZG′)-infinitesimal char-

acters.

(iv) (Shmod)1 dimC Shmod(ρg, ρg′) <∞.

(v) (∞ ↓) dimC HomG′(π∞|G′ , τ∞) <∞ for any pair (π∞, τ∞) of admissible smooth

representations of G and G′.

(vi) (∞ ↓)K dimC HomG′(π∞|G′ , τ∞) < ∞ for any pair (π∞, τ∞) of admissible

smooth representations of G and G′ such that π∞ and (τ∞)∨ have cyclic spherical

vectors.

(vii) (H ↓) dimCHomG′(π|G′ , τ) <∞ for any pair (π, τ) of admissible Hilbert repre-

sentations of G and G′.

(viii) (H ↓)K dimC HomG′(π|G′ , τ) < ∞ for any pair (π, τ) of admissible Hilbert rep-

resentations of G and G′ such that π and τ∨ have cyclic spherical vectors.
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(ix) (∞⊗) dimC HomG′(π∞ ⊗ τ∞,C) <∞ for any pair (π∞, τ∞) of admissible smooth

representations of G and G′.

(x) (∞⊗)K dimC HomG′(π∞ ⊗ τ∞,C) < ∞ for any pair (π∞, τ∞) of admissible

smooth representations of G and G′ such that π∞ and τ∞ have cyclic spherical

vectors.

(xi) (H⊗) dimC HomG′(π ⊗ τ ,C) <∞ for any pair (π, τ) of admissible Hilbert rep-

resentations of G and G′.

(xii) (H⊗)K dimCHomG′(π ⊗ τ ,C) < ∞ for any pair (π, τ) of admissible Hilbert

representations of G and G′ such that π and τ have cyclic spherical vectors.

4.2 Outline of the proof of Theorem 4.1

The following implications are obvious:

(ii) (Sh) ⇒ (iii) (Shmod) ⇒ (iv) (Shmod)1.

By Lemma 3.1, we have the following inclusive relations and isomorphism.

HomG′(π∞ ⊗ (τ∨)∞,C) ⊃ HomG′(π∞, τ∞) ⊃ HomG′(π, τ) ≃ HomG′(π ⊗ τ∨,C).

In turn, we have the obvious implications and equivalences as below.

(ix) (∞⊗) =⇒ (v) (∞ ↓) =⇒ (vii) (H ↓) ⇐⇒ (xi) (H⊗)
⇓ ⇓ ⇓ ⇓
(x) (∞⊗)K =⇒ (vi) (∞ ↓)K =⇒ (viii) (H ↓)K ⇐⇒ (xii) (H⊗)K .

The remaining non-trivial implications are

(viii) (H ↓)K or (iv) (Shmod)1

⇓
(i) (PP)

⇓
(ii) (Sh) and (ix) (∞⊗).

We discuss the geometric property (PP) in Section 5.1. Then the implications

(i) (PP)⇒ (ii) (Sh) and (ix) (∞⊗)

14



are given in Propositions 5.6 and 5.7, respectively.

The implication

(viii) (H ↓)K ⇒ (i) (PP)

is proved in Proposition 6.5, and the implication

(iv) (Shmod)1 ⇒ (i) (PP)

is proved in Corollary 7.3.

The relationship of HomG′(π∞, τ∞) (symmetry breaking operators) and Sh(λ, ν)

(Shintani functions) will be discussed in Sections 7 and 8.

4.3 Invariant trilinear forms

Suppose that π∞
i are admissible smooth representations of a Lie group G on Fréchet

spaces H∞
i (i = 1, 2, 3). A continuous trilinear form

T : H∞
1 ×H∞

2 ×H∞
3 → C

is invariant if

T (π∞
1 (g)u1, π

∞
2 (g)u2, π

∞
3 (g)u3) = T (u1, u2, u3) for all g ∈ G and ui ∈ H∞

i (i = 1, 2, 3).

Corollary 4.2. 1) Suppose G is a real reductive Lie group. Then the following four

conditions on G are equivalent:

(i) (G×G×G)/ diagG is real spherical as a (G×G×G)-space.

(ii) (Shintani functions in the group case) The space Sh((λ1, λ2), λ3) of Shintani

functions for (G × G, diagG) is finite-dimensional for any triple of ZG-

infinitesimal characters λ1, λ2 and λ3.

(iii) (Symmetry breaking for the tensor product) For any triple of admissible

smooth representations π∞
1 , π∞

2 , and π∞
3 of G,

dimC HomG(π
∞
1 ⊗ π∞

2 , π
∞
3 ) <∞.

(iv) (Invariant trilinear form) For any triple of admissible smooth representa-

tions π∞
1 , π∞

2 and π∞
3 of G, the space of invariant trilinear forms is finite-

dimensional.

2) Suppose that G is a simple Lie group. Then one of (therefore any of) the above

four equivalent conditions is fulfilled if and only if either G is compact or g is

isomorphic to o(n, 1) (n ≥ 2).
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Proof. The first and second statements are special cases of Theorems 4.1 and 2.3,

respectively.

Remark 4.3. As in (vi) and (viii) of Theorem 4.1, the conditions (iii) and (iv) of

Corollary 4.2 are equivalent to the analogous statements by replacing π∞
j (j = 1, 2, 3)

with spherical ones.

Remark 4.4. The equivalence (i) ⇔ (ii) was first formulated in [11] with a sketch of

proof.

Example 4.5. For G = O(n, 1), a meromorphic family of invariant trilinear forms for

spherical principal series representations was constructed in [3].

5 Real spherical manifolds and Shintani functions

In this section, we regard Shintani functions as smooth functions on the homogeneous

space (G × G′)/ diagG′, and apply the theory of real spherical homogeneous spaces

[14]. In particular, we give a proof of the implication (i) (PP) ⇒ (ii) (Sh) and (ix)

(∞⊗) in Theorem 4.1 (see Proposition 5.6).

