
MULTIPLICITY FREE THEOREM IN BRANCHING

PROBLEMS OF UNITARY HIGHEST WEIGHT MODULES∗

Toshiyuki KOBAYASHI

University of Tokyo

Abstract. Let π be a unitary highest weight module of a reductive Lie group G,
and (G,G′) a reductive symmetric pair such that G′ ↪→ G induces a holomorphic

embedding of Hermitian symmetric spaces G′/K′ ↪→ G/K. This paper proves that

the multiplicity of irreducible representations of G′ occurring in the restriction π|G′

is uniformly bounded. Furthermore, we prove that the multiplicity is free if π has

a one dimensional minimal K-type. Our method here also establishes an analogous
result for the tensor product of unitary highest weight modules, and also for finite

dimensional representations of compact groups. Finally, we give an explicit branching

formula of a holomorphic discrete series representation π with respect to a semisimple
symmetric pair (G, G′). This formula is a generalization of the Kostant-Schmid

branching formula which deals with the case G′ = K.

§1 Introduction

1.1. Let G be a reductive Lie group, and Ĝ the unitary dual. Suppose H is a

reductive subgroup of G. If π ∈ Ĝ, then the restriction π|H is no more irreducible
as a representation of H in general. The irreducible decomposition formula of π|H
is called the branching law (breaking symmetry in physics) and is written in terms
of the direct integral of unitary representations of H:

(1.1.1) π|H '
∫ ⊕

bH

mH(τ : π|H) τ dµ(τ),

where dµ is a Borel measure on Ĥ and mH(· : π|H) : Ĥ → N∪{∞} is the multiplicity
defined almost everywhere with respect to dµ.

One expects a simple and detailed study for the branching problem when no con-
tinuous spectrum arises in the decomposition (1.1.1) (discrete branching law),
and the general theory for discrete branching laws has been studied in [K1], [K2],
[K3], [K4], [K5]. A very special and simple setting of the discrete branching laws
is when the following (a) and (b) hold:

a) π ∈ Ĝ is an irreducible unitary highest weight module (see §1.2 for definition),
and

b) (G, H) is a semisimple symmetric pair satisfying (1.3.1) (see §1.3 for details).
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The purpose of this note is to investigate the restriction π|H in this special setting
(a) and (b).

1.2. Let G be a non-compact simple Lie group of finite center, θ a Cartan in-
volution of G, and K := {g ∈ G : θg = g}. We write g = k + p for the Cartan
decomposition of the Lie algebra g of G, corresponding to the Cartan involution θ.
We assume that G is of Hermitian type, that is, the center c(k) of k is non-trivial.
Then, it is well-known that c(k) is one dimensional and that there exists Z ∈ c(k)
so that

gC := g ⊗ C = kC ⊕ p+ ⊕ p−

is the direct sum decomposition of eigenspaces of ad(Z) with eigenvalues 0,
√
−1

and −
√
−1, respectively.

Definition 1.2.1. Let (π,H) be an irreducible unitary representation of G, and
HK the underlying (gC, K)-module. (π,H) is called an irreducible unitary highest

weight module if Hp
+

K 6= {0}, where we put

Hp
+

K := {v ∈ HK : dπ(Y )v = 0 for any Y ∈ p+}.

Then, Hp
+

K is an irreducible representation of K. We say that π is of scalar type

(or of scalar minimal K-type) if Hp
+

K is one dimensional. By a holomorphic discrete

series representation for G, we mean that π is a unitary highest weight module
that can be realized as a closed G-invariant subspace of L2(G) (if G has an infinite
center, then we need a slight modification as usual).
Lowest weight modules and anti-holomorphic discrete series are defined similarly
with p+ replaced by p−.

1.3. Suppose τ is an involutive automorphism of G commuting with θ. Because
τc(k) = c(k) = RZ and τ2 = id, there are two exclusive possibilities:

τZ = Z,(1.3.1)

τZ = −Z.(1.3.2)

Let Gτ := {g ∈ G : τg = g} and Kτ := Gτ ∩ K.

Geometrically, (1.3.1) implies:
1-a) τ acts holomorphically on the Hermitian symmetric space G/K,
1-b) Gτ/Kτ ↪→ G/K is a complex submanifold.

