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Abstract

We find upper and lower bounds of the multiplicities of irreducible
admissible representations π of semisimple Lie groups G occurring in
the induced representations IndGH τ from irreducible representations τ
of closed subgroups H. As corollaries, we establish geometric criteria
for finiteness of the dimension of HomG(π, Ind

G
H τ) (induction) and of

HomH(π|H , τ) (restriction) by means of the real flag variety G/P , and
discover that uniform boundedness property of these multiplicities is
independent of real forms and characterized by means of the complex
flag variety.
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1 Introduction

The motivation of this work is the following fundamental questions in non-
commutative harmonic analysis beyond symmetric spaces and branching
problems of infinite-dimensional representations of real reductive Lie groups:

1. (Induction) What is the ‘most general setting’ of homogeneous spaces
G/H in which we could expect reasonable and detailed analysis of function
spaces on G/H?

2. (Restriction) What is the ‘most general setting’ of pairs (G,H) for
which we could expect reasonable and detailed analysis of branching laws of
the restriction of (arbitrary) irreducible representations of G to H?

1



We shall give an answer to these questions from the viewpoint of multi-
plicities of irreducible representations.

Let G be a connected real semisimple Lie group with finite center, and
H a closed (not necessarily, reductive) subgroup with at most finitely many
connected components. (It is easy to see that the results of this article remain
true if we replace connected semisimple Lie groups G by linear reductive
groups.)

We consider the following two geometric conditions:

There exists an open H-orbit on the real flag variety G/P .(HP)

There exists an open Hc-orbit on the complex flag variety Gc/B.(HB)

Here P is a minimal parabolic subgroup of G, B is a Borel subgroup of a
complex Lie group Gc with the complexified Lie algebra gc = g⊗RC, and Hc

a complex subgroup with Lie algebra hc = h⊗RC, where g and h are the Lie
algebras of G and H, respectively. The condition (HB) is equivalent to that
Gc/Hc is spherical (i.e. B has an open orbit on Gc/Hc) when G ⊃ H are
defined algebraically. Similarly, we call G/H is real spherical [14] if (HP) is
satisfied (i.e. P has an open orbit on G/H), see Remark 2.5 (4) for equivalent
definitions.

An analogous notation PH ⊂ H and BH ⊂ Hc will be applied when H is
reductive. In this case we can consider also the following two conditions:

There exists an open PH-orbit on the real flag variety G/P .(PP)

There exists an open BH-orbit on the complex flag variety Gc/B.(BB)

Clearly, these four conditions on the pair (G,H) do not depend on the choice
of parabolics, coverings or connectedness of the groups, but are determined
locally, namely, only by the Lie algebras g and h. An easy argument (see
Lemma 4.2) shows that the following implications hold. Here we consider
(PP) and (BB) when H is reductive:

(HB)

=⇒ ⇐=

(BB) (HP)

⇐= =⇒

(PP)
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None of the converse implications is true:

Example 1.1 ([14, Example 2.8.6]). Let (G,H) be a triple product pair
(‵G × ‵G × ‵G,∆‵G) with ‵G being a simple Lie group. In [14] we gave the
following classification: (HP) holds if and only if ‵G is compact or ‵g ≃
so(n, 1), (HB) holds if and only if ‵g ≃ su(2), sl(2,R), or sl(2,C); (PP)
holds if and only if ‵G is compact; (BB) never holds. The condition (HP)
in the triple product pair has laid a solid foundation of concrete analysis of
the tensor product of two representations (see [3] for ‵G = SL(2,R); [7] for
‵G = SO(n, 1), for instance).

It should be noted that the two conditions (HB) and (BB) depend only on
the complexifications (gc, hc). It is known by the work of Brion, Krämer, and
Vinberg–Kimelfeld [5, 21, 22, 32] that the geometric condition (HB) charac-
terizes the multiplicity-free property of irreducible (algebraic) finite dimen-
sional representations π in the induced representation IndG

H τ with dim τ = 1
(i.e. (G,H) is a Gelfand pair), and that the condition (BB) characterizes the
multiplicity-free property of the restriction π|H with respect to G ↓ H (i.e.
(G,H) is a strong Gelfand pair). An extensive research has been made in
the decades in connection with algebraic group actions, invariant theory, and
symplectic geometry among others (e.g. [31]), but mostly in the framework
of algebraic (finite dimensional) representations or in the case of compact
subgroups H.

These beautiful classic results may play a guiding principle in consider-
ing what a natural generalization would be for non-compact subgroups H
(or for non-Riemannian homogeneous spaces G/H), however, only a com-
plete change of machinery has enabled us to prove finite/bounded multi-
plicity results for admissible representations. Namely, in order to overcome
analytic difficulties arising from non-compact subgroups H and from infinite
dimensional representations, we employ the theory of a system of partial
differential equations with regular singularities, for which micro-local anal-
ysis gives a canonical method. Thus we establish in this paper that the
above four geometric conditions (HP), (HB), (PP), and (BB) characterize
finiteness/boundedness of the multiplicities of the induction/restriction for
admissible representations of real reductive groups, respectively (see Theo-
rems A–D below).

For a precise statement of our results, let Ĝad denote the set of equivalence
classes of irreducible admissible representations of G (see Definition 2.1),
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and Ĝf that of irreducible finite dimensional representations of G. We write
cg,K(π, Ind

G
H τ) for the multiplicity of the underlying (g, K)-module πK of

π ∈ Ĝad occurring in the space of sections of the G-homogeneous vector
bundle over G/H associated to τ ∈ Ĥf (the topology of IndG

H τ is not the
main issue here owing to analytic elliptic regularity).

Theorem A (finite multiplicity theorem for induction).

1) If (HP) holds, then cg,K(π, Ind
G
H τ) <∞ for any π ∈ Ĝad and any τ ∈ Ĥf .

2) Suppose that G, H and τ are defined algebraically over R. If (HP) fails,

then for any algebraic representation τ of H there exists π ∈ Ĝad such that
cg,K(π, Ind

G
H τ) =∞.

An upper bound formula of the multiplicities is presented in Theorem 2.4,
which is strong enough to give a proof of uniformly bounded multiplicity
results under stronger assumptions (Theorems B and D below), and thus
plays a central role throughout the paper. The algebraic assumption in the
second statement of Theorem A is crucial. A counterexample without the
algebraic assumption is illustrated in Example 3.6.

Concerning the uniform boundedness of the multiplicities for the induced
representation, we may consider the following three kinds of conditions:

sup
τ∈Ĥf

sup
π∈Ĝad

1

dim τ
cg,K(π, Ind

G
H τ) <∞.(1.1)

sup
τ∈Ĥf

dim τ=1

sup
π∈Ĝad

cg,K(π, Ind
G
H τ) <∞.(1.2)

sup
π∈Ĝad

cg,K(π,C
∞(G/H)) <∞.(1.3)

Clearly, (1.1) ⇒ (1.2) ⇒ (1.3).

Needless to say, Ĝad and Ĥad depend heavily on real forms (G,H) of
(Gc, Hc). Surprisingly, we discovered in the following theorem (and also
Theorem D) that the uniform boundedness condition of the multiplicities is
determined only by the complexified Lie algebras (gc, hc).

Theorem B (uniformly bounded theorem of multiplicities for induction).
1) The condition (HB) implies (1.1) (hence, (1.2) and (1.3), too).
2) Suppose (G,H) is defined algebraically over R. Then the conditions (HB),
(1.1), and (1.2), are all equivalent. Further, if H is reductive, then (1.3) is
equivalent to these conditions, too.
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Remark 1.2. Theorem B is classically known for compact Lie group G even
in a stronger form [5, 22], i.e. the upper bound (1.3) is one. In contrast
to the compact case, the upper bound (1.3) is often greater than one if
H is noncompact. For instance, if (G,H) is a semisimple symmetric pair
(SL(p + q,R), SO0(p, q)), then the upper bound (1.3) is no less than (p +
q)! / p! q! in view of the contribution of the most continuous principal series
representations for G/H (see [29]).

Remark 1.3. It is known that the condition (HB) is equivalent to the commu-
tativity of the ring of G-invariant differential operators on G/H. Further, if
H is compact then the condition (HB) is equivalent to that the Riemannian
manifold G/H is a weakly symmetric space in the sense of Selberg.