5.1 Real spherical homogeneous spaces and (PP)

A complex manifold XC with action of a complex reductive group GC is called spherical

if a Borel subgroup of GC has an open orbit in XC. In the real setting, in search of

a good framework for global analysis on homogeneous spaces which are broader than

the usual (e.g. symmetric spaces), we proposed to call:

Definition 5.1 ([11]). Let G be a real reductive Lie group. We say a smooth manifold

X with G-action is real spherical if a minimal parabolic subgroup P of G has an open

orbit in X.

The significance of this geometric property is its application to the finite-multiplicity

property in the regular representation of G on C∞(X), which was proved by using the

theory of hyperfunctions and regular singularities of a system of partial differential

equations:

Proposition 5.2 ([14, Theorem A and Theorem 2.2]). Suppose G is a real reductive

linear Lie group, and H is a closed subgroup. If the homogeneous space G/H is real
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spherical, then the regular representation of G on the Fréchet space C∞(G/H;χLλ) is

admissible for any ZG-infinitesimal character λ ∈ j∨C/W (jC). In particular,

HomG(π
∞, C∞(G/H)) is finite-dimensional

for any smooth admissible representation π∞ of G.

Suppose that G′ is an algebraic reductive subgroup of G. Let P ′ be a minimal

parabolic subgroup of G′.

Definition 5.3 ([14]). We say the pair (G,G′) satisfies (PP) if one of the following

five equivalent conditions is satisfied.

(PP1) (G×G′)/ diagG′ is real spherical as a (G×G′)-space.

(PP2) G/P ′ is real spherical as a G-space.

(PP3) G/P is real spherical as a G′-space.

(PP4) G has an open orbit in G/P ×G/P ′ via the diagonal action.

(PP5) There are finitely many G-orbits in G/P ×G/P ′ via the diagonal action.

The above five equivalent conditions are determined only by the Lie algebras g and

g′. Therefore we also say that the pair (g, g′) of Lie algebras satisfies (PP).

Next we consider another property, to be denoted by (BB), which is stronger than

(PP). Let GC be a complex Lie group with Lie algebra gC = g⊗RC, and G′
C a subgroup

of GC with complexified Lie algebra g′C = g′ ⊗R C. Let B and B′ be Borel subgroups

of GC and G′
C, respectively.

Definition 5.4. We say the pair (G,G′) (or the pair (g, g′)) satisfies (BB) if one of

the following five equivalent conditions is satisfied:

(BB1) (GC ×G′
C)/ diagG

′
C is spherical as a (GC ×G′

C)-space.

(BB2) GC/B
′ is spherical as a GC-space.

(BB3) GC/B is real spherical as a G′
C-space.

(BB4) GC has an open orbit in GC/B ×GC/B
′ via the diagonal action.

(BB5) There are finitely many GC-orbits in GC/B ×GC/B
′ via the diagonal action.

The above five equivalent conditions are determined only by the complexified Lie

algebras gC and g′C. It follows from [14, Lemmas 4.2 and 5.3] that we have an implica-

tion

(BB)⇒ (PP).
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5.2 Shintani functions and real spherical homogeneous spaces

We return to Shintani functions for the pair G ⊃ G′. Let (λ, ν) ∈ j∨C/W (jC) ×
(j′C)

∨/W (j′C). We begin with an elementary and useful point of view:

Lemma 5.5. The multiplication map

φ : G×G′ → G, (g, h) 7→ gh−1

induces the following linear isomorphism

φ∗ : Sh(λ, ν)
∼→ HomK×K′(1⊠ 1, C∞((G×G′)/ diagG′;χLλ,ν)),

where 1 denotes the trivial one-dimensional representation of the group K (or that of

K ′).

Proof. The pull-back of functions

φ∗ : C∞(G)
∼→ C∞((G×G′)/ diagG′)

satisfies

LXLY (φ
∗f) = φ∗(LXRY f) for all X ∈ g, Y ∈ g′ and f ∈ C∞(G).

Hence φ∗ maps Sh(λ, ν) onto the space of (K × K ′)-invariant functions of C∞((G ×
G′)/ diagG′;χLλ,ν).

Proposition 5.6. If (G,G′) satisfies (PP), then dimC Sh(λ, ν) <∞ for any pair (λ, ν)

of (ZG,ZG′)-infinitesimal characters.

Proof. Since (G,G′) satisfies (PP1), the regular representation on the Fréchet space

C∞((G×G′)/ diagG′;χLλ,ν) is admissible as a representation of the direct product group

G×G′ by Proposition 5.2. Therefore, Proposition 5.6 follows from Lemma 5.5.

Proposition 5.7. If (G,G′) satisfies (PP), then HomG′(π∞ ⊗ τ∞,C) is finite-dimensional

for any pair (π∞, τ∞) of admissible smooth representations of G and G′.

Proof. Since (G×G′)/ diagG′ is real spherical,

dimCHomG×G′(π∞ ⊠ τ∞, C∞(G×G′/ diagG′)) <∞

by Proposition 5.2. Therefore Proposition 5.7 follows from the Frobenius reciprocity

(Proposition 3.2).
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6 Construction of intertwining operators

In this section we give lower bounds of the dimension of the space of symmetry breaking

operators for the restriction of admissible Hilbert representations.

6.1 A generalization of the Poisson integral transform

We fix some general notation. Let H be a closed subgroup of G. Given a finite-

dimensional representation τ of H on a vector space Wτ , we denote by Wτ the G-

equivariant vector bundle G×H Wτ over the homogeneous space G/H. Then we have

a representation of G naturally on the space of sections

F(G/H; τ) ≡ F(G/H;Wτ ) ≃ {f ∈ F(G)⊗W : f(·h) = τ(h)−1f(·) for h ∈ H},

where F = A, C∞, D′, or B denote the sheaves of analytic functions, smooth functions,

distributions, or hyperfunctions, respectively.

