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Abstract. Let H � G be real reductive Lie groups and p an irreducible
unitary representation of G. We introduce an algebraic formulation
(discretely decomposable restriction) to single out the nice class of the
branching problem (breaking symmetry in physics) in the sense that there is
no continuous spectrum in the irreducible decomposition of the restriction
pjH . This paper o�ers basic algebraic properties of discretely decomposable
restrictions, especially for a reductive symmetric pair �G;H� and for the
Zuckerman-Vogan derived functor module p � Aq�k�, and proves that the
su�cient condition [Invent. Math. '94] is in fact necessary. A ®nite multi-
plicity theorem is established for discretely decomposable modules which
is in sharp contrast to known examples of the continuous spectrum. An
application to the restriction pjH of discrete series p for a symmetric space
G=H is also given.

0. Introduction

0.1. This paper is a continuation of the work �Ko2�. Let G be a real reductive
linear Lie group and denote by bG the unitary dual of G. The object of study
is the restriction of p 2 bG with respect to a reductive subgroup H .

0.2. In general, the restriction of p 2 bG to a subgroup H may have a wild
behavior even if H is a maximal reductive subgroup of G. For instance,

(0.2.1) the tensor product of principal series representations of a complex
simple Lie group G is decomposed into only continuous spectrum with
in®nite multiplicity except the case where G is locally isomorphic to SL�2;C�
(Gelfand-Graev, Williams, see [GG], [Wi]).
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Here are well-known opposite extremal cases:

(0.2.2) The restriction of p with respect to a maximal compact subgroup K is
decomposed discretely into irreducibles with ®nite multiplicity for any p 2 bG
(Harish-Chandra).

(0.2.3) The restriction of holomorphic discrete series representations with
respect to certain symmetric pairs is discretely decomposable (Martens,
Jakobsen-Vergne; see Fact 5.4). Also, the restriction of the Segal-Shale-Weil
representation with respect to a reductive dual pair H1 � H2 with H2

compact decomposes discretely.
These are also important in their applications: (0.2.2) has enabled us to

study �g;K�-modules by algebraic methods instead of representations of G;
the decomposition in (0.2.3) gives Howe's correspondence (e.g. Howe,
Kashiwara-Vergne, Adams; [Ho], [KV], [A1]) and interacts closely with the
theory of h-series.

0.3. In this paper, we focus on the discretely decomposable restriction as a
generalization of the feature of (0.2.2) and (0.2.3). The concept of discretely
decomposable restriction might be very interesting not only in representa-
tion theory but also in other branches of mathematics. In fact, discrete
decomposability of the restriction, especially for Zuckerman's modules
Aq�k�, has recently found its applications to the vanishing theorem of middle
Hodge components of modular symbols for the arithmetic quotient of
Hermitian symmetric domains [KO], the construction of discrete series
representations for certain non-symmetric spherical homogeneous mani-
folds ([Ko2], Sect. 5; [Ko4]), spherical harmonics on pseudo-Riemannian
homogeneous spaces and minimal unipotent representations [Ké], and the
®nite dimensional theorem of global holomorphic solutions to the gener-
alization (to higher order) of the Gauss-Aomoto-Gelfand hypergeometric
system ([Se], Theorem 7.1).

0.4. In our previous paper, we have given a su�cient condition on �G;H ; p�
where H � G and p 2 bG in order that the restriction pjH is discretely de-
composable. Results follow from algebraic methods in [Ko2] and from
microlocal analysis in Part II of [Ko1]. The main theorem was stated in the
case where �G;H� is a reductive symmetric pair and where p is Zuckerman's
module Aq�k�. However, these methods provided only a su�cient condition
for the discrete decomposable decomposition.

In the present paper, we shall reformulate the discretely decomposable
restriction in a purely algebraic way in Sect. 1, and give a necessary con-
dition for the discretely decomposable restriction for a reductive pair �G;H�
in Sect. 3. One of our main results here is that the aforementioned su�cient
condition in the symmetric case is in fact a necessary condition; that is, the
restriction of Aq�k� is discretely decomposable as an �h;H \ K�-module if
and only if R�hu \ pi \ �������ÿ1p

tÿr
0

ÿ ��� 0, where R�hu \ pi is a closed cone
determined by a h-stable parabolic subalgebra q � l� u and tÿr

0 is a sub-
space determined by a reductive symmetric pair �G;H� (see Theorem 4.2).

230 T. Kobayashi



Furthermore, because the necessary condition is proved here by a weaker
assumption (namely, no assumption on multiplicities), our results also yield
a ®nite multiplicity theorem on the level of Harish-Chandra modules gen-
eralizing the case H � K (see (0.2.2)); If �G;H� is a reductive symmetric pair,
then

dimHomh;H\K Y ;Aq�k�
ÿ �

<1

for any irreducible �h;H \ K�-module Y and for any Zuckerman's derived
functor module Aq�k� (see Corollary 4.3). This result is striking in contrast
to the example of the in®nite multiplicity of the continuous spectrum for a
symmetric pair (e.g. (0.2.1)) (here we recall that principal series represen-
tations for complex reductive groups are written in the form Aq�k�). In
general, dimHomh;H\K Y ;Aq�k�

ÿ �
is not uniformly bounded, but we will give

a su�cient condition for the uniformly bounded multiplicities in a subse-
quent paper which supports the Gross-Prasad conjecture.

0.5. In Sects. 5 and 6, in the context of discretely decomposable restrictions,
we try to reveal the representation theoretic principles which were hidden in
the following sharp contrast of known results:

1) The restriction pjK decomposes discretely for any p 2 bG (see (0.2.2)),
while there is no discrete spectrum in L2�G=K� for the Riemannian sym-
metric space G=K (Harish-Chandra) (see Theorem 6.2 and Remark 6.6
(1)).

2) The tensor product p
 p0 is discretely decomposable if both p and p0

are holomorphic discrete series representations [Ma], [JV], while it always
contains the continuous spectrum in the irreducible decomposition if p is
holomorphic and p0 is anti-holomorphic discrete series representation [R]
(cf. Theorem 5.3 and Remark 6.6 (4)).

3) The non-vanishing theorem [TW] and the vanishing theorem [KO] of
modular symbols de®ned by arithmetic subgroups (see Remark 6.6 (3)).

0.6. I have omitted in this paper all applications to harmonic analysis. In the
last two sections we illustrate the theorem only by some examples. Irre-
ducible �g;K�-modules are discretely decomposable as �h;H \ K�-modules
in the following cases:

1) �G;H� � �G;K� (Riemannian symmetric pair): Any p is discretely
decomposable as an �h;H \ K�-module (see (0.2.2)).

2) �G;H� � G0C;G
0
R

ÿ �
with G0R a normal real form of G0C: No p is dis-

cretely decomposable as an �h;H \ K�-module except for dim p <1 (see
Theorem 8.1).

3) �G;H� � �U�2; 2�; Sp�1; 1�� � �SO�4; 2�; SO�4; 1��: 12 series among 18
series of irreducible, in®nitesimally unitary �g;K�-modules with regular
integral in®nitesimal character are discretely decomposable as �h;H \ K�-
modules (Proposition 7.5).
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0.7. The results in Sect. 3 were announced in Part II of [Ko1]. Most of other
results were obtained while the author was a guest at the Institut Mittag-
Le�er supported by the Royal Swedish Academy of Sciences. He expresses
his sincere gratitude to the sta� of the Institute and to the organizers of the
special year ``Analysis on Lie Groups''. Thanks are also due to R. Donley,
M. Du¯o, M. Flensted-Jensen, D. Vogan, T. Ohta, G. OÂ lafsson and
B. érsted for helpful discussions and their encouragement.

1. Discretely decomposable modules

In this section, we introduce the notion of discretely decomposable modules
and present some basic properties.

1.1. Let h be a complex Lie algebra, and X an h-module.

De®nition 1.1. We say X is discretely decomposable if there is an increasing
®ltration fXmg of h-submodules such that
(1.1.1) X � S1m�0 Xm,
(1.1.2) Xm is of ®nite length as an h-module (i.e. has ®nite composition series).

We note that an h-module of ®nite length is obviously discretely
decomposable.

1.2. Here is a set up that we shall use frequently in this paper:
Let G be a real reductive linear Lie group, and H a closed subgroup of G.

We assume that H has at most ®nitely many connected components and that
there exists a Cartan involution h of G which stabilizes H . Then H is also a
reductive subgroup with maximal compact subgroup H \ K, where K � Gh

is a maximal compact subgroup of G. We write g0 for the Lie algebra of G
and write g :� g0 
C. In what follows analogous notation will be applied to
Lie groups denoted by other Roman upper case letters without comment.
Let g0 � k0 � p0 be the Cartan decomposition corresponding to the Cartan
involution h, and g � k� p the complexi®cation. There is a non-degenerate
symmetric Ad�G�-invariant bilinear form, say B, on g0, which is positive
de®nite on p0 and negative de®nite on k0 such that k0 is orthogonal to p0.