Example 1.4. 1) If (G,H) is a symmetric pair, then the condition (HB)
(and therefore (HP)) is always fulfilled. In particular, the uniform bounded
estimate (1.1) holds by Theorem B. This improves an earlier work of van den
Ban [2]:

(1.4) cg,K(π, Ind
G
H τ) <∞ for any π ∈ Ĝad and τ ∈ Ĥf ,

which does not imply the uniform estimate with respect to π. In our context,
the weaker estimate (1.4) is derived from a more general geometric condition
(HP) by Theorem A.
2) If Gc/Hc is spherical then any real form (G,H) satisfies (HB). There
are some few non-symmetric spherical homogeneous spaces Gc/Hc such as
(gc, hc) = (sl(2n+1,C), sp(n,C)), (so(2n+1,C), gl(n,C)), and (so(7,C), g2(C)),
and they have been classified in [5, 22]. Further, it was proved in [13]
that some non-symmetric, real spherical homogeneous spaces G/H such as
SU(n, n+1)/Sp(n,R), SU(2p+1, 2q)/Sp(p, q), G2(R)/SL(3,R), G2(R)/SU(2, 1),
etc. admit discrete series representations (i.e. irreducible unitary representa-
tions that occur in closed subspaces of the L2-spaces) and that some others
like SL(2n+ 1,R)/Sp(n,R) do not.
3) If we take H to be a maximal unipotent subgroup N , then (HP) holds
by the open Bruhat cell. The condition (HB) is satisfied if and only if G is
quasi-split. Our general formula (Theorem 2.4) applied to this special case
gives an exact estimate of multiplicities of generalized Whittaker vectors for
generic parameter in comparison with the Kostant–Lynch theory ([20, 24];
see Remark 2.5).

In Theorems A and B we have allowed H to be non-reductive and π to
be infinite dimensional, but have confined τ to be finite dimensional. In
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Theorems C and D below, we treat the case where both π and τ are allowed
to be infinite dimensional. Let denote by HomH( , ) the space of continuous
H-intertwining operators.

Theorem C (finite multiplicity theorem for restriction). Assume H is re-
ductive in G.
1) If (PP) holds, then dimHomH(π|H , τ) <∞ for any π ∈ Ĝad and for any

τ ∈ Ĥad.
2) Suppose (G,H) is defined algebraically over R. If (PP) fails, then there

exist π ∈ Ĝad and τ ∈ Ĥad such that dimHomH(π|H , τ) =∞.

Remark 1.5. IfH = K then its minimal parabolic subgroup PH coincides with
K itself and the assumption (PP) is automatically satisfied because G = KP .
In this simplest case, any irreducible representation τ is finite dimensional
and our argument for Theorem C 1) using hyperfunctions recovers so-called
Casselman’s subrepresentation theorem for which an algebraic proof using
Jacquet functors [6] is also known. Our proof of Theorem C 1) is given in
Section 2, which in this special case includes an analytic proof to an earlier
work of Harish-Chandra [8] that every irreducible quasi-simple representation
of G has finite K-multiplicities (cf. Section 2), for which an algebraic proof
is also known (cf. [33, Chapter 3]).

Concerning uniform boundedness for the multiplicities of the restriction,
we consider the following three kinds of conditions:

sup
τ∈Ĥad

sup
π∈Ĝad

dimHomH(π|H , τ) <∞.(1.5)

sup
τ∈Ĥ∞

sup
π∈Ĝ∞

dimHomH(π|H , τ) <∞.(1.6)

sup
τ∈Ĥf

sup
π∈Ĝf

dimHomH(π|H , τ) <∞.(1.7)

Here Ĝ∞ (⊂ Ĝad) denotes the set of equivalence classes of irreducible smooth
admissible representations. Clearly, (1.5) ⇒ (1.6) ⇒ (1.7).

Theorem D (uniformly bounded theorem of multiplicities for restriction).
Assume H is reductive.
1) The condition (BB) implies (1.5) (hence, (1.6) and (1.7), too).
2) Assume (G,H) is defined algebraically over R. Then (BB), (1.5), (1.6),
and (1.7) are all equivalent.
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Example 1.6. 1) Owing to the classification [21], the condition (BB) is
equivalent to that (gc, hc) is the direct sum of some copies of (sln(C), gln−1(C))
(on(C), on−1(C)), and the trivial ones up to outer automorphisms. There-
fore the real forms such as (SL(n,R), GL(n− 1,R)), (SU(p, q), U(p− 1, q)),
(O(p, q), O(p − 1, q)) are examples of the pair (G,H) satisfying (BB), and
therefore (PP), too.
2) The symmetric pair (G,H) = (SO(n, 1), SO(k) × SO(n − k, 1)) is an
example of the pair that satisfies the condition (PP) but does not satisfy
(BB) for 1 < k < n. Likewise (G,H) = (SU(n, 1), S(U(k) × U(n − k, 1)))
and (Sp(n, 1), Sp(k)× Sp(n− k, 1)) satisfy (PP) but not (BB).

Recently, ‘multiplicity-one theorems’ have been proved in [30], asserting
that the upper bound (1.6) equals one for certain real forms (G,H) satisfying
the property (BB), which gives a finer result than Theorem D 1). However
it should be noted that the uniform bound (1.6) can be greater than one
for some other real forms (G,H) satisfying (BB). For instance, the upper
bound (1.6) equals 2 if (G,H) = (SL(2,R), GL(1,R)+). Our approach here
is based on the theory of systems of partial differential equations with regular
singularities, and is completely different from [1, 30] which is based on the
Gelfand–Kazhdan criterion.

Our approach using hyperfunction boundary value maps naturally con-
nects multiplicities with the geometry of the real flag variety. As one of
applications of Theorem 2.4 we can obtain the following geometric result
from infinite dimensional representation theory:

Corollary E. For any closed subgroup H of G, the number of open H-orbits
on G/P does not exceed the order of the little Weyl group W (a).

We now outline the paper. In Section 2 we give a quick review on ‘hy-
perfunction boundary maps’ where no assumption such as K-finiteness is
required, and prove a formula for the upper bound of the multiplicities in
Theorem 2.4, which is a key step to prove the upper estimates in Theorems
A to D. Conversely, the proof for a lower estimate of the multiplicities is
based on a straightforward generalization of the construction of the Pois-
son transform for symmetric spaces. Theorem 3.1 is a stepping stone for
the lower estimates in Theorems A and C. Uniform boundedness of multi-
plicities is discussed in Section 4 based on Theorem 2.4, combined with the
Borel–Weil theorem for parabolic subgroups and a structural result on prin-
cipal series representations. Thus we prove the first statement of Theorem
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B. The second statement of Theorems B and D reduces to the classical finite
dimensional results. In Section 5 we discuss multiplicities for the restriction
of irreducible representations, and complete the proof of Theorems C and D
as an application of results in Sections 2 and 4.

2 An upper bound of the multiplicities

Let G be a connected real semisimple Lie group with finite center, and g
its Lie algebra. Let Z(g) be the center of the enveloping algebra U(g) of
the complexified Lie algebra gc. Then Z(g) is a polynomial ring of rank g
generators, and the Harish-Chandra isomorphism gives a parametrization of
maximal ideals of Z(g):

HomC-alg(Z(g),C) ≃ j∗c/W (j), χλ ←→ λ,

where j is a Cartan subalgebra of g and W (j) is the Weyl group for the root
system for (gc, jc).

Let π be a continuous representation of G on a complete locally convex
vector space V . Define V ∞ to be the subspace of vectors v ∈ V for which
g 7→ π(g)v is a C∞ map from G into V . Then V ∞ is a dense, G-invariant
subspace of V . Let π∞ denote the restriction of π to V ∞. Then π∞ is a
continuous representation on V ∞ endowed with a natural Fréchet topology,
and is called a smooth representation. It has a property that (V ∞)∞ = V ∞.
Following Harish-Chandra we call π is quasi-simple if π∞ restricts to scalar
multiplication on Z(g).

We fix a maximal compact subgroup K of G. We recall (see [33, Chapters
3,11], for some further details):

Definition 2.1. A continuous representation (π, V ) of G of finite length is
called admissible if one of the following equivalent conditions are satisfied:

π∞ is Z(g) finite.(2.1)

dimHomK(δ, π) <∞ for any irreducible representation δ of K.(2.2)

Then the space VK consisting of K-finite vectors of V is contained in V ∞,
and we write πK for the underlying (g, K)-module defined on VK . We denote

by Ĝad the set of equivalence classes of irreducible, admissible representations
of G on complete locally convex topological vector spaces, and by Ĝ∞ that of
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smooth ones. Here two continuous representations (π1, V1) and (π2, V2) of G
are defined to be equivalent if there exists a homeomorphic G-homomorphism
T : V1 → V2. Naturally we may regard Ĝad ⊃ Ĝ∞ ⊃ Ĝf .