On the other hand, (1.3.2) implies:
2-a) τ acts anti-holomorphically on the Hermitian symmetric space G/K,
2-b) Gτ/Kτ ↪→ G/K is a totally real submanifold.
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§2 Main theorems

2.1. Let G be a non-compact simple Lie group of Hermitian type. Here are our
main results:

Theorem A. Let π1 and π2 be unitary highest weight modules of G. Then, there
is a constant C(π1, π2) < ∞ with the following properties:
1) The tensor product π1⊗̂π2 splits into a discrete Hilbert sum of irreducible
unitary representations of G:

π1⊗̂π2 '
∑⊕

µ∈ bG

mπ1,π2
(µ)µ, (Hilbert direct sum),

with the multiplicity satisfying

(2.1.1) mπ1,π2
(µ) ≤ C(π1, π2) for all µ ∈ Ĝ.

2) C(π1, π2) = 1 if both π1 and π2 are of scalar minimal K-types. Namely, the
tensor product π1⊗̂π2 is decomposed discretely into irreducible unitary representa-
tions of G with multiplicity free, for any unitary highest weight modules π1 and
π2 of scalar minimal K-types.

Theorem B. Let π be a unitary highest weight module of G. Then, there is a
constant C(π) < ∞ with the following properties: Suppose that τ is an involutive
automorphism of G satisfying (1.3.1). Let H be an open subgroup of Gτ .
1) The restriction π|H splits into a discrete Hilbert sum of irreducible unitary
representations of H:

π|H '
∑⊕

µ∈ bH

mπ(µ)µ (Hilbert direct sum),

with the multiplicity satisfying

(2.1.2) mπ(µ) ≤ C(π) for all µ ∈ Ĥ.

2) C(π) = 1 if π is of scalar minimal K-type. Namely, the restriction π|H is
decomposed discretely into irreducible unitary representations of H with multi-

plicity free, for any unitary highest weight module π of G having scalar minimal
K-type.

The infinitesimal classification of irreducible symmetric pairs was achieved by
M. Berger [B]. For the reader’s convenience, we give a list of the infinitesimal
classification of irreducible symmetric pair (G, H) satisfying the condition (1.3.1)
(see Theorem B).
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(g, gτ ) satisfying (1.3.1) τZ = Z
g gτ

su(p, q) s(u(i, j) + u(p − i, q − j))
su(n, n) so∗(2n)
su(n, n) sp(n, R)
so∗(2n) so∗(2p) + so∗(2n − 2p)
so∗(2n) u(p, n− p)
so(2, n) so(2, p) + so(n − p)
so(2, 2n) u(1, n)
sp(n, R) u(p, n− p)
sp(n, R) sp(p, R) + sp(n − p, R)
e6(−14) so(10) + so(2)
e6(−14) so∗(10) + so(2)
e6(−14) so(8, 2) + so(2)
e6(−14) su(5, 1) + sl(2, R)

e6(−14) su(4, 2) + su(2)
e7(−25) e6 + so(2)
e7(−25) e6(−14) + so(2)
e7(−25) so(10, 2) + sl(2, R)
e7(−25) so∗(12) + su(2)
e7(−25) su(6, 2)

Table 2.1.3

2.2. Here are simplest examples of Theorem A and Theorem B, respectively:

Example 2.2. We denote by πn the holomorphic discrete series representation of
SL(2, R) with minimal K-type χn (n ≥ 2), where χn (n ∈ Z) stands for a character
of SO(2). Then, the following branching formulae are well-known:

πm⊗̂πn '
∑⊕

k∈N

πm+n+2k,

πn|SO(2) '
∑⊕

k∈N

χn+2k.

Here, N = {0, 1, 2, . . .}. We note that any holomorphic discrete series representation
of SL(2, R) is of scalar minimal K-type.

2.3. The conditions “highest weight modules”, “discrete branching”, “scalar min-
imal K-type” are crucial in the multiplicity free, uniformly bounded, or bounded
theorems in Theorem A and Theorem B. Here are related remarks:

Remark 2.3.

1) The discrete decomposability in Theorems A and B was previously known (see
[Mr] and [Li], Theorem 4.2; [JV], Corollary 2.3 for a holomorphic discrete series
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π; see also [K2], Corollary 4.4; [K6], Theorem 7.4 for a general case). The novelty
of Theorems A and B is the estimate of multiplicities (2.1.1) and (2.1.2).

2) The Cartan involution θ automatically satisfies (1.3.1). In this case, we have
H = K and the multiplicity free result in Theorem B is known by B. Kostant,
W. Schmid and K. Johnson ([Sc], [Jo]) by explicit branching laws in the case
where π is a holomorphic discrete series representation of scalar type. Their
formula will be generalized to a non-compact H also in §4.