We say X is discretely decomposable as an �h;H \ K�-module if X is an
�h;H \ K�-module and if X is discretely decomposable as an h-module.

1.3. Suppose that we are in the setting of Sect. 1.2. An �h;H \ K�-module X
is said to be in®nitesimally unitary if there is an inner product on X such that
h acts on X by skew-Hermitian operators and that H \ K does unitarily on
X . In this case, the terminology ``discretely decomposable'' is justi®ed by the
following lemma:

Lemma 1.3. Let X be an in®nitesimally unitary �h;H \ K�-module. We sup-
pose that X has at most countable basis over C. Then X is discretely de-
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composable if and only if X decomposes into the algebraic sum of irreducible h-
modules.

Proof. If X is decomposed into the algebraic sum of irreducible h-modules,
say, a1

i�0Yi, then we put Xm :�am
i�0Yi �m 2 N� which obviously satis®es

the conditions (1.1.1) and (1.1.2). Conversely, assume that X is discretely
decomposable. We may and do assume that H is connected in order to prove
that X decomposes into the algebraic sum of irreducible h-modules. Let
X � SXm be a ®ltration as in De®nition 1.1. It is convenient to put
Xm :� f0g for a negative integer m. We note that each h-submodule Xm is
also an �h;H \ K�-submodule. Let Xm be the Hilbert space that is the
completion of Xm with respect to the pre-Hilbert structure of X . A basic
result due to Harish-Chandra (cf. [V1], Theorem 0.3.5) asserts that there is a
lattice isomorphism between closed H -invariant subspaces of Xm and
�h;H \ K�-invariant subspaces of Xm because Xm is of ®nite length as an
�h;H \ K�-module. In particular, we can take the orthogonal complemen-
tary subspace of Xm in Xm�1, which is decomposed into the ®nite sum of
irreducible �h;H \ K�-modules. By the induction on m starting from
m � ÿ1, X � Sm Xm is decomposed into the algebraic sum of irreducible
�h;H \ K�-modules. (

1.4. Here is an elementary result for producing a family of discretely
decomposable modules from a given discretely decomposable module.

Lemma 1.4. Suppose we are in the setting of Sect. 1.2. Assume that the
�h;H \ K�-module X is discretely decomposable.

1) Any submodule or quotient of X is discretely decomposable.
2) The tensor product X 
 F is discretely decomposable for any ®nite

dimensional �h;H \ K�-module F.

Proof. 1) Let X � S1m�0 Xm be a ®ltration satisfying (1.1.2). Suppose that Y
and Z are �h;H \ K�-modules and that i : Y ! X and p : X ! Z are injective
and surjective �h;H \ K�-homomorphisms, respectively. Then Ym :� iÿ1�Xm�
and Zm :� p�Xm� give the desired ®ltration of Y and Z, respectively.

2) Since Xm is of ®nite length as an �h;H \ K�-module, so is Xm 
 F (see
the proof of [V1], Corollary 4.5.6). Therefore, Xm 
 F (m � 0; 1; 2; . . .) gives
the desired ®ltration of X 
 F . (

1.5. Retain the setting of Sect. 1.2. Here is another characterization of
discretely decomposable h-modules:

Lemma 1.5. Suppose �p;X � is an irreducible g-module. Then X is discretely
decomposable as an h-module if and only if there exists an irreducible
h-module Y such that Homh�Y ;X � 6� 0.
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Proof. Let U�g� � U�h� be the enveloping algebras of g and h, respectively.
Because h is reductive in g, the invariant form B (see Sect. 1.2) is non-
degenerate when restricted to h� h. We denote by h? the orthogonal
complement of h in g with respect to B. Then h? is an �h;H \ K�-invariant
subspace such that g � h� h? is a direct sum decomposition. We set

U 0k h?
ÿ �

:� C-span Y1 � � � Ym : Y1; . . . ; Ym 2 h?;m � k

 � � U�g�;�1:5:1�

U 0 h?
ÿ �

:�
[1
k�0

U 0k h?
ÿ �

:�1:5:2�

Then we have U�g� � U 0 h?
ÿ �

U�h� by the PoincareÂ -Birkho�-Witt theorem.
Assume that there exists an irreducible �h;H \ K�-module Y such that
Homh�Y ;X � 6� 0. We may regard Y as a submodule of X . We set
Xk :� U 0k h?

ÿ �
Y �� X �. Because X is an irreducible g-module, we have

X � U�g� Y � U 0�h?� U�h� Y �
[1
k�0

U 0k h?
ÿ �

Y �
[1
k�0

Xk:

Let Zk �� X � be the image of the following �h;H \ K�-homomorphism:

h? 
 � � � 
 h?|����������{z����������}
k


Y ! X ; �Y1 
 � � � 
 Yk� 
 w 7! p�Y1� � � � p�Yk�w:�1:5:3�

Then Xk �
Pk

i�0 Zi (not necessarily a direct sum). This shows that Xk is of
®nite length as an �h;H \ K�-module, since h? 
 � � � 
 h? is a ®nite dimen-
sional �h;H \ K�-module. Hence the conditions (1.1.1) and (1.1.2) are sat-
is®ed. Therefore X is discretely decomposable as an �h;H \ K�-module.

Conversely, if X is discretely decomposable as an �h;H \ K�-module,
then X contains an �h;H \ K�-submodule X0 of ®nite length. Take an irre-
ducible �h;H \ K�-submodule Y of X0. Then we have Homh;H\K�Y ;X � 6� 0.

(

1.6. Here is a source of discretely decomposable �h;H \ K�-modules in the
context of the restriction of �g;K�-modules. Suppose �p;H� is a unitary
representation of G. We say the restriction pjH is H-admissible if H is
decomposed into a discrete Hilbert direct sum with ®nite multiplicity for
each irreducible representation of H (see [Ko2], Sect. 1). There are known
su�cient conditions for irreducible unitary representations to be H \ K-
admissible by algebraic methods in [Ko2] and by using the singularity
spectrum (the analytic wave front set) in Part II of [Ko1]. The following
property is also useful in the application to harmonic analysis on non-
symmetric spaces [Ko4]:

Proposition 1.6. Let �p; V � 2 bG. Assume that the restriction pjH\K is H \ K-
admissible. Then we have:
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1) The space of K-®nite vectors VK coincides with that of H \ K-®nite
vectors VH\K . In particular, VK is discretely decomposable as an �h;H \ K�-
module.

2) dimHomh;H\K�sH\K ; VK� � dimHomH �s; V �, for any irreducible uni-
tary representation s of H . Here sH\K denotes the underlying �h;H \ K�-
module of s.

Proof. Since H \ K � K, the inclusion VK � VH\K is obvious. For each
�r;Ur� 2 bK, we write V �K; r� for the r-isotypical component of V , that is,
V �K; r� :�Pu u�Ur� �� VK� where u runs over HomK�r; V �, the space of K
homomorphisms Ur ! V. Similarly, we write V �H \ K; s� �� VH\K� for the
s-isotypical component of V if s 2 dH \ K. Then we have

V �H \ K; s� �
X
r2bK

rjH\K :s� �6�0

� V �K; r�;�1:6:1�

where �rjH\K : s� :� dimHomH\K�s; r� and the right hand side of (1.6.1) is a
Hilbert direct sum. We will show that it is actually a ®nite sum. Because the
restriction pjH\K is H \ K-admissible, we have dimHomH\K�s; V � <1 for
any s 2 dH \ K. By Frobenius reciprocity, we have

dimHomH\K�s; V � �
X
r2bK�rjH\K : s�dimHomK�r; V �;

which implies that there are only ®nitely many r 2 bK satisfying both
�rjH\K : s� 6� 0 and V �K; r� 6� 0. Therefore the right side of (1.6.1) is in fact a
®nite sum. Hence V �H \ K; s� � VK for any s 2 dH \ K, which means
VH\K � VK . Thus we have proved VH\K � VK .

