59. The Restriction of $A_q(\lambda)$ to Reductive Subgroups

By Toshiyuki KOBAYASHI

Department of Mathematical Sciences, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

1. Discrete decomposability with respect to symmetric pairs. Let G be a real reductive linear Lie group and \hat{G} the unitary dual of G. Suppose G' is a reductive subgroup of G. The representation $\pi \in \hat{G}$ is called G'-admissible if the restriction $\pi_{|G'|}$ splits into a discrete sum of irreducible representations of G' with finite multiplicity. It may well happen that the restriction $\pi_{|G'|}$ contains continuous spectrum (even worse, with infinite multiplicity) which is sometimes difficult to analyse. Thus, the notion of admissibility is emphasized here to single out a very nice pair (π, G') for the study of the restriction $\pi_{|G'|}$. Here are famous examples where $\pi \in \hat{G}$ is G'-admissible. (1.1)(a) If G' is a maximal compact subgroup of G, then any $\pi \in \hat{G}$ is G'-admissible (Harish-Chandra). An explicit decomposition formula is known as a generalized Blattner formula if $\pi = A_q(\lambda)$ (attached to elliptic orbits in the sense of orbit method; see [2], [9] Theorem 6.3.12). (1.1)(b) A restriction formula of a holomorphic discrete series G' is found

(1.1)(b) A restriction formula of a holomorphic discrete series G' is found with respect to some reductive subgroups G' (eg. [7], [4]). Also the restriction of the Segal-Shale-Weil representation π with respect to dual reductive pair with one factor compact is intensively studied (Howe's correspondence).

We remark that G' is compact in the case (1.1)(a), while $\pi \in G$ is a highest weight module in (1.1)(b). On the other hand, in some special settings, explicit restriction formulas have been found where $\pi \in \hat{G}$ does not belong to unitary highest weight modules but is G'-admissible for noncompact $G' \subseteq G$, such as $(G, G') \cong (SO(4,2), SO(4,1))$ and π is non-holomorphic discrete series ([5] Example 3.4.2), $(G, G') = (SO(4,3), G_2(R))$ and π is in some family of derived functor modules (Kobayashi-Uzawa, 1989 at Math. Soc. Japan), and a recent work of Howe and Tan [3]. See also an explicit formula of the discrete part of $\pi_{|G'}$ for $(G, G') \cong (SO(3,2), SO(2,2))$ and π non-holomorphic discrete series in [1] in the non-admissible case. In this section we find a more general but still good framework to study the restriction $\pi_{|G'}$.

Let θ be a Cartan involution of G. Write g_0 for the Lie algebra of G, $g = g_0 \otimes C$ for its complexification, $K = G^{\theta}$ for the fixed point group of θ , and $g_0 = \mathfrak{k}_0 + \mathfrak{p}_0$ for the corresponding Cartan decomposition. Take a fundamental Cartan subalgebra $\mathfrak{h}_0^c(\subseteq g_0)$. Then $\mathfrak{t}_0^c := \mathfrak{h}_0^c \cap \mathfrak{k}_0$ is a Cartan subalgebra of \mathfrak{k}_0 . A θ -stable parabolic subalgebra $\mathfrak{q} \equiv \mathfrak{q}(\lambda) = \mathfrak{l}(\lambda) + \mathfrak{u}(\lambda) \subseteq \mathfrak{g}$ and a Levi part $L(\lambda) \subseteq G$ are given by an elliptic element $\lambda \in \sqrt{-1} (\mathfrak{t}_0^c)^*$ (see [9] Definition 5.2.1). Let $\mathcal{R}_{\mathfrak{q}}^i \equiv (\mathcal{R}_{\mathfrak{q}}^g)^i$ $(j \in N)$ be the Zuckerman's derived functor from the category of metaplectic $(\mathfrak{l}, (L \cap K)^{\sim})$ -modules to that of (\mathfrak{g}, K) -modules. In this paper, we follow the normalization in [10] Definition

6.20 and some terminologies such as weakly fair in [11] Definition 2.5.