3) If π = Aq(λ) in the sense of Vogan-Zuckerman (e. g. a discrete series represen-
tation) and if (G, H) is a semisimple symmetric pair such that π|H is discrete
decomposable, then the multiplicity always satisfies

mπ(τ) < ∞ for any τ ∈ Ĥ

(Wallach conjecture; see [K5], Corollary 4.3). However, there is an example with

sup
τ∈ bH

mπ(τ) = ∞

in this setting (e. g. [K7], Example 6.2). Namely, the multiplicity is always
finite but not necessarily uniformly bounded in the discrete branching laws of
non-highest weight modules with respect to a reductive symmetric pair.

4) The multiplicity can be infinite in the continuous spectrum if π = Aq(λ)
is not a highest weight module and if (G, H) is a symmetric pair (see [K2],
Introduction).

5) It follows from R. Howe [H] and J. Repka [Re] that the irreducible decomposition
of the tensor product π1⊗̂π2 always involves a continuous spectrum, if π1 is a
holomorphic discrete series representation and and π2 is an anti-holomorphic
discrete series representation. This is regarded as an opposite extremal case to
Theorem A. Likewise, if π is a highest weight module of scalar minimal K-type
and if τ satisfies (1.3.2) instead of (1.3.1), then Ólafsson and B. Ørsted proved
that π|H is decomposed into only continuous spectrum with multiplicity free
[OO]. This is an opposite extremal case to Theorem B (2).

6) If we drop the assumption of the scalar minimal K-type in Theorem A or The-
orem B, then there is a counter example for multiplicity free (e. g. [K7], Exam-
ple 6.2). Namely, C(π1, π2) in Theorem A (also C(π) in Theorem B) cannot be
always taken to be 1.

7) Finally, we mention the case where dim π < ∞. Our method here also gives a
sufficient condition for the multiplicity free branching laws for finite dimen-

sional representations of compact groups, which is analogous to the second part
of Theorems A and B. A complete list of the multiplicity free cases that can be
obtained by our method is given in [K7], Theorem 7.3 and Theorem 7.4. Some
of them could be also proved by using so called the Littlewood-Richardson rule
and the algorithm of K. Koike and I. Terada in [KT2]. S. Okada recently ob-
tained a number of multiplicity free branching laws by combinatorial arguments
of character formulae for classical compact Lie groups [Ok]. It might be inter-
esting from combinatorial view point to obtain explicit branching laws for the
remaining cases (many of them are exceptional cases) for which the multiplicity
is proved to be free by our method.
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§3 Sketch of proof

3.1. Let L → D be a holomorphic line bundle over a complex manifold D. We
denote by O(L) the space of holomorphic sections of L → D. Then O(L) carries
a Fréchet topology by the uniform convergence on compact sets. If a Lie group
H acts holomorphically and equivariantly on the holomorphic line bundle L → D,
then H defines a (continuous) representation on O(L) by the pull-back of sections.

Let {Uα} be a trivializing neighbourhood of D, and gαβ ∈ O×(Uα∩Uβ) the tran-
sition functions of the holomorphic line bundle L → D. Then an anti-holomorphic
line bundle L → D is a complex line bundle with the transition functions gαβ. We

denote by O(L) the space of anti-holomorphic sections of L → D.
Suppose σ is an anti-holomorphic diffeomorphism of D. Then the pull-back

σ∗L → D is an anti-holomorphic line bundle over D. In turn, σ∗L → D is a
holomorphic line bundle over D.

3.2. A main machinery for the proof of Theorem A and Theorem B is the com-
mutativity of the commutant algebra

EndH(H) := {T ∈ End(H) : T is continuous, Tπ(h) = π(h)T for any h ∈ H},

if a unitary representation (π,H) of the group H is realized on holomorphic func-
tions (or holomorphic sections) on a complex manifold D.

Faraut and Thomas [FT], in the case of trivial twisting parameter, gives a suf-
ficient condition for the commutativity of EndH(H) by using the theory of repro-
ducing kernels, which we extend to the general, twisted case below.

Lemma 3.2. Let (π,H) be a unitary representation of a Lie group H. Assume
that there exist an H-equivariant holomorphic line bundle L → D and an anti-
holomorphic involutive diffeomorphism σ of D with the following three conditions:
(3.2.1) There is an injective (continuous) H-intertwining map H → O(L).
(3.2.2) There exists an isomorphism of H-equivariant holomorphic line bundles
Ψ: L ∼−→σ∗L.
(3.2.3) Given x ∈ D, there exists g ∈ H such that σx = g · x.

Then, EndH(H) is a commutative algebra.

