Geometric Analysis on Minimal Representations

Representation Theory of Real Reductive Groups
University of Utah, Salt Lake City, USA, 27–31 July 2009

Toshiyuki Kobayashi
(the University of Tokyo)

http://www.ms.u-tokyo.ac.jp/~toshi/
Minimal representations

Oscillator rep. (= Segal–Shale–Weil rep.)
Minimal rep. of $Mp(n, \mathbb{R})$ (= double cover of $Sp(n, \mathbb{R})$)
\[\cdots\] split simple group of type C
Minimal representations

Oscillator rep. (= Segal–Shale–Weil rep.)
Minimal rep. of $Mp(n, \mathbb{R})$ (= double cover of $Sp(n, \mathbb{R})$)
 ... split simple group of type C

Today:
Minimal rep. of $O(p, q)$, $p + q$: even
 ... simple group of type D
Minimal representations

Oscillator rep. (= Segal–Shale–Weil rep.)
Minimal rep. of $Mp(n, \mathbb{R})$ (= double cover of $Sp(n, \mathbb{R})$)

... split simple group of type C

Today: Geometric and analytic aspects of Minimal rep. of $O(p, q)$, $p + q$: even

... simple group of type D
Minimal representations

Oscillator rep. (= Segal–Shale–Weil rep.)

Minimal rep. of $Mp(n, \mathbb{R})$ (= double cover of $Sp(n, \mathbb{R})$)

... split simple group of type C

Today: Geometric and analytic aspects of

Minimal rep. of $O(p, q), p + q$: even

... simple group of type D

(Ambitious) Project:

Use minimal reps as a guiding principle to find new interactions with other fields of mathematics.

If possible, try to formulate a theory in a wide setting without group, and prove it without representation theory.
Minimal rep of reductive groups

Minimal representations of a reductive group G
(Their annihilators are the Joseph ideal in $U(g)$)

Loosely, minimal representations are

- One of ‘building blocks’ of unitary reps.
- ‘Smallest’ infinite dimensional unitary rep.
- ‘Isolated’ among the unitary dual
 (finitely many) (continuously many)
- ‘Attached to’ the minimal nilpotent orbit
- Matrix coefficients are of bad decay
Minimal ⇔ Maximal

(Ambitious) Project:
Use minimal reps as a guiding principle to find new interactions with other fields of mathematics.
(Ambitious) Project:
Use minimal reps as a guiding principle to find new interactions with other fields of mathematics.

Viewpoint:
Minimal representation (group)
≈ Maximal symmetries (rep. space)
Geometric analysis on minimal reps of $O(p, q)$

[1] Laguerre semigroup and Dunkl operators · · · preprint, 74 pp. [arXiv:0907.3749]

Collaborated with

S. Ben Saïd, J. Hilgert, G. Mano, J. Möllers and B. Ørsted
Indefinite orthogonal group $O(p + 1, q + 1)$

Throughout this talk, $p, q \geq 1, p + q$: even > 2

$$G = O(p + 1, q + 1)$$

$$= \{ g \in GL(p + q + 2, \mathbb{R}) : {}^t g \begin{pmatrix} I_{p+1} & O \\ O & -I_{q+1} \end{pmatrix} g = \begin{pmatrix} I_{p+1} & O \\ O & -I_{q+1} \end{pmatrix} \}$$

... real simple Lie group of type D
Minimal representation of $G = O(p + 1, q + 1)$

$q = 1$

highest weight module \oplus lowest weight module

the bound states of the Hydrogen atom
Minimal representation of $G = O(p + 1, q + 1)$

- $q = 1$
 - highest weight module \oplus lowest weight module
 - the bound states of the Hydrogen atom

- $p = q$
 - spherical case
 - \leftrightarrow realized in scalar valued functions on the Riemannian symmetric space G/K

- $p = q = 3$ case: Kostant (1990)
Minimal representation of $G = O(p + 1, q + 1)$

- $q = 1$
 - highest weight module \oplus lowest weight module
 - the bound states of the Hydrogen atom

- $p = q$
 - spherical case
 - realized in scalar valued functions on the Riemannian symmetric space G/K

- $p = q = 3$ case: Kostant (1990)

- p, q: general
 - non-highest, non-spherical

 - subrepresentation of most degenerate principal series
 (Howe–Tan, Binegar–Zierau)

 - dual pair correspondence
 $(Sp(1, \mathbb{R}) \times O(p + 1, q + 1)$ in $Sp(p + q + 2, \mathbb{R}))$ (Huang–Zhu)
Two constructions of minimal reps.