Let H be a closed subgroup of G. We denote by Vτ the G-equivariant
vector bundle G×H Vτ over G/H associated with a finite dimensional repre-
sentation (τ, Vτ ) of H. Then we have a representation π of G on the space
of sections

F(G/H; τ) ≃ {f ∈ F(G, Vτ ) : f(gh) = τ(h)−1f(g) for h ∈ H, g ∈ G},

where F = A, C∞, D′ or B denote the sheaves of analytic functions, smooth
functions, distributions, or hyperfunctions, respectively.

For each λ ∈ j∗c , the Lie algebra g acts on

F(G/H; τ)λ ≡F(G/H; τ, χλ)

:={f ∈ F(G/H; τ) : dπ(D)f = χλ(D)f for any D ∈ Z(g)}.(2.3)

Let E(G/H; τ)λ be the subspace consisting of K-finite vectors, which is inde-
pendent of F as far as dim τ <∞ by analytic elliptic regularity [9, Theorem
3.4.4] because dπ(CG− 2CK) is an elliptic operator, where CG is the Casimir
element of g, and CK is that for k with the induced symmetric bilinear form
from the restriction of the Killing form of g.

The significance of the geometric condition (HP) is summarized as follows:

Theorem 2.2. If there exists an open H-orbit on G/P , then the (g, K)-
module E(G/H; τ)λ is of finite length for any finite dimensional representa-
tion τ of H and any λ ∈ j∗c. In particular, C∞(G/H; τ)λ is an admissible
representation of G.

The first statement of Theorem A follows from Theorem 2.2. The main
goal of this section is to give a quantitative estimate of Theorem 2.2, namely,
an upper bound for the multiplicities of irreducible subquotients in E(G/H; τ)λ
under the condition (HP) (see Theorem 2.4). In the course of its proof, we
prove Theorem 2.2, too.

Let us fix some notation. Let g = k + s be the Cartan decomposition
corresponding to K, and take a Cartan subalgebra j of g such that a := j∩ s
is a maximal abelian subspace in s. We put t = k ∩ j. Let jc, ac and tc
be the complexifications of j, a and t, and let denote by j∗c , a

∗
c and t∗c the

spaces of complex linear forms on them, respectively. By the Killing form
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of gc we identify a∗c and t∗c with subspaces of j∗c . Let Σ(j), Σ(t) and Σ(a)
be the set of the roots for the pairs (gc, jc), (mc, tc) and (g, a), respectively,
and let W (j), W (t) and W (a) be the associated Weyl groups. Here mc is the
centralizer of ac in kc. We fix compatible positive systems Σ(t)+, Σ(j)+ and
Σ(a)+, and let ρ denote half the sum of roots in Σ(j)+ and we put ρt = ρ|t
and ρn = ρ|a. Naturally we have Σ(t)+ ⊂ Σ(j)+. Put A = exp a and letM be
the centralizer of a in K, L :=MA, and N the maximal nilpotent subgroup
of G corresponding to Σ(a)+. Then P = LN =MAN is a minimal parabolic
subgroup. We denote by Cρn the one dimensional representation of P given

by p 7→ | det(Ad(p) : n→ n)| 12 . Its differential representation equals ρn when
restricted to j.

Given (ζ, Vζ) ∈ L̂f , we extend it to a representation of P with trivial
action of N , and define another irreducible representation of P by

(2.4) Vζ,P := Vζ ⊗ Cρn .

Similarly, a P̄ -module Vζ,P̄ := Vζ ⊗ Cρn̄ is defined. Let Vζ,P := G×P Vζ,P be
a G-equivariant vector bundle over G/P associated with the P -module Vζ,P ,
and we write F(U ;Vζ,P ) for the space of F = A, B, C∞ or D′-valued sections
of Vζ,P on an open set U of G/P . We write IGP (ζ) for the underlying (g, K) -
module of the normalized principal series representation F(G/P ;Vζ,P ). Then
the Z(g)-infinitesimal character of IGP (ζ) equals dζ+ρt ∈ j∗c where dζ denotes
the highest weight of the finite dimensional representation ζ of the Lie algebra
m+ a with respect to Σ(t)+.

For two continuous representations π and π′, we write HomG(π, π
′) for

the space of continuous G-homomorphisms. For two (g, K)-modules E, E ′,
we set

cg,K(E,E
′) := dimHom(g,K)(E,E

′).

By a little abuse of notation, we also write cg,K(π,E
′) for cg,K(πK , E

′)

if πK is the underlying (g, K)-module of π ∈ Ĝad. We recall the following
fundamental results on (g, K)-modules and their globalizations:

Lemma 2.3. 1) For any two admissible representations π, π′ on complete,
locally convex vector space, we have

(2.5) dimHomG(π, π
′) ≤ cg,K(πK , π

′
K)

2) For any two admissible (g, K)-modules E, E ′, there exist admissible rep-
resentations π, π′ of G such that the equality holds in (2.5) with πK ≃ E and
π′
K ≃ E ′.
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The first statement is easy . For 2), the choice of such globalizations is
not unique. For example, we can take π and π′ to be smooth representations,
by the Casselman–Wallach completion [33, Theorem 11.6.7].

For π ∈ Ĝad, (τ, Vτ ) ∈ Ĥf , and (ζ, Vζ) ∈ L̂f ≃ P̂f ≃ ̂̄P f , we define

cg,K(π, Ind
G
H τ) := dimHom(g,K)(πK ,F(G/H; τ)),(2.6)

cH∩P̄ (Vζ , Vτ,P̄ ) := dimHomH∩P̄ (Vζ , Vτ,P̄ ).

Then, (2.6) is independent of F because the image of a (g, K)-homomorphism
is contained in A(G/H; τ) by analytic elliptic regularity.

We set

Wλ := {w ∈ W (j) : wλ = λ},
W (j;λ) := {v ∈ W (j) : (vλ)|a = λ|a}.(2.7)

We say λ ∈ j∗c is regular if Wλ = {e}.
The first main result of this paper is:

Theorem 2.4. Let H be a closed subgroup of G and suppose HP̄ is open in
G. Then for any finite dimensional representation τ of H and any π ∈ Ĝad,
we have

(2.8) cg,K(π, Ind
G
H τ) ≤ #(W (t)\W (j;λ))

∑
ζ∈L̂f

cg,K(π, I
G
P (ζ))·cH∩P̄ (Vζ , Vτ,P̄ ).

Here λ ∈ j∗c is the Z(g)-infinitesimal character of π. If λ is regular, then we
have

cg,K(π, Ind
G
H τ) ≤

∑
ζ∈L̂f

cg,K(π, I
G
P (ζ)) · cH∩P̄ (Vζ , Vτ,P̄ ).

Note that cg,K(π, I
G
P (ζ)) is nonzero only for finitely many ζ ∈ L̂f for a

fixed π ∈ Ĝad. Further, cg,K(π, I
G
P (ζ)) is finite for any π and ζ (in fact, it

is uniformly bounded, see Proposition 4.1). Hence if HgP is open for some
g ∈ G, then cg,K(π, Ind

G
H τ) < ∞, which follows from Theorem 2.4 with P̄

replaced by gPg−1.

Remark 2.5. 1) If G is compact, then G = P = P̄ and the equality holds in
(2.8), which is the Frobenius reciprocity theorem.
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2) If H = N then the assumption in Theorem 2.4 is satisfied. In particular,
if ζ|a ∈ a∗c is generic, (2.8) implies the following inequality:

(2.9) cg,K(I
G
P (ζ), Ind

G
N τ) ≤ #W (a) · dim ζ.

In this special case, our estimate (2.8) is best possible. Indeed the equality
holds in (2.9) as was proved by T. Lynch [24, Theorem 6.4].
3) If (G,H) is a semisimple symmetric pair, then the assumption in The-
orem 2.4 is satisfied. In this special case, our estimate (2.8) improves the
estimate by van den Ban [2] based on a different method. See Example 1.4.
4) There exists an open H-orbit in G/P if and only if the number of the H-
orbits in G/P is finite. The complex case was proved by Brion and Vinberg,
and the proof of the general case was given by the Matsuki reduction to the
real rank group ([25]) and the earlier classification of such subgroups H for
the real rank group by Kimelfeld [11]. An analogous statement does not hold
if P is replaced by general parabolic subgroups P . See [4], and also [14, §2]
and references therein.
5) Once we tell a priori the finiteness of the multiplicities of a representa-
tion π in the induced representation IndG

H τ by Theorem 2.4, we may wish
to understand functions that belong to a subrepresentation isomorphic to
π in IndG

H τ . Some real spherical homogeneous spaces G/H including sym-
metric spaces admit a generalized Cartan decomposition G = KAH with
split abelian subgroup A, which is a useful geometric structure to analyze
the asymptotic behavior of those functions by the reduction to A (cf. [14,
Remark 3.6]). On the other hand, we obtained in [15] some growth estimate
at infinity of the G-invariant Radon measure on non-symmetric reductive
spaces without a generalized Cartan decomposition G = KAH.

