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1. Discrete decomposability with respect to symmetric pairs. Let z be a
real reductive linear Lie group and & the unitary dual of 7. Suppose &' is a
reductive subgroup of G. The representation m € & is called &'-admissible
if the restriction @ ;- splits into a discrete sum of irreducible representations
of G with finite multiplicity. It may well happen that the restriction w5 con-
tains continuous spectrom (even worse, with infinite multiplicity) which is
sometimes difficult to analyse. Thus. the notion of admissibility is empha-
sized here to single out a very nice pair {m, &) for the study of the restric-
tion ;.. Here are famous examples where # € G is G'-admissible.

{(1.1%a) If G’ is a maximal compact subgroup of (, then any T € G is
(G'-admissible (Harish-Chandra). An explicit decompostition formula is
known as a generalized Blatiner formnle if 1= .‘lq(i} {attached to elliptic
orbits in the sense of orbit method:  see |2]. [9] Theorem 6.3.12),

{1.1){b) A restriction formula of a holomorphic diserete series G is found
with respect to some reductive subgroups G (eg. |7], [4]). Also the restriction
of the Segal-Shale-Weil representation 7 with respect to dual reductive pair
with one factor compact is intensively studied {(Howe's cnrre&pundence}._

We remark that G' is compact in the case (1.1)a), while T € & is a
highest weight module in (1.1)(b). On the other hand. in some special settings,
explicit restriction formulas have been found where m € G does not belong
to unitary highest weight modules but is & -admissible for noncompact &' C G,
such as {7, &) = (SO{4,2), 50(4,1)) and « 15 non-holomorphic discrete
series (|5) Example 3.4.2), (G, G") = (50{4,3), G,(R)) and 7 is in some
family of derived functor modules (Kohayashi-Uzawa, 1989 at Math. Soc.
Japan), and a recent work of Howe and Tan |3]. See also an explicit formula
of the discrete part of @4 for (G, G) = (S0(3,2), 50(2,2)) and & non-
holomorphic diserete series in |1] in the non-admissible case. In this section
we find a more general but still good framework to study the restriction 7 ..

Let & be a Cartan involution of G. Write g, for the Lie algebra of (5,
q=g8,® C for its complexification, X = G’ for the fixed point group of &,
and g, = ¥, + b, for the corresponding Cartan decomposition. Take a fun-
damental Cartan subalgebra By(< go). Then ty: = f, N €, is a Cartan sub-
algebra of £, A f-stable parabolic subalgebra q = q(i) = {4} + u{d) S g
and a Levi part L{A) © G are given by an elliptic element 4 € 1,-'——1&;};"
(see [9] Definition 5.2.1). Let &, = ()’ (j € N) be the Zuckerman's derived
functor from the category of metaplectic (1, (L N K)~)-modules to that of
{g, K)-modules. In this paper, we follow the normalization in [10] Definition
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5.20 and some terminologies such as weakly fair in [11] Definition 2.5,

Let o be an involutive automorphism of G. If &' is an open subgroup of
the fixed points of o, (G, G7) is ealled a reductive svmmelric pair. Choose a
Cartan involution @ of G so that 8 = fg. Then K" = K N G is a maximal
compact subgroup of G'. We write !, = {X € f:0(X) = £ X} Fix a
g-stable Cartan subalgebra t; of ¥, such that t;_:=t; N E,_ is a maximal
abelian subspace in [;,_. Choose a positive system (¢, t2) of the restricted
root svstem 2(t, t°) and a positive system A7 (£, t) which is compatible
with Z(t, t°). Let g = q(g) =1 + u be a f-stable parabolic subalgebra of g
given by an element g € y— 1(t5) 7, which we can assume to be dominant
with respeet to A" (E, t°) without loss of generality. Define a closed cone in
by B
— 10t by

R, untpri=4 2 nf:in; =00

Aedlunp.tfl

Theorem 1.2, In the setting as above, if R, (w N pd Ny=1 (i) =
{0}, then .ﬁj{ﬂ}.‘l is K'-admissible for any metaplectic unitary character C; of L

in the weakly fair vange. In particular, ﬁ:{ﬂi} is G -ndmissible.

Remark 1.3, In Proposition 4.1.3 in [8), we have established a different
type of admissibility in the case where t has a direct sum decomposition £ =
EL@ L, G2 K and g = qlg) such that gy, = 0.