1. Conformal model
 Theorem B

2. L^2 model
 (Schrödinger model)
 Theorem D
Two constructions of minimal reps.

Group action Hilbert structure

1. Conformal model
 Theorem B Clear
 v.s.
2. L^2 model
 (Schrödinger model) ?
 Theorem D Clear

Clear ... advantage of the model
Two constructions of minimal reps.

Group action Hilbert structure

1. Conformal model
 Theorem B Clear Theorem C
 v.s.

2. L^2 model
 (Schrödinger model) Theorem E Clear
 Theorem D

Clear ··· advantage of the model
Two constructions of minimal reps.

1. Conformal model
 Theorem B
 v.s.
 Theorem C

2. L^2 model
 (Schrödinger model)
 Theorem D
 Theorem E

Clear ... advantage of the model

3. Deformation of Fourier transforms
 (Theorems F, G, H)
 (interpolation, Dunkl operators, special functions)
Geometric analysis on minimal reps of $O(p, q)$

[1] Laguerre semigroup and Dunkl operators ···

[2] Special functions associated to a fourth order differential equation ···

[4] Schrödinger model of minimal rep. ···

[5] Inversion and holomorphic extension ···

[6] Analysis on minimal representations ···

Collaborated with
 S. Ben Saïd, J. Hilgert, G. Mano, J. Möllers and B. Ørsted
§1 Conformal construction of minimal reps.

Idea: Composition of holomorphic functions

\[\text{holomorphic} \circ \text{holomorphic} = \text{holomorphic} \]
§1 Conformal construction of minimal reps.

Idea: Composition of holomorphic functions

\[
\text{holomorphic } \circ \text{ holomorphic } = \text{ holomorphic}
\]

taking real parts

\[
\text{harmonic } \circ \text{ conformal } = \text{ harmonic}
\]
on \(\mathbb{C} \sim \mathbb{R}^2 \)
§1 Conformal construction of minimal reps.

Idea: Composition of holomorphic functions
\[\text{holomorphic} \circ \text{holomorphic} = \text{holomorphic} \]

taking real parts

\[\text{harmonic} \circ \text{conformal} = \text{harmonic} \]
on \(\mathbb{C} \sim \mathbb{R}^2 \)

make sense for general Riemannian manifolds.
§1 Conformal construction of minimal reps.

Idea: Composition of holomorphic functions

\[\text{holomorphic} \circ \text{holomorphic} = \text{holomorphic} \]

\[\downarrow \text{taking real parts} \]

\[\text{harmonic} \circ \text{conformal} = \text{harmonic} \]

on \(\mathbb{C} \cong \mathbb{R}^2 \)

make sense for general Riemannian manifolds.

But \(\text{harmonic} \circ \text{conformal} \neq \text{harmonic} \)
in general
§1 Conformal construction of minimal reps.

Idea: Composition of holomorphic functions

\[\text{holomorphic} \circ \text{holomorphic} = \text{holomorphic} \]

\[\downarrow \text{taking real parts} \]

\[\text{harmonic} \circ \text{conformal} = \text{harmonic} \quad \text{on } \mathbb{C} \sim \mathbb{R}^2 \]

make sense for general Riemannian manifolds.

