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Abstract. Let G ⊃ H be Lie groups, g ⊃ h their Lie algebras, and pr :
g∗ → h∗ the natural projection. For coadjoint orbits OG ⊂ g∗ and OH ⊂ h∗,
we denote by n(OG,OH) the number of H-orbits in the intersection OG ∩
pr−1(OH), which is known as the Corwin-Greenleaf multiplicity function. In
the spirit of the orbit method due to Kirillov and Kostant, one expects that

n(OG,OH) coincides with the multiplicity of τ ∈ Ĥ occurring in an irreducible
unitary representation π of G when restricted to H, if π is ‘attached’ to OG

and τ is ‘attached’ to OH . Results in this direction have been established for
nilpotent Lie groups and certain solvable groups, however, very few attempts
have been made so far for semisimple Lie groups.

This paper treats the case where (G, H) is a semisimple symmetric pair.
In this setting, the Corwin-Greenleaf multiplicity function n(OG,OH) may
become greater than one, or even worse, may take infinity. We give a sufficient
condition on the coadjoint orbit OG in g∗ in order that

n(OG,OH) ≤ 1 for any coadjoint orbit OH ⊂ h∗.

The results here are motivated by a recent multiplicity-free theorem of branch-
ing laws of unitary representations obtained in [7], [8] by one of the authors.

1. Introduction

The celebrated Gindikin-Karpelevič formula on the c-function gives an ex-
plicit Plancherel measure for the Riemannian symmetric space G/K of non-compact
type. Implicitly important in this formula is the following:

Fact 1.1. The regular representation on L2(G/K) decomposes into irreducible
unitary representations of G with multiplicity free.

In order to explain and enrich Fact 1.1, let us fix some notation. Suppose G
is a non-compact semisimple Lie group with maximal compact subgroup K. We
write g = k + p for the corresponding Cartan decomposition of the Lie algebra g of
G. We take a maximal abelian subspace a of p, and denote by Σ(g, a) the restricted
root system. We fix a positive root system Σ+ and write a∗+ for the dominant Weyl
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chamber. Let mα be the dimension of the root space g(a; α) for each α ∈ Σ(g, a),
and we define Σ0 := {α ∈ Σ(g, a) : α

2 /∈ Σ(g, a) }.
Spherical unitary principal series representations of G are parametrized by λ ∈

a∗+, which we shall denote by πλ (∈ Ĝ). Then a qualitative refinement of Fact 1.1
(multiplicity free theorem) is given by the following direct integral decomposition
into irreducible unitary representations:

(1.1) L2(G/K) �
∫ ⊕

a∗
+

πλ dλ (an abstract Plancherel formula).

A further refinement of (1.1) is the Gindikin-Karpelevič formula on the c-
function ([2], see also [3]),

c(λ) = c0

∏
α∈Σ+

0

2−
〈iλ,α〉
〈α,α〉 Γ

( 〈iλ,α〉
〈α,α〉

)
Γ
(

1
2

(
1
2mα + 1 + 〈iλ,α〉

〈α,α〉
))

Γ
(

1
2

(
1
2mα + m2α + 〈iλ,α〉

〈α,α〉
)) ,

which enriches formula (1.1) with quantitative result, namely, an explicit Plancherel
density for (1.1) with respect to the spherical Fourier transform. Here c0 is a
normalized constant.

On the other hand, one can also enrich Fact 1.1 (multiplicity free theorem)
and the Plancherel formula (1.1) from another viewpoint, namely, with geometry
of coadjoint orbits, motivated by the philosophy of the orbit method due to
Kirillov. One way to formulate this is based on an interpretation of the unitary
representation of G on L2(G/K) as an induced representation (see [9], Example 5).
Another somewhat unusual way is to find a “hidden symmetry” of an “overgroup”
G̃ of G. We shall take the latter viewpoint, which seems interesting not only in
unitary representation theory but also in the geometry of coadjoint orbits because
it leads us naturally to much wider topological settings.

This paper is organized as follows. First, we recall a multiplicity free theorem
([7], [8]) in the branching problem of unitary representations in §2, which contains
Fact 1.1 as a special case (for classical groups and some other few cases). Its
predicted counterpart in the orbital geometry is formulated in §3, and turns out
to be true (Theorems A and B). We illustrate these results in an elementary way
by a number of figures of lower dimensional examples in §4. A detailed proof of
Theorems A and B will be given elsewhere.

2. Multiplicity-one decomposition and branching laws

There are several different approaches to prove Fact 1.1 (a multiplicity free
result). A classical approach due to Gelfand is based on the commutativity of the
convolution algebra L1(K\G/K).

Another approach is based on the restriction of a representation of an overgroup
G̃. For instance, consider a semisimple symmetric pair

(G̃,G) = (Sp(n, R),GL(n, R)).