2. Discrete series for homogeneous spaces of reductive type. Let & be a
Lie group and &' its closed subgroup. Then G° naturally acts on X = G/H
from the left. Given x € ¢/ H, we write the isotropy subgroup H' = G.:=
[geGg-z=2 and put X' = G'/H' As a representation theoretic
counterpart of an embedding f : X" < X we consider the restriction of rep-
resentations of & with respect to & which arises as the pullback of funetion
spaces f LX) — N(X").

If H is a reductive algebraic subgroup of a real reductive linear Lie
group &, we say the homogeneous space G/ H of reductive type. Fm irreduci-
ble unitary representation = € G is called discrate series for LHG/HY I
can be realized as a closed invariant subspace of LF {GJ’H} The totality of
diserete series for L(G/H) is denoted by Dise{G/H)(C G). We also write
Dise{ /H) for the multiset of Disc{/H) counted with multiplicity occur.
ring in L*(G/H). Analogous notation is used for L’-sections of G-
equivariant vector bundles over &/H associated to a unitary representation
of H. On the other hand, given (7, ¥) € G, we write Disc(m ) (< &) for
the set of irreducible discrete summands of the restriction @,y and
Disc(m ) for the corresponding multiset counted with multiplieity.

Theorem 2.1.  Suppose G is a real veductive linear group and G', H are re-
ductive subgroups stable under @ simultancously, Let H' 1= H N G'. Assume
there exists a minimal pavabolic subgroup P’ of G' such thet
(2.1)(a) dim A -+ dim & = dim G + dim (F N &7},

(2.1)(b) dim A’ + dim P = dim G + dim (H" N £7).
Then we have a bijection between multisels U opoicanDise(m ) = Disc(G/H).
In partienlar, Disc (G /HY = 0 if and only if either Disc{G/H) = 0 orw
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is decomposed into only continuous speclrum for any T € Discl(G / H) . Morepver,
if discrete sertes for G'FH' is multiplicity free, then the diserele parl of the res-
triction of g is multiplicity free for all = € Disc(G/H) © G.

An abundant theory on the harmonic analyvsis on G/H has been de-
veloped in these fifteen years when G/H is a semisimple symmetric space,
while very little has been studied when it is non-symmetric. We note that if
one knows Dise(G /H) and the restriction formula 7 .. for T € Disc(G/H),
then Theorem (2.1} gives a construction and exhaustion of discrete series for
'/ H'. More weakly, only a comhbination of Theorem (1.2) and Theorem
(2.1} gives new results on the existence of discrete series of some
non-symmetric spherical homogeneous spaces such as

Corollary 2.2 1} Disc(SU2Zp — 1,29}/ Spip — 1, q)) + @ for any p, 4.
2) Disc{SO2p — 1L,2g)/U(p — 1, g0} & @ if and oniy if pg € 22,

3) Disc(S0{4, 3)/G,(R)) = @, Disc(G,(R)/S5L(3, R)) =+ 8.

Now, relax the assumption (2.1)(a). In the setting at the beginning §2, we
say f 1 G'/H" C G/H regular if there exists a submanifold § of G/H such
that G, = H' for any y € [ and that ¢: G'/H' X I— G/H, (g.y) =gy
15 an open embedding.

Example 2.3 (group manifolds). If A = H = {e}, then G' G is regu-
lar. We can take [ to be a local section of the principal bundle G— G /G,

Example 2.4 (semisimple orbits in symmetric spaces). Let @, 7T be
commutative involutive automorphisms of G, (G, G*) and (&, H) the cor-
responding symmetric pairs. Fix a maximally abelian semisimple subspace
in {XEg:0(X) =1(X)=— X} and define M':={g= G N H:Ad(g)X
=X for X € a}. Then G'/M' ' G/H is regular. The regular semisimple
orhit in (7 under the adjoint action of & is a typical example.

Thearem 2.5. In the setting of Theorem (2.1), suppose @,: G" X H/ x I;}—
G/H (f € J) define regular orbits such that the disjoint union of @, (G"/H X I))
is open dense in G/H. Then we have U _oppegem Diselrg) © U, Disc(GVH).
In particular, if DiSC{G’ij':' = g {;j= ), then either Disc(G/H) = @ or
Discl{m ;) = B for any w € Disc(G/H), Moreover, if = € Disc(G/H) is
K'-admissible, then Disc(m ;) < N, Disc(G'/H)).