Because �p; V � is H \ K-admissible, it is also H-admissible (see [Ko2],
Theorem 1.2). Namely, we have a Hilbert direct sum decomposition

p '
X
s2bH � m�s�s;�1:6:2�

where the multiplicity m�s� <1 for any s 2 bH . Take �s;W � 2 bH such that
m�s� > 0. Then V contains a closed subspace, say U , which is isomorphic to
the direct sum of m�s� copies of W. Then we have

WH\K � � � � � WH\K ' UH\K � VH\K � VK :

This shows that

m�s� � dimHomh;H\K�sH\K ; VK�:�1:6:3�

In particular, VK is discretely decomposable as an �h;H \ K�-module from
Lemma 1.4. The opposite inequality of (1.6.3) is obvious. Hence we have
proved the second statement. (
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1.7. Here are some examples of discretely decomposable restrictions due to
Proposition 1.6:

Example 1.7. A �g;K�-module X of ®nite length is discretely decomposable
as an �h;H \ K�-module if one of the following assumptions is satis®ed:

1) H is compact.
2) X is a highest weight �g;K�-module and H contains the center of K.
3) X � Aq�k� and G;Gr� � is a symmetric pair with R�hu \ pi\�������ÿ1p

tÿr
0

ÿ ��� 0.
4) X appears in a subquotient of the coherent family through a �g;K�-

module Y , where Y is discretely decomposable as an �h;H \ K�-module.
(1) is obvious, (2) is obtained in [Ma] and also in [L], Theorem 4.2 (see

also [Ko2], Corollary 4.4 for a generalization), and (3) is in [Ko2], Theorem
3.2 (see Theorem 4.2 for the notation and the opposite implication). (4)
follows from Lemma 1.2 (see [V1], De®nition 7.2.5 for the de®nition of the
coherent continuation).

2. Associated varieties of U(g)-modules

In this section we make a quick review on known results on associated
varieties of U�g�-modules.
2.1. If V is a ®nite dimensional complex vector space, we use the following
notation:

V � : the dual vector space of V over C,
S�V � : the symmetric algebra of V ' the polynomial algebra on V �,
Sk�V � : the subspace of S�V � of homogeneous elements of degree k,
Sk�V � : �ak

j�0S
j�V �.

Let M �a1
k�0Mk be a ®nitely generated S�V �-module. We say M is a

graded S�V �-module if Si�V �Mj � Mi�j �i; j � 0�:We de®ne a closed cone in
V � by

SuppS�V ��M� :� fk 2 V � : f �k� � 0 for any f 2 AnnS�V ��M�g;

where AnnS�V ��M� :� ff 2 S�V � : f � m � 0 for any m 2 Mg.
2.2. Let g be a ®nite dimensional Lie algebra over C. For each integer n � 0,
let Un�g� denote by the subspace spanned by elements of the form Y1 � � � Yk

with Y1; . . . ; Yk 2 g and k � n. We note that U0�g� � C. It is convenient to
put Uÿ1�g� � 0. Then U�g� is a ®ltered algebra in the sense that

U�g� �
[1
k�1

Uk�g�; Ui�g�Uj�g� � Ui�j�g�:
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The associated graded algebra grU�g� :�a1
k�0Uk�g�=Ukÿ1�g� is isomorphic

to the symmetric algebra S�g� �a1
k�0S

k�g� of g, by the PoincareÂ -Birkho�-
Witt theorem.

2.3. Suppose X is a ®nitely generated U�g�-module. We take a ®nite
dimensional subspace X0 which generates X as a U�g�-module. We put
Xk :� Uk�g�X0 �k 2 N�. It is convenient to put Xÿ1 :� f0g. Then we have an
increasing ®ltration fXkgk such that

X �
[1
k�0

Xk; Ui�g�Xj � Xi�j �i; j � 0�:

Therefore, if we put gr X :�a1
k�0 Xk with Xk :� Xk=Xkÿ1, then gr X is a

®nitely generated gr U�g� ' S�g�-module. De®ne the variety V�X � by

V�X � �Vg�X � � SuppS�g��gr X � � g�:

ThenVg�X � is independent of the choice of the generating subspace X0 and
is called the associated variety of the U�g�-module X .

2.4. The following lemma is standard (e.g. [BB], Lemma 4.1 for (2)):

Lemma 2.4. Let L;M and N be g-modules of ®nite length.
1) If 0! L! M ! N ! 0 is an exact sequence of g-modules, then

V�M� �V�N� [V�L�.
2) V�M 
 F � �V�M� for any ®nite dimensional g-module F .
3) V�M� � f0g if and only if M is ®nite dimensional.

2.5. From now on, let G be a real reductive linear Lie group, K a maximal
compact subgroup of G and g0 � k0 � p0 the Cartan decomposition as in
Sect. 1.2. We de®ne the nilpotent cone N� by

N� �N�
g :� k 2 g� : f �k� � 0; for all f 2 S��g�G

n o
:

Here S��g� :�a1
k�1S

k�g� is the maximal ideal of S�g�, and S��g�G is the
ring of the G-invariant elements. Then we have

Fact 2.5 (see [V5], Corollary 5.4). If X is a g-module of ®nite length, then the
associated variety Vg�X � is contained in N�

g.

2.6. Given an element X 2 �������ÿ1p
k0, we de®ne u � u�X �, l � l�X � and

uÿ � uÿ�X � to be the sum of eigenspaces with positive, 0 and negative
eigenvalues of ad�X � 2 EndC�g�, respectively. Then q :� l� u is said to be a
h-stable parabolic subalgebra of g. We note that l is the complexi®ed
Lie algebra of L :� ZG�X �. The elliptic orbit Ad�G�X ' G=L carries a
G-invariant complex structure, with the canonical line bundle X :� ^topT �

�G=L� ' G�LC2q�u�. Here, 2q�u� :� det Adju
ÿ �

is a character of L written in
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an additive way. Let S :� dimC�u \ k�. Given a character Ck of L, we write
Aq�k� � AG

q �k� for the underlying �g;K�-module of the Dolbeault coho-
mology group HS�G=L;X
Ck� with coe�cients in the associated holo-
morphic line bundle X
 �G�LCk� ' G�LCk�2q�u� (cf. [V1], Chap. 6; [Wo]).
We note that Aq�k� ' RS

q�Ck�q�u�� with the notation in [V3], De®nition 6.20
(cf. [VZ], Sect. 5). We take a fundamental Cartan subalgebra hc

0 �� l0�. Then
hc
0 contains the center z0 of l0 and tc

0 :� hc
0 \ k0 is a Cartan subalgebra of k0.

Aq�k� has the Z�g�-in®nitesimal character c :� k� q 2 �hc�� in the Harish-
Chandra parametrization, where q :� q�u� � ql and ql is half the sum of
positive roots of l. Following [V4], De®nition 2.5, we say k is in the good
range if

Rehc; ai > 0 for any a 2 D u; hc� �;�2:6:1��a�

and in the fair range if

Rehcjz; ai > 0 for any a 2 D u; hc� �;�2:6:1��b�

which is implied by (2.6.1)(a). It is weakly good (respectively, weakly fair) if
the weak inequalities hold.

We recall some important results on Aq�k�. See [V2] and [Wa] for the ®rst
statement; and Part III of [BB], Corollary 1.9 and Proposition 2.8; [HMSW]
and [V4], Proposition 6.8 for the second. Let us identify g and g� by a non-
degenerate Ad�G�-invariant symmetric bilinear form on g.

Fact 2.6. Retain the notation as above.
1) If Ck is in®nitesimally unitary and if k is in the weakly fair range, then

the �g;K�-module Aq�k� is in®nitesimally unitary.
2) If k is in the good range, then Aq�k� is non-zero and irreducible. The

associated variety is given by Vg�Aq�k�� � Ad�KC��uÿ \ p�.
We shall write Aq�k� for the unitary representation of G obtained as a

Hilbert completion of Aq�k� with respect to a pre-Hilbert structure in Fact
2.6(1).

2.7. The Zuckerman module Aq�k� may vanish and may be reducible in the
weakly fair range of parameters. Nevertheless, the associated variety of
Aq�k� does not change as long as Aq�k� is non-zero. The usage of the ad-
jointness of the translation functor was suggested by David Vogan, to whom
the author is grateful.

Lemma 2.7. If k is in the weakly fair range and if Aq�k� is non-zero, then we
have Vg�Aq�k�� � Ad�KC��uÿ \ p�.
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Proof. It follows from [V4], Proposition 4.7 that there exists a character Cl

of L in the good range such that the translation functor wk�q
l�q sends

Z :� Aq�l� to X :� Aq�k�. Here we de®ne the Jantzen-Zuckerman transla-
tion functor by wk�q

l�q�Z� � Pk�q�Fkÿl 
 Pl�q�Z��, where Pn denotes the
projection to �g;K�-modules with the generalized in®nitesimal character
n 2 �hc�� and Fkÿl denotes the ®nite dimensional representation of G with
extremal weight kÿ l. In particular, we have a surjective �g;K�-homo-
morphism Flÿq 
 Z to X , and therefore

Vg�X � �Vg Fkÿl 
 Z
ÿ � �Vg�Z�

by Lemma 2.4. On the other hand, by the adjointness of the translation
functor (e.g. [V1], Proposition 4.5.8) we have

Homg;K�X ;X � ' Homg;K X ;wk�q
l�q�Z�

� �
' Homg;K wl�q

k�q�X �; Z
� �

:

If X is non-zero, then the left side contains the identity map. Hence there
exists a non-zero �g;K�-homomorphism u : wl�q

k�q�X � ! Z. Because Z is
irreducible, u is surjective. Using Lemma 2.4 again, we have

Vg�Z� �Vg wl�q
k�q�X �

� �
�Vg F �kÿl 
 X

� �
�Vg�X �:

Hence, we have Vg�X � �Vg�Z� which coincides with Ad�KC��uÿ \ p� by
Fact 2.6(2). (

3. Theorems in the general case

For discretely decomposable modules with respect to subalgebras, the al-
gebraic approach turns out to be a powerful tool for the study of the re-
striction. In this section, we give a basic estimate on the associated variety of
a g-module when restricted to a reductive subalgebra h. The results here will
be a main tool for the study of the restriction with respect to reductive
symmetric pairs in Sects. 4, 5 and 6.