Then we have a natural injective map between two homogeneous spaces G/K →
G̃/K̃, namely,

(2.1) GL(n, R)/ O(n) ↪→ Sp(n, R)/ U(n).
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Via the embedding (2.1), G/K becomes a totally real submanifold in the com-
plex manifold G̃/K̃. Let π be a holomorphic discrete series representation of scalar
type of G̃. Then π is realized in the space of holomorphic sections of a G̃-equivariant
holomorphic line bundle over G̃/K̃. The restriction of the representation π with
respect to the subgroup G factors through the representation of G realized on the
space of continuous sections for a complex line bundle on the totally real subman-
ifold G/K, and its abstract Plancherel formula coincides with that of L2(G/K)
(see [4], [6], [10], [11]). This representation π|G is essentially known as a canonical
representation in the sense of Vershik-Gelfand-Graev ([12]). Thus, the multiplic-
ity one property in Fact 1.1 can be formulated in a more general framework of
the branching laws, namely, irreducible decompositions of the restrictions of ir-
reducible unitary representations to subgroups.

In this direction, the following theorems have been recently proved (see [7],
[8]) (we shall use slightly different notation: the above pair (G̃,G) replaced by
(G,H) below): Suppose G is a semisimple Lie group such that G/K is a Hermitian
symmetric space of non-compact type. G = SU(p, q),Sp(n, R),SO∗(4n), SO(n, 2)
are typical examples. Then

Theorem 2.1. ([7], Theorem B) Let π be an irreducible unitary highest weight
representation of scalar type of G, and (G,H) an arbitrary symmetric pair. Then
the restriction π|H decomposes into irreducible representations of H with multiplic-
ity free.

Theorem 2.2. ([7], Theorem A) Let π1, π2 be unitary highest (or lowest)
weight representations of scalar type. Then the tensor product representation π1⊗π2

decomposes with multiplicity free.

3. Multiplicity-one theorem in the orbit method

The object of this paper is to provide a ‘predicted’ result in the orbit philosophy
corresponding to Theorems 2.1 and 2.2.

For this, let us recall an idea of the orbit method due to Kirillov and Kostant
in unitary representation theory of Lie groups.

Let g be the Lie algebra of G, and g∗ the linear dual of g. Let us consider the
contragradient representation

Ad∗ : G → GL(g∗)

of the adjoint representation of G, Ad : G → GL(g). This non-unitary finite di-
mensional representation often has a surprisingly intimate relation with the unitary
dual Ĝ, the set of equivalence classes of irreducible unitary representations, most
of which are infinite dimensional if G is non-compact.

For example, let us first consider the case where G is a connected and simply
connected nilpotent Lie group. Then Kirillov ([5]) proved that the unitary dual Ĝ
is parametrized by g∗/G, the set of coadjoint orbits. The bijection

Ĝ � g∗/G

is called the Kirillov correspondence. We shall write πλ for the unitary representa-
tion corresponding to a coadjoint orbit OG

λ := Ad∗(G)λ ⊂ g∗.
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Let H be a subgroup of G. Then the restriction π|H is decomposed into a
direct integral of irreducible unitary representations of H :

(3.1) π|H �
∫ ⊕

Ĥ

mπ(τ)τdµ(τ) (branching law),

where dµ is a Borel measure on the unitary dual Ĥ . Then, Corwin and Greenleaf
([1]) proved that the multiplicity mπ(τ) in (3.1) coincides almost everywhere with
the ‘mod H ’ intersection number n(OG,OH) defined as follows:

(3.2) n(OG,OH) := �

((OG ∩ pr−1(OH)
)
/H

)
.

Here, OG ⊂ g∗ and OH ⊂ h∗ are the coadjoint orbits corresponding to π ∈ Ĝ and
τ ∈ Ĥ , respectively, under the Kirillov correspondence Ĝ � g∗/G and Ĥ � h∗/H ,
and

pr : g∗ → h∗

is the natural projection. The function

n : g∗/G × h∗/H → N ∪ {∞}, (OG,OH) 	→ n(OG,OH)

is sometimes referred as the Corwin-Greenleaf multiplicity function.

Contrary to nilpotent Lie groups, it has been observed by many specialists that
the orbit method does not work very well for non-compact semisimple Lie groups
(e.g. [13]); there is no reasonable bijection between Ĝ and (a subset of) g∗/G.
Thus, an analogous statement of Corwin-Greenleaf’s theorem does not make sense
for semisimple Lie groups G in general.