But \[\text{harmonic} \circ \text{conformal} \neq \text{harmonic} \quad \text{in general} \]

\[\Rightarrow \text{Try to modify the definition!} \]
$\text{Conf}(X, g) \supset \text{Isom}(X, g)$

(X, g) Riemannian manifold

$\varphi \in \text{Diffeo}(X)$
\(\text{Conf}(X, g) \supset \text{Isom}(X, g) \)

\((X, g)\) Riemannian manifold
\(\varphi \in \text{Diffeo}(X)\)

Def.

\(\varphi\) is isometry \(\iff\) \(\varphi^* g = g\)

\(\varphi\) is conformal \(\iff\) \(\exists\) positive function \(C_\varphi \in C^\infty(X)\) s.t.

\[\varphi^* g = C_\varphi^2 g \]

\(C_\varphi\) : conformal factor
\[\text{Def.} \]

\(\varphi \) is isometry \iff \(\varphi^* g = g \)

\(\varphi \) is conformal \iff \exists \text{ positive function } C_\varphi \in C^\infty(X) \text{ s.t. } \varphi^* g = C_\varphi^2 g \)

\(C_\varphi \) : conformal factor
Conf\((X, g) \supset \text{Isom}(X, g)\)

\((X, g)\) pseudo-Riemannian manifold
\(\varphi \in \text{Diffeo}(X)\)

Def.

\(\varphi\) is isometry \(\iff \varphi^* g = g\)

\(\varphi\) is conformal \(\iff \exists\text{ positive function } C_\varphi \in C^\infty(X) \text{ s.t. }\)

\[\varphi^* g = C_\varphi^2 g\]

\(C_\varphi: \text{conformal factor}\)

\(\text{Diffeo}(X) \supset \text{Conf}(X, g) \supset \text{Isom}(X, g)\)

Conformal group \quad isometry group
Harmonic \circ conformal \neq harmonic

Modification
\[\varphi \in \text{Conf}(X^n, g), \quad \varphi^* g = C_{\varphi}^2 g \]
Harmonic o conformal \neq harmonic

Modification

$\varphi \in \text{Conf}(X^n, g), \quad \varphi^* g = C^2 g$

- pull-back $\sim\sim$ twisted pull-back

$$f \circ \varphi \sim\sim C^\varphi f \circ \varphi$$

conformal factor
Harmonic \circ conformal \neq harmonic

Modification
$\varphi \in \text{Conf}(X^n, g), \quad \varphi^* g = C_{\varphi}^2 g$

pull-back \rightsquigarrow twisted pull-back

\[f \circ \varphi \quad \rightsquigarrow \quad C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi \]

conformal factor

\[\text{Sol}(\Delta_X) = \{ f \in C^\infty(X) : \Delta_X f = 0 \} \quad \text{(harmonic functions)} \]

\[\rightsquigarrow \quad \text{Sol}(\overline{\Delta_X}) = \{ f \in C^\infty(X) : \overline{\Delta_X} f = 0 \} \]

\[\overline{\Delta_X} := \Delta_X + \frac{n-2}{4(n-1)} \kappa \]

Yamabe operator \quad Laplacian \quad scalar curvature
Distinguished rep. of conformal groups

\[\text{harmonic} \circ \text{conformal} \div \text{harmonic} \]

\[\Downarrow \text{Modification} \]
Distinguished rep. of conformal groups

\[\text{harmonic} \circ \text{conformal} \Downarrow \text{harmonic} \]

\[\downarrow \text{Modification} \]

Theorem A ([6, Part I])

\((X^n, g) \) Riemannian mfd

\[\Rightarrow \text{Conf}(X, g) \text{ acts on } Sol(\Delta_X) \text{ by } f \mapsto C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi \]
Modification

Theorem A ([6, Part I]) \((X^n, g)\) Riemannian mfd

\[\implies \text{Conf}(X, g) \text{ acts on } \text{Sol}(\Delta_X) \text{ by } f \mapsto C \frac{n-2}{2} f \circ \varphi \]

Point \(\Delta_X = \Delta_X + \frac{n-2}{4(n-2)} \kappa\)

\(\Delta_X\) is not invariant by \(\text{Conf}(X, g)\).