Remark 6.1. We shall regard distributions as generalized functions à la Gelfand (or

a special case of hyperfunctions à la Sato) rather than continuous linear forms on

C∞
c (G/H,Wτ ).

We define a one-dimensional representation of H by

χG/H : H → R×, h 7→ | det(Ad#(h) : g/h→ g/h)|−1,

where Ad#(h) is the quotient representation of the adjoint representation Ad(h) ∈
GLR(g). The bundle of volume densities of X = G/H is given as a G-homogeneous line

bundle ΩX ≃ G×H χG/H . Then the dualizing bundle ofWτ is given, as a homogeneous

vector bundle, by

W∗
τ := (G×H W∨

τ )⊗ ΩX ≃ G×H τ ∗,

where (τ∨,W∨
τ ) denotes the contragredient representation of (τ,Wτ ), and τ

∗ is a com-

plex representation of H given by

(6.1) τ ∗ := τ∨ ⊗ χG/H .

Suppose now that Q is a parabolic subgroup of a real reductive Lie group G, and

Q = LN a Levi decomposition. By an abuse of notation we write C2ρ for χG/Q. Then

C2ρ is trivial on the nilpotent subgroup N , and the restriction of C2ρ to the Levi part

L coincides with the one-dimensional representation defined by

L→ R× l 7→ | det(Ad(l) : n→ n)|.
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In view of the isomorphism K/(Q ∩ K)
∼→ G/Q, Wτ may be regarded as a K-

equivariant vector bundle over K/(Q ∩K). Then there exist a K-invariant Hermitian

vector bundle structure on Wτ and a K-invariant Radon measure on K/(Q ∩K), and

we can define a Hilbert representation of G on the Hilbert space L2(G/Q; τ) of square

integrable sections ofWτ . The underlying (g, K)-module of F(G/Q; τ) does not depend
on the choice of F = A, C∞, D′, B, or L2, and will be denoted by E(G/Q; τ).

We denote by Ĝf and L̂f the sets of equivalence classes of finite-dimensional irre-

ducible representations over C of the groups G and L, respectively. Then there is an

injective map

Ĝf ↪→ L̂f , σ 7→ λ(σ)

such that σ is the unique quotient of the (g, K)-module E(G/Q;λ(σ)). We note that

λ(1) = C2ρ.

Here is a Hilbert space analog of [14, Theorem 3.1] which was formulated in the

category of (g, K)-modules (and was proved in the case where Q is a minimal parabolic

subgroup of G).

Proposition 6.2. Let Q be a parabolic subgroup of G, and H a closed subgroup of G.

Suppose that there are m disjoint H-invariant open subsets in the real generalized flag

variety G/Q. Then

dimHomG(L
2(G/Q;λ(σ)), C(G/H; τ)) ≥ m dimHomH(σ|H , τ),

for any finite-dimensional representations σ and τ of G and H, respectively. In par-

ticular, we have

dimHomG(L
2(G/Q,ΩG/Q), C(G/H)) ≥ m.

A key of the proof is the construction of integral intertwining operators formulated

as follows:

Proposition 6.3. Let τ and ζ be finite-dimensional representations of H and Q, re-

spectively. We set ζ∗ = ζ∨ ⊗ C2ρ. Let (F ,F ′) be one of the pairs

(A,B), (C∞,D′), (L2, L2), (D′, C∞), or (B,A).

Then there is a canonical injective map

Φ : (F ′(G/Q; ζ∗)⊗ τ)H ↪→ HomG(F(G/Q; ζ), C(G/H; τ)).

Proof. The proof is essentially the same with that of [14, Lemma 3.2] which treated

the case where (F ,F ′) = (A,B) and where Q is a minimal parabolic subgroup of G.

For the sake of completeness, we repeat the proof with appropriate modifications.
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The natural G-invariant non-degenerate bilinear form

⟨ , ⟩ : F(G/Q; ζ)×F ′(G/Q; ζ∗)→ C

induces an injective G-homomorphism

Ψ : F ′(G/Q; ζ∗) ↪→ HomG(F(G/Q; ζ), C(G))

by

Ψ(χ)(u)(g) := ⟨π(g)−1u, χ⟩ for χ ∈ F ′(G/Q; ζ∗) and u ∈ F(G/Q; ζ),

where π is the regular representation of G on F(G/Q; ζ).
Taking the tensor product with the finite-dimensional representation τ followed by

collecting H-invariant elements, we get the linear map Φ in Proposition 6.3.

Example 6.4 (Poisson integral transform). We apply Proposition 6.3 in the following

setting:

(F ,F ′) = (B,A),
H = K,

Q : a minimal parabolic subgroup of G,

τ : the trivial one-dimensional representation 1 of K,

ζ : a one-dimensional representation of Q such that ζ|Q∩K is trivial.

Then A(G/Q; ζ∗) is identified with A(K/(Q ∩K)) as a K-module, and the constant

function 1K on K/(Q ∩ K) gives rise to an element of (A(G/Q; ζ∗) ⊗ τ)K . Then

Pµ := Φ(1K) in Proposition 6.3 coincides with the Poisson integral transform for the

Riemannian symmetric space G/K ([8, Chapter 2]):

Pµ : B(G/Q; ζ)→ C(G/K), f 7→ (Pµf)(g) =
∫
K

f(gk)dk.

See Proposition 8.5 for the preceding results on the image of Pµ.

Proof of Proposition 6.2. The proof is parallel to that of [14, Theorem 3.17].

Let Ui (i = 1, 2, · · · ,m) be disjoint H-invariant open subsets in G/Q. We define

χi(g) :=

1 if g ∈ Ui,

0 if g ̸∈ Ui.