Let σ be an involutive automorphism of G. If G' is an open subgroup of the fixed points of σ , (G, G') is called a reductive symmetric pair. Choose a Cartan involution θ of G so that $\sigma\theta=\theta\sigma$. Then $K':=K\cap G'$ is a maximal compact subgroup of G'. We write $\mathfrak{t}_{0\pm} := \{X \in \mathfrak{t}_0 : \sigma(X) = \pm X\}$. Fix a σ -stable Cartan subalgebra t_0^c of t_0 such that $t_{0-}^c := t_0^c \cap t_{0-}$ is a maximal abelian subspace in t_{0-} . Choose a positive system $\Sigma^+(t, t_-^c)$ of the restricted root system $\Sigma(t, t_{-}^{c})$ and a positive system $\Delta^{+}(t, t_{-}^{c})$ which is compatible with $\sum (t, t')$. Let $q = q(\mu) = t + \mu$ be a θ -stable parabolic subalgebra of ggiven by an element $\mu \in \sqrt{-1}(t_0^\epsilon)^*$, which we can assume to be dominant with respect to $\Delta^+(t, t^c)$ without loss of generality. Define a closed cone in $\sqrt{-1}(t_0^c)^*$ by

 $R_{+} \langle \mathfrak{u} \cap \mathfrak{p} \rangle := \{ \sum_{\beta \in \Delta(\mathfrak{u} \cap \mathfrak{p}, \mathfrak{t}^{\circ})} n_{\beta} \beta : n_{\beta} \geq 0 \}.$ Theorem 1.2. In the setting as above, if $R_{+} \langle \mathfrak{u} \cap \mathfrak{p} \rangle \cap \sqrt{-1} (\mathfrak{t}_{0-}^{c})^{*} =$ (0), then $\overline{\mathcal{R}_{a}^{S}(C_{\lambda})}$ is K'-admissible for any metaplectic unitary character C_{λ} of \tilde{L} in the weakly fair range. In particular, $\overline{\mathcal{R}_{\mathfrak{g}}^{s}(C_{\lambda})}$ is G'-admissible.

Remark 1.3. In Proposition 4.1.3 in [6], we have established a different type of admissibility in the case where $\mathfrak k$ has a direct sum decomposition $\mathfrak k =$ $\mathfrak{t}_1 \oplus \mathfrak{t}_2$, $G' \supset K_1$ and $\mathfrak{q} = \mathfrak{q}(\mu)$ such that $\mu_{|\mathfrak{t}' \cap \mathfrak{t}_2} = 0$.

2. Discrete series for homogeneous spaces of reductive type. Let G be a Lie group and G' its closed subgroup. Then G' naturally acts on X = G/Hfrom the left. Given $x \in G/H$, we write the isotropy subgroup $H' \equiv G'_x :=$ $\{g \in G' : g \cdot x = x\}$ and put X' = G'/H'. As a representation theoretic counterpart of an embedding $f: X' \subseteq X$ we consider the restriction of representations of G with respect to G' which arises as the pullback of function spaces $f^*: \Gamma(X) \to \Gamma(X')$.

If H is a reductive algebraic subgroup of a real reductive linear Lie group G, we say the homogeneous space G/H of reductive type. An irreducible unitary representation $\pi \in \hat{G}$ is called discrete series for $L^2(G/H)$ if π can be realized as a closed invariant subspace of $L^2(G/H)$. The totality of discrete series for $L^2(G/H)$ is denoted by $\operatorname{Disc}(G/H) (\subset \hat{G})$. We also write Disc(G/H) for the multiset of Disc(G/H) counted with multiplicity occurring in $L^2(G/H)$. Analogous notation is used for L^2 -sections of Gequivariant vector bundles over G/H associated to a unitary representation of H. On the other hand, given $(\pi, V) \in \hat{G}$, we write $\operatorname{Disc}(\pi_{|H}) \subset \hat{G}$ for the set of irreducible discrete summands of the restriction π_{iH} , and $Disc(\pi_{in})$ for the corresponding multiset counted with multiplicity.