But \(\text{Sol}(\Delta_X)\) is invariant by \(\text{Conf}(X, g)\).
Distinguished rep. of conformal groups

\[\text{harmonic} \circ \text{conformal} \not\subset \text{harmonic} \]

\[\downarrow \text{Modification} \]

Theorem A ([6, Part I]) \((X^n, g)\) Riemannian mfd

\[\implies \text{Conf}(X, g) \text{ acts on } \text{Sol}(\Delta_X) \text{ by } f \mapsto C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi \]

Point \(\Delta_X = \Delta_X + \frac{n-2}{4(n-2)} \kappa\)

\(\Delta_X\) is not invariant by \(\text{Conf}(X, g)\).

But \(\text{Sol}(\Delta_X)\) is invariant by \(\text{Conf}(X, g)\).

\[\text{Diffeo}(X) \supset \text{Conf}(X, g) \supset \text{Isom}(X, g) \]

Conformal group \quad isometry group
Distinguished rep. of conformal groups

\[\text{harmonic} \circ \text{conformal} \overset{\text{Modification}}{=} \text{harmonic} \]

Theorem A ([6, Part I]) \((X^n, g)\) pseudo-Riemannian mfd

\[\therefore \text{Conf}(X, g) \text{ acts on } Sol(\tilde{\Delta_X}) \text{ by } f \mapsto C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi \]

Point \(\tilde{\Delta_X} = \Delta_X + \frac{n-2}{4(n-2)} \kappa\)
\(\Delta_X\) is not invariant by \(\text{Conf}(X, g)\).
But \(Sol(\tilde{\Delta_X})\) is invariant by \(\text{Conf}(X, g)\).

\[\text{Diffeo}(X) \supset \text{Conf}(X, g) \supset \text{Isom}(X, g) \]
Conformal group isometry group
Application of Theorem A

\[(X, g) := (S^p \times S^q, \underbrace{+ \cdots +}_{p} \underbrace{- \cdots -}_{q})\]
Application of Theorem A

\[(X, g) := (S^p \times S^q, \underbrace{+_\cdots+}_{p} \underbrace{-\cdots-}_{q})\]

Theorem B ([6, Part III])

0) \(\text{Conf}(X, g) \simeq O(p + 1, q + 1)\)

1) \(\text{Sol}(\Delta_X) \neq \{0\} \iff p + q \text{ even}\)

2) If \(p + q \text{ is even and } > 2\), then
 \(\text{Conf}(X, g) \sim \text{Sol}(\Delta_X)\) is irreducible,
 and for \(p + q > 6\) it is a minimal rep of \(O(p + 1, q + 1)\).
Application of Theorem A

\[(X, g) := (S^p \times S^q, \underbrace{+ \cdots +}_{p} \underbrace{- \cdots -}_{q})\]

Theorem B ([6, Part II])

0) \(\text{Conf}(X, g) \simeq O(p + 1, q + 1)\)

1) \(\text{Sol}(\Delta_X) \neq \{0\} \iff p + q \text{ even}\)

2) If \(p + q\) is even and \(> 2\), then
 \(\text{Conf}(X, g) \sim \text{Sol}(\Delta_X)\) is irreducible,
 and for \(p + q > 6\) it is a minimal rep of \(O(p + 1, q + 1)\).

1) (conformal geometry) \(\iff\) (representation theory)
 characterizing subrep in \(\text{Ind}_{P_{\max}}^G (\mathbb{C}_\lambda)\) (\(K\)-picture)
 by means of differential equations
Application of Theorem A

\[(X, g) := (S^p \times S^q, + \cdots + \frac{1}{p}, - \cdots - \frac{1}{q})\]

Theorem B ([6, Part III])

0) \(\text{Conf}(X, g) \cong O(p + 1, q + 1)\)

1) \(\text{Sol}(\Delta_X) \neq \{0\} \iff p + q \text{ even}\)

2) If \(p + q\) is even and \(\geq 2\), then
 \(\text{Conf}(X, g) \sim \text{Sol}(\Delta_X)\) is irreducible,
 and for \(p + q > 6\) it is a minimal rep of \(O(p + 1, q + 1)\).

