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Abstract: The indefinite orthogonal group G = O(p, q) has a distinguished infinite dimen-
sional unitary representation π, called the minimal representation for p + q even and greater than
6. The Schrödinger model realizes π on a very simple Hilbert space, namely, L2(C) consisting
of square integrable functions on a Lagrangean submanifold C of the minimal nilpotent coadjoint
orbit, whereas the G-action on L2(C) has not been well-understood. This paper gives an explicit
formula of the unitary operator π(w0) on L2(C) for the ‘conformal inversion’ w0 as an integro-
differential operator, whose kernel function is given by a Bessel distribution. Our main theorem
generalizes the classic Schrödinger model on L2(Rn) of the Weil representation, and leads us to an
explicit formula of the action of the whole group O(p, q) on L2(C). As its corollaries, we also find
a representation theoretic proof of the inversion formula and the Plancherel formula for Meijer’s
G-transforms.
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In this paper, we provide an explicit formula for
the unitary inversion operator on the ‘Schrödinger
model’ for the minimal representation π of the indef-
inite orthogonal group G = O(p, q) of type D.

For a reductive Lie group a particularly inter-
esting irreducible unitary representation, sometimes
called the minimal representation, is the one corre-
sponding via ‘geometric quantization’ to the minimal
nilpotent coadjoint orbit O. Minimal representations
are one of the most fundamental irreducible unitary
representations in the sense that they cannot be built
up from any smaller groups by existing methods of
induced representations.

The classic example of minimal representations
is the oscillator representation, or sometimes referred
to as the (Segal–Shale–)Weil representation of the
metaplectic group Mp(n,R). For the indefinite or-
thogonal group O(p, q), there is no minimal repre-
sentation if p + q is odd and p, q > 3 by a result due
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to Howe and Vogan [18, Theorem 2.3]. On the other
hand, if p + q is even and p, q ≥ 2, then O(p, q) has
a distinguished unitary representation. This repre-
sentation, denoted by π, is our main concern in this
paper, and has the following properties:

(i) π is a minimal representation if p + q ≥ 8.
(ii) π is not spherical if p 6= q.
(iii) dπ is not a highest weight module of the Lie

algebra so(p, q) if p, q ≥ 3.

In the special case q = 2, the differential repre-
sentation dπ splits into the sum of highest and lowest
weight modules of so(p, q), and these have been stud-
ied by many authors, in particular in the physics lit-
erature, interpreted as the mass-zero spin-zero wave
equation, or as the bound states of the Hydrogen
atom in p− 1 space dimensions.

Since 1990s, various models have been proposed
to construct the unitary representation π of O(p, q)
for p, q ≥ 3 by Kostant in [14] for p = q = 4, and by
Binegar–Zierau [1], Huang–Zhu [7], and Kobayashi–
Ørsted [12, 13] for general p, q ≥ 2 such that p + q

is an even integer (≥ 6). Yet another construction is
studied in Brylinski–Kostant [2] and Torasso [17].
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From now on, suppose G = O(p, q) where

p ≥ q ≥ 2, p + q is even, ≥ 6.

One of the models of the minimal represen-
tation π is the realization as a subrepresentation
of the most degenerate principal series representa-
tion [1, 6, 7]. Geometrically, the representation
space can be characterized as the solution space of
the Yamabe–Laplace operator in conformal geome-
try [8, 12, 13]. An advantage of this model (confor-
mal model) is that the G-action on function spaces
is easy to describe, whereas the inner product on the
solution space is rather complicated.

By taking the Fourier transform of the con-
formal model on the flat pseudo-Eulidean space
Rp−1,q−1, we get in [13, III] another model
(Schrödinger model) which has an advantage that
the inner product on the representation space is very
simple, whereas the group action is not. This model
generalizes the classic Schrödinger model on L2(Rn)
of the oscillator representation (e.g. [3, 5]), and we
shall call it the Schrödinger model of the minimal
representation π.

To explain the Schrödinger model of π, let C be
the conical subvariety given by

C := {(x1, · · · , xp+q−2) ∈ Rp+q−2 \ {0} :

x2
1 + · · ·+ x2

p−1 − x2
p − · · · − x2

p+q−2 = 0},
and consider the Hilbert space L2(C) ≡ L2(C, dµ) of
square integrable functions on C against the measure

dµ :=
1
2
rp+q−5drdωdη

in the polar coordinate

R+ × Sp−2 × Sq−2 ' C, (r, ω, η) 7→ (rω, rη).