Our machinery for the proof of Theorem 2.4 is the theory of regular
singularities of a system of partial differential equations [10, 26]. We regard
the group manifold G as a symmetric space (G × G)/∆G, and apply the
construction of taking the boundary values of B(G;χλ) to the hyperfunction
valued principal series of G×G. If a solution f ∈ B(G;χλ) defined in (2.10)

below is ideally analytic at a boundary point of G in the compactification G̃
constructed in [27, §1] then f is expressed as a sum of convergent series. If
f is (K ×K)-finite then f is automatically ideally analytic at any boundary
point and this expression was studied earlier by Harish-Chandra, and then
by Casselman and Miličić among others (see [33, vol.1, Ch.4] and references
therein). However, in our setting, we cannot assume that f is (K × K)-
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finite. The advantage of our approach is that the boundary maps are well-
defined inductively even locally (without K-finiteness condition) as (g+ g)-
homomorphisms, which enables us to capture the left g-module B(G;χλ, τ)
as a filtered module by assuming only the condition (HP). We review briefly
some results of [27] in a way that we need.

We let G×G act on the space B(G) of hyperfunctions on G from the left
and right:

(πL(g)◦πR(g
′)f)(x) = f(g−1xg′) for (g, g′) ∈ G×G and f ∈ B(G).

For χλ ∈ HomC-alg(Z(g),C) ≃ j∗c/W (j) we define

(2.10) B(G;χλ) := {f ∈ B(G) : dπL(D)f = χλ(D)f for any D ∈ Z(g)}.

The boundary value maps are defined inductively as g+g-maps as follows:
We set

Ξ := {(λ, µ) ∈ j∗c × a∗c : (wλ)|a = µ for some w ∈ W (j)}.

For (λ, µ) ∈ Ξ, we consider the following finite set of irreducible representa-
tions of the Levi subgroup L =MA defined as

A(λ, µ) := {ζ ∈ L̂f : dζ + ρt ∈ W (j)λ, dζ|a = µ}.

Further, corresponding to the ‘logarithmic terms’, we recall from [27, Propo-
sition 2.8] the multiplicity function N : Ξ→ N with the properties

(2.11)


Nλ,µ ≤ #{w ∈ W (j) : (wλ)|a = µ}/#W (t),

Nλ,µ ≤ 1 if ⟨λ, α⟩ ̸= 0 for any α ∈ Σ(j),

Nwλ,µ = Nλ,µ for any w ∈ W (j).

For λ ∈ j∗c we define a finite set

Iλ := {(µ, i) : (λ, µ) ∈ Ξ, i = 1, . . . , Nλ,µ}.

Clearly Iλ = Iwλ for any w ∈ W (j). Fix Y ∈ a such that α(Y ) > 0 for any
α ∈ Σ(a)+ and that ν(Y ) ̸= µ(Y ) whenever ν ̸= µ with (λ, ν), (λ, µ) ∈ Ξ,
and we give a lexicographical order ≺ on Iλ by (ν, j) ≺ (µ, i) if and only if
Re(µ− ν)(Y ) + ϵ Im(µ− ν)(Y ) + ϵ2(i− j) > 0 for 0 < ϵ≪ 1.
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Let U be an open set in (G×G)/(P × P̄ ). We denote by ζ∗ the contra-
gredient representation of ζ. Then we have the boundary value maps

βi
µ : B(G;χλ)µ,i →

⊕
ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P )

for each (µ, i) ∈ Iλ on the subspace B(G;χλ)µ,i defined inductively by

B(G;χλ)µ,i :=


B(G;χλ) if (µ, i) is the smallest,∩
(ν,j)∈Iλ

(ν,j)≺(µ,i)

Ker βj
ν otherwise.

The subspaces B(G;χλ)µ,i with the partial order ≺ induces a gradation of
B(G;χλ), and we write grB(G;χλ) for the corresponding graded module.
Then the induced maps

βi
µ : B(G;χλ)µ,i/Ker βi

µ →
⊕

ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P )

give rise to a g⊕ g-homomorphism β̄ = ⊕(µ,i)∈Iλβ
i
µ on the graded module:

β̄ : grB(G;χλ)→
⊕

(µ,i)∈Iλ

⊕
ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P ).

Moreover β̄ respects the action of the subgroup of G×G that stabilizes U .
Assume that HP̄ is open in G. We set U := (G ×HP̄ )/(P × P̄ ). Then

we have a (g×H)-homomorphism

β̄ : grB(G;χλ)K×1 →
⊕

(µ,i)∈Iλ

⊕
ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P ).

It is important to note that Holmgren’s uniqueness principle for hyperfunc-
tions holds, i.e. if u ∈ B(G;χλ) satisfies β

i
µ(u) = 0 for all (µ, i) ∈ Iλ, then u

vanishes on an open subset of G (see [27, §3]). Therefore β̄ is injective since
B(G;χλ)K×1 ⊂ A(G) by analytic elliptic regularity. Passing to 1 × ∆(H)-
fixed vectors in the g×H ×H-map

β̄ ⊗ id : grB(G;χλ)K×1 ⊗ Vτ →
⊕

(µ,i)∈Iλ

⊕
ζ∈A(λ,µ)

B(U ;Vζ,P ⊠ Vζ∗,P )⊗ Vτ ,

14



we get an injective g-map

β̄ : (grB(G;χλ)K ⊗ Vτ )∆(H) →
⊕

(µ,i)∈Iλ

⊕
ζ∈A(λ,µ)

(
B(U ;Vζ,P ⊠ Vζ∗,P )⊗ Vτ

)∆(H)
.

In light of the natural isomorphism(
B(HP̄/P̄ ;Vζ∗,P̄ )⊗ Vτ

)∆(H) ≃
(
Vζ∗,P̄ ⊗ Vτ

)∆(H∩P̄ ) ≃ HomH∩P̄ (Vζ , Vτ,P̄ ),

we have thus(
B(U ;Vζ,P ⊠ Vζ∗,P )⊗ Vτ

)∆(H) ≃ B(G/P ;Vζ,P )⊗ HomH∩P̄ (Vζ , Vτ,P̄ ).

Hence we have obtained an injective (g, K)-homomorphism

β̄ : grB(G/H; τ, χλ)K →
⊕

ζ∈A(λ,µ)

IGP (ζ)⊗ CNλ,µ ⊗ HomH∩P̄ (Vζ , Vτ,P̄ ).

The set of irreducible subquotients of the (g, K)-module B(G/H; τ)λ
is the same with that of the graded (g, K)-module grB(G/H; τ, χλ)K ≃
grE(G/H; τ)λ. This completes the proof of Theorem 2.2.

Let π ∈ Ĝad, and λ be its infinitesimal character. Then

Homg,K(πK ,B(G/H; τ))

≃Homg,K

(
πK , (B(G)⊗ Vτ )∆(H)

)
=Homg,K

(
πK , (B(G;χλ)⊗ Vτ )∆(H)

)
⊂Homg,K

(
πK , (grB(G;χλ)K ⊗ Vτ )∆(H)

)
⊂

⊕
ζ∈A(λ,µ)

CNλ,µ ⊗ Homg,K

(
πK , I

G
P (ζ)

)
⊗ HomH∩P̄ (Vζ , Vτ,P̄ )

and hence

cg,K(π, Ind
G
H τ) ≤

∑
ζ∈A(λ,µ)

Nλ,µcg,K(πK , I
G
P (ζ)) · cH∩P̄ (Vζ , Vτ,P̄ )

=
∑
ζ∈L̂f

Nλ,dζ|a · cg,K(πK , I
G
P (ζ)) · cH∩P̄ (Vζ , Vτ,P̄ ).

Now Theorem 2.4 follows from (2.11).
The proof of Theorem 2.4 gives an upper estimate of the multiplicities of

subquotients as well. Let denote by [E : π] the multiplicity of an irreducible
(g, K)-module πK occurring as a subquotient of a (g, K)-module E.
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Proposition 2.6. Suppose that HP̄ is open. For any τ ∈ Ĥf and any π ∈ Ĝ
having Z(g)-infinitesimal character λ ∈ j∗c, we have

[E(G/H; τ)λ : π] ≤ #(W (t)\W (j;λ))
∑
ζ∈L̂f

[IGP (ζ) : π] · cH∩P̄ (Vζ , Vτ,P̄ ).