Then χi ∈ L2(G/Q) ≃ L2(K/Q ∩ K) (i = 1, · · · ,m), and they are H-invariant and

linearly independent.
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We take linearly independent elements u1, · · · , un in HomH(σ|H , τ). Taking the

dual of the surjective (g, K)-homomorphism E(G/Q;λ(σ)) ↠ σ, we have an injective

(g, K)-homomorphism σ∨ ↪→ E(G/Q;λ(σ)∗) ⊂ A(G/Q;λ(σ)∗). Hence we may regard

uj ∈ HomH(σ|H , τ) ≃ (σ∨ ⊗ τ)H as H-invariant elements of A(G/Q;λ(σ)∗)⊗ τ . Then
χiuj ∈ (L2(G/Q;λ(σ)∗)⊗ τ)H (1 ≤ i ≤ m, 1 ≤ j ≤ n) are linearly independent.

Proposition 6.2 now follows from Proposition 6.3 with (F ,F ′) = (L2, L2).

Proposition 6.5. Let Q and Q′ be parabolic subgroups of G and G′. Suppose that

there are m disjoint Q′-invariant open sets in G/Q. Then

dimHomG′(L2(G/Q,ΩG/Q), L
2(G′/Q′)) ≥ m.

Proof. We apply Proposition 6.2 to (G × G′, diagG′, 1, 1, Q × Q′) for (G, H, σ, τ ,

Q). Then we have

dimHomG×G′(π ⊠ τ , C(G×G′/ diagG′)) ≥ m,

where π is the Hilbert representation of G on L2(G/Q,ΩG/Q) and τ is that of G′ on

L2(G′/Q′,ΩG′/Q′).

By Proposition 3.2, we have

dimHomG′((π ⊠ τ)|diagG′ ,C) ≥ m.

By Lemma 3.1 (2), we get the required lower bound.

6.2 Realization of small representations

We end this section with a refinement of [14, Theorem A (2)] which was formulated

originally in the category of (g, K)-modules and was proved when Q is a minimal

parabolic subgroup of G.

Definition 6.6. Let Q be a parabolic subgroup of a real reductive Lie group G. Let

π be an irreducible admissible representation of G, and πK the underlying (g, K)-

module. We say π (or πK) belongs to Q-series if πK occurs as a subquotient of the

induced (g, K)-module E(G/Q; τ) for some finite-dimensional representation τ of Q.

By Harish-Chandra’s subquotient theorem [5], all irreducible admissible represen-

tations of G belong to P -series where P is a minimal parabolic subgroup of G. Loosely

speaking, the larger a parabolic subgroup Q is, the “smaller” a representation belonging

to Q-series becomes, as the following lemma indicates:
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Lemma 6.7. If πK belongs to Q-series, then its Gelfand–Kirillov dimension, to be

denoted by DIM(πK), satisfies

DIM(πK) ≤ dimG/Q.

The following result formulates that if a subgroup H is “small enough” then the

space (π−∞)H of H-invariant distribution vectors of π can be of infinite dimension even

for a “small” admissible representations π:

Corollary 6.8. Let H be an algebraic subgroup of G, and Q a parabolic subgroup

of G. Assume that H does not have an open orbit in G/Q. Then for any algebraic

finite-dimensional representation τ of H, there exists an irreducible admissible Hilbert

representation π of G such that π satisfies the following two properties:

• π belongs to Q-series,

• dimHomG(π,C(G/H; τ)) =∞.

In particular, dimHomG(π
∞, C∞(G/H; τ)) = dimHomg,K(πK ,A(G/H; τ)) =∞.

Proof. There exist infinitely many disjoint H-invariant open sets in G/Q if H does not

have an open orbit in G/Q (see [14, Lemma 3.5]). Hence Corollary 6.8 follows from

Proposition 6.2 because there exist at most finitely many irreducible subquotients in

the Hilbert representation of G on L2(G/Q,ΩG/Q).

Corollary 6.9. Let G ⊃ G′ be algebraic real reductive Lie groups and Q and Q′

parabolic subgroups of G and G′, respectively. Assume that Q′ does not have an open

orbit in G/Q. Then there exist irreducible admissible Hilbert representations π and τ

of G and G′, respectively, such that (π, τ) satisfies the following two properties:

• π belongs to Q-series, τ belongs to Q′-series.

• dimHomG′(π|G′ , τ) =∞.

In particular, dimHomG′(π∞|G′ , τ∞) =∞.

Proof. Corollary 6.9 follows from Proposition 6.5. Since the argument is similar to the

proof of Corollary 6.8, and we omit it.
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7 Symmetry breaking operators and construction

of Shintani functions

In this section we construct Shintani functions of moderate growth from symmetry

breaking operators of the restriction of admissible smooth representations.

Proposition 7.1. Let π∞ be a spherical, admissible smooth representation of G, and

τ∞ that of G′. Suppose that π∞ and τ∞ have ZG and ZG′-infinitesimal characters λ

and −ν, respectively.
1) Let 1π and 1τ∨ be non-zero spherical vectors of πK and τ∨K′, respectively. Then there

is a natural linear map

(7.1) HomG′(π∞, τ∞)→ Shmod(λ, ν), T 7→ F

defined by

F (g) := ⟨T ◦ π∞(g)1π,1τ∨⟩ for g ∈ G.

2) Assume that the spherical vectors 1π and 1τ∨ are cyclic in πK and τ∨K′, respectively.

Then (7.1) is injective. In particular, if both π∞ and τ∞ are irreducible, (7.1) is

injective.