Theorem 2.1. Suppose G is a real reductive linear group and G', H are reductive subgroups stable under θ simultaneously. Let $H' := H \cap G'$. Assume there exists a minimal parabolic subgroup P' of G' such that

 $\dim H + \dim G' = \dim G + \dim (H \cap G'),$ (2.1)(a)

 $\dim H' + \dim P' = \dim G' + \dim (H' \cap P').$

Then we have a bijection between multisets $\bigcup_{\pi \in Disc(G/H)} Disc(\pi_{G'}) \cong Disc(G'/H')$. In particular, $Disc(G'/H') = \emptyset$ if and only if either $Disc(G/H) = \emptyset$ or $\pi_{G'}$

is decomposed into only continuous spectrum for any $\pi \in \operatorname{Disc}(G/H)$. Moreover, if discrete series for G'/H' is multiplicity free, then the discrete part of the restriction of $\pi_{|G'|}$ is multiplicity free for all $\pi \in \operatorname{Disc}(G/H) \subset \hat{G}$.

An abundant theory on the harmonic analysis on G/H has been developed in these fifteen years when G/H is a semisimple symmetric space, while very little has been studied when it is non-symmetric. We note that if one knows $\operatorname{Disc}(G/H)$ and the restriction formula $\pi_{|G'|}$ for $\pi \in \operatorname{Disc}(G/H)$, then Theorem (2.1) gives a construction and exhaustion of discrete series for G'/H'. More weakly, only a combination of Theorem (1.2) and Theorem (2.1) gives new results on the existence of discrete series of some non-symmetric spherical homogeneous spaces such as

Corollary 2.2 1) Disc $(SU(2p-1,2q)/Sp(p-1,q)) \neq \emptyset$ for any p, q.

- 2) Disc $(SO(2p-1,2q)/U(p-1,q)) \neq \emptyset$ if and only if $pq \in 2\mathbb{Z}$.
- 3) $\operatorname{Disc}(SO(4, 3)/G_2(R)) \neq \emptyset$, $\operatorname{Disc}(G_2(R)/SL(3, R)) \neq \emptyset$.

Now, relax the assumption (2.1)(a). In the setting at the beginning §2, we say $f: G'/H' \subseteq G/H$ regular if there exists a submanifold I of G/H such that $G'_y = H'$ for any $y \in I$ and that $\varphi: G'/H' \times I \longrightarrow G/H$, $(g,y) \mapsto g \cdot y$ is an open embedding.

Example 2.3 (group manifolds). If $H' = H = \{e\}$, then $G' \subseteq G$ is regular. We can take I to be a local section of the principal bundle $G \to G/G'$.

Example 2.4 (semisimple orbits in symmetric spaces). Let σ , τ be commutative involutive automorphisms of G, (G, G') and (G, H) the corresponding symmetric pairs. Fix a maximally abelian semisimple subspace σ in $\{X \in \mathfrak{g}_0 : \sigma(X) = \tau(X) = -X\}$ and define $M' := \{g \in G' \cap H : \operatorname{Ad}(g)X = X \text{ for } X \in \mathfrak{a}\}$. Then $G'/M' \subseteq G/H$ is regular. The regular semisimple orbit in G under the adjoint action of G is a typical example.