However, for a semisimple Lie group G, the orbit method still gives a fairly
good approximation of the unitary dual Ĝ. For example, to an ‘integral’ elliptic
coadjoint orbit

OG
λ := Ad∗(G)λ ⊂ g∗,

one can associate a unitary representation, denoted by πλ, of G. This fact was
proved by Schmid and Wong as a generalization of the Borel-Weil-Bott theorem, and
combined with a unitarization theorem of Zuckerman’s derived functor modules due
to Vogan and Wallach. Furthermore, πλ is nonzero and irreducible for ‘most’ λ (see
a survey paper [6] for a precise statement and references therein). Namely, to such
a coadjoint orbit OG

λ , one can naturally attach an irreducible unitary representation
πλ ∈ Ĝ.

In particular, if G/K is a Hermitian symmetric space, attached to an (integral)
coadjoint orbit OG

λ such that λ ∈ ([k, k]+p)⊥ (⊂ g∗), one could obtain an irreducible
unitary representation πλ which is a highest weight module of scalar type.

From now on, we shall identify g∗ with g. Then, the one dimensional subspace
([k, k] + p)⊥ of g∗ is identified with the center of k. Therefore, the above coadjoint
orbit corresponds to the adjoint orbit

OG
z := Ad(G) · z ⊂ g,

going through a central element z of k.

Then in the spirit of the Kirillov-Kostant orbit method, Theorem 2.1 may
predict that the Corwin-Greenleaf multiplicity function n(OG

z ,OH) is either 0 or 1
for any coadjoint orbit OH in h∗. Since not all coadjoint orbit OH “corresponds to”
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an irreducible unitary representation of a reductive Lie group H , this prediction
might be too optimistic. However, it turns out to be true:

Theorem A. Let OG
z be an adjoint orbit that goes through a central element

z of k as above. If (G,H) is a symmetric pair, then the intersection

OG
z ∩ pr−1(OH)

is a single H-orbit for any adjoint orbit OH ⊂ h, whenever the intersection is non-
empty. In particular, the intersection is connected. Here, pr : g → h is a projection
with respect to the Killing form.

Correspondingly to Theorem 2.2 in the tensor product representation ([7], [8]),
we may expect a geometric result in the (co)adjoint orbits. In order to formulate
an analogous statement to Theorem A, let us define the projection by

pr : g ⊕ g → g, (X, Y ) 	→ 1
2
(X + Y ).

We shall write

OG×G
(x,y) = Ad(G × G)(x, y) ⊂ g ⊕ g

for the adjoint orbit of the direct product group G × G that goes through (x, y) ∈
g ⊕ g. Then the following theorem also holds:

Theorem B. Let z be a central element of k.

1) The intersection

OG×G
(z,z) ∩ pr−1(OG)

is a single G-orbit for any adjoint orbit OG ⊂ g, whenever the intersection
is non-empty.

2) The intersection

OG×G
(z,−z) ∩ pr−1(OG)

is a single G-orbit for any adjoint orbit OG ⊂ g, whenever the intersection
is non-empty.

In particular, the intersections are connected.

4. Examples and Remarks

Let us illustrate our main results (Theorems A and B) by a number of examples
of lower dimensions.

First, let G := SU(2), and we identify g∗ with

g � su(2) = {X =
(

ix1 ix2 − x3

ix2 + x3 −ix1

)
: x1, x2, x3 ∈ R}.

Then the adjoint representation Ad(g) : X 	→ gXg−1 preserves the determinant of
X , that is, x2

1 + x2
2 + x2

3. In fact, by an easy computation, any adjoint orbit OG
X is

identified with a sphere

{(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 + x2

3 = n2}
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of radius n for some n ∈ R≥0. For each integer n, the orbit method ‘attaches’ an
irreducible (n + 1)-dimensional representation πn of G to this sphere. As is well-
known, the restriction of πn to a subgroup K := SO(2) decomposes into a direct
sum of irreducible representations:

(4.1) πn|SO(2) �
n⊕

m=−n
m≡n mod 2

χm.

Here, each one dimensional representation χm of SO(2) occurs with multiplicity
free.

In the corresponding orbit picture, the projection pr : g∗ → h∗ is identified
with the map:

R
3 → R, (x1, x2, x3) 	→ x3.

We also note that each coadjoint orbit in h∗ is a singleton, say {m}, because H is
abelian. Then the intersection of OG

X with pr−1({m}) is given by

{(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 + x2

3 = n2} ∩ {(x1, x2, m) : x1, x2 ∈ R}.
This becomes empty if |m| > n, but it is a circle as in Figure 4.1 if |m| ≤ n,
which is obviously a single orbit of K. This geometry of coadjoint orbits reflects
the multiplicity one property of the branching law (4.1).

Figure 4.1

In Figure 4.2 (which does not come from any representation of SU(2)), the
intersection may consist of two disconnected parts. Such a figure does not arise in
the setting of our theorems.

Figure 4.2

Next, let us consider infinite dimensional representations, with which our main
concern is. Suppose G := SL(2, R) and K = SO(2). We identify g∗ with

g � sl(2, R) = {
(

x1 x2 − x3

x2 + x3 −x1

)
: x1, x2, x3 ∈ R}.