Remark 7.2. In the setting of Proposition 7.1, if we drop the assumption that 1π

is cyclic, then the homomorphism (7.1) may not be injective. In fact, we shall see in

Section 9 that there is a countable set of (λ, ν) for which the following three conditions

are satisfied:

• dimC HomG′(π∞, τ∞) = 2,

• dimC Shmod(λ, ν) = 1,

• 1τ∨ is cyclic in τ∨.

Proof of Proposition 7.1. 1) Since T ∈ HomG′(π∞, τ∞), the function F ∈ C∞(G) sat-

isfies

F (hg) =⟨τ∞(h) ◦ τ ◦ π∞(g)1π,1τ∨⟩
=⟨T ◦ π∞(g)1π, (τ

∨)∞(h−1)1τ∨⟩(7.2)

for all h ∈ G′ and g ∈ G. Therefore we have

F (k′gk) =F (g) for k′ ∈ K ′ and k ∈ K,
(LY F )(g) =⟨T ◦ π∞(g)1π, dτ

∨(Y )1τ∨⟩ for Y ∈ g′ ⊂ U(g′C),

(RXF )(g) =⟨T ◦ π∞(g)dπ(X)1π,1τ∨⟩ for X ∈ g ⊂ U(gC).
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Since u ∈ ZG acts on π∞ as the scalar multiple of χλ(u), we have dπ
∞(u)1π = χλ(u)1π,

and thereforeRuF = χλ(u)F . Likewise, for v ∈ ZG′ , we have d(τ∨)∞(v)1τ∨ = χν(v)1τ∨ ,

and thus LvF = χν(v)F . Hence F ∈ Sh(λ, ν).

Let V ∞
π and W∞

τ be the representation spaces of π∞ and τ∞, respectively. First we

find a continuous seminorm | · |1 on W∞
τ and a constant C1 such that

|⟨w,1τ∨⟩| ≤ C1|w|1 for any w ∈ W∞
τ .

Second, since T : V ∞
π → W∞

τ is continuous, there exist a continuous seminorm | · |2 on

V ∞
π and a constant C2 such that

|Tv|1 ≤ C2|v|2 for any v ∈ V ∞
π .

Third, since π∞ has moderate growth, there exist constants C3 > 0, d ∈ R and a

continuous seminorm | · |3 on V ∞
π such that

|π∞(g)dπ(u)1π|2 ≤ C3|dπ∞(u)1π|3∥g∥d for any g ∈ G and for any u ∈ U(gC).

Therefore (RuF )(g) = ⟨T ◦ π∞(g)dπ(u)1π,1τ∨⟩ satisfies the following inequality:

|(RuF )(g)| ≤ C1C2C3|dπ∞(u)1π|3∥g∥d for any g ∈ G.

Hence F ∈ C∞(G) has moderate growth.

2) Suppose F ≡ 0. Since 1τ∨ is a cyclic vector, we have T ◦ π∞(g)1π = 0 for any

g ∈ G by (7.2). Since 1π is a cyclic vector, we have T = 0. Therefore the map (7.1) is

injective.

Corollary 7.3. Suppose that there are m disjoint P ′-invariant open sets in G/P . Then

(7.3) dimC Shmod(ρg, ρg′) ≥ m.

In particular, if Shmod(ρg, ρg′) is finite-dimensional, then the pair (G,G′) of reductive

groups satisfies (PP).

Proof. We denote by π the Hilbert representation of G on L2(G/P,ΩG/P ), and by τ

that of G′ on L2(G′/P ′). By Proposition 6.5, we have

dimC HomG′(π|G′ , τ) ≥ m.

On the other hand, since both π and τ∨ contain spherical cyclic vectors, we have

dimC Shmod(ρg,−ρg′) ≥ dimC HomG′(π∞|G′ , τ∞)
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from Proposition 7.1. Combining these inequalities with (3.1), we have obtained

dimC Shmod(ρg,−ρg′) ≥ m.

Since −ρg′ is conjugate to ρg′ by the longest element of the Weyl group W (j′C), we have

proved (7.3).

Finally, if (G,G′) does not satisfy (PP), then there exist infinitely many disjoint

P ′-invariant open sets in G/P , and therefore we get dimC Shmod(ρg, ρg′) = ∞ from

(7.3).

8 Boundary values of Shintani functions

In this section we realize Shintani functions as joint eigenfunctions of invariant differ-

ential operators on the Riemannian symmetric space X = (G×G′)/(K×K ′), and then

as hyperfunctions on the minimal boundary Y = (G × G′)/(P × P ′) of the compact-

ification of X. The main results of this section are Theorems 8.1 and 8.2. We prove

these theorems in Sections 8.4 and 8.5, respectively, after giving a brief summary of the

preceding results of harmonic analysis on Riemannian symmetric spaces in Sections 8.2

and 8.3.

8.1 Symmetry breaking of principal series representations

Denote by θ the Cartan involution of the Lie algebra g corresponding to the maximal

compact subgroup K of G. We take a maximal abelian subspace a in the vector space

{X ∈ g : θX = −X}, and set

W (a) := NK(a)/ZK(a).

We fix a positive system Σ+(g, a) of the restricted root system Σ(g, a), and define a

minimal parabolic subalgebra p of g by

p = m+ a+ n = l+ n,

where l := Zg(a) = {X ∈ a : [H,X] = 0 for all H ∈ a}, m := l ∩ k, and n is the

sum of the root spaces for all α ∈ Σ+(g, a). Let P = MAN be the minimal parabolic

subgroup of G with Lie algebra p.

We take a Cartan subalgebra t in m. Then j := t + a is a maximally split Cartan

subalgebra of g. We fix a positive system ∆+(mC, tC). Let ρn ∈ a∨ be half the sum of

the elements in Σ+(g, a) counted with multiplicities, and ρl ∈ t∨C that of ∆+(mC, tC).
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The positive systems Σ+(g, a) and ∆+(mC, tC) determine naturally a positive system

∆+(gC, jC). Then we have

ρg = ρl + ρn ∈ j∨C = t∨C + a∨C,

where we regard t∨C and a∨C as subspaces of j∨C via the direct sum decomposition j = t+a.