Theorem 2.5. In the setting of Theorem (2.1), suppose $\varphi_j: G' \times H'_j \times I_j \rightarrow G/H$ $(j \in J)$ define regular orbits such that the disjoint union of $\varphi_j(G'/H'_j \times I_j)$ is open dense in G/H. Then we have $\bigcup_{\pi \in \mathrm{Disc}(G/H)} \mathrm{Disc}(\pi_{|G'}) \subset \bigcup_j \mathrm{Disc}(G'/H'_j)$. In particular, if $\mathrm{Disc}(G'/H'_j) = \emptyset$ $(j \in J)$, then either $\mathrm{Disc}(G/H) = \emptyset$ or $\mathrm{Disc}(\pi_{|G'}) = \emptyset$ for any $\pi \in \mathrm{Disc}(G/H)$. Moreover, if $\pi \in \mathrm{Disc}(G/H)$ is K'-admissible, then $\mathrm{Disc}(\pi_{|G'}) \subset \bigcap_j \mathrm{Disc}(G'/H'_j)$.

Here is a very special case corresponding to Example (3.2):

Corollary 2.6. Suppose $\pi = \overline{A_q} \in \hat{G}$ is a (Harish-Chandra's) discrete series for G. If π is G'-admissible, then $\pi_{|G'}$ is decomposed into discrete series for G', In particular, if $\operatorname{rank} G' > \operatorname{rank} K'$ and $\operatorname{rank} G = \operatorname{rank} K$, then $\pi_{|G'|}$ is decomposed into only continuous spectrum.

Remark 2.7. In general, if $\pi \in \operatorname{Disc}(G)$, then $\pi_{|G'|}$ is supported on tempered representations of G' by Mackey-Anh's reciprocity theorem.

3. Examples of decomposition formulas. In the framework of §1, §2 we present some explicit branching formulas joint with B.Ørsted.

Let $G = SO_0(p, q) \supset K = SO(p) \times SO(q)$ $(p \ge 1, q \ge 0)$. We take a (standard) basis $\{f_i\}$ of $\sqrt{-1}(t_0^c)^*$ as in [6] §2.5 and define θ -stable parabolic subalgebras by $\mathfrak{q}_+ := \mathfrak{q}(f_1) = \mathfrak{l} + \mathfrak{u}_+, \mathfrak{q}_- := \mathfrak{q}(-f_1) = \mathfrak{l} + \mathfrak{u}_-(p \ge 2)$.

Then $L(f_1) = L(-f_1) \simeq T \times SO_0(p-2,q)$. Put $Q := \frac{1}{2}(p+q)-2$. For $\lambda \in Z + Q$, we write $C_{\lambda f_1}$ for the metaplectic representation of \bar{L} corresponding to $\lambda f_1 \in \sqrt{-1} \left(t_0^c\right)^*$. If $\lambda \in Z + Q$ and $\lambda \geq 0$ (moreover if $\lambda \geq \frac{1}{2}p$) -1 when q=0), we define (g,K)-modules by $L(\lambda) = U^{SO_0(p,q)}(\lambda) := (\Re^8)^{p-2}(C_{-k})$. $L(\lambda) \equiv U^{SO_0(p,q)}(\lambda) := (\Re^8)^{p-2}(C_{-k})$.

 $\begin{array}{ll} U_{+}(\lambda) \equiv U_{+}^{SO_{0}(p,q)}(\lambda) := (\mathcal{R}_{q_{+}}^{8})^{p-2}(C_{2f_{1}}), & U_{-}(\lambda) \equiv U_{-}^{SO_{0}(p,q)}(\lambda) := (\mathcal{R}_{q_{-}}^{8})^{p-2}(C_{-2f_{1}}). \\ \text{Then } U_{\pm}(\lambda) \text{ are non-zero irreducible (g, K)-modules and } U_{\pm}(\lambda) \in \mathrm{Disc}(SO_{0}(p,q)/SO_{0}(p-1,q)) \text{ if } \lambda > 0. \end{array}$

Next, let $G' = U(p, q) \supset K' = U(p) \times U(q)$. We represent the root system of \mathfrak{t}' as $\Delta(\mathfrak{t}', \mathfrak{t}'^c) = \{\pm (e_i - e_j) : 1 \leq i < j \leq p \text{ or } p+1 \leq i < j \leq p + q \}$. We define θ -stable parabolic subalgebras of \mathfrak{g}' by

I) For $p \ge 1$, $q \ge 1$, $q'_+ := q(2e_1 + e_{p+1})$ and $q'_- := q(-2e_p - e_{p+q})$.