Here is a very special case corresponding to Example (3.2):

Corollary 2.6. Suppese w™ = A_ﬂ € (G is a (Harish-Chandra’s) discrele
series for G, Jf w is G -admissible, them w ;- 15 decomposed into discrele sevies
for G, In particular, if rankG’ > rankK’ and rankG = rank&, then m. is
decomposed tnlo only conbimuons spectriom,

Remark 2.7. In general, if ¥ € Disc(G), then m e is supported on tem-
pered representations of &7 by Mackey-Anh's reciprocity theorem,

3. Examples of decomposition formulas. In the framework of §1, 82 we
present some explicit branching formulas joint with B.@rsted.

Let G = S0p, g) 2 K= S50(p) = S0(g) (p = 1, g = 0). We take a
(standard) basis {f) of v— 1(t))" as in [6] §2.5 and define @-stable para-
bolic subalgebras by g, :=q(f) =1+ u,, qg_:=gl—=f) =1+ u_{p = 2).
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1
Then L(f) = L(— f) = T % SO, (p — 2, q). Put &= E{ﬁ + g) — 2. For
A e Z+Q, we write Cyy, for the metaplectic representation of L corres-
ponding to Af, € v— 10" 1f A€ Z+ @ and A2 = 0 (moreover if 4 2 %p

— 1 when g = 0), we define (g, K)-modules by

U, Q) = U9 0) 1= @ )70, U = U200 = @7 (C,,,).
Then U,{A) are non-zero irreducible (g, K)-modules and U.() €
Disc{SO,(p, @) /SO(p — 1, @) if 4 = 0.

Next, let G' = Ulp, g) D K" = Ulp) x Ul(g). We represent the rool
system of ¥ as A, ) ={X(g—¢):1=i<j=porp+ 1=i<j
< p + gq}. We define O-stable parabolic subalgebras of 0" by
1) Forp=1,q=1,q,:=al2e + ¢,.,) and g~ := al{— 2¢, — ¢,,,).

My Forp=2,g=0, g,:=ale — el

For A€ N, [ €Z such that /=A+p+ g+ 1 mod 2, we define
(g", K')-modules by:

V.4, D= vflmluj f) 1= (ﬂ:;]pﬂ_gfc.‘i;_‘gﬁ"t*"fp-l} fl=A=0pg=z1,

I,.-’n{,:g_ n= V.;U(”'H. 0= {EE;:}”_‘{C%M‘—‘}%,} iHa= | :|_ =2,
V., D= V,”"""'{Jl, o= {Fﬂ:;}.ﬂi-ﬂ—al:cr%’_‘_}.} M‘} f=1=A=0pg=1.

—zf

If ¢ = 1, then we have (cf. [6] TheoremZ).
(3.10a) V,(2, D, V{4, D, V_(4, D are non-zero and irreducible (o', K-

A+l —a+! ., -,
modules with Z(g"}-infinitesimal character (T, e T Q. —-1,...,
+ —
— Q') in the Harish-Chandra parametrization, where &= P g .

GO V., D=V, = DY U>a>0, V@, b=WQa -n" =zl
(3.1)c) Disc(Up, @ /UL % Up—1, @ ; x) g =1, I € Z) are given by,
W, D >a>0u V@, n:azlil} =22 1+0 ¢=sgnl),

{V (4, D:1>0} (p=2 1=0),
WV, 0:lil—g=4=0} (p=1,11]>gq, e=sgnb,
i p=11l=g9,

Here, ¥, is a character of U(1} and A runs over 4 € 2Z+I+p+gt+1
(resp. A € 2Z + [ + q).

Third, let G7 = Splp, @) = K" = Sp(p) = Splg), and represent the
root system of ' as A(E, ") = {£(h, —h), £2h:1Si<j=p or
pH1<i<j<p+g 1=1=p+ gl We define
1) Forp=1,q=1,0,:=a(@h +h,), Lo=T xSplp—1,¢— 1.
M) Forp=2g20,q:=al2h +h), Li=T % Splp—2, 9.

For A € N,,j€ N such that =4+ 1 mod 2 we define (", K")-
modules by
I'T"r"_{.?,_ﬂ = I_F:'M.b.ql{;l'}j - {ﬂﬁ';}ylauz{cﬁéﬂnﬁ_}kﬂ*rq} 1f_f+ 1= .H, 'ﬁq = l,
Wo(a, ) = WS, )= @)Y (Caggay _=2uis,) A2+ 1, p 2 2.
If ¢ = 1, then we have (cf. |6] Theorem 1}
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(3.2)a) W, (4, 1), Wi(4, /) are non-zero and irreducible {(g”, K”)-modules

+1 —A+j+1
with Z(g"}-infinitesimal character (;t—'--é ; 2.? L2 e g B

; .,l) in the Harish-Chandra parametrization, where Q"= p 4+ g — 2.