3.1. Suppose that g is a complex reductive Lie algebra and h is a subalgebra
which is reductive in g. Write the projection prg!h : g� ! h� dual to the
inclusion of complexi®ed Lie algebras h ,! g.

Theorem 3.1. Suppose X is an irreducible g-module and Y is an irreducible
h-module. If Homh�Y ;X � 6� 0 then the associated varieties Vg�X � � g� and
Vh�Y � � h� satisfy the following relation:

prg!h Vg�X �
ÿ � �Vh�Y �:
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3.2. For the proof of Theorem 3.1, we may regard Y as a submodule
of X . Fix a ®nite dimensional vector subspace F �� Y � X �. Then
fYn :� Un�h�F ; �n � 0; 1; 2; . . .�g forms an increasing ®ltration of Y . We
denote by grY the graded S�h�-module, and by AnnS�h��grY � � S�h� the
annihilator of grY . Similarly, an increasing ®ltration fXn :� Un�g�F ;
�n � 0; 1; 2; . . .�g, the graded S�g�-module gr X , and the annihilator
AnnS�g��gr X � � S�g� are de®ned. We should remark that the ®ltration fXng
is di�erent from the one in the proof of Lemma 1.5. In light of the
isomorphism of graded rings

S�h� 
 S h?
ÿ �!� S�g�;�3:2:1�

we have:

Lemma 3.2. AnnS�h��grY � 
 S h?
ÿ � � AnnS�g��grX �:

Proof. Let U 0 h?
ÿ � � S1k�0 U 0k h?

ÿ �
be as in (1.5.1) and (1.5.2). Then the

PoincareÂ -Birkho�-Witt theorem leads to

Un�g� �
X

i�j�n

U 0i h?
ÿ �

Uj�h� for n 2 N:

Thus, we have

Xn � Un�g� F �
X

i�j�n

U 0i h?
ÿ �

Uj�h� F �
X

i�j�n

U 0i h?
ÿ �

Yj:�3:2:2�

We ®x homogeneous elements u 2 Sa�h� \AnnS�h��grY � and v 2 Sb h?
ÿ �

. Leteu 2 Ua�h� be the symmetrization of u and let ev 2 U 0b h?
ÿ �

be that of v. It
follows from u 2 AnnS�h��grY � that euYj � Ya�jÿ1 for any j 2 N. Then we
have

eu ev U 0i h?
ÿ �

Yj
ÿ ��eu U 0i�b h?

ÿ �
Yj

ÿ � � U 0i�b h?
ÿ ��euYj� � U 0i�b h?

ÿ �
Ya�jÿ1:�3:2:3�

Here the second inclusion follows from the fact that ad�h� stabilizes h?. By
(3.2.2) and (3.2.3), we have

eu evXn �
X

i�j�n

eu evU 0i h?
ÿ �

Yj �
X

i�j�n

U 0i�b h?
ÿ �

Ya�jÿ1 � Xa�b�nÿ1:

Since the natural map Ua�b�g� ! Ua�b�g�=Ua�bÿ1�g� ' Sa�b�g� sends eu ev to
u
 v, we have

�u
 v� � �Xn=Xnÿ1� � �eu ev � Xn�=Xa�b�nÿ1 � 0

in the graded module gr X for any n 2 N. Hence we have u
 v 2
AnnS�g��gr X �, which we wanted to prove. (
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3.3. Proof of Theorem 3.1. For V � h or g, if f 2 S�V � then we regard f as a
polynomial over V � and denote the evaluation of f at m 2 V � by hf ; mi. Then
we want to prove

u; prg!h�k�
D E

� 0

for any u 2 AnnS�h��grY � and for any k 2Vg�X � � g�, where u is regarded
as a polynomial over h�. It follows from Lemma 3.2 that
u
 1 2 S�h� 
 S h?

ÿ � ' S�g�ÿ �
annihilates grX , so we have hu
 1; ki � 0;

where u
 1 is regarded as a polynomial over g�. Now, Theorem 3.1 follows
from the formula hu; prg!h�k�i � hu
 1; ki: (

Theorem 3.1 gives rise to a necessary condition for a g-module to be
discretely decomposable as an h-module. We recall that N�

h � h� is the
nilpotent cone for h.

Corollary 3.4. Let X be a g-module of ®nite length. Assume that X is discretely
decomposable as an h-module. Then

prg!h Vg�X �
ÿ � �N�

h:

Proof. We may assume that X is irreducible as a g-module by using Lem-
ma 1.2 (1) and Lemma 2.4 (1). We take an irreducible h-submodule Y of X
(see Lemma 1.5). It follows from Theorem 3.1 that prg!h Vg�X �

ÿ � �Vh�Y �:
By Fact 2.5 applied to h, we have Vh�Y � �N�

h. Hence, Corollary follows.
(

Applying Corollary 3.4 to X � Aq�k� and using Proposition 1.6, we have:

Corollary 3.5. Let us identify g� with g as usual. We assume that a h-stable
parabolic subalgebra q � l� u of g � k� p satis®es

prg!h Ad�KC� uÿ \ p� �� � 6�N�
h:

If Ck is in the weakly fair range and if Aq�k� 6� f0g, then the �g;K�-module
Aq�k� is not discretely decomposable as an h-module. In particular, the re-
striction of the unitary representation Aq�k� to H \ K is not H \ K-admissible.

Proof. The ®rst assertion follows from Lemma 2.7 and Corollary 3.4. The
latter is immediate from Proposition 1.6. (

Remark 3.6. Let X be an irreducible �g;K�-module. If H � K, then X is
always discretely decomposable as an �h;H \ K�-module (for example, use
Lemma 1.5). In this special case, Theorem 3.1 implies a well-known result
(see [V5], Corollary 5.13):

prg!k Vg�X �
ÿ � � f0g; namely; Vg�X � � �g=k��;�3:6:1�
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because the associated variety of a ®nite dimensional representation is zero
and because any irreducible representation of K is ®nite dimensional.

3.7. The following Theorem gives a useful information on bH occurring as
direct summands of the restriction.

Theorem 3.7. Let X be an irreducible �g;K�-module and let Yi be irreducible
�h;H \ K�-modules such that Homh;H\K�Yi;X � 6� 0 (i � 1; 2). Then we have

Vh�Y1� �Vh�Y2�:

Proof. Using the notation of the proof of Lemma 1.5 with Y replaced by
Y1, we set Xm :� U 0m�h?�Y1 �

Pm
j�0 Zj for m 2 N, where Zj is the image

of the map of h? 
 � � � 
 h?|����������{z����������}
j


Y1 ! X as in (1.5.3). Hence Vh�Zj� �

Vh h? 
 � � � 
 h? 
 Y1
ÿ � �Vh�Y1� for all j because of Lemma 2.4. Again

using Lemma 2.4 (1), we have

Vh�Xm� �
[m
j�0
Vh�Zj� �Vh�Y1� for any m:�3:7:1�

Because X � S1m�0 Xm, there exists m such that Xm \ Y2 6� f0g. Since Y2 is an
irreducible h-module, we have Y2 � Xm. Using Lemma 2.4 (1) again, we have

Vh�Y2� �Vh�Xm�:�3:7:2�

By (3.7.1) and (3.7.2), we have Vh�Y2� �Vh�Y1�. The opposite inclusion
Vh�Y1� �Vh�Y2� is similar. (

3.8. In [Ko1]; [Ko2], Sect. 6, we have observed a phenomenon in the re-
striction formula: It can happen that the unitary representation Aq�k� of G is
decomposed into the Hilbert direct sum of di�erent series of irreducible
unitary representations of H such as

AG
q �k�jH �a

j�1

m X
m� j�i 2Kj

� AH
q0j

m�j�i

� �� �
�3:8:1�

where C
m�j�i

is weakly fair with respect to h-stable parabolic subalgebras
q0j � l0j � u0j�1 � j � m� of h for any m�j�i 2 Kj. Theorem 3.7 implies that

Ad��H \ K�C��u01 \ p� � Ad��H \ K�C��u02 \ p�
� � � � � Ad��H \ K�C� u0m \ p

ÿ �
:

Example 3.8. Let �G;H� � �SO�4; 4�;U�2; 2��. For representations and
associated varieties for H � U�2; 2� we shall use the notation of Sects. 7.1
and 7.3. If p is a discrete series representation for the symmetric space
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SO�4; 4�=SO�4; 3�, then the underlying �g;K�-module pK is discretely
decomposable as an �h;H \ K�-module. If the in®nitesimal character is
su�ciently regular, the decomposition formula of pjU�2;2� (see [Ko2], The-
orem 6.1) contains ``di�erent series'' of representations Aq�Y2��k�, Aq�X3��k0�,
and Aq�Y5��k00� with each parameter in the weakly fair range (namely, m � 3
in (3.8.1)). As we shall see in Figure 7.1.2 and Lemma 7.4, these modules
have the same associated variety O1110�5�.
3.9. Theorem 3.7 is mainly intended to the case where dim Y1 � 1. But, we
mention here that Theorem 3.7 with dim Y1 � 1 implies a weaker form of
Moore's theorem [Mo]. Here, we recall brie¯y that Moore's theorem asserts
that ``a unitary representation p of G satisfyingHomH �1; p� 6� 0 must be ®nite
dimensional, if H is a non-compact closed subgroup of a simple Lie group G''.