This variety C is so small that the whole group G

cannot act on C. In fact, any non-trivial homoge-
neous space of G has a higher dimension than dim C.
However, a maximal parabolic subgroup Pmax acts
on L2(C) as a unitary representation as follows (see
[13, III, §3.3.7]):

Let e1, · · · , ep+q be the standard basis of Rp+q,
and Pmax the stabilizer of R(e1 − ep+q) in the real
projective space Pp+q−1R. The geometric meaning of
the group Pmax is that it is (essentially) the confor-
mal group on the flat pseudo-Riemannian Euclidean
space Rp−1,q−1. In a group language, Pmax is the
maximal parabolic subgroup of G corresponding to
non-positive weight vectors for the adjoint action of

E := E1,p+q + Ep+q,1.

Then Pmax has a Langlands decomposition

Pmax = MmaxAmaxNmax,

where

Mmax ' {±Ip+q} ×O(p− 1, q − 1),

Amax = {esE : s ∈ R}.
We give a coordinate of the unipotent radical Nmax

by

nb(e1 − ep+q) =




1−Q(b)
2b

1 + Q(b)


 for b ∈ Rp+q−2.

Here, Q(b) :=
∑p−1

j=1 b2
j −

∑p+q−2
j=p b2

j . The correspon-
dence b 7→ nb gives an isomorphism of abelian Lie
groups, Rp+q−2 ' Nmax.

With this notation, any element g of Pmax is
written as

g = δmesEnb

for some δ = ±1, m ∈ O(p− 1, q− 1), s ∈ R and b ∈
Rp+q−2. Then, the Pmax action on L2(C) is defined
by

(π(g)u)(x) = δ
p−q
2 e−

p+q−4
2 se2

√−1〈b,x〉u(e−s tmx).

Here, 〈 , 〉 denotes the standard (positive definite) in-
ner product on Rp+q−2, and tm denotes the transpose
of the matrix m.

One of the main results in [13] asserts that this
action of Pmax on L2(C) extends to an irreducible
unitary representation of G, giving rise to the mini-
mal representation of G.

The missing point of [13] is an explicit formula
for the action of the whole group G on L2(C) other
than the action of Pmax.

We set

w0 =
(

Ip 0
0 −Iq

)
.

In light of the Bruhat decomposition

G = Pmax
∐

Pmaxw0Pmax,

the whole group action will be understood if we find
an explicit formula for the unitary inversion oper-
ator π(w0). For the oscillator representation, the
corresponding unitary inversion operator is nothing
but the Fourier transform (e.g. [3]). For our mini-
mal representation π, we proved in [10] that π(w0) is
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given by the Hankel transform in the special case q =
2 (see also [9]). The general case is the main theme
of this paper. We shall find the integro-differential
kernel for the unitary inversion operator π(w0) on
L2(C) for general p, q as follows.

We begin with the tempered distributions on R
given by

Ψ0
m(t) :=(2t)−

m
2

+ Jm(2
√

2t+),

Ψ+
m(t) :=(2t)−

m
2

+ Jm(2
√

2t+)−
m−1∑

l=0

(− 1
2 )l

Γ(m− l)
δ(l)(t),

Ψm(t) :=(2t)−
m
2

+ Ym(2
√

2t+)

+
2(−1)m+1

π
(2t)−

m
2− Km(2

√
2t−).

Here, Jν(x), Yν(x) and Kν(z) are the (modified)
Bessel functions, δ(l)(t) denotes the l-th differential
of the Dirac delta function δ(t), and tλ+ and tλ− are
the distributions with meromorphic parameter λ ∈
C such that they are locally integrable functions for
Re λ > −1:

tλ+ :=

{
tλ if t > 0
0 if t < 0,

tλ− :=

{
0 if t > 0
|t|λ if t < 0.

We define a generalized function K(x, x′) on the
direct product manifold C × C by

K(x, x′) ≡ K(p, q; x, x′)(1)

:= 2(−1)
(p−1)(p+2)

2 π−
p+q−4

2 Φp,q(〈x, x′〉),
where the distribution Φp,q(t) is defined as follows:

Φp,q(t) :=





Ψ0
p+q−6

2
(t) if q = 2,

Ψ+
p+q−6

2
(t) if q > 2 is even,

Ψ p+q−6
2

(t) if q > 2 is odd.

Then, here is our main result.
Theorem 1. The unitary inversion operator

π(w0) is given by the following integro-differential
operator:

(2) π(w0)u(x) =
∫

C

K(x, x′)u(x′)dµ(x′),

for u ∈ L2(C).
The following new phenomenon is noteworthy:

the kernel distribution K(x, x′) for the unitary oper-
ator π(w0) is not locally integrable if p, q ≥ 3 and p+
q > 6, equivalently, if π is a minimal representation
which is a non-highest weight module.

The following corollaries concern with the func-
tional equation of K(x, x′).

Corollary 2 (Plancherel formula). Let S :
L2(C) → L2(C) be an integral transform whose ker-
nel function is given by K(x, x′). Then S is unitary.