II) For $p \geq 2$, $q \geq 0$, $q'_0 := q(e_1 - e_p)$. For $\lambda \in N_+$, $l \in \mathbb{Z}$ such that $l \equiv \lambda + p + q + 1 \mod 2$, we define (g', K')-modules by:

$$V_{+}(\lambda, l) \equiv V_{+}^{U(p,q)}(\lambda, l) := (\mathcal{R}_{\alpha_{k}}^{g'})^{p+q-2} (C_{\frac{\lambda+l}{2}e_{1}+\frac{-\lambda+l}{2}e_{p+1}}) \quad \text{if } l > \lambda > 0, pq \ge 1,$$

$$V_{0}(\lambda, l) \equiv V_{0}^{U(p,q)}(\lambda, l) := (\mathcal{R}_{\alpha_{0}}^{g'})^{2p-4} (C_{\frac{\lambda+l}{2}e_{1}+\frac{-\lambda+l}{2}e_{p}}) \quad \text{if } \lambda \ge |l|, p \ge 2,$$

$$V_-(\lambda,\,l)\equiv V_-^{U(p,q)}(\lambda,\,l):=(\Re^{\theta'}_{q_-})^{p+q-2}(C_{\frac{-\lambda+l}{2}\epsilon_p+\frac{\lambda+l}{2}\epsilon_{p+q}})\quad \text{if $-l>\lambda>0$, $pq\geq 1$.}$$

If $q \ge 1$, then we have (cf. [6] Theorem 2):

(3.1)(a) $V_{+}(\lambda, l)$, $V_{0}(\lambda, l)$, $V_{-}(\lambda, l)$ are non-zero and irreducible (g', K')-modules with Z(g')-infinitesimal character $\left(\frac{\lambda+l}{2}, \frac{-\lambda+l}{2}, Q', Q'-1, \ldots, \frac{\lambda+l}{2}\right)$

-Q') in the Harish-Chandra parametrization, where $Q':=\frac{p+q-3}{2}$.

(3.1)(b) $V_{+}(\lambda, l) \simeq V_{-}(\lambda, -l)^{\vee}$ $(l > \lambda > 0)$, $V_{0}(\lambda, l) \simeq V_{0}(\lambda, -l)^{\vee}$ $(\lambda \ge |l|)$. (3.1)(c) $\mathbf{Disc}(U(p, q)/U(1) \times U(p-1, q); \chi_{l})(q \ge 1, l \in \mathbf{Z})$ are given by,

 $\begin{cases} \{V_{\epsilon}(\lambda, l) : |l| > \lambda > 0\} \cup \{V_{0}(\lambda, l) : \lambda \ge |l|\} & (p \ge 2, l \ne 0, \varepsilon = \operatorname{sgn} l), \\ \{V_{\epsilon}(\lambda, l) : |l| > \lambda > 0\} \cup \{V_{0}(\lambda, l) : \lambda \ge |l|\} & (p \ge 2, l \ne 0, \varepsilon = \operatorname{sgn} l), \end{cases}$

 $\begin{cases} \{V_0(\lambda, l) : \lambda > 0\} \\ \{V_\varepsilon(\lambda, l) : |l| - q \ge \lambda > 0\} \end{cases}$ $(p \ge 2, l = 0),$ $(p = 1, |l| > q, \varepsilon = \operatorname{sgn} l),$

 $\begin{cases} V_{\varepsilon}(\lambda, t) : |t| - q \ge \lambda > 0 \} & (p = 1, |t| > q, \varepsilon = \operatorname{sgn} t), \\ \emptyset & (p = 1, |t| \le q), \end{cases}$

Here, χ_l is a character of U(1) and λ runs over $\lambda \in 2\mathbb{Z} + l + p + q + 1$ (resp. $\lambda \in 2\mathbb{Z} + l + q$).