\[\exists a \text{ Conf}(X, g)\)-invariant inner product, and
take the Hilbert completion
Flat model

Stereographic projection

\[S^n \rightarrow \mathbb{R}^n \cup \{\infty\} \quad \text{conformal map} \]
Flat model

Stereographic projection

\[S^n \rightarrow \mathbb{R}^n \cup \{\infty\} \quad \text{conformal map} \]

More generally

\[S^p \times S^q \leftrightarrow \mathbb{R}^{p+q} \quad \text{conformal embedding} \]

\[ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]
Flat model

Stereographic projection

\[S^n \rightarrow \mathbb{R}^n \cup \{ \infty \} \text{ conformal map} \]

More generally

\[S^p \times S^q \rightarrow \mathbb{R}^{p+q} \text{ conformal embedding} \]

\[ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

Functoriality of Theorem A

\[\text{Sol}(\tilde{\Delta}_{S^p \times S^q}) \subset \text{Sol}(\tilde{\Delta}_{\mathbb{R}^{p+q}}) \]

\[\text{Conf}(S^p \times S^q) \leftrightarrow \text{Conf}(\mathbb{R}^{p+q}) \]
Two constructions of minimal reps.

1. Conformal construction
 Theorem B
 v.s.

2. L^2 construction
 (Schrödinger model)
 Theorem D

Clear ... advantage of the model
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\Delta_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q} \]
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\tilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q} \]

Unitarization of subrep (representation theory)

\[\iff \]

Conservative quantity (differential eqn)
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\tilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q} \]

Unitarization of subrep (representation theory)

\[\iff \]

Conservative quantity (differential eqn)

Unitarizability v.s. Unitarization
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\tilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \square_{p,q} \]

Unitarization of subrep (representation theory)

\[\iff \]

Conservative quantity (differential eqn)

Unitarizability v.s. Unitarization

- Easy formulation
- Challenging formulation
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\Delta_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q} \]

Problem Find an ‘intrinsic’ inner product on (a ‘large’ subspace of) \(Sol(\Box_{p,q}) \) if exists.
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{H}^{p,q} = \mathbb{H}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\tilde{\Delta}_{\mathbb{H}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q} \]

Problem
Find an ‘intrinsic’ inner product on (a ‘large’ subspace of) \(\text{Sol}(\Box_{p,q}) \)
if exists.

Easy: if allowed to use the integral representation of solutions

Cf. (representation theory)
by using the Knapp–Stein intertwining formula

Challenging: to find the intrinsic formula
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\tilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q} \]

\(q = 1 \quad \text{wave operator} \)
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\tilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q} \]

\[q = 1 \quad \text{wave operator} \]

energy \cdots \text{conservative quantity for wave equations w.r.t. time translation} \quad \mathbb{R} \]
Conservative quantity for ultra-hyperbolic eqn.

\[\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \quad ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2 \]

\[\tilde{\Delta}_{p,q} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q} \]

\(q = 1 \) wave operator

energy \(\cdots \) conservative quantity for wave equations

w.r.t. time translation \(\mathbb{R} \)

\[\downarrow \]

? \(\cdots \) conservative quantity for ultra-hyperbolic eqs

w.r.t. conformal group \(O(p+1, q+1) \)
Conservative quantity for $\Box_{p,q} f = 0$

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane
Conservative quantity for $\Box_{p,q} f = 0$

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane

For $f \in \text{Sol}(\Box_{p,q})$

$$ (f, f) := \int_{\alpha} Q_{\alpha} f $$

\ldots \ldots \textcircled{1}
Conservative quantity for $\square_{p,q} f = 0$

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane

For $f \in Sol(\square_{p,q})$

\[
(f, f) := \int_\alpha Q_\alpha f
\]

\\ \[\text{Theorem C (6, Part III$^+$)}\]

1) $\textcircled{1}$ is independent of hyperplane α.
Conservative quantity for $\square_{p,q} f = 0$

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane

For $f \in Sol(\square_{p,q})$

$$(f, f) := \int_{\alpha} Q_{\alpha} f$$ \hspace{1cm} \cdots \cdots \circled{1}$$

Theorem C ([6, Part III] + ε)

1) $\circled{1}$ is independent of hyperplane α.
2) $\circled{1}$ gives the unique inner product (up to scalar)
 which is invariant under $O(p + 1, q + 1)$.