Then ρl + a∨C = ρg + a∨C is an affine subspace of j∨C.

Analogous notation is applied to the reductive subgroup G′. In particular, j′ = t′+a′

is a maximally split Cartan subalgebra of g′.

We recall (λ, ν) ∈ j∨C/W (jC) × (j′C)
∨/W (j′C) ≃ HomC-alg(ZG × ZG′ ,C). Let us begin

with a non-vanishing condition for Sh(λ, ν).

Theorem 8.1. If Sh(λ, ν) ̸= {0}, then

(8.1) λ ∈ W (jC)(ρl + a∨C) and ν ∈ W (j′C)(ρl′ + (a′C)
∨).

We shall give a proof of Theorem 8.1 in Section 8.4.

Next we consider a construction of Shintani functions under the assumption (8.1).

Suppose λ ∈ j∨C satisfies λ− ρl ∈ a∨C. Then there exists λ+ ∈ a∨C such that λ+ satisfies

the following two conditions:

λ+ − ρn = w(λ− ρl) for some w ∈ W (a).(8.2)

Re⟨λ+ − ρn, α⟩ ≥ 0 for any α ∈ Σ+(g, a).(8.3)

Similarly, suppose ν ∈ (j′C)
∨ satisfies ν − ρl′ ∈ (a′C)

∨. Then there exists ν− ∈ (a′C)
∨

satisfying the following two conditions:

ν− − ρn′ = w′(−ν + ρl′) for some w′ ∈ W (a′).

Re⟨ν− − ρn′ , α⟩ ≤ 0 for any α ∈ Σ+(g′, a′).(8.4)

Theorem 8.2. Suppose that λ ∈ j∨C and ν ∈ (j′C)
∨ satisfy λ+ρl ∈ a∨C and ν+ρl′ ∈ (a′C)

∨.

Let λ+ and ν− be defined as above.

1) There is a natural injective linear map

(8.5) HomG′(C∞(G/P ;λ+), C
∞(G′/P ′; ν−)) ↪→ Shmod(λ, ν).

2) If G, G′ are classical groups, then (8.5) is a bijection:

(8.6) HomG′(C∞(G/P ;λ+), C
∞(G′/P ′; ν−))

∼→ Shmod(λ, ν).

We shall prove Theorem 8.2 in Section 8.5.

Remark 8.3. As the proof shows, the bijection (8.6) holds for generic (λ, ν) even when

G or G′ are exceptional groups.
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8.2 Invariant differential operators

In this and next subsections, we give a quick review of the preceding results of har-

monic analysis on Riemannian symmetric spaces. We denote by D(G/K) the C-algebra
consisting of all G-invariant differential operators on the Riemannian symmetric space

G/K. It is isomorphic to a polynomial ring of (dimR a)-generators. More precisely,

let γ′ : U(gC) → U(aC) = S(aC) be the projection to the second factor of the decom-

position U(gC) = (kCU(gC) + U(gC)nC) ⊕ U(aC). Then we have the Harish-Chandra

isomorphism

(8.7) D(G/K)
∼←
R
U(gC)

K/U(gC)
K ∩ U(gC)kC

∼→
γ
S(aC)

W (a),

where γ : U(gC)→ S(aC) is defined by

⟨γ(u), λ⟩ = ⟨γ′(u), λ− ρn⟩ for all λ ∈ a∨C,

which is a generalization of (3.5), see [8, Chapter II]. Through (8.7), we have a bijection

(8.8) HomC-alg(D(G/K),C) ≃ a∨C/W (a), ψµ ↔ µ,

given by ψµ(Rv) = ⟨γ(v), µ⟩ = ⟨γ′(v), λ− ρn⟩ for v ∈ U(gC)K .
Comparing the two bijections HomC-alg(ZG,C) ≃ j∨C/W (jC) (see (3.6)) and (8.8) via

the C-algebra homomorphism

(8.9) ZG ⊂ U(gC)
K R→ D(G/K),

we have

(8.10) ψµ ◦R = χµ+ρn on ZG for all µ ∈ a∨C.

By (8.10), we have

(8.11) C∞(G/K;Mµ) ⊂ C∞(G/K;χRµ+ρl).

For a simple Lie group G, it is known [7] that the C-algebra homomorphism (8.9) is

surjective if and only if (g, k) is not one of the following pairs:

(e6(−14), so(10) + R), (e6(−26), f4(−52)), (e7(−25), e6(−78) + R), (e8(−24), e7(−133) + su(2)).

For F = A,B, C∞, or D′, we denote by F(G/K;Mµ) the space of all F ∈ F(G/K)

such that F satisfies the system of the following partial differential equations:

(Mµ) DF = ψµ(D)F for all D ∈ D(G/K).

Since the Laplacian ∆ on the Riemannian symmetric space G/K is an elliptic

differential operator and belongs to D(G/K), we have

A(G/K;Mµ) = B(G/K;Mµ) = C∞(G/K;Mµ) = D′(G/K;Mµ)

by the elliptic regularity theorem.
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8.3 Poisson transform and boundary maps

Given µ ∈ a∨C, we lift and extend it to a one-dimensional representation of the minimal

parabolic subgroup P =MAN by

P → C×, m expHn 7→ e⟨µ,H⟩

for m ∈M , H ∈ a, and n ∈ N .

Remark 8.4. In the field of harmonic analysis on symmetric spaces people sometimes

adopt the opposite signature of the (normalized) parabolic induction which is used in

the representation theory of real reductive groups. Since our definition of parabolic

induction does not involve the “ρ-shift” (i.e., unnormalized parabolic induction where√
−1a∨+ρn is the unitary axis), the G-module C∞(G/P ;µ) in our notation corresponds

to C∞(G/P ;Lρn−µ) in [8, 20].