Third, let $G'' = Sp(p, q) \supset K'' = Sp(p) \times Sp(q)$, and represent the root system of \mathfrak{t}'' as $\Delta(\mathfrak{t}'', \mathfrak{t}''^c) = \{\pm (h_i - h_j), \pm 2h_l : 1 \le i < j \le p \text{ or } p+1 \le i < j \le p+q, 1 \le l \le p+q \}$. We define

I) For $p \ge 1$, $q'' := q(2h_1 + h_{p+1})$, $L'' = T^2 \times Sp(p-1, q-1)$.

II) For $p \ge 2$, $q \ge 0$, $q_0'' := q(2h_1 + h_2)$, $L_0'' \simeq T^2 \times Sp(p-2, q)$. For $\lambda \in N_+$, $j \in N$ such that $j \equiv \lambda + 1 \mod 2$ we define (g'', K'')-modules by:

 $\begin{array}{l} W_{+}(\lambda,j) \equiv W_{+}^{Sp(p,q)}(\lambda,j) := (\mathcal{R}_{q_{+}^{(p')}}^{g''})^{2p+2q-2}(C_{\frac{\lambda+j+1}{2}h_{1}+\frac{-\lambda+j+1}{2}h_{p+1}}) \text{ if } j+1>\lambda, \ pq\geq 1, \\ W_{0}(\lambda,j) \equiv W_{0}^{Sp(p,q)}(\lambda,j) := (\mathcal{R}_{q_{0}^{(p')}}^{g''})^{4p-4}(C_{\frac{\lambda+j+1}{2}h_{1}-\frac{-\lambda+j+1}{2}h_{2}}) \text{ if } \lambda\geq j+1, \ p\geq 2. \\ \text{If } q\geq 1, \text{ then we have (cf. [6] Theorem 1):} \end{array}$

(3.2)(a) $W_+(\lambda,j)$, $W_0(\lambda,j)$ are non-zero and irreducible (g", K")-modules with Z(g'')-infinitesimal character $\left(\frac{\lambda+j+1}{2}, \frac{-\lambda+j+1}{2}, Q'', Q''-1, \ldots, 1\right)$ in the Harish-Chandra parametrization, where Q'':=p+q-2.

(3.2)(b)
$$\operatorname{Disc}(Sp(p,q)/Sp(1) \times Sp(p-1,q); \sigma_j) (q \ge 1 \text{ and } j \in \mathbb{N})$$
 are given by,
$$\begin{cases} \{W_0(\lambda,j): \lambda > j\} \ \cup \ \{W_+(\lambda,j): j > \lambda > 0\} \ (p \ge 2), \\ \{W_+(\lambda,j): j - 2q + 1 \ge \lambda > 0\} \ (p = 1, j \ge 2q), \\ \emptyset \ (p = 1, j < 2q). \end{cases}$$

Here, σ_j is the irreducible j+1 dimensional representation of Sp(1). In (3.2)(b), λ runs over $\lambda \in 2Z+j+1$ and the multiplicity of discrete series is uniformly j+1 or 0.

We write $\mathcal{H}^k(R^p)$ for spherical harmonics on S^{p-1} of degree $k(k \in N)$, which is isomorphic to $U_+^{SO(p)}\left(k+\frac{1}{2}p-1\right)$ if $p\geq 3$ or (p,k)=(2,0), to $U_+^{SO(p)}(k)\oplus U_-^{SO(p)}(k)$ if p=2 and $k\geq 1$. If p=1, we put $\mathcal{H}^k(R^1):=C$ for k=0, 1 and :=0 for $k\geq 2$. Next, we write spherical harmonics of degree $(\alpha,\beta)(\alpha,\beta\in N)$ as $\mathcal{H}^{\alpha,\beta}(C^p)=V_0^{U(p)}(\alpha+\beta+p-1,\alpha-\beta)\subset \mathcal{H}^{\alpha+\beta}(R^{2p})$ $(p\geq 2)$. In the case p=1, it is non-zero only if $\alpha\beta=0$. Finally, we write $F^{Sp(p)}(x,y)$ $(x\geq y\geq 0)$ for the irreducible representation of Sp(p) with an extremal weight xf_1+yf_2 . In the case p=1, it is non-zero only if y=0.