Corollary 2.7. Suppose HP̄ is open and µ ∈ a∗c satisfies Re⟨µ, α⟩ ≥ 0 for any α ∈
Σ(a)+. Assume that µ+ ρt ∈ j∗c is regular with respect to W (j). Then for any

τ ∈ Ĥf we have

(2.12) cg,K(I
G
P (1⊗ µ), C∞(G/H; τ)) ≤ #W (a) · cH∩P̄ (V1⊗µ, Vτ,P̄ ).

Proof of Corollary 2.7. Let πK be the unique irreducible quotient of the
spherical principal series representation IGP (1⊗ µ). Since the K-fixed vector
in IGP (1⊗ µ) is cyclic (cf. [19]), we have

cg,K(I
G
P (1⊗ µ), C∞(G/H, τ)) ≤ cg,K(πK , C

∞(G/H; τ)).

It follows from the theory of zonal spherical functions that cg,K(πK , I
G
P (ζ)) ̸=

0 (or, equivalently, = 1) only if ζ is of the form 1⊗ wµ for some w ∈ W (a).
Hence Corollary follows from (2.11) and from the last formula in the proof
of Theorem 2.4.

Example 2.8. µ satisfies the regularity condition of Corollary 2.7, in the
following cases:
1) µ = ρn.
2) Imµ is regular with respect to W (a).

The case 1) is clear. Let us see the case 2). If w ∈ W (j) satisfies w(ρt +
µ) = ρt + µ, then we have w Imµ = Imµ by taking the projection to R-span√
−1Σ(j). By Chevalley’s theorem, w is contained in the subgroup generated

by the reflection of the roots orthogonal to Imµ, that is, w ∈ W (t) by the
assumption. Now we have ρt = (w(ρt + µ))|t = wρt, showing w = 1.

3 A lower bound of the multiplicities

In this section we give a proof of Theorem A 2) and Corollary E. The key
idea is to generalize the construction of the Poisson transform known for
symmetric spaces, see Theorem 3.1 below.

16



Let us recall how irreducible finite dimensional representations are real-
ized into principal series representations. As before, let P = LN be the
Langlands decomposition of the minimal parabolic subgroup P of G, and n
the Lie algebra of N . Suppose σ is an irreducible finite dimensional repre-
sentation of G on a vector space Vσ. Then, the Levi subgroup L leaves

V n
σ := {v ∈ Vσ : dσ(X)v = 0 for any X ∈ n}

invariant, and acts irreducibly on it. We denote by ζσ this representation
of L. Then σ is the unique quotient of the principal series representation
IGP (ζσ), or equivalently, the contragredient representation σ∗ satisfies:

(3.1) dimHomg,K(σ
∗, IGP (ζ

∗
σ)) = 1.

For σ ∈ Ĝf and τ ∈ Ĥf , we set

cH(σ, τ) := dimHomH(σ|H , τ).

The following lower bound of the dimension of (g, K)-homomorphisms is
crucial in the proof of Theorem A 2) and Corollary E.

Theorem 3.1. Suppose that H is a closed subgroup of G and that there are
m disjoint H-invariant open sets of G/P . Then

cg,K(I
G
P (ζσ), Ind

G
H τ) ≥ mcH(σ, τ)

for any σ ∈ Ĝf and τ ∈ Ĥf .

In order to prove Theorem 3.1, we construct (g, K)-homomorphisms from
a principal series representation IGP (ζ) into IndG

H τ by means of kernel hyper-
functions:

Lemma 3.2. For any ζ ∈ L̂f and (τ, Vτ ) ∈ Ĥf , we have

cg,K(I
G
P (ζ), Ind

G
H τ) ≥ dim (Vτ ⊗ B(G/P ;Vζ∗,P ))H .

Here (Vτ ⊗ B(G/P ;Vζ∗,P ))H denotes the space of H-fixed vectors of the diag-
onal action.
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Proof. The natural G-invariant paring

⟨ , ⟩ : A(G/P ;Vζ,P )× B(G/P ;Vζ∗,P )→ C

induces an injective G-homomorphism

Ψ : B(G/P ;Vζ∗,P ) ↪→ HomG(A(G/P, Vζ,P ),A(G))

by Ψ(χ)(u)(g) := ⟨π(g−1)u, χ⟩ for χ ∈ B(G/P ;Vζ∗,P ), u ∈ A(G/P, Vζ,P )
and g ∈ G. Here, we let G act on HomG(A(G/P, Vζ,P ),A(G)) via the right
translation on A(G). Passing to the space of ∆(H)-fixed vectors in the
G×H-map

Ψ⊗ id : B(G/P ;Vζ∗,P )⊗ Vτ ↪→ HomG(A(G/P ;Vζ,P ),A(G))⊗ Vτ ,

we have an injective map

(3.2) P : (Vτ ⊗ B(G/P ;Vζ∗,P ))H ↪→ HomG(A(G/P ;Vζ,P ), IndG
H τ).

Hence we have proved Lemma 3.2.

Example 3.3. If H = K and τ is the one dimensional trivial representation,
then the following three conditions are equivalent:

i) (Vτ ⊗ B(G/P ;Vζ∗,P ))K ̸= 0,

ii) dimC (Vτ ⊗ B(G/P ;Vζ∗,P ))K = 1,

iii) ζ|M is trivial.

The corresponding intertwining operator (see (3.2)) from A(G/P ;Vζ∗,P ) into
A(G/K) coincides with the Poisson transform for the Riemannian symmetric
space G/K up to a scalar multiple.

Proof of Theorem 3.1. Let Ui (i = 1, 2, . . . ,m) be disjoint H-invariant open
subsets of G/P . We define χi ∈ B(G/P ) by

χi(g) =

{
1 if g ∈ Ui,

0 if g /∈ Ui.

Clearly, χi ∈ B(G/P )H (i = 1, 2, . . . ,m) are linearly independent.

18



Next we identify V ∗
σ with the unique subspace of the principal series

representation IGP (ζ
∗
σ) (see (3.1)). Take linearly independent H-fixed ele-

ments u1, . . . , un of Vτ ⊗ V ∗
σ with n := cH(σ, τ), where we have regarded

as uj ∈
(
Vτ ⊗ B(G/P ;Vζ∗σ ,P )

)H
. Then χiuj ∈

(
Vτ ⊗ B(G/P ;Vζ∗σ ,P )

)H
are

well-defined and linearly independent for i = 1, . . . ,m and j = 1, . . . , n be-
cause uj are real analytic. Owing to Lemma 3.2, Theorem 3.1 has been now
proved.

We pin down special cases of Theorem 3.1:

Example 3.4. Suppose H is a closed subgroup of G.

1) For any σ ∈ Ĝf and τ ∈ Ĥf , cg,K(I
G
P (ζσ), Ind

G
H τ) ≥ cH(σ, τ).

2) Suppose that there exists m disjoint H-invariant open sets of G/P . Then
cg,K(I

G
P (1), C

∞(G/H)) ≥ m.

The first statement is a special case of Theorem 3.1 by regarding G/P as an
(obvious) open H-invariant subset, and the second statement corresponds to
σ = 1, τ = 1 and ζσ = 1.

Finally, we use the following elementary result for algebraic groups.

Lemma 3.5. Suppose H is an algebraic subgroup of a real algebraic semisim-
ple Lie group G. If there is no open H-orbit on G/P , then there exist in-
finitely many, disjoint H-invariant open sets of G/P .

For the sake of completeness, we give a proof of Lemma 3.5 in Appendix.

Proof of Theorem A 2). Suppose there is no open H-orbit on G/P . Then
we can take infinitely many disjoint H-invariant open subsets Ui of G/P by

Lemma 3.5. For a given algebraic representation τ ∈ Ĥf , we can take σ ∈ Ĝf

with cH(σ, τ) > 0 by the Frobenius reciprocity. Then cg,K(I
G
P (ζσ), Ind

G
H τ) =

∞ by Theorem 3.1. Since there are at most finitely many irreducible (g, K)-
modules occurring in the principal series representation IGP (ζσ) as subquo-
tients, Theorem A 2) now follows.

Proof of Corollary E. Let m be the number of open H-orbits on G/P . By
Example 3.4, we have

cg,K(I
G
P (1), Ind

G
H 1) ≥ m.

Comparing this with Corollary 2.7 in the case µ = ρn and τ = 1, we get
m ≤ #W (a).
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We end this section with a counterexample to an analogous multiplicity-
finite statement without algebraic assumptions in Theorem 3.1.