Since the group law w2
0 = 1 in O(p, q) implies

π(w0)2 = id on L2(C), we immediately obtain the
inversion formula: S−1 = S. We pin down:

Corollary 3 (Reciprocal formula). The uni-
tary operator S is of order two in L2(C). Namely, we
have the following reciprocal formula for u ∈ L2(C):

u(x) =
∫

C

K(x, x′′)
(∫

C

K(x′′, x′)u(x′)dµ(x′)
)
dµ(x′′).

Corollaries 2 and 3 are regarded as a general-
ization of the Plancherel and inversion formulas for
the Fourier–Bessel transforms (see [16, Chapter 8] for
traditional approaches, and [3, 9, 10] for represena-
tion theoretic approaches using Mp(n,R) or O(p, 2)).

The proof of Theorem 1 is based on the following
steps:
Step 1) Analysis on the Radon transform R for func-

tions supported on C (see [15]).
Step 2) Decomposition formula of π(w0) into the ‘ra-

dial’ part Tl,k.
For Step 1), we identify a compactly supported

smooth function f on C with a tempered distribution
fdµ on Rp+q−2 (p + q > 4). We define the Radon
transform of fdµ by

Rf(ξ, t) :=
∫

C

f(x)δ(〈x, ξ〉 − t)dµ(x).

Then, Rf(ξ, t) satisfies the ultra-hyperbolic differen-
tial equation:

(p−1∑

j=1

∂2

∂ξ2
j

−
p+q−2∑

j=p

∂2

∂ξ2
j

)
(Rf)(ξ, t) = 0.

As for the differentiability with respect to t, we note
that Rf(ξ, t) is not of C∞ class at t = 0. The reg-
ularity at t = 0 is the main issue of [15], where we
prove that Rf(ξ, t) is [p+q−7

2 ] times continuously dif-
ferentiable at t = 0. This regularity is sufficient to
show that the singular integral (2) makes sense for
u ∈ C∞0 (C). Conversely, Theorem 1 leads us to:

Corollary 4. f can be recovered only from the
restriction of the Radon transform Rf(ξ, t) to C×R.

For Step 2), we use the polar coordinate to de-
compose the Hilbert space L2(C) into the discrete
direct sum as Hilbert spaces:

∞∑⊕

l,k=0

L2(R+, rp+q−5dr)⊗Hl(Rp−1)⊗Hk(Rq−1).
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Here, Hl(Rp−1) is the space of spherical harmonics
on Sp−2 of degree l. Then, π(w0) preserves each (l, k)
summand, on which π(w0) is of the form Tl,k⊗id⊗ id
for some unitary operator Tl,k on L2(R+, rp+q−5dr).
Here is an explicit formula of Tl,k.

Theorem 5. For l, k ∈ N, we set a := max(l+
p−q
2 , k). Then, Tl,k is given by

(3) (Tl,kf)(r) =
∫ ∞

0

Kl,k(rr′)f(r′)r′p+q−5dr′,

where the kernel function Kl,k(t) is defined by

Kl,k(t) := 2(−1)aG20
04(t

2| l + k

2
, a +

−p + 3− l − k

2
,

−p− q + 6− l − k

2
,
−q + 3 + l + k

2
− a).

Here, G20
04(x|b1, b2, b3, b4) denotes Meijer’s G-

function.
The group law w2

0 = 1 in G implies π(w0)2 =
id and consequently, T 2

l,k = id for every l, k ∈ N.
Hence, Theorem 5 gives a group theoretic proof for
the Plancherel and reciprocal formulas on Meijer’s
G-transforms which were first proved by C. Fox [4]
by a completely different method.

Corollary 6 (Plancherel formula). Let
b1, b2, γ be half-integers such that b1 ≥ 0, γ ≥ 1,
1−γ

2 ≤ b2 ≤ 1
2 + b1. Then the integral transform

Sb1,b2,γ : f(x) 7→
1
γ

∫ ∞

0

G20
04((xy)

1
γ |b1, b2, 1− γ − b1, 1− γ − b2)f(y)dy

is a unitary operator on L2(R+).
Corollary 7 (Reciprocal formula). The uni-

tary operator Sb1,b2,γ is of order two in L2(R+), that
is, (Sb1,b2,γ)−1 = Sb1,b2,γ .

The proof of Theorem 5 is based on an explicit
construction of K-finite vectors in L2(C), generaliz-
ing the computation of the minimal K-type vector
in L2(C) (see [13, III, Theorem 5.5]).

The results here accomplish the program of the
L2-model (Schrödinger model) of the mimimal rep-
resentation of the indefinite orthogonal group O(p, q)
of type D. Details of this paper will be given in an-
other article [11].
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