Theorem 3.3 $(SO_0(p, q) \downarrow SO_0(p, s) \times SO(q - s))$. Let $p \ge 2$, $s \ge 1$, $q - s \ge 1$, $\lambda \in \mathbb{Z} + \frac{1}{2}(p + q)$, $\lambda > 0$.

$$U_+^{SO_0(p,q)}(\lambda)_{|SO_0(p,s)\times SO(q-s)} \simeq \bigoplus_{a,k\in\mathbb{N}} U_+^{SO_0(p,s)}\left(\lambda + \frac{1}{2}(q-s) + a + 2k\right) \boxtimes \mathcal{H}^a(\mathbb{R}^{q-s}).$$

Theorem 3.4 $(U(p, q) \downarrow U(p, s) \times U(q - s))$. Let $s \geq 1$, $q - s \geq 1$, $\lambda \in N_+$, $l \in 2\mathbb{Z} + \lambda + p + q + 1$. For convenience, we define an irreducible representation of $U(p, s) \times U(q - s)$ by

 $\mathcal{V}_{\delta}(\alpha,\beta,k;\lambda,l) := V_{\delta}^{U(\phi,q)}(\lambda+q-s+\alpha+\beta+2k,l-\alpha+\beta) \boxtimes \mathcal{H}^{\alpha\beta}(C^{q-s}).$ 1)(i) Suppose $p \geq 2$, $l > \lambda+q-s$.

$$V_{+}^{U(p,q)}(\lambda, l)_{|U(p,s)\times U(q-s)} \simeq \bigoplus_{\substack{\alpha,\beta,k\in N\\\alpha+k<\frac{1}{2}(l-\lambda-q+s)}} V_{+}(\alpha, \beta, k; \lambda, l) \oplus \bigoplus_{\substack{\alpha,\beta,k\in N\\\alpha+k\geq\frac{1}{2}(l-\lambda-q+s)}} V_{0}(\alpha, \beta, k; \lambda, l).$$

(ii) Suppose $p \ge 2$. We put $\delta = +$ if $\lambda + q - s \ge l > \lambda$ and $\delta = 0$ if $\lambda \ge l \ge -\lambda$ in the left side.

$$V_{\delta}^{U(p,q)}(\lambda, l)_{|U(p,s)\times U(q-s)} \simeq \bigoplus_{\alpha,\beta,k\in\mathbb{N}} \mathcal{V}_{0}(\alpha, \beta, k; \lambda, l).$$

Use the duality (3.1)(b) if $-\lambda > l \ge -\lambda - q + s$ or $-\lambda - q + s > l$.

2) Suppose p = 1, $l \ge \lambda + q$. (Use the duality (3.1)(b) if $-l \ge \lambda + q$.) $V_{+}^{U(1,q)}(\lambda, l)_{|U(1,s)\times U(q-s)} \simeq \bigoplus_{\substack{\alpha,\beta,k \in \mathbb{N} \\ \alpha+k \le \frac{1}{2}(l-\lambda-q)}} \mathcal{V}_{+}(\alpha, \beta, k; \lambda, l).$

Theorem 3.5 $(Sp(p,q) \downarrow Sp(p,s) \times Sp(q-s))$. Let $s \geq 1$, $q-s \geq 1$, $\lambda \in N_+$, $j \in N$, $j \in 2Z + \lambda + 1$. For convenience, we define an irreducible representation of $Sp(p,s) \times Sp(q-s)$ by $\mathcal{W}_{\delta}(y,v,k,t;\lambda,j) :=$

$$W_{\delta}^{Sp(p,s)}(\lambda + 2q - 2s + 2y + 2k + t + v, j + v - t) \boxtimes F^{Sp(q-s)}(y + t + v, y).$$