Example 3.6. Let G = SL(2,R)×· · ·×SL(2,R) be the direct product group
of (n+ 1)-copies of SL(2,R). Fix real numbers λ1, . . . , λn which are linearly

independent over Q. Writing kθ :=

(
cos θ − sin θ
sin θ cos θ

)
and pt,x :=

(
et x
0 e−t

)
,

we define a two-dimensional subgroup of G by

H = {gt,x = (pt,x, kλ1t, · · · , kλnt) : (t, x) ∈ R2}.

Then there is no open H-orbit on G/P if n > 1 because dimG/P = n+1 >
dimH = 2. However, we still have a finite multiplicity statement:

(3.3) cg,K(π, Ind
G
H τ) ≤ 2 for any π ∈ Ĝad and for any τ ∈ Ĥf .

Let us prove (3.3). We observe that any finite dimensional irreducible rep-
resentation of H factors through the quotient group H/[H,H] ≃ R, and is
of the form τµ(gt,x) = eµt for some µ ∈ C. Let χm(kθ) := e2π

√
−1mθ and

σµ(pt,x) := eµt. Then χm (m ∈ Z) and σµ (µ ∈ C) are one dimensional
representations of SO(2) and AN = {pt,x : t, x ∈ R}, respectively.

For m = (m1, . . . ,mn) ∈ Zn and u ∈ C∞(G/H; τµ), we define

(Smu)(g0, g1, . . . , gm) :=∫ 2π

0

· · ·
∫ 2π

0

u(g0, g1kθ1 , . . . , gnkθn)e
2π

√
−1(m1θ1+···+mnθn)

dθ1
2π
· · · dθn

2π
.

Then, for t, x, φ1, . . . , φn ∈ R/2πZ, and g = (g0, g1, · · · , gn), we have

(Smu)(ggt,x) = σµ−2π
√
−1(λ1m1+···+λnmn)(p

−1
t,x)

n∏
j=1

χmj
(k−1

φj
)(Smu)(g).

Thus, Smu defines an element of C∞(G/H̃; σµ−2π
√
−1⟨λ,m⟩⊗ χm) where χm =

χm1 ⊗ · · · ⊗ χmn , ⟨λ,m⟩ := λ1m1 + · · ·+ λnmn, and

H̃ := AN × SO(2)× · · · × SO(2).

Clearly, S :=
⊕

m∈Zn Sm gives an injective G-homomorphism:

S : C∞(G/H; τµ)→
⊕
m∈Zn

C∞(G/H̃; σµ−2π
√
−1⟨λ,m⟩ ⊗ χm).

Now (3.3) follows from the well-known facts on G1 = SL(2,R):
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1) #{µ ∈ C : Hom(g1,K1)(π1, Ind
G1
AN σµ) ̸= 0} ≤ 2, for any π1 ∈ Ĝ1ad.

2) IndG1
K1
χl is multiplicity-free for any l ∈ Z.

4 Uniform boundedness of the multiplicities

This section is devoted to the proof of Theorem B. We will prove (HB) ⇒
(1.1) based on the general formula (2.8) on upper bounds of multiplicities
(see Theorem 2.4). The opposite implication (1.2)⇒ (BB) (or (1.3)⇒ (BB)
when H is reductive) is proved by using Theorem 3.1 on lower bounds.

We begin with the following uniform estimate of multiplicities of irre-
ducible representations occurring in principal series representations as sub-
quotients for which there is, to our knowledge, no direct proof in the litera-
ture. So we will give its proof in the appendix (see Section 6.2).

Proposition 4.1. There exits a constant N depending only on G such that

[IGP (ζ) : π] ≤ N for any π ∈ Ĝad and for any ζ ∈ L̂f .

Retain the notation of Section 2. In particular, B is the Borel subgroup
of Gc with the Lie algebra b given by the positive system Σ(j)+. Then
b is contained in the complexified Lie algebra pc of the minimal parabolic
subgroup P = LN of G.

Lemma 4.2. If Hc acts on Gc/B with an open orbit, then there exists g ∈ G
such that HcgB is open in Gc and that HgP is open in G. In particular,
(HB) ⇒ (HP).

Proof. Put G′
c = {g ∈ Gc : Ad(g)hc + b ̸= gc}. Then G′

c is a proper closed
analytic subset of the complex manifold Gc. Hence G ̸⊂ G′

c and there exists
g ∈ G with Ad(g)hc + b = gc, which implies Ad(g)h+ Lie(P ) = g.

Suppose that Hc has an open orbit on Gc/B. Replacing H by g−1Hg
in Lemma 4.2, we may assume that HcB is open in Gc and HP is open in
G. Then we apply Theorem 2.4 and Proposition 4.1 with P̄ replaced by P .
Thus we have shown

cg,K(π, Ind
G
H τ) ≤ N#(W (t)\W (j; dπ))

∑
ζ∈L̂f
dζ=dπ

cH∩P (Vζ ,Vτ,P )
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for any π ∈ Ĝad with infinitesimal character dπ and for any (τ, Vτ ) ∈ Ĥf .
Now the implication (HB) ⇒ (1.1) in Theorem B follows from Proposition
4.3 below on finite dimensional representations.

Let P0 be the identity component of P , J the Cartan subgroup of G with
Lie algebra j, and Z(G) the center of G. Let D be the maximal dimension
of the irreducible representations of J . Note that D ≤ #(J/Z(G) exp j) =
#(P/Z(G)P0) and D = 1 if G is linear.

Proposition 4.3. Assume that HcB is open in Gc and that HP is open in
G. For any (τ, Vτ ) ∈ Ĥf and (ζ, Vζ) ∈ L̂f we have cH∩P (Vζ , Vτ,P ) ≤ D ·dim τ .

Proof. It follows from gc = hc + b and b ⊂ pc that

(4.1) pc = (hc ∩ pc) + b.

Let P̃c be the connected and simply connected complex Lie group with Lie
algebra pc. We write (H ∩ P )c and B̃ for the connected subgroups of P̃c

with Lie algebra hc ∩ pc and b, respectively. Then the P -module ζ∗ uniquely
corresponds to irreducible representations ζ1 of J and ζo of P0 by the natural
map J × Po ∋ (j, p) 7→ jp ∈ P and hence ζ∗ is isomorphic to the direct

sum of dim ζ1 copies of O(P̃c/B̃,Lλ) as pc-modules. Here Lλ is the P̃c-

homogeneous holomorphic line bundle over P̃c/B̃ associated with a suitable
character λ of B such that the space of global holomorphic sections, denoted
by O(P̃c/B̃,Lλ), corresponds to the Borel–Weil realization of ζo. Note that
dim ζ1 ≤ D. Passing to the space of fixed vectors under the diagonal action
of H ∩ P on Vτ,P ⊗ Vζ , we have

(Vτ,P ⊗ Vζ)H∩P ⊂
dim ζ1⊕ (

Vτ,P ⊗O(P̃c/B̃,Lλ)
)hc∩pc

.

Since (H∩P )c acts on P̃c/B̃ with an open orbit by (4.1), dim(Vτ,P⊗Vζ)H∩P ≤
dim ζ1 · dim τ because a holomorphic function on a connected complex man-
ifold is uniquely determined by its restriction to an open subset. Hence
Proposition 4.3 is proved.

Thus we have completed the proof of the implication (HB) ⇒ (1.1) in
Theorem B.

Remark 4.4. Let G be real algebraic (not necessarily reductive), σ an invo-
lution and H = Gσ. R. Lipsman proved that the multiplicity of the abstract
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Plancherel formula for G/H is uniformly bounded under the hypothesis that
this statement is true in the reductive case ([23, Theorem 7.3]). Theorem B
shows that his hypothesis is true because there always exists an openHc-orbit
on Gc/B for any complex reductive symmetric pair (Gc, Hc).

Let us prove the remaining implication in Theorem B, namely, (1.2) ⇒
(HB) (or (1.3) ⇒ (HB) when H is reductive).

Let N be the constant in Proposition 4.1. Then, for any π ∈ Ĝad, ζ ∈ L̂f ,
and τ ∈ Ĥf , we have

cg,K(I
G
P (ζ), Ind

G
H τ) ≤ Ncg,K(π, Ind

G
H τ).