Geometric Analysis on Minimal Representations – p.18/49
Conservative quantity for $\Box_{p,q} f = 0$

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane

For $f \in \text{Sol}(\Box_{p,q})$

$$(f, f) := \int_{\alpha} Q_{\alpha} f \quad \quad \quad \cdots \cdots \textcircled{1}$$

Theorem C ([6, Part III]+c)

1) \textcircled{1} is independent of hyperplane α.

2) \textcircled{1} gives the unique inner product (up to scalar) which is invariant under $O(p + 1, q + 1)$.

$$O(p, q) \quad \sim \quad \mathbb{R}^{p,q} \quad \text{(linear)}$$
Conservative quantity for $\square_{p,q} f = 0$

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane

For $f \in \text{Sol}(\square_{p,q})$

\[(f, f) := \int_{\alpha} Q_{\alpha} f \]

\[\ldots \ldots \text{①} \]

Theorem C ([6, Part III] + ε)

1) ① is independent of hyperplane α.
2) ① gives the unique inner product (up to scalar) which is invariant under $O(p + 1, q + 1)$.

\[O(p, q) \quad \sim \quad \mathbb{R}^{p,q} \quad \text{(linear)} \]

\[O(p + 1, q + 1) \quad \text{(Möbius transform)} \]
Parametrization of non-characteristic hyperplane

Fix \(v \in \mathbb{R}^{p,q} \) s.t. \((v, v)_{\mathbb{R}^{p,q}} = \pm 1 \)

\(c \in \mathbb{R} \)

\[\mathbb{R}^{p,q} \supset \alpha \equiv \alpha_{v,c} := \{ x \in \mathbb{R}^{p+q} : (x, v)_{\mathbb{R}^{p,q}} = c \} \]

non-characteristic hyperplane
‘Intrinsic’ inner product

Point: \[f = f_+ + f_- \] (idea: Sato’s hyperfunction)
‘Intrinsic’ inner product

For $\alpha = \alpha_{v,c}$, $f \in C^\infty(\mathbb{R}^{p,q})$ with some decay at ∞

Point: $f = f_+ + f_-$ (idea: Sato’s hyperfunction)
‘Intrinsic’ inner product

For $\alpha = \alpha_{v,c}$, $f \in C^\infty(\mathbb{R}^{p,q})$ with some decay at ∞

Point: $f = f_+ + f_-$ (idea: Sato’s hyperfunction)

$f'_\pm \cdots$ normal derivative of f_\pm w.r.t. v
‘Intrinsic’ inner product

For $\alpha = \alpha_{v,c}$, $f \in C^\infty(\mathbb{R}^{p,q})$ with some decay at ∞

Point: $f = f_+ + f_-$ (idea: Sato’s hyperfunction)

$f'_\pm \cdots$ normal derivative of f_\pm w.r.t. v

$Q_\alpha f := \frac{1}{i} \left(f_+ \overline{f'_+} - f_- \overline{f'_-} \right)$
Conservative quantity for $\square_{p,q}f = 0$

Fix $\alpha = \alpha_{v,c} \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane

For $f \in \text{Sol}(\square_{p,q})$

$$(f, f) := \int_{\alpha} Q_\alpha f \quad \cdots \quad ①$$

Theorem C ([6, Part III] + ε)

1) ① is independent of hyperplane α.
2) ① gives the unique inner product (up to scalar) which is invariant under $O(p + 1, q + 1)$.
Conservative quantity for $\Box_{p,q} f = 0$

Fix $\alpha = \alpha_{v,c} \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane.