With this remark in mind, we summarize some known results that we need:

Proposition 8.5. 1) The (g, K)-module E(G/P ;µ) has ZG-infinitesimal character

µ+ ρg = µ+ ρn + ρl ∈ j∨C/W (jC).

2) The (g, K)-module E(G/P ;µ) is spherical for all µ ∈ a∨C. Furthermore, the

unique (up to scalar) non-zero spherical vector is cyclic if µ satisfies

Re⟨µ− ρn, α⟩ ≥ 0 for any α ∈ Σ+(g, a).

3) For all µ ∈ a∨C, the Poisson transform Pµ maps into the space of joint eigenfunc-

tions of the C-algebra D(G/K):

(8.12) Pµ : B(G/P ;µ)→ A(G/K;Mρn−µ).

4) The Poisson transform (8.12) is bijective if µ satisfies

(8.13) Re⟨µ− ρn, α⟩ ≤ 0 for any α ∈ Σ+(g, a).

5) The Poisson transform Pµ induces a bijection

Pµ : D′(G/P ;µ)→ Amod(G/K;Mρn−µ)

if (8.13) is satisfied.
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Proof. The first statement is elementary. See Kostant [17] for (2), and Helgason [6]

for (3). The fourth statement was proved in Kashiwara et.al. [9] by using the theory

of regular singularity of a system of partial differential equations. For the proof of the

fifth statement, see Oshima–Sekiguchi [20] or Wallach [22, Theorem 11.9.4]. We note

that for f ∈ A(G/K;Mρn−µ), f has moderate growth (Definition 3.3) if and only if

f has at most exponential growth in the sense that there exist constants d ∈ R and

C > 0 such that |f(x)| ≤ C∥x∥d for all x ∈ G.

8.4 Proof of Theorem 8.1

In Lemma 5.5, we realized the Shintani space Sh(λ, ν) in C∞((G × G′)/ diagG′). We

give another realization of Sh(λ, ν):

Lemma 8.6. The multiplication map

ψ : G×G′ → G, (g, g′) 7→ (g′)−1g

induces the following bijection:

(8.14) ψ∗ : Sh(λ, ν)
∼→ C∞((G×G′)/(K ×K ′);χRλ,ν)

diagG′
.

Proof. We set C∞(K ′\G/K) := {f ∈ C∞(G) : f(k′gk) = f(g) for all k′ ∈ K ′ and k ∈
K}. The pull-back ψ∗ of functions induces a bijective linear map

C∞(G)
∼→ C∞(G×G′)diagG

′

∪ ∪
C∞(K ′\G/K)

∼→
ψ∗

C∞((G×G′)/(K ×K ′))diagG
′
.

On the other hand, for X ∈ g and Y ∈ g′, we have

RXRY (ψ
∗f) = ψ∗(RXLY f).

Thus Lemma 8.6 is proved.

Proof of Theorem 8.1. Suppose Sh(λ, ν) ̸= {0}. Then, by Lemma 8.6, we have

Vλ,ν := C∞((G×G′)/(K ×K ′);χRλ,ν) ̸= {0}.

Since R(ZG×G′) is an ideal in D((G × G′)/(K × K ′)) of finite-codimension, we can

take the boundary values of Vλ,ν inductively to the hyperfunction-valued principal

30



series representations of G × G′ as in [14, Section 2]. To be more precise, there exist

µ1, · · · , µN ∈ a∨C × (a′C)
∨ and (G×G′)-invariant subspaces

{0} = V (0) ⊂ V (1) ⊂ · · · ⊂ V (N) = Vλ,ν

such that the quotient space V (j)/V (j− 1) is isomorphic to a subrepresentation of the

spherical principal series representation B((G×G′)/(P ×P ′);µj) as (G×G′)-modules.

Comparing the ZG×G′-infinitesimal characters of Vλ,ν and B((G×G′)/(P ×P ′);µj),

we get Theorem 8.1.

8.5 Proof of Theorem 8.2

Proof of Theorem 8.2. 1) Since λ+ satisfies (8.3), the (g, K)-module E(G/P ;λ+) con-

tains a cyclic spherical vector by Proposition 8.5. Similarly, the (g′, K ′)-module

E(G′/P ′; ν−)
∨
K′ ≃ E(G′/P ′; ν∗−)K′

has a cyclic vector because ν∗− = −ν− + 2ρn′ satisfies

Re⟨ν∗− − ρn′ , α⟩ ≥ 0 for any α ∈ Σ+(g′, a′)

by (8.4). Hence the first statement follows from Proposition 7.1.

2) In view of the definition of moderate growth (Definition 3.3), we see that the

bijection ψ∗ in (8.14) induces the following bijection:

(8.15) Shmod(λ, ν)
∼→ C∞

mod((G×G′)/(K ×K ′);χRλ,ν)
diagG′

.

Since the C-algebra homomorphism R : ZG×G′ → D(G × G′/K ×K ′) is surjective

for classical groups G and G′, the isomorphism (8.15) implies the following bijection

Shmod(λ, ν) ≃ C∞
mod((G×G′)/(K ×K ′);M(λ+ρl,ν+ρl′ )

)diagG
′

by (8.11). In turn, combining with the Poisson transform, we have obtained the fol-

lowing natural isomorphism by Proposition 8.5 (5):

Shmod(λ, ν) ≃ D′((G×G′)/(P × P ′);λ∗+ ⊠ ν−)
diagG′

.

By [16, Proposition 3.2], we proved the following natural bijection:

HomG′(C∞(G/P ;λ+), C
∞(G′/P ′; ν−)) ≃ D′((G×G′)/(P × P ′);λ∗+ ⊠ ν−)

diagG′
.