Corollary 3.9. Retaining the setting of Sect. 1.2, we suppose H is semisimple
without compact factors. We denote by 1 the trivial representation of H . Let p
be an irreducible, in®nitesimally unitary �g;K�-module which is H \ K-
admissible. If Homh;H\K�1; p� 6� 0 then p is ®nite dimensional.

Proof. By Lemma 1.5 and Lemma 1.3, p is decomposed into an algebraic
direct sum of irreducible �h;H \ K�-modules:

p '
X

s

m�s�s:�3:9:1�

Here, the multiplicity m�s� <1 for each irreducible �h;H \ K�-module s,
because p is H \ K-admissible (see Proposition 1.6). If an irreducible
�h;H \ K�-module s occurs in (3.9.1), we have Vh�s� �Vh�1� � f0g by
Theorem 3.7. Hence s is ®nite dimensional by Lemma 2.4 (3). Because there
are only ®nitely many equivalence classes of ®nite dimensional unitary
representations of H , p must be ®nite dimensional by (3.9.1).

4. Restriction with respect to a symmetric pair

4.1. Let r be an involutive automorphism of G, and H an open subgroup of
the ®xed point subgroup Gr :� fg 2 G : rg � gg. Then �G;H� is called a
reductive symmetric pair. There exists a Cartan involution h of G which
commutes with r. Let K � Gh be a maximal compact subgroup of G and
g0 � k0 � p0 the Cartan decomposition. The di�erential of r or its com-
plexi®cation will be also denoted by r. We set gÿr

0 :� fX 2 g0 : rX � ÿXg
and kÿr

0 :� k0 \ gÿr
0 . We ®x a Cartan subalgebra tc

0 of k0 such that
tÿr
0 :� tc

0 \ kÿr
0 is a maximal abelian subspace of kÿr

0 . We ®x compatible
positive systems D��k; tc� and R��k; tÿr�, namely, fajtÿr : a 2 D��k; tc�g n f0g
equals R��k; tÿr�. Without loss of generality, we may assume that a h-stable
parabolic subalgebra q � q�X � is de®ned by a dominant element X 2 �������ÿ1p

tc
0

with respect to D��k; tc� (see Sect. 2.6). De®ne a closed cone in �������ÿ1p
tc
0

ÿ ��
by
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R� hu \ pi :�
X

b2D�u\p;tc�
nb b : nb � 0

8<:
9=;:�4:1:1�

Theorem 4.2. Suppose that �G;H� is a reductive symmetric pair and that
q � l� u is a h-stable parabolic subalgebra de®ned by a dominant element of�������ÿ1p

tc
0

ÿ ��
. In what follows, Ck is a unitary character of L and Aq�k� is a

unitary representation of G obtained by the Hilbert completion of a Vogan-
Zuckerman �g;K�-module Aq�k� (see Sect. 2.6). Then the following eight
conditions on �G;H ; q� are equivalent:

1) Aq�k�jH\K is H \ K-admissible for any Ck in the weakly fair range.
2) Aq�k�jH\K is H \ K-admissible for some Ck in the weakly fair range such

that Aq�k� 6� f0g.
3) Aq�k� is discretely decomposable as an �h;H \ K�-module for any Ck in

the weakly fair range.
4) Aq�k� is discretely decomposable as an �h;H \ K�-module for some Ck in

the weakly fair range such that Aq�k� 6� f0g.
5) prg!h�u \ p� �N�

h.
6) ru \ uÿ � k.
7) r D u \ p; tc� �� � \ D uÿ \ p; tc� � � ;.
8) R�hu \ pi \ �������ÿ1p

tÿr
0

ÿ ��� 0.

Here, we have identi®ed g with g� in (5) and have regarded tÿr
0

ÿ ��
as a

subspace of t�0 by using a non-degenerate symmetric Ad�G�-invariant
bilinear form on g.

It follows from [Ko2], Corollary 1.3 that the above equivalent eight
conditions imply that the unitary representation Aq�k� of G decomposes
discretely as a representation of H :

Aq�k�jH '
X
s2bH� m�s�s; m�s� <1:

Examples of the multiplicity free decomposition, namely, m�s� � 1 for any
s 2 bH , are given in [JV], Sect. 4; [Ko1], Theorem 3.4, Theorem 3.5 and
Theorem 3.6; [Ko2], Theorem 6.1, Theorem 6.4; and [GW], Sect. 6.

4.3. Each K-type occurring in any irreducible unitary representation of G is
of ®nite multiplicity. On the other hand, it often occurs that the multiplicity
of the continuous spectrum in the irreducible decomposition of pjH is in®-
nite where �G;H� is a symmetric pair and p 2 bG. The following Corollary
gives the ®nite multiplicity theorem for the discrete part on the level of
Harish-Chandra modules, generalizing the case with H � K.

Corollary 4.3. Suppose �G;H� is a reductive symmetric pair. Then
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dimHomh;H\K Y ;Aq�k�
ÿ �

<1

for any irreducible �h;H \ K�-module Y and for any Zuckerman's derived
functor module Aq�k� with Ck a unitary character of L in the weakly fair range.

Proof of Corollary 4.3. If Homh;H\K Y ;Aq�k�
ÿ � � f0g for any irre-

ducible �h;H \ K�-module Y , then there is nothing to prove. If
Homh;H\K Y ;Aq�k�

ÿ � 6� f0g for some irreducible �h;H \ K�-module Y , then
Aq�k� is discretely decomposable as an �h;H \ K�-module by Lemma 1.5. By
Theorem 4.2, the restriction Aq�k�jH\K is H \ K-admissible. By Theorem 1.2
of [Ko2], the restriction Aq�k�jH is H -admissible; namely, the multiplicity of
each irreducible representation of H occurring in the irreducible decom-
position of the restriction Aq�k�jH is ®nite. (

4.4. Strategy of Proof of Theorem 4.2. The implication �8� ) �1� is proved in
[Ko2], Theorem 3.2. The implications �1� ) �2� and �3� ) �4� are obvious.
The implications �1� ) �3� and �2� ) �4� are proved in Proposition 1.6. The
implication �4� ) �5� follows from Corollary 3.5 because the condition (4)
leads to

prg!h uÿ \ p� � � prg!h Ad�KC� uÿ \ p� �� � �N�
h:

Here, we note that prg!h uÿ \ p� � �N�
h if and only if prg!h�u \ p� �N�

h.
For the rest of this section, we shall give a proof of the implications

�5� ) �6� ) �7� ) �8�.
4.5. �5� ) �6�: For W 2 g � g0 
C, we denote by W 7!W the complex
conjugation with respect to g0. Let X 2 �u \ p� \ r uÿ \ p� �. Assuming (5),
we will show X � 0. We ®rst note that X 2 uÿ \ p, rX 2 uÿ \ p and
rX � rX 2 u \ p. We put Y :� X � rX 2 u \ p. Then Y � rY � �X � X �
�r�X � X � 2 p \ g0 � p0. By using the assumption (5), we have

Y � rY 2 prg!h�u \ p� \ p0 �N�
h \ p0:

Here, we note that prg!h�Y � � 1
2 �Y � rY � under the identi®cation of g with

g� and of h with h�. Because any element of p0 is semisimple,
N�

h \ p0 � f0g. Since Y 2 u and rY 2 uÿ, Y � rY � 0 implies Y � 0. Sim-
ilarly, if we put Z :� X ÿ rX , then Z � rZ � �X ÿ X � � r�X ÿ X � 2 �������ÿ1p

p0
is also a semisimple element. Hence we have Z � ÿrZ 2 u \ uÿ � f0g.
Therefore X � 1

2 �Y � Z� � 0. Hence we have proved the implication
�5� ) �6�.
4.6. �6� ) �7�: This is easy. In fact, if there is an element
a 2 r D u \ p; tc� �� � \ D uÿ \ p; tc� �, then we take a non-zero root vector Xa.
Then Xa 2 uÿ \ p and rXa 2 u \ p. Therefore, r�u \ p� \ uÿ \ p� � 6� f0g.
Thus we have proved �6� ) �7�.
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4.7. �7� ) �8�: Suppose A 2 �������ÿ1p
tc
0 de®nes the parabolic subalgebra

q � l� u. This means that a�A� > 0 for any a 2 D u; tc� � and that a�A� � 0
for any a 2 D l; tc� �. We assume (7), equivalently,

r D u \ p; tc� �� � � D u \ p; tc� � [ D l \ p; tc� �:�4:7:1:�

Let b :�Pa2D u\p;tc� � aaa 2 R�hu \ pi with aa � 0 for all a. If b belongs to�������ÿ1p
tÿr
0

ÿ ��
, then we have rb� b � 0. By (4.7.1), we have �rb��A� � 0.