(3.2)(b) Disc(Splp, ¢) /Sp(1)} » Splp— 1, @ ;0){g =1 and FEN) are given by,

WA, A= UAW, (4, N> a>00 (p=2),

(W, p:j—2g+122>0) (p=1,75=2g),

) (p=1,7< 2q).
Here, o, is the irreducible §+ 1 dimensional representation of Sg1). In
{3.2){b), 4 runs over A € 2Z + j+ 1 and the multiplicity of discrete series
is uniformly j + 1 or 0.

We write #"(R") for spherical harmonics on S* ™" of degree k(k € N},

which is isomorphic to Umm k+ "]""ﬁ =1)ifp=3or (p, k) = (2,0), to
2

U @@ U iip=2and k=11 p=1, we put #(R) 1= C
for k=0,1 and :=0 for & 2 2. Next, we write spherical harmonics of
degree (a, B) (e, BE N) as #*°(C") = Vi + B+p— 1l a—p C
HURY™) (p = 2). In the case b =1, itis non-zero only if @8 = 0. Finally,
we write F¥%(z, y) (x Z y 2 0) for the irreducible representation of
Spip) with an extremal weight zf, + gf,. In the case p =1, it is non-zero
only if y = 0.

Theorem 3.3 {SC-' (2, @) | SO,p, s) x S0(g—35)). Letp=2 521,

g—s21.1€Z+~ s0+a, >0
U B e = ® U "1+ at o) maw.

ahe N
Theorem 3.4 (Ulp, g) | Ulp, &) X Ulg—9)). Lets=1,g—=5=1,
AEN,LIE2Z+ A+ p+ g+ 1 For convenience, we define an irreducible
representation of Ulp, 8) ¥ Ulg — s5) by
Vila, B, k;2, 0= V" +q—s+a+p+2ki—at+p BACT).
101} u.'.:::lﬁ:ﬂﬂﬂ’ﬂ =2, 11i+¢qg—s
it o7 B vipssnrigen = & Vola, B ki, D&

o g hke
ek <iti—d—g+st

SE Volee, B, k; A, D.
afEEN
k= Li—i—ge )

(ii) Suppose p22. Wept d=+ ifdi+g—s21>0 and =0 if
A 212 =4 inthe left side.
Vi " D ppanvgen = B Vola, 8, k4, D.

a.B.ke iy
Use the duality (310 if — A > 12 —d—g+sa—A—g+s5> 1
2) Supposep= 1,1 = A + g, (Use the duality (3.1)(0) if — I = A + q.)

v”'”’u Dt & V.l 8 ki D.

o dkeN
avksdi-a-n



3
=
=1

Mo, 7] The Restriction of A (A} to Reductive Subgroups

Theorem 3.5 (Spip, ) | Splp, s} = Splg—s)). Let 521, g—3521,
AEN,,jEN.jE2Z+ A+ 1 For convenience, we define an imeducible
representation of Sp(p, s} X Splg — s) by Wyly, v, k, £:4, 1) =

WP (A4 2g— 25+ 2+ 2k +ito,j+to—HBF G+t .
1) Suppose p= 2, j+ 1> A+ 2g — 2s. Then, W, 1) gpaespiecs =

o Wy, vk, ;2,7 @ & Wy, v, k, £ 4, 1.
hodd=N - $ TP
i) =)
a.+k+a<%ij+]—.ﬂ*—.;+s J.r'i'ki'rE%ﬂﬁ"l—ﬂ—v‘-'-‘

(i) Suppose p=2 We put §=+ if A+ 2¢—Es =j+1>4 and
d=0ifp22 A=j+1 inthe left side

Ii’f"‘”’u. P spiperespgen = B Wolw, v, k, £ 4, 7).

wenke N
DEIE)
2y Suppesep=1,j= i+ 2g— 1.
.[Ffﬂpm{'l: Jj SpilsInSplg—x) = ﬂ} 'Hﬁ (Hh i, II‘:r ! 'rfll'l .ﬂ'
vk re N

prhsisdipri-ti—g
A detailed proof is to appear elsewhere.
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