3.3. The idea of Lemma 3.2 parallels to [FT], which goes back to a lemma due to
I. M. Gelfand:

Lemma 3.3 ([G], see also [La], IV, Theorem 1). Let G be a locally compact
unimodular group, and K a compact subgroup. Assume that there exists an anti-
involutive automorphism σ of G such that given x ∈ g there exist k1, k2 ∈ K
satisfying σx = k1xk2. Then, the Hecke algebra L1(K\G/K) is a commutative
ring.

3.4. The following is a key lemma to apply Lemma 3.2 by supplying a sufficient
condition for (3.2.3) in the setting where D = G/K is a Riemannian symmetric
space.
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Lemma 3.4. Let G be a non-compact semisimple Lie group of finite center, K a
maximal compact subgroup of G corresponding to a Cartan involution θ. Let σ
and τ are involutive automorphisms of G. We assume the following two conditions:
(3.4.1) σ, τ and θ commute with one another.
(3.4.2) R- rank g/gτ = R- rank gσ/gσ,τ .

Then for any x ∈ G/K, there exists g ∈ Gτ
0 such that σ(x) = g · x.

The proof of Theorem B (similar, but easier for Theorem A) completes by show-
ing the existence of σ ∈ Aut(G) satisfying (1.3.2), (3.4.1) and (3.4.2), for each
τ ∈ Aut(G) satisfying (1.3.1).

§4 Explicit branching laws

— a generalization of the Kostant-Schmid formula

4.1. Once we obtain (abstract) results on free multiplicities, then we with to
obtain explicit formulae of such branching problems as a second stage. Theorem B
asserts the multiplicity freeness of the branching law π|H , especially in the case
where

π ∈ Ĝ : holomorphic discrete series of scalar minimal K-type

H := Gτ
0 : τ satisfies the condition (1.3.1).

This section presents an explicit branching law of π|H in this setting. In particular,
we generalize the Kostant-Schmid formula ([Sc], [Jo]) which corresponds to the case
τ = θ (Cartan involution), namely H = K.

4.2. Let us fix notation. Suppose that G is a simple non-compact connected Lie
group of Hermitian type, and that τ ∈ Aut(G) satisfies (1.3.1). We take a Cartan
subalgebra t of k such that tτ := {X ∈ t : τX = X} is also a Cartan subalgebra of
kτ := {X ∈ k : τX = X}. We fix positive systems ∆+(kτ , tτ ) and ∆+(k, t). Because
τ satisfies (1.3.1), the direct sum decomposition

gC = kC ⊕ p+ ⊕ p−

is stable under τ (complex linear extension). Then we have a direct sum decompo-
sition p+ = (p+)τ ⊕ (p+)−τ . Let ∆((p+)−τ , tτ ) (⊂

√
−1(tτ )∗) be the set of weights

of (p+)−τ with respect to tτ .
The roots α and β are called strongly orthogonal if neither α + β nor α − β is

a root. We take a maximal set of strongly orthogonal roots, say {ν1, ν2, . . . , νk},
such that

i) ν1 is the highest root among ∆((p+)−τ , tτ ),
ii) νj+1 is the highest root in ∆((p+)−τ , tτ ) strongly orthogonal to ν1, . . . , νj .
We note that

k = R- rank G/Gτ .

4.3. We denote by V G(µ) the irreducible highest weight module of G if (V G(µ))p
+

is an irreducible representation of K with highest weight µ ∈
√
−1t∗ with respect to
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∆+(k, t) (see §1.2). Likewise, V H(ν) denotes the irreducible highest weight module

of H = Gτ
0 if (V H(ν))(p

+)τ

is an irreducible representation of Kτ
0 with highest

weight µ ∈
√
−1(tτ )∗ with respect to ∆+(kτ , tτ ).

Clearly, V G(µ) is of scalar minimal K-type if and only if µ vanishes on the
maximal semisimple ideal of k.

4.4. Now we are ready to state an explicitly branching formula:

Theorem C. Let G be a connected non-compact simple Lie group of Hermitian
type, and H := Gτ

0 the connected component of the fixed point group Gτ of an

involution τ ∈ Aut(G) satisfying (1.3.1). If V G(µ) ∈ Ĝ is a holomorphic discrete
series representation of scalar minimal K-type, then

(4.4.1) V G(µ)|H '
∑⊕

a1≥···≥ak≥0
aj∈N

V H(µ|tτ +
k∑

j=1

ajνj).

If τ = θ, then H = K and dim V H(µ|tτ +
∑k

j=1 ajνj) < ∞. In this case, (4.4.1)

coincides with the formula in [Sc] or [Jo].
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