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The infinite-dimensional representation theory
of reductive Lie groups has been studied since
mid 20th century, and even now it is ac-
tively studied from the viewpoint of algebra,
geometry and analysis. In general, infinite-
dimensional representations are more difficult
to treat than finite-dimensional representa-
tions, but among these, holomorphic discrete
series representations are relatively easy to han-
dle. T have studied the properties of these rep-
resentations by realizing them on explicit func-
tion spaces.

Here we realize the Hermitian symmetric
space G/K as a bounded symmetric domain
D. Let G be the universal covering group of
G. Then the family of G-equivariant vector
bundles W — D has a 1-dimensional degree
of freedom (put A), when we fix the fiber W.
Then if A € R is sufficiently large, then there
exists a G-invariant inner product (-,-)y on the
space of holomorphic sections O(D, W,) given
by an integral, and the corresponding Hilbert
space (weighted Bergman space) H (D, W) C
O(D,W,) gives a holomorphic discrete series
representation.

Recently I am interested in the behavior of
the restriction of holomorphic discrete series
representations to subgroups. In general, let
(G,G1) be a symmetric pair of holomorphic
type, namely, a symmetric pair such that the
embedding map G1/K; — G/K of Rieman-
nian symmetric spaces is a holomorphic map.
Then it is known that the restriction of arbi-
trary holomorphic discrete series representation
to G decomposes discretely, and its multiplic-
ity is uniformly bounded (Kobayashi, 2007). I
constructed the G1-equivariant embedding map
from a holomorphic discrete series represen-
tation H; of G; into a holomorphic discrete
series representation H of G in the form of
infinite-order differential operators, under the

assumption that H is of scalar type and H;



is multiplicity-free under the maximal compact
subgroup Kj of G1. Also, when the parameter
is at a pole, I observed that its residue induces
a map from some subquotient module.
However, the G1-intertwining operator H —
H, of opposite direction seems more impor-
tant for application.
pairs such as (G,G1) = (Sp(n,R),U(n',n")),

I constructed the Gi-intertwining operator

For some symmetric

H — Hi when H is of scalar type and
when U(n') acts by scalar on the minimal K;-
type of Hi, by computing the inner product
<det(m)kf(z), exp tr (({Z Z) Z) >/\ of an expo-
nential function on D C Sym(n,C) and a poly-
nomial on Sym(n’, C) & Sym(n”, C).
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