Therefore the conditions (1.2) and (1.3) imply

sup
τ∈Ĥf

dim τ=1

sup
ζ∈L̂f

cg,K(I
G
P (ζ), Ind

G
H τ) <∞,

sup
ζ∈L̂f

cg,K(I
G
P (ζ), C

∞(G/H)) <∞,

respectively. Applying Theorem 3.1 with m = 1, we get

sup
τ∈Ĥf

dim τ=1

sup
σ∈Ĝf

cH(σ, τ) <∞,

sup
σ∈Ĝf

cH(σ,1) <∞,

respectively. Hence, the implication (1.2) ⇒ (HB) (or (1.3) ⇒ (HB) when
H is reductive) reduces to the implication (iii)′ ⇒ (i) (or (iv)′ ⇒ (i)) in the
following classical results on finite dimensional representations:

Lemma 4.5 ([32]). Let Hc be an algebraic subgroup of a complex semisimple

Lie group Gc. In what follows Ĝalg, Ĥalg denote the set of irreducible algebraic
finite dimensional irreducible representations of Gc, Hc, respectively. Then
the following five conditions on the pair (Gc, Hc) are equivalent:

(i) There exists an open Hc-orbit on Gc/B.

(ii) cH(σ, τ) ≤ dim τ for any σ ∈ Ĝalg and τ ∈ Ĥalg.

(ii)′ sup
τ∈Ĥalg

sup
σ∈Ĝalg

1

dim τ
cH(σ, τ) <∞.
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(iii) cH(σ, τ) ≤ 1 for any σ ∈ Ĝalg and τ ∈ Ĥalg such that dim τ = 1.

(iii)′ sup
τ∈Ĥalg

dim τ=1

sup
σ∈Ĝalg

cH(σ, τ) <∞.

Furthermore, if H is reductive, then they are also equivalent to:

(iv) cH(σ,1) ≤ 1 for any σ ∈ Ĝalg.

(iv)′ sup
σ∈Ĝalg

cH(σ,1) <∞.

Proof. The following implications are obvious:

(ii) ⇒ (iii) ⇒ (iv)

⇓ ⇓ ⇓
(ii)′ ⇒ (iii)′ ⇒ (iv)′

The implication (i) ⇒ (ii) follows easily from the Borel–Weil theorem. The
non-trivial part is (iii) ⇒ (i) (or (iv) ⇒ (i)), which was proved in Vinberg–
Kimelfeld [32].

Let us show the remaining (and easy) implication (iii)′ ⇒ (iii) (or (iv)′ ⇒
(iv)). Suppose cH(σ, τ) ≥ 2 for some σ ∈ Ĝalg and τ ∈ Ĥalg with dim τ = 1.
Then we can find two linearly independent highest weight vectors f1, f2 ∈
O(Gc) such that fj(b

−1gh) = χσ(b)τ(h
−1)fj(g) (j = 1, 2) for any b ∈ B,

h ∈ Hc, and g ∈ Gc where χσ corresponds to a highest weight of σ. We
claim that f i

1f
N−i
2 (0 ≤ i ≤ N) are linearly independent. Indeed, suppose

a0f
N
1 + a1f

N−1
1 f2 + · · · + aNf

N
2 = 0 is a linear dependence. Let λ be a zero

of the equation a0t
N + a1t

N−1 + · · · + aN = 0. Since the ring O(Gc) has no
divisor, we have f1 − λf2 = 0, which contradicts to the linear independence
of f1 and f2. Therefore, we have cH(σN , τ

N) ≥ N + 1 where σN ∈ Ĝalg

is defined to have a highest weight χN
σ . Hence (iii)′ ⇒ (iii) is shown. The

implication (iv)′ ⇒ (iv) is immediate by putting τ = 1.

We have thus completed the proof of Theorem B.

5 Restriction of irreducible representations

In this section we discuss the restriction of an admissible irreducible repre-
sentation π of a semisimple Lie group with respect to a reductive subgroup
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H, and give a proof of Theorems C and D on geometric criteria for finiteness
and boundedness of the dimension of HomH(π|H , τ), the space of continuous
H-homomorphisms for τ ∈ Ĥad.

In dealing with the restrictions of admissible representations which are
not necessarily unitary, we work mostly in the framework of smooth repre-
sentations. We begin with an elementary observation:

Lemma 5.1. Suppose (π, Vπ) ∈ Ĝad and (τ, Vτ ) ∈ Ĥad. Then we have a
natural injective map

HomH(Vπ, Vτ )→ HomH(V
∞
π , V ∞

τ ), φ 7→ φ|V ∞
π
.

Proof. Let φ : Vπ → Vτ be a continuous H-homomorphism. If v is a smooth
vector of Vπ as a representation of G, then v is a smooth vector for the
representation π|H of the subgroup H, and consequently, so is φ(v) for τ .
Since V ∞

π is dense in Vπ, φ 7→ φ|V ∞
π

is injective.

Let ∆H denote the diagonal subgroup {(h, h) : h ∈ H} in G × H. The
next lemma reduces the problem of the restriction to a problem on the in-
duced representation for which we have already solved in Sections 2 and 3:

Lemma 5.2. For any π ∈ Ĝ∞ and τ ∈ Ĥ∞, there is a natural bijection

HomH(π|H , τ) ≃ HomG×H(π × σ,C∞(G×H/∆H)).

Here, τ ∗ is the contragredient representation of H on the continuous dual
(the space of distribution vectors), and σ denotes its smooth representation
(τ ∗)∞.

Proof. We write Vπ, Vτ , and Vσ for the representation spaces of the smooth
representations π, τ , and σ, respectively.

Suppose φ : Vπ → Vτ is a continuous H-homomorphism. We define a
continuous map Φ : Vπ × Vσ ×G×H → C by

Φ(v, u; g, h) := ⟨φ(π(g−1)v), σ(h−1)u⟩.

Then the induced map (v, u) 7→ Φ(v, u; ·, ·) gives a continuous (G × H)-
homomorphism from Vπ × Vσ to C∞(G×H/∆H).

Conversely, suppose Ψ : Vπ × Vσ → C∞(G × H/∆H) is a continuous
(G×H)-homomorphism. Then the linear map

ψ : Vπ → V ∗
σ , v 7→ Ψ(v, ·)(e, e)
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is a continuous H-homomorphism, and therefore, its image is contained in
the subspace (W ∗

σ )
∞ of W ∗

σ . Since every smooth representation τ of H is
reflexive, i.e. (W ∗

σ )
∞ ≃ Vτ , we have now shown Lemma.

Combining Lemma 5.1 with Lemma 5.2, we get

dimHomH(π|H , τ) ≤ dimHomH(π
∞|H , τ∞)

=dimHomG×H(π
∞ × (τ ∗)∞, C∞(G×H/∆H)).(5.1)

Now Theorems C and D follow from (5.1) and Theorems A and B in light
of the following elementary observation:

Lemma 5.3. 1) The condition (PP) holds for the pair (G,H) if and only if
the condition (HP) holds for (G×H,∆H).
2) The condition (BB) holds for (G,H) if and only if the condition (HB)
holds for (G×H,∆H).

Proof. 1) P×PH is a minimal parabolic subgroup ofG×H. The claim follows
from the natural bijection (P ×PH)\(G×H)/∆H ≃ P\G/PH . 2) Similarly,
B × BH is a Borel subgroup of Gc × Hc, and the claim follows from the
bijection (B ×BH)\(Gc ×Hc)/∆Hc ≃ B\Gc/BH .

In the case where π is unitary, we can decompose the restriction π|H into
the direct integral of irreducible unitary representations of H, and such a
decomposition (branching law) is unique as H is of type I in the sense of von

Neumann algebras. We denote by Ĝ the set of (unitary) equivalence classes

of irreducible unitary representations of G. For (π, Vπ) ∈ Ĝ, (τ,Wτ ) ∈ Ĥ,
φ ∈ HomH(τ, π|H) gives an irreducible summand φ(Wτ ) in Vπ.

As an immediate corollary of Theorems C and D, we give an upper bound
of the multiplicity in the discrete part:

Theorem 5.4. Suppose (G,H) is a pair of reductive Lie groups.
1) If there is an open PH-orbit on G/P , then dimHomH(τ, π|H) < ∞ for

any π ∈ Ĝ and τ ∈ Ĥ.
2) If there is an open BH-orbit on Gc/B, sup

π∈Ĝ,τ∈Ĥ
dimHomH(τ, π|H) <∞.

Proof of Theorem 5.4. Since the adjoint map gives an anti-linear bijection

HomH(Vτ , Vπ) ≃ HomH(Vπ, Vτ ),

Theorem 5.4 follows from Theorems B and D.
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Remark 5.5. 1) Theorem 5.4 2) was announced in this form in [16, Remark
2.10]. See [1, 18, 30] for recent results without unitarity.
2) If H = K a maximal compact subgroup of G, then the assumption of
Theorem 5.4 1) is obviously satisfied because PH = K and KP = G. In this

case dim τ <∞ for any τ ∈ K̂. This simplest case gives an analytic proof to
the celebrated result of Harish-Chandra asserting that any irreducible unitary
representation is admissible (using a theorem of I. Segal on the existence of
infinitesimal characters of irreducible unitary representations).
3) Even if (PP) fails, it may happen that dimHomH(τ, π|H) < ∞ for any

τ ∈ Ĥ for a specific triple (π,G,H). This was studied in details in [13, 16, 17]
when the decomposition is discretely decomposable.