Hence we have completed the proof of Theorem 8.2.
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9 Shintani functions for (O(n + 1, 1), O(n, 1))

It has been an open problem to find dimC Sh(λ, ν) in the Archimedean case ([19,

Remark 5.6]). In this section, by using a classification of symmetry breaking oper-

ators between spherical principal series representations of the pair (G,G′) = (O(n +

1, 1), O(n, 1)) in a recent work [16] with B. Speh, we determine the dimension of Sh(λ, ν)

in this case.

We denote by [x] the greatest integer that does not exceed x. For the pair (G,G′) =

(O(n+ 1, 1), O(n, 1)), (ZG,ZG′)-infinitesimal characters (λ, ν) are parametrized by

j∨C/W (jC)× (j′C)
∨/W (j′C) ≃ C[n+2

2
]/W[n+2

2
] × C[n+1

2
]/W[n+1

2
]

in the standard coordinates, where Wk := Sk ⋉ (Z/2Z)k.

Theorem 9.1. Let (G,G′) = (O(n+ 1, 1), O(n, 1)).

1) The following three conditions on (λ, ν) are equivalent:

(i) Sh(λ, ν) ̸= {0}.

(ii) Shmod(λ, ν) ̸= {0}.

(iii) In the standard coordinates

λ = w(
n

2
+ t,

n

2
− 1,

n

2
− 2, · · · , n

2
− [

n

2
]),(9.1)

ν = w′(
n− 1

2
+ s,

n− 1

2
− 1, · · · , n− 1

2
− [

n− 1

2
]),

for some t, s ∈ C, w ∈ W[n+2
2

], and w
′ ∈ W[n+1

2
].

2) If (λ, ν) satisfies (iii) in (1), then

dimC Shmod(λ, ν) = 1.

Proof. It is sufficient to prove the implication (i) ⇒ (iii) and (2).

For λ ∈ j∨C/W (jC) ≃ C[n+1
2

]/W[n+1
2

], λ belongs to ρl + a∨C mod W (jC) if and only if

λ is of the form (9.1) for some t ∈ C and w ∈ W[n+2
2

]. Similarly for ν ∈ (j′C)
∨/W (j′C).

Hence the implication (i) ⇒ (iii) holds as a special case of Theorem 8.1.

Next, suppose that (λ, ν) satisfies (iii). Without loss of generality, we may and do

assume Re t ≥ n
2
and Re s ≤ n−1

2
. In this case the unique element λ+ ∈ aC satisfying

(8.2) and (8.3) is equal to t if we identify a∨C with C via the standard basis {e1} of a∨

such that Σ(g, a) = {±e1}. Similarly, ν− = s via (a′C)
∨ ≃ C.
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We define a discrete subset of a∨C ⊕ (a′C)
∨ ≃ C2 by

Leven := {(a, b) ∈ Z2 : a ≤ b ≤ 0, a ≡ b mod 2}.

According to [16, Theorem 1.1], we have

dimCHomG′(C∞(G/P ; a), C∞(G′/P ′; b)) ≃

1 if (a, b) ∈ C2 \ Leven,

2 if (a, b) ∈ Leven.

Since (λ+, ν−) = (t, s) ̸∈ Leven, we conclude that

dimC Shmod(λ, ν) = dimC HomG′(C∞(G/P ;λ+), C
∞(G′/P ′; ν−)) = 1

by Theorem 8.2 (2). Thus Theorem 9.1 is proved.

10 Concluding remarks

We raise the following two related questions:

Problem 10.1. Find a condition on a pair of real reductive linear Lie groups G ⊃ G′

such that the following properties (A) and (B) are satisfied.

(A) All Shintani functions have moderate growth (Definition 3.3), namely, Shmod(λ, ν) =

Sh(λ, ν) for all (ZG,ZG′)-infinitesimal characters (λ, ν).

(B) The natural injective homomorphism

(10.1) HomG′(π∞|G′ , τ∞) ↪→ Homg′,K′(πK , τK′)

is bijective for any admissible smooth representations π∞ and τ∞ of G and G′,

respectively.

Remark 10.2. 1) If G′ = {e} then neither (A) nor (B) holds.

2) If G = G′ then (A) holds by the theory of asymptotic behaviors of Harish-

Chandra’s zonal spherical functions and (B) holds by the Casselman–Wallach

theory of the Fréchet globalization [22, Chapter 11].

3) If G′ = K then both (A) and (B) hold.

4) It is plausible that if (G,G′) satisfies the geometric condition (PP) (Definition

5.3) then both (A) and (B) hold.
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By using the argument in Sections 7 and 8 on the construction of Shintani functions

from symmetry breaking operators, we have the following:

Proposition 10.3. For a pair of real reductive classical Lie groups G ⊃ G′, (B) implies

(A).

Proof. Let λ+ and ν− be as in Theorem 8.2. We denote by π∞ the admissible smooth

representation of G on C∞(G/P ;λ+) and τ
∞ the admissible smooth representation of

G′ on C∞(G′/P ′; ν−). Then by Theorem 8.2 (2), we have the following linear isomor-

phism:

HomG′(π∞|G′ , τ∞)
∼→ Shmod(λ, ν).

Similarly to the proof of Theorem 8.2 (2), we have the natural bijection

HomG′(πω|G′ , τω) ≃ Sh(λ, ν),

where πω is a continuous representation of G on the space of real analytic vectors of

π∞, and τω that of τ∞.

In view of the canonical injective homomorphisms

HomG′(π∞|G′ , τ∞) ↪→ HomG′(πω|G′ , τω) ↪→ Homg′,K′(πK , τK),

we see that if (B) holds, then the inclusion

Shmod(λ, ν) ↪→ Sh(λ, ν)

is bijective. Hence the implication (B) ⇒ (A) is proved.
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