Therefore b�A� � 0, which occurs only if aa � 0 for all a, namely, b � 0.
Therefore, we have proved �7� ) �8�.

This completes the proof of Theorem 4.2.

5. Restriction of holomorphic discrete series representations

5.1. In this section, we assume that G is a simple linear Lie group such that
G=K is Hermitian, namely, the center c�k0� of k0 is not trivial. It is known
that c�k0� is one dimensional and that there exists Z 2 c�k0� so that
g � k� p� � pÿ are 0,

�������ÿ1p
and ÿ �������ÿ1p

eigenspaces of ad�Z�. A �g;K�-
module is said to be a highest weight module (resp. lowest weight module) if
there exists a non-zero vector annihilated by p� resp. pÿ� �. It will be con-
venient to allow `highest weight module' to refer also to an irreducible
unitary representation of G whose underlying �g;K�-module is a highest
weight module. A discrete series representation for G is said to be a holo-
morphic discrete series representation (resp. anti-holomorphic discrete repre-
sentation) if it is a highest weight module (resp. a lowest weight module).

5.2. Suppose r is an involutive automorphism of G commuting with the
Cartan involution h. Since rc�k0� � c�k0�, there are two exclusive possibili-
ties:

rZ � Z;�5:2:1�

rZ � ÿZ:�5:2:2�

In this section, we suppose H � Gr, the subgroup of G consisting of ®xed
points by r.

The geometric meaning of (5.2.1) and (5.2.2) is the following:
H=H \ K � G=K is a complex submanifold in the case (5.2.1) and is a totally
real submanifold in the case (5.2.2)

Theorem 5.3. Suppose G is a non-compact simple Lie group. Let p be a
holomorphic discrete series representation of G. If r satis®es (5.2.2), then the
underlying �g;K�-module pK is not discretely decomposable as an �h;H \ K�-
module. In particular, the restriction pjH\K is not H \ K-admissible.

5.4. The above theorem is in sharp contrast with the following fact (cf. [Ma],
[JV], [Ko4]):
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Fact 5.4. Let p 2 bG be an irreducible unitary highest weight module. If r
satis®es (5.2.1), then the restriction pjH\K is H \ K-admissible. In particular,
the underlying �g;K�-module pK is discretely decomposable as an �h;H \ K�-
module.

5.5. Proof of Theorem 5.3. Any holomorphic discrete series representation p
is of the form Aq�k� such that Ck is in the good range with respect to a h-
stable parabolic subalgebra (actually, Borel subalgebra) q � l� u with
u \ p � pÿ. On the other hand, the assumption (5.2.2) implies rpÿ � p�.
Therefore, if the condition (6) of Theorem 4.2 holds, then we have
f0g � rpÿ \ p�. Hence p� � f0g. Then p � pÿ � p� � rp� � p� � f0g;
which implies that G is compact, yielding a contradiction. Therefore, the
condition (6) of Theorem 4.2 fails. Thus, the underlying �g;K�-module of p
is not discretely decomposable as an �h;H \ K�-module. (

Remark 5.6. In view of Fact 5.4, one might expect that no unitary highest
weight module of in®nite dimension is discretely decomposable as an
�h;H \ K�-module if H � Gr with r satisfying (5.2.2). However, this is not
always the case. For instance, with the notation of Sect. 7.3 where
�G;H� � �U�2; 2�; Sp�1; 1��, Aq�Zi� �1 � i � 4� are unitary highest weight
modules due to [A2], while they are discretely decomposable as an
�h;H \ K�-modules (see Sect. 7).

6. Discrete series for semisimple symmetric spaces and restrictions

In this section we give another application of our main theorem in the case
of discrete series representations for semisimple symmetric spaces G=H and
mention some related topics in our context.

6.1. Let �G;H� be a reductive symmetric pair de®ned by an involution r of
G. We shall use the notation in Sect. 4.1. There is a G-invariant measure on a
reductive symmetric space G=H . Then we have a natural unitary represen-
tation (a regular representation) on the Hilbert space of square integrable
functions L2�G=H�. An irreducible unitary representation p is said to be
a discrete series representation for G=H if there is a non-zero unitary G-
homomorphism from p into L2�G=H�. We denote by Disc�G=H� � bG the
set of discrete series representations for G=H .

6.2. Here is a main theorem in this section.

Theorem 6.2. Suppose that G=H is a non-compact reductive symmetric space.
Then the underlying �g;K�-module of any discrete series representation for
G=H is not discretely decomposable as an �h;H \ K�-module. In particular, no
discrete series representation for G=H is H \ K-admissible.

6.3. With the notation in Sect. 4.1, we review the following result due to
Flensted-Jensen, Matsuki-Oshima and Vogan.
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Fact 6.3 ([FJ1]; [MO]; [FJ2], Ch.VIII, Sect. 2; [V4], Sect. 4). Let G=H
be a reductive symmetric space. Then Disc�G=H� 6� ; if and only if
rank G=H � rank K=H \ K: Furthermore, if the rank condition is satis®ed,
then any discrete series p 2 Disc�G=H� is of the form Aq�k�, where q � l� u is
de®ned by a generic element in

�������ÿ1p
tÿr
0 and Ck is a unitary character of

L � ZG tÿr
0

ÿ �
in the fair range satisfying some integral conditions determined

by �G;H�.
6.4. Before proving Theorem 6.2, we prepare the following lemma:

Lemma 6.4. Retain the notation in Fact 6.3. Suppose that G=H is a reductive
symmetric space with rank G=H � rank K=H \ K: If p � l, then G=H is
compact.

Proof. The rank condition implies that tÿr is a maximal abelian subspace in
gÿr, and so we have l \ gÿr � tÿr. Assume p � l. Then p \ gÿr � l \ gÿr

� tÿr � k; which implies p \ gÿr � f0g. Hence we have p0 \ gÿr
0 � f0g.

Since G=H is di�eomorphic to a vector bundle over a compact manifold
K=H \ K with typical ®ber p0 \ gÿr

0 , it follows that G=H is compact. (

6.5. Proof of Theorem 6.2. Suppose there exists p 2 Disc�G=H� such that the
underlying �g;K�-module pK is discretely decomposable as an �h;H \ K�-
module. Then pK is of the form Aq�k�, with q � l� u is de®ned by a generic
element of

�������ÿ1p
tÿr
0 as in Fact 6.3. In particular, we have ru � uÿ. Then the

equivalent condition (6) in Theorem 4.2 yields u \ p � f0g. In view of the
direct sum decomposition

p � �u \ p� � �l \ p� � r�u \ p�

we have p � l \ p, that is, p � l. By Lemma 6.4, G=H must be compact,
which contradicts to our assumption. Hence we have proved Theorem. (

Remark 6.6. Related topics are in order:

1) Let K be a maximal compact subgroup of G as usual. Any irreducible
unitary representation is K-admissible (Harish-Chandra). Therefore, Theo-
rem 6.2 in the special case where H � K is equivalent to the well-known fact
that there is no discrete series representation for the non-compact Riem-
annian symmetric space G=K. This example does not give a new proof of
this classical result, but rather a di�erent perspective.