6 Appendix

6.1 Proof of Lemma 3.5

Lemma 6.1. Let Hc be a complex algebraic group acting on a smooth complex
variety X by Ψ : Hc × X ∋ (g, x) 7→ gx ∈ X. Then there exists a locally
closed submanifold Y of X in the Zariski topology such that the following two
conditions holds:
1) Ψ|Hc×Y is a submersion.
2) #{x ∈ Y : Hcx = Hcy} is finite and does not depend on y ∈ Y .

Proof. Let ℓ be the minimal codimension of the submanifold Hcx for x ∈ X.
Fix p ∈ X such that the codimension of Hcp is equal to ℓ. Let Y be an ℓ-
dimensional locally closed submanifold of X through p such that dΨ|Hc×Y is
surjective at (e, p). By shrinking Y if necessary, we may assume that dΨ|Hc×Y

surjects TyY at (e, y) for all y ∈ Y . Since the surjectivity of dΨ|Hc×Y at (e, y)
implies that of dΨ|Hc×Y at (h, y) for any h ∈ H, Ψ|Hc×Y is a submersion.
Consider a locally closed subvariety

Ỹ = (pr× idY )◦(Ψ|Hc×Y × idY )
−1(∆Y )

of Y × Y , where pr is the second projection map of Hc × Y onto Y and
∆Y = {(y, y) ∈ Y × Y : y ∈ Y }. By definition, (x, y) ∈ Ỹ if and only if
Hcx = Hcy. Since the fiber of the map π : Ỹ ∋ (x, y) 7→ x ∈ Y is discrete,
there exist a positive number m and a Zariski open subset Y ′ of Y such
that π|π−1(Y ′) is an m-fold covering map of Y ′. Then we have the lemma by
replacing Y by Y ′.
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Lemma 6.2. Suppose we are in the setting of Lemma 6.1. If H and M are
real forms of Hc and X such that H ·M ⊂ M , then there exists a locally
closed submanifold N of M in the usual topology satisfying the following two
conditions:
1) Ψ|H×N is a submersion of H ×N to M ,
2) Hx ̸= Hy for any x, y ∈ N with x ̸= y.

Proof. Put N ′ =M ∩ Y . Owing to Lemma 6.1 2), the cardinality

n = sup
x∈N ′

#{y ∈ N ′ : Hx = Hy}

is finite and so we can find n different points p1, . . . , pn of N ′ such that Hp1 =
· · · = Hpn. Let Ui be open neighborhoods of pi in N

′ which do not meet each
other. Then the open subset N = {p ∈ U1 : Hp ∩ Ui ̸= ∅ for i = 1, . . . , n} of
N ′ is the required one.

The following lemma in the non-algebraic setting may also be useful for
Theorem 3.1.

Lemma 6.3. Let H be a Lie group acts on a manifold M . Suppose there
exists a locally closed submanifold N of M such that the map Ψ : H ×M ∋
(h, x) 7→ hx ∈M satisfies Lemma 6.2 1) and
2)′ mN(x) <∞ for any x ∈ N .
Here we set mN(x) := #{y ∈ N : Hy = Hx}. Then the conditions
Lemma 6.2 1) and 2) are satisfied by shrinking N if necessary.

Proof. Put Ui = {x ∈ N : mN(x) > i} for i = 1, 2, . . .. Then Ui are
open subsets of N because Ψ(H × U) ∩N is open in N for any open subset
U of N . Put Vi = N\Ui. Since

∪
i Vi = N by our assumption, Baire’s

category theorem says that there exists Vm having an inner point under the
induced topology of N . Replacing N by the interior of Vm and using the
same argument in the proof of Lemma 6.2, we have Lemma 6.3.

6.2 Proof of Proposition 4.1

We shall prove a uniform estimate of the multiplicity of irreducible represen-
tations occurring in a principal series representation.

Suppose we are in the setting of Section 4. Let α1, . . . , αn be the fun-
damental system in Σ(j)+ and ω1, · · · , ωn the corresponding fundamental
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weights. By taking a covering group of G if necessary, we may assume that
G is the real form of the simply connected complex Lie group Gc or its cover-
ing group, so that the fundamental representation Vi with the highest weight
ωi lifts to G. For λ ∈ j∗c we put

λ =
n∑

i=1

Λi(λ)ωi

and define

Reλ =
n∑

i=1

(ReΛi(λ))ωi.

We will review the Jantzen–Zuckerman translation principle. Let Fλ(g, K)
be the category of (g, K)-modules of finite length with a generalized infinites-
imal character χλ. After conjugation by the Weyl group if necessary, we may
assume λ satisfies

(6.1) Re⟨λ, α⟩ ≤ 0 for α ∈ Σ(j)+.

For V ∈ Fλ(g, K) we define Φi
λ(V ) := pλ+ωi

(V ⊗Vi). Here pλ+ωi
is the projec-

tion map to the primary component with generalized infinitesimal character
λ+ωi. Then Φi

λ is an exact functor from Fλ(g, K) to Fλ+ωi
(g, K). Similarly,

we define a functor from Fλ+ωi
(g, K) to Fλ(g, K) by Ψi

λ(W ) := pλ(W ⊗V ∗
i ),

where V ∗
i is the contragredient representation of Vi.

Let (ζ, Vζ) ∈ L̂f . We write dζ ∈ j∗c for the highest weight with respect
to Σ(t)+, and take wo ∈ W (j) such that λ := wodζ satisfies (6.1). Assume
ReΛi(λ) < −1 for some i. This assumption assures that λ and λ + ωi are
equisingular, namely, ⟨λ, α⟩ = 0 ⇔ ⟨λ + ωi, α⟩ = 0 for α ∈ Σ(j). Then we
have an isomorphism of (g, K)-modules:

(6.2) Ψi
λ(I

G
P (ζ

′)) ≃ IGP (ζ) and IGP (ζ
′) ≃ Φi

λ(I
G
P (ζ)).

Here (ζ ′, Vζ′) ∈ L̂f is the unique representation such that Vζ′,P occurs as a
subquotient of Vζ,P ⊗ Vi and satisfies wodζ

′ = λ + ωi. Thanks to [12, The-
orem 7.232], Φi

λ induces an equivalence of categories between Fλ(g, K) and
Fλ+ωi

(g, K). In particular, Φi
λ sends (non-zero) irreducible (g, K)-modules

to (non-zero) irreducible (g, K)-modules and we have

Hom(g,K)(π, I
G
P (ζ)) ≃ Hom(g,K)(Φ

i
λ(π),Φ

i
λ(I

G
P (ζ)))

≃ Hom(g,K)(Φ
i
λ(π), I

G
P (ζ

′))
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for any (π, V ) ∈ Fλ(g, K). Here we use (6.2) for the second equality. Hence
applying Φi

λ successively, we may assume

|Re dζ| ≤ C

in order to prove Proposition 4.1, where | · | is the norm induced from the
Killing form and C := |

∑n
i=1 ωi|.

Now we recall Vogan’s results on minimal K-type theory. We take a
Cartan subalgebra t̃ of k and fix a positive system ∆+(kc, t̃c). We write
δK ∈

√
−1̃t∗ for half the sum of elements in ∆+(kc, t̃c). If µ ∈ t̃∗c is the

highest weight of a K-type τ we define ∥τ∥ := |µ + 2δK |, where | · | denotes
the norm in

√
−1̃t∗ induced from the Killing form. A minimal K-type of

the (g, K)-module (π, V ) is a K-type τ for which |τ | is minimal among all
K-types occurring in π. It follows from [12, Theorem 10.26] that there exists
a constant C ′ depending only on g with the following property: if π is a
(g, K)-module with infinitesimal character λ, then

|Re(λ)| ≥ ∥τ∥ − C ′.

Let N be the maximal dimension of τ ∈ K̂ among all K-types τ with ∥τ∥ ≤
C +C ′. We remark that N depends only on the Lie algebra g. For π ∈ Ĝad,
let τ be one of its minimal K-types. Because τ occurs in π with multiplicity
one, we have

[π : IGP (ζ)] ≤ dimHomK(τ, I
G
P (ζ)).

Then the right-hand side equals dimHomM(τ|M , ζ|M) by the Frobenius reci-
procity theorem. Since dimHomM(τ|M , ζ|M) ≤ N , we have proved Proposi-
tion 4.1.
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