For $f \in \text{Sol}(\Box_{p,q})$

$$(f, f) := \int_{\alpha} Q_{\alpha} f \quad \cdots \cdots \text{(1)}$$

Theorem C ([6, Part III]$^+$)

1) (1) is independent of hyperplane α.
2) (1) gives the unique inner product (up to scalar) which is invariant under $O(p + 1, q + 1)$.

non-trivial even for $q = 1$ (wave equation)

In space-time,

average in space (i.e. time $t = \text{constant}$)

$= \text{average in} \ (\text{any hyperplane in space}) \times \mathbb{R}_t \ (\text{time})$
Two constructions of minimal reps.

1. Conformal construction
 Theorem B
 v.s.

2. L^2 construction
 (Schrödinger model)
 Theorem D

Clear ... advantage of the model
Two constructions of minimal reps.

1. Conformal construction
 Theorems A, B

2. L^2 construction
 (Schrödinger model)
 Theorem D

Conservative quantity

Group action

Hilbert structure

Clear ··· advantage of the model
Conformal model $\implies L^2$-model

$$
\square_{p,q} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2}
$$

$$
\Xi := \{\xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0\}$$
Conformal model $\iff L^2$-model

$$\square_{p,q} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2}$$

$$\Xi := \{\xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0\}$$

$$= \bigtimes \quad \text{(figure for } (p, q) = (2, 1))$$

Geometric Analysis on Minimal Representations – p.24/49
Conformal model $\implies L^2$-model

$$\Box_{p,q} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2}$$

$$\Xi := \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0 \}$$

$$\Box_{p,q} f = 0 \implies \text{Supp } \mathcal{F} f \subset \Xi$$

Fourier trans.
Conformal model \implies L^2\text{-model}

\begin{align*}
\Box_{p,q} &= \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \\
\Xi &:= \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0 \}
\end{align*}

\[\Box_{p,q} f = 0 \implies \text{Supp } \mathcal{F} f \subset \Xi \]

\[\mathcal{F} : S'(\mathbb{R}^{p,q}) \xrightarrow{\sim} S'(\mathbb{R}^{p,q}) \]
Conformal model $\implies L^2$-model

\[\Box_{p,q} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \]

\[\Xi := \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0 \} \]

\[\Box_{p,q} f = 0 \implies \text{Supp } \mathcal{F} f \subset \Xi \]

\[\mathcal{F} : S'(\mathbb{R}^{p,q}) \overset{\sim}{\longrightarrow} S'(\mathbb{R}^{p,q}) \]

\[\cup \]

\[\text{Sol}(\Box_{p,q}) \]
Conformal model $\implies \mathbb{L}^2$-model

\[\Box_{p,q} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \]

\[\Xi := \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0 \} \]

\[\Box_{p,q} f = 0 \implies \text{Supp } \mathcal{F} f \subset \Xi \]

\[\mathcal{F} : S'(\mathbb{R}^{p,q}) \xrightarrow{\sim} S'(\mathbb{R}^{p,q}) \]

\[\overline{\text{Sol}(\Box_{p,q})} \xrightarrow{\sim} \square \]

\[\square \text{ denotes the closure with respect to the inner product.} \]
Conformal model $\implies L^2$-model

$$\Box_{p,q} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2}$$

$$\Xi := \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0 \}$$

$$\Box_{p,q} f = 0 \implies \text{Supp } \mathcal{F} f \subset \Xi$$

Fourier trans.

$$\mathcal{F} : \quad S'(\mathbb{R}^{p,q}) \sim \mathcal{U} \quad \text{U} \quad \mathcal{U} \quad S'(\mathbb{R}^{p,q})$$

Theorem D ([6, Part III])

$$\text{Sol}(\Box_{p,q}) \sim L^2(\Xi)$$
Conformal model $\implies L^2$-model

$$\Box_{p,q} = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2}$$

$$\Xi := \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0 \}$$

$$\Box_{p,q} f = 0 \implies \text{Supp } \mathcal{F} f \subset \Xi$$

$$\mathcal{F} : S'(\mathbb{R}^{p+q}) \sim \bigcup S'(\mathbb{R}^{p+q})$$

Theorem D ([6, Part III])

$$\overline{\text{Sol}(\Box_{p,q})} \sim L^2(\Xi)$$

conformal model $\implies L^2$-model
Two constructions of minimal reps.