1)(i) Suppose $p \geq 2$, $j+1 > \lambda + 2q - 2s$. Then, $W_+^{Sp(p,q)}(\lambda,j) \xrightarrow{Sp(p,s) \times Sp(q-s)} \cong \bigoplus_{\substack{y,v,k,t \in \mathbb{N} \\ 0 \leq t \leq j \\ y+k+t < \frac{1}{2}(j+1-\lambda)-q+s}} W_+(y,v,k,t;\lambda,j) \oplus \bigoplus_{\substack{y,v,k,t \in \mathbb{N} \\ 0 \leq t \leq j \\ y+k+t \geq \frac{1}{2}(j+1-\lambda)-q+s}} W_0(y,v,k,t;\lambda,j).$

(ii) Suppose $p \ge 2$. We put $\delta = +$ if $\lambda + 2q - 2s \ge j + 1 > \lambda$ and $\delta = 0$ if $p \ge 2$, $\lambda \ge j + 1$ in the left side.

$$W_{\delta}^{Sp(p,q)}(\lambda,j) \underset{0 \leq i \leq j}{\otimes_{p(p,s) \times Sp(q-s)}} \simeq \bigoplus_{\substack{y,v,k,t \in N \\ 0 \leq i \leq j}} W_{0}(y,v,k,t;\lambda,j).$$

2) Suppose $p = 1, j \ge \lambda + 2q - 1$.

$$W_{+}^{Sp(p,q)}(\lambda,j)|_{Sp(1,s)\times Sp(q-s)} \simeq \bigoplus_{\substack{y,v,k,t\in N\\y+k+t\leq \frac{1}{2}(j+1-\lambda)-q}} W_{+}(y,v,k,t;\lambda,j).$$

A detailed proof is to appear elsewhere.

References

- M. Harris and S. Kulda: Arithmetic automorphic forms for the the non-holomorphic discrete series of Sp(2). Duke Math. J., 66, 59-121 (1992).
- [2] H. Hecht and W. Schmid: A proof of Blattner's conjecture. Inv. Math., 31, 129-154 (1976).
- [3] R. Howe and E. Tan: Homogeneous functions on light cones: The infinitesimal structure of some degenerate principal series representations. Bull. Amer. Math. Soc., 28, 1-74 (1993).
- [4] H. P. Jakobsen and M. Vergne: Restrictions and expansions of holomorphic representations. J. Funct. Anal., 34, 29-53 (1979).
- [5] T. Kobayashi: Unitary representations realized in L²-sections of vector bundles over semisimple symmetric spaces. Proceeding at the 27-th. Symp. of Functional and Real Analysis 39-54 (1989) (in Japanese).
- [6] —: Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds U(p, q; F) / U(p - m, q; F). vol. 462, Memoirs of the A.M.S. (1992).
- [7] —: Discrete decomposability of the restriction of A_q(λ) with respect to reductive subgroups and its application.
- [8] S. Martens: The characters of the holomorphic discrete seires. Proc. Nat. Acad. Sci. U.S.A., 72, 3275-3276 (1975).
- [9] D. Vogan: Representations of Real Reductive Lie Groups. Birkhäuser (1981).
- [10] —: Unitary Representations of Reductive Lie Groups. Princeton University Press, Princeton, New Jersey (1987).
- [11] —: Irreducibility of discrete series representations for semisimple symmetric spaces. Advanced Studies in Pure Math., 14, 191-221 (1988).
- [12] Vogan and Zuckerman: Unitary representations with non-zero cohomology. Comp. Math., 53, 51-90 (1984).
- [13] N. Wallach: Real reductive groups. I. Pure and Appl. Math., vol. 132, Academic Press (1988).