2) There are a number of examples of p 2 Disc�G=H� such that pjL is
L \ K-admissible where r and s are involutive automorphisms of G and
H � Gr and L � Gs (see [Ko2], Sect. 5 and [Ko4] for the application to Lp-
analysis). For instance, this is the case if r satis®es (5.2.2) and if s satis®es
(5.2.1) in the setting of Sect. 5.2. On the other hand, Theorem 6.2 asserts
that such examples can be found only if L 6� H , namely, r 6� s in the
non-compact case.
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3) Suppose C is a torsion free discrete subgroup of G such that both CnG
and �H \ C�nH are compact. Then the image of the natural map
�H \ C�nH=�H \ K� ! CnG=K de®nes a cycle which is called a modular
symbol. The PoincareÂ dual of modular symbols are studied in the context of
the Matsushima±Murakami formula ([MM], see also [BW]):
Hj
de Rham�CnG=K; C� ' �

p2bGHomG p; L2�CnG�ÿ �
 H j�g;K; pK�: Y. Tong
and S. Wang proved the non-vanishing theorem of the modular symbols for
the component of p 2 Disc�G=H� ([TW]), while T. Oda and the author
recently proved the vanishing theorem for the component of p 2 bG whose
restriction to H is H -admissible. Thus, one could expect that no p 2 bG
satis®es both assumptions. This was a motivation of Theorem 6.2. We note
that it requires some elaboration to deduce Theorem 6.2 from [TW] and
[KO] because the proof of the non-vanishing theorem of [TW] is not valid
for the constant sheaf, whose vanishing theorem is given in [KO].

4) Let us consider the group manifold case G=H ' G0 � G0=diag�G0�.
Then any discrete series representation for G=H is of the form p2p� where
p 2 Disc�G0� and p� is the dual of p. Its restriction to H � diag�G0� is
nothing but the tensor product pc
 p�. Theorem 6.2 means that pK 
 p�K is
not discretely decomposable as a �g;K�-module. This fact was known more
explicitly in the special setting where p is a holomorphic discrete series
representation. That is, the tensor product of holomorphic and anti-holo-
morphic discrete series representations is unitarily equivalent to the quasi-
regular representation on the space of L2-sections of a certain vector bundle
over a Riemannian symmetric space by a result of Repka [R] (see also [Ko3],
Sect. 6.2 for some more references), of which the irreducible decomposition
involves continuous spectra and at most ®nitely many discrete series
representations.

5) Generalizing the result of Repka, OÂ lafsson and [rsted announced the
irreducible decomposition of the restriction pjH under the assumption that
G=H satis®es (5.2.2) and that p is a holomorphic discrete series represen-
tation for G=H having a one-dimensional minimal K-type [O[]. Only
continuous spectra appear in the irreducible decomposition of pjH in this
case. We note that the decomposition formula for pjH is not known for a
non-holomorphic discrete series representation p in general.

7. Example 1 : the restriction from U�2; 2� to Sp�1; 1�

In this section, we illustrate our results by an example of a symmetric pair
�G;H� � �U�2; 2�; Sp�1; 1�� � �SO�4; 2�; SO�4; 1��. We shall give a classi®-
cation of all irreducible unitary representations of G with regular integral
in®nitesimal character, whose underlying �g;K�-modules are discretely de-
composable as an �h;H \ K�-modules (Proposition 7.5). Among 18 series of
irreducible in®nitesimally unitary �g;K�-modules, 12 will be proved to be
discretely decomposable as �h;H \ K�-modules. Proposition 7.5 itself fol-
lows from Theorem 4.2 immediately by computation of the root system,
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however, we also present some elementary computations of associated va-
rieties to illustrate the ingredients of Sect. 3 (cf. Example 3.8 and Remark
5.6).

7.1. Let G � U�2; 2� be the inde®nite unitary group realized as
fg 2 GL�4;C� : t�gI2;2g � I2;2g, where I2;2 :� diag�1; 1;ÿ1;ÿ1�. We take a
maximal compact group K � G \ U�4� ' U�2� � U�2� and then
KC ' GL�2;C� � GL�2;C�. We begin with the description of Ad�KC�-orbits
on N�

g \ �g=k��. We identify

�g=k�� ' p '
�

O A
B O

� �
: A;B 2 M�2;C�

�
' M�2;C� �M�2;C�;�7:1:1�

on which KC acts by

�A;B� 7! g1Agÿ12 ; g2Bgÿ11
ÿ �

; �g1; g2� 2 KC ' GL�2;C� � GL�2;C�:

Then the nilpotent cone N�
p :�N�

g \ �g=k�� is given by

f�A;B� 2 M�2;C� �M�2;C� : AB and BA are nilpotent matricesg:

The variety N�
p splits into 10 Ad�KC�-orbits:

Here, we have put

Oijkl :� f�A;B� 2N�
p : rank A � i; rank B � j; rank AB � k; rank BA � lg:

Since rankA, rankB, rankAB and rankBA are invariants of the Ad�KC�-
action, Oijkl are KC-invariant sets. In fact, each Oijkl in Figure 7.1.2. is a
single Ad�KC�-orbit. For the reader's convenience, Oijkl is also written as

Fig. 7.1.2
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Oijkl�N� if dimC Oijkl � N . The segment denotes the closure relation. The
brace followed by Oijkl�N� (e.g. fX2g followed by O1211�6�) describes the
associated variety which we will explain in Sect. 7.3. Figure 7.1.2 is obtained
as follows. For instance, if rankA � 1 then we can assume A � E12, after
conjugating by an element of KC, where Eij 2 M�2;C� stands for the matrix
unit. Because AB and BA are nilpotent, the �2; 1�-component of B must be 0.
Then B is conjugate to one of E11 � E22, E11, E22, E12 or O by the subgroup
of KC stabilizing A. The corresponding orbits are O1211�6�, O1101�5�, O1110�5�,
O1100�4� or O1000�3�, respectively. Other cases are similar or trivial.
7.2. Let H � Sp�1; 1�. Corresponding to the embedding H ,! G, we have the
projection prg!h :p� ! �p \ h�� which respects the action of �H \ K�C ,!
KC. The projection is given in the matrix spaces by

prg!h :� p� ' M�2;C� �M�2;C� ! �p \ h�� ' M�2;C�; �A;B� 7! A� sB;

where s
a b
c d

� �
:� ÿd b

c ÿa

� �
and the action of �H \ K�C ' SL�2;C�

� SL�2;C� 3 �g1; g2� on �p \ h�� is given by Z 7! g1Zgÿ12 . The nilpotent
variety N�

h \ �p \ h�� is identi®ed with fX 2 M�2;C� : rank X � 1g.

Lemma 7.2. The following conditions on a KC-orbit O inN�
p are equivalent:

1) prg!h�O� 6�N�
h.

2) prg!h�O� 6�N�
h. {Here, O denotes the closure of O.

3) O is one of O2111�6�, O1211�6�, O2000�4� or O0200�4�.

Proof. By the closure relation described in Figure 7.1.2, it su�ces to show
�1� , �3�. Since O2111�6� contains �A;B� :� �E11 � E22;E12� (see Sect. 7.1),
prg!h�A;B� � A� sB 62N�

h because rank�A� sB� � 2 > 1. Hence prg!h

�O2111�6�� 6�N�
h. Similarly, O2000�4� contains �E11 � E22;O� and thus

prg!h�O2000�4�� 6�N�
h. Changing the role of A and B for other cases, we

have �3� ) �1�. To prove �1� ) �3�, we note that

prg!h Ad�KC��A;B�� � � Ad��H \ K�C�f�aA� bsB� : a; b 2 C�g:

For example, O1101�5� contains �E12;E11� and det�aE12 � bsE11� � 0 for any
a; b 2 C�. Hence we have prg!h�O1101�5�� �N�

h. Other cases are similar. (

7.3. It follows from a result of S. Salamanca Riba (see [Sa], Theorem 1.2)
that any irreducible unitary representation of G � U�2; 2� whose underlying
�g;K�-module has regular integral in®nitesimal character is of the form
Aq�k� where q is a h-stable parabolic subalgebra and k is in the good range.
Because the associated variety and the discrete decomposability are pre-
served by coherent continuation in the good range of parameters, we shall
assume k � 0 without loss of generality. Let tc

0 be a Cartan subalgebra of
k0 ' u�2� � u�2�. We choose a coordinate in

�������ÿ1p
tc
0 so that D� k; tc� �

� fe1 ÿ e2; e3 ÿ e4g. With this basis, we put X1 � �4; 3; 2; 1�;X2 � �4; 2; 3; 1�;
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X3 � �4; 1; 3; 2�; X4 � �3; 2; 4; 1�; X5 � �3; 1; 4; 2�; X6 � �2; 1; 4; 3�; Y1 �
�2; 1; 1; 0�; Y2 � �2; 0; 1; 0�; Y3 � �2; 1; 2; 0�; Y4 � �1; 0; 2; 0�; Y5 � �2; 0; 2; 1�;
Y6 � �1; 0; 2; 1�; Z1 � �1; 0; 0; 0�; Z2 � �1; 1; 1; 0�; Z3 � �0; 0; 1; 0�; Z4 �
�1; 0; 1; 1�, W � �1; 0; 1; 0�, U � �0; 0; 0; 0� 2 �������ÿ1p

tc
0ÿ: Then the set of

�g;K� -modules

fAq : q � q�Xi�; q�Yi��1 � i � 6�; q�Zi��1 � i � 4�; q�W �; q�U�g

is the totality of irreducible, in®nitesimally unitarizable �g;K�-modules with
trivial in®nitesimal character. We note that Aq�Xi� �1 � i � 6� is Harish-
Chandra's discrete series for a group manifold G and Aq�U� � C. We refer to
the ®gure in [Ko2], Example 3.7 for the geometric description of these
modules in the context of the Beilinson-Bernstein correspondence between
irreducible Harish-Chandra modules and irreducible K-equivariant sheaves
of D-modules on the ¯ag variety of GC.