A holomorphic discrete series representation π+
n (n = 2, 3, 4, · · · ) is an irreducible

unitary representation of G realized in the space of square integrable and holomor-
phic sections of a G-equivariant holomorphic line bundle G ×K χn → G/K. We
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put

z :=
(

0 −1
1 0

)
,

which lies in the center of k = so(2) (in this case, k itself is the center of k). The
representation π+

n is a unitary highest weight module of scalar type, and is supposed
to be attached to the coadjoint orbit

OG
nz = Ad∗(G)(nz).

We have

OG
nz ={X =

(
x1 x2 − x3

x2 + x3 −x1

)
: det X = det

(
0 −n
n 0

)
, x3 > 0}(4.2)

�{(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 − x2

3 = −n2, x3 > 0},
a connected component of a hyperboloid of two sheets.

We put

(4.3) y :=
(

1 0
0 −1

)
,

and A := expRy. Let us use the identifications K̂ � Z, χn ↔ n; and Â � R,
χξ ↔ ξ. Then, the branching laws of π+

n ∈ Ĝ with respect to the one dimensional
subgroups K � SO(2) and A � R are given, respectively, by the following (abstract)
Plancherel formulae:

π+
n |K �

∞∑⊕

k=0

χn+2k,(4.4)

π+
n |A �

∫ ⊕

R

χξ dξ.(4.5)

The first formula (4.4) is discretely decomposable, while the second one (4.5)
consists only of continuous spectrum. But in both branching laws, the multiplicity
is free (this is a special case of Theorem 2.1). In the corresponding orbit pictures,
the intersection of the hyperboloid (4.2) with a hyperplane, x3 = constant, is a
circle, which is a single orbit of K = SO(2) (see Figure 4.3); while that with
another hyperplane, x1 = constant, is a hyperbolic curve, which is a single orbit of
A � R (see Figure 4.4).

Figure 4.3 Figure 4.4
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These features are exactly what Theorem A asserts in this specific setting.

Finally, let us mention other representations which are not treated in our
main theorems. For instance, let us consider a spherical unitary principal series
representation, denoted by πλ, of G = SL(2, R), which is ‘attached’ to a coadjoint
orbit

OG
λy = Ad∗(G)(λy) = {(x1, x2, x3) ∈ R

3 : x2
1 + x2

2 − x2
3 = λ2},

by a real polarization, where y is as in (4.3). The coadjoint orbit OG
λy (λ = 0) is a

hyperboloid of one sheet. We note that the representation πλ is not the one treated
in Theorems 2.1 and 2.2.

The branching laws of πλ when restricted to K = SO(2) and A � R are given,
respectively, by the following (abstract) Plancherel formulae:

πλ

∣∣
K

�
∑⊕

n∈Z

χ2n,(4.6)

πλ

∣∣
A
�

∫ ⊕

R

2χξ dξ.(4.7)

It happens that the first formula (4.6) is multiplicity free, and this property is
reflected by the corresponding orbit picture (Figure 4.5), namely, the intersection is
a circle which is a single orbit of K = SO(2). On the other hand, the multiplicity
in (4.7) is two, and this property is reflected by the orbit picture (Figure 4.6),
namely, the intersection consists of two hyperbolic curves on which A acts with two
orbits.

Figure 4.5 Figure 4.6
If we consider a higher dimensional generalization of the last two examples,

the intersection OG
λ ∩ pr−1(OH) may consist of infinitely many H-orbits, that is,

n(OG
λ ,OH) can be infinite for some coadjoint orbit OH ⊂ h∗. This is the case if

G = SL(n, R) and H = SO(n) (n ≥ 3) and if

λ =




λ1 0λ2

. . .
0 λn


 ∈ sl(n, R), (

n∑
i=1

λi = 0, λi = λj (i = j)).
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In this case, the intersection OG
λ ∩ pr−1(OH) may have a larger dimension than

dimH , and consequently, may contain infinitely many H-orbits. (The orbit method
attaches OG

λ to a spherical principal series representation of G by a real polarization,
namely, by a usual parabolic induction.) We note that the orbit OG

λ in this example
does not go through even k, to say nothing of its center. This counterexample
indicates certain meaning of our assumption in Theorems A and B on the coadjoint
orbit OG

z , that is, the assumption that OG
z goes through the center of k.

To end this paper, we pin down some questions for further research:

1) Generalize Theorems A and B, of which a counterpart in unitary repre-
sentation theory has not been known.

2) Find a feedback of (1) to unitary representation theory, namely, prove new
multiplicity free results (e.g. Theorems 2.1 and 2.2) of branching laws of
unitary representations which may be predicted by the orbit method.

3) Find a refinement of Theorems A and B in the orbit method corresponding
to the explicit Plancherel measure (description of its support and the
Plancherel density).
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