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Abstracts

Geometric quantization, limits, and restrictions— some examples for
elliptic and nilpotent orbits

ToOSHIYUKI KOBAYASHI

The Kirillov—Kostant—Duflo orbit philosophy relates the set of equivalence classes
of irreducible unitary representations of a Lie group G with the set of coadjoint
orbits. Our expectation is that this correspondence is given by a “geometric quan-
tization”:

(1) Q:g"/Ad"(G) - G

satisfying functorial properties (e.g. [@, R] = 0, [@, Limit] = 0). This works per-
fectly for simply connected nilpotent G. However, for reductive G, there is no
reasonable bijection between G and g* / Ad*(G) (or its subset requiring some in-
tegrality conditions). Nevertheless we know more or less what @ should be for
semisimple orbits. For example, Q(O%) is realized in a certain Dolbeault coho-
mology group on O for an integral elliptic orbit O%, and Q(O%) is given by a
(classical) parabolic induction for a hyperbolic orbit O¢.

Let H be a subgroup of G, hh C g their Lie algebras, and pr : g* — h* the
restriction map. Take any coadjoint orbit O C g*. Then the natural inclusion
L : O% < g* gives the momentum map of the Hamiltonian action of G on O¢
endowed with the Kirillov-Kostant-Souriau symplectic form, and the composition
pi=rpr-1: 0% = bh* gives that for H.

For a coadjoint orbit O C h*, we set

n(0%,0M) := #(u= 1 (0")/H) = (09 npr~(0M))/H.
Our concern is with the case where G and H are non-compact reductive groups.

For O% such that Q(O%) € G is well-defined, we raise:

Conjecture 1. (1) The restriction of the unitary representation Q(O%)|wy is
maultiplicity-free, namely, the ring Endg(Q(O%)) is commutative if

(2) n(0%, 01 <1 for any O € p*/ Ad*(H).
(2) If O is a family of coadjoint orbits with parameter \ such that the restric-
tions Q(OS)| i are multiplicity-free, then (2) holds for all Of.

We present some non-compact settings for Conjecture 1 (2), and show some
evidence of the Conjecture. For a simple Lie algebra g with Cartan decomposition
g==Et+4+p, we set

¢t = ([, +p)* C g
We note C; # 0 iff G/ K is a Hermitian symmetric space. Assume that a coadjoint
orbit 0% satisfies

(3) 0% ner #0.
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Let {v1,...,v} be the maximal set of strongly orthogonal set in A(p, ", ")
(see [2] for more details). For A = Z or R, we define

k
Ch={> ajrar>-->ar >0, aq; €A (1<j<k)}
j=1

Theorem B}Ld and BIQld ([2, 4]). Suppose (G, H) is a symmetric pair of holo-

morphic type. For any (’)AG satisfying the condition (3), we have:

(1) p: O = b* is proper, and n(O§,0") < 1 for any H-coadjoint orbit O in
h*. Further, n(O§,0M) # 0 only if OF is elliptic. More precisely,

woH)= J[ oF.
HEXMCR
(2) The restriction of the unitary representation Q(O$)|g is discretely decompos-
able and multiplicity-free. More precisely,
D
QO H ~ Z Q(Of) (discrete direct sum,).
HEX|t +p(p37)+CF,

Theorem Byi and Bgm- ([2, 4]). Suppose (G, H) is a symmetric pair of anti-

holomorphic type. For any (’)AG satisfying the condition (3), we have:

(1) The momentum map p: O — b* is not proper. Further, n(O§,0) <1 for
any H-coadjoint orbit O in h*. More precisely, n(O§,0™) # 0 if and only
if OH s hyperbolic. Hence,

wosy= 1] ok
n€(ah)y
(2) The restriction Q(O5)|u is decomposed only by continuous spectrum:
QO m ~ / Q(Of)du (direct integral).
(ahyy

A remarkable feature of Theorem B,,y; is that the image u(Of) is independent
of X\ in contrast to Theorem Byo;.

The geometric quantization of nilpotent orbits is non-trivial. Observing that
any nilpotent orbit Opip can be approximated by semisimple orbits O,, we pro-
pose:

Problem 1. Construct a representation Q(Onip) from the knowledge of geometric
quantizations Q(O,) for semisimple orbits that approach to Oyip.
Here is an example for which the idea works. Let G = O(p, q), and set
f=FEi—En, hi=FE1 g+ Epq1 €9

For a parameter v > 0, we introduce a family of minimal elliptic and hyperbolic
orbits

Ol .= Ad*(G)(vf), OWP := Ad*(G)(vh).
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Theorem C ([5]).
lim O™P = lim O = OF'P U Opiy U {0}.
vl]0 vl]0

Here O, O and Of'P are hyperbolic, elliptic, and nilpotent orbits of di-
mension 2(p + ¢ — 2), and Op;y is the minimal nilpotent orbit. Then, we can
construct Q(Opmin) from the knowledge of Q(OMP) or Q(OM) as follows:

Theorem C® ([5, 6]). For p+q even and p,q > 2, there exists the following two
non-splitting exact sequences of G-modules:

0 = @i — QO™P) 8 QO™ = 0,
0 = Din = Q(O)) > QO) 0.

Remark. (1) The same representation i, appears as a subrepresentation of the
two completely different representations Q(O™P) and Q(OM).
(2) We have used @ by a little abuse of notation, namely, as an “analytic
continuation” of (). We note that Beither Q((’)}flp) nor Q(O°) is unitarizable.
(3) The intertwining operator A is given by the Yamabe operator in the con-

formal geometry (see [6]) for the pseudo-Riemannian manifold OPP ~ (SP~1 x
S1=1) | Zs.
G

Finally we discuss a direct approach to get a quantization Q(OY;,), namely,
to construct an irreducible unitary representation from a real minimal nilpotent
orbit OY. . Here is an optimistic approach:

Approach. Find an appropriate Lagrangian submanifold C of O%._,

struct an irreducible unitary representation Q(OS..) of G on L*(C).

min

and con-

We list some difficulties:

e The group G cannot act geometrically on any such C.
e There does not exist any invariant polarization on 0%,
e For some group G, there is no candidate for Q(O%, ).

min

n*

However, we can give some affirmative results in the following setting:

Theorem D and D% ([1, 3]). Suppose G is the conformal group of any real
simple Jordan algebra V.. Then C := O%. NV is Lagrangian in O%, . and the

above approach works for an appropriate covering of G except for g ~ so(p,q)
(p+q odd).

A generalized Fourier transform is studied in details in [3].
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