7.4. Let us compute the associated variety V�Aq� � Ad�KC� uÿ \ p� � for
each h-stable parabolic subalgebra q � l� u.

Lemma 7.4. The correspondence X 7! Aq�X � 7! Vg�Aq�X �� �: O is given in the
Figure 7.1.2 described as OfXg. Here O stands for the closure of some
Ad�KC�-orbit O � Oijkl�N�, and X stands for one of Xm; Ym; Zm;W or U .

For example, the above lemma means that Vg�Aq�X1�� � O0200�4�,
Vg�Aq�X2�� � O1211�6�, Vg�Aq�X5�� � O2111�6�, and so on. Let us sketch the
computation for Vg�Aq�X5�� � O2111. Corresponding to D�uÿ�X5� \ p�
� fe1 ÿ e3;ÿe1 � e4; e2 ÿ e3; e2 ÿ e4g, we have

uÿ�X5� \ p '
�

a 0
c d

� �
;

0 0
b 0

� �
: a; b; c; d 2 C

�
� M�2;C� �M�2;C�:

Hence, Ad�KC� uÿ�X5� \ p� � � f�A;B� : rankA � 2; rankB � 1g � O2111�6�.
7.5. Here is a classi®cation of discretely decomposable modules.

Proposition 7.5. Let G � U�2; 2� � H � Sp�1; 1�. Let p be the irreducible
unitary representation of G with regular integral in®nitesimal character. Then
the following three conditions are equivalent:

1) The restriction pjH\K is H \ K-admissible.
2) The underlying �g;K�-module pK is discretely decomposable as an

�h;H \ K�-module.
3) p is isomorphic to Aq�k� where k is in the good range of parameter

and where q is one of q�X3�; q�X4�; q�Y2�; q�Y3�; q�Y4�; q�Y5�; q�Zi�
�1 � i � 4�; q�W �; q�U�:
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Proof. �3� ) �1� is given in Theorem 3.2 and Example 3.7 of [Ko2].
�1� ) �2� is proved in Proposition 1.6. �2� ) �3� follows from Corollary 3.5
and the above computations. (

Remark 7.6. The above proof of �3� ) �1� is divided into four steps:

Step 1. Computation of the KC-orbits in the nilpotent cone N� \ �g=k��.
Step 2. Computation of the projection prg!h of the orbits in Step 1.
Step 3. Description of bG with regular integral in®nitesimal character.
Step 4. Description of the associated varieties for the representations in

Step 3.

More general combinatorial results may be found in the literature for some
of the above steps: the description of KC-orbits on N�

p in terms of ab-
diagrams due to H. Kraft-C. Procesi, T. Ohta and J. Schwartz for Step 1; the
description of KC-orbit Q on the ¯ag variety F by T. Matsuki ± T. Oshima
for a part of Step 3; and the description of the image of the moment map
from the conormal bundle T �QF to g� (e.g. G � U�p; q�) by a recent work of
A. Yamamoto for Step 4. As we mentioned in Sect. 7.1, Proposition 7.5
itself can be easily proved by Theorem 4.2 instead of Corollary 3.5 because
Theorem 4.2 enables us to avoid a direct computation of associated vari-
eties. The classi®cation for the triplet �G;H ; q� with �G;H� a classical
symmetric pair which satis®es the equivalent conditions in Theorem 4.2 will
be reported elsewhere.

8. Example 2 : the restriction to normal real forms

8.1. It is well-known that p is discretely decomposable as a �g;K�-module for
any irreducible �eg; eK�-module p if �eG;G� is a Riemannian symmetric pair,
namely if G ' eK. In this section we present an opposite extremal case:

Theorem 8.1. Let eG be a complex reductive linear Lie group, and G a normal
real form of eG. Then, no irreducible in®nite dimensional �eg; eK�-module is
discretely decomposable as a �g;K�-module.

We recall that a closed subgroup G of a complex reductive linear
Lie group eG is a normal real form if g0 is a real form of eg0 satis-
fying R-rankG � rankG. For example, �eG;G� � �GL�n;C�;GL�n;R��,
�SO�2n� 1;C�; SO�n� 1; n��, �Sp�n;C�; Sp�n;R��, �SO�2n;C�; SO�n; n�� are
the cases. Exceptional cases are given by �eg0; g0� � �en; en�n�� (n � 6; 7; 8),
�f4; f4�4�� and �g2; g2�2�� (see [He], Chapter X for notation).

The rest of this section will be devoted to the proof of Theorem 8.1.

8.2. Suppose we are in the setting of Theorem 8.1. Let eg � ek� ep be a
complexi®ed Cartan decomposition of eg compatible with g � k� p. If X
is a �eg; eK�-module of ®nite length, then the associated variety Veg�X � is a
union of Ad�fKC�-orbits in N�eg \ �eg=ek�� (see Remark 3.6). Furthermore, if
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dimX � 1 then Veg�X � 6� f0g. Since N�eg consists of nilpotent elements,

Theorem 8.1 follows from Corollary 3.4 if one proves the following lemma:

Lemma 8.2. If O is a non-zero Ad�fKC�-orbit on N�eg \ �eg=ek�� then
preg!g�O� �� g�� contains a non-zero semisimple element.

8.3. We will rewrite Lemma 8.2 by using the fact that eG is a complex
Lie group. In view of the isomorphism of complex vector spaceseg � Lie�eG� 
R C � ek� ep ' g� g; we can identify

�eg=ek�� ' ep� ' ep ' g;

�g=k�� ' p� ' p:

Then, the projection preg!g : eg� ! g� restricted to �eg=ek�� ! �g=k�� is
identi®ed with

prg!p : g! p; X 7! 1

2
�X ÿ hX �;

where h is a Cartan involution of g0 extended to a C-linear endomorphism
of g as usual. We note that the above isomorphism induces a bijection
between nilpotent orbits of the identity component of fKC on N�eg \ �eg=ek��
and nilpotent orbits of Int�g� onN�

g. Hence, Lemma 8.2 is equivalent to the
following lemma:

Lemma 8.3. Suppose that G is a real reductive linear Lie group with
R-rankG � rankG. If O is a non-zero nilpotent orbit of Int�g� in g, then
prg!p�O� contains a non-zero semisimple element.

8.4. Before proving Lemma 8.3, we need:

Lemma 8.4. Suppose that G is a real reductive linear Lie group with
R-rankG � rankG. Then any nilpotent orbit O of Int�g� in g meets g0.

Proof. First, we recall the proof of the Dynkin-Kostant classi®cation of
complex nilpotent orbits. By the Jacobson-Morozov theorem, there exists an
sl2 triple fH ;X ; Y g �� g� such that �H ;X � � 2X , �H ; Y � � ÿ2Y , �X ; Y � � H
and that Int�g� � X � O. We put

g0�H ; k� :� fZ 2 g0 : �H ; Z� � kZg �k 2 C�;
g�H ; k� :� fZ 2 g : �H ;Z� � kZg �k 2 C�;
P :� fZ 2 g�H ; 2� : Ker ad Z : g�H ;ÿ2� ! g�H ; 0�� � � f0gg;
L :� the identity component of fg 2 Int�g� : Ad�g�H � Hg:

We note that g�H ; k� 6� f0g only if k 2 Z by the representation theory of sl2.
Because g0 is a normal real form of g, we have
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g�H ; k� � g0�H ; k� 
R C �k 2 C�:�8:4:1�

A theorem of Malcev says that P � Ad�L� � X and that P is a Zariski open
set of g�H ; 2�. It follows from (8.4.1) that P \ g0�H ; 2� 6� ;. Therefore, we
®nd X 0 2 P \ g0�H ; 2� �� g0� and l 2 L such that Ad�l�X � X 0. Thus,
O \ g0 6� ;. (

8.5. Now, let us complete the prove of Theorem 8.1.
All what we need is to show Lemma 8.3. In the setting of Lemma 8.3,

we can take a non-zero element X 2 O \ g0 owing to Lemma 8.4. Then
prg!p�X � � 1

2 �X ÿ hX � 2 p0, which shows prg!p�X � is a semisimple
element. On the other hand, prg!p�X � 6� 0 because any element of
k0 � g0 \Ker�prg!p : g! p� is semisimple. This proves Lemma 8.3.

Hence, we have completed the proof of Theorem 8.1.
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