1. Conformal construction
 Theorems A, B
 v.s.

2. L^2 construction
 (Schrödinger model)
 Theorem D

Clear \cdots advantage of the model
§2 L^2-model of minimal reps.

Theorem D ([6, Part III])

\[
\text{Sol}(\Box_{p,q}) \xrightarrow{\sim} L^2(\Sigma)
\]

conformal model L^2-model
§2 L^2-model of minimal reps.

Theorem D ([6, Part III])

$$\text{Sol}(\square_{p,q}) \sim L^2(\Xi)$$

conformal model L^2-model

$p + q$: even > 2

$$G = O(p + 1, q + 1) \sim L^2(\Xi)$$ unitary rep.
§2 L^2-model of minimal reps.

Theorem D ([6, Part III])

$\text{Sol}(\Box_{p,q}) \sim \rightarrow L^2(\Xi)$

conformal model L^2-model

$p + q$: even > 2

$G = O(p + 1, q + 1) \sim \rightarrow L^2(\Xi)$ unitary rep.

Point: Ξ is too small to be acted by G.
§2 L^2-model of minimal reps.

Theorem D ([6, Part III]) \(\text{Sol}(\Box_{p,q}) \sim L^2(\Xi) \)

conformal model \hspace{1cm} **L^2-model**

\(p + q: \text{even} > 2 \)

\[G = O(p + 1, q + 1) \sim L^2(\Xi) \] \hspace{1cm} **unitary rep.**

Point: \(\Xi \) is too small to be acted by \(G \).

\[\Xi \subset \mathbb{R}^{p,q} \subset \mathbb{R}^{p+1,q+1} \]
§2 L^2-model of minimal reps.

Theorem D ([6, Part III])

\[
\begin{align*}
\text{conformal model} & \quad \sim \\
\text{L^2-model} & \quad \sim
\end{align*}
\]

$p + q$: even > 2

\[
G = O(p + 1, q + 1) \quad \sim \quad L^2(\Xi) \quad \text{unitary rep.}
\]

Point: Ξ is too small to be acted by G.

\[
O(p, q) \quad \sim \quad \Xi \quad \subset \quad \mathbb{R}^{p,q} \quad \subset \quad \mathbb{R}^{p+1,q+1}
\]
§2 L^2-model of minimal reps.

Theorem D ([6, Part III])

\[
\text{Sol}(\Box_{p,q}) \sim L^2(\Xi)
\]

\[\text{conformal model} \quad \text{L^2-model}\]

\[p + q: \text{ even > 2}\]

minimal rep.

\[G = O(p + 1, q + 1) \sim L^2(\Xi) \quad \text{unitary rep.}\]

\[O(p + 1, q + 1) \not\subset \Xi \subset \mathbb{R}^{p,q} \subset \mathbb{R}^{p+1,q+1}\]

\[\Xi \not\subset L^2(\Xi)\]

\[\text{Point: } \Xi \text{ is too small to be acted by } G.\]
Inversion element

\[G = PGL(2, \mathbb{C}) \sim \mathbb{P}^1 \mathbb{C} \simeq \mathbb{C} \cup \{\infty\} \]

Möbius transform
Inversion element

\[G = PGL(2, \mathbb{C}) \] \quad \sim \quad \mathbb{P}^1 \mathbb{C} \simeq \mathbb{C} \cup \{\infty\}

Möbius transform

\[P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^\times, \; b \in \mathbb{C} \right\} \quad z \mapsto az + b \]

\[w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad z \mapsto -\frac{1}{z} \quad \text{(inversion)} \]
Inversion element

\[G = PGL(2, \mathbb{C}) \]

\[\begin{array}{cccc}
0 & -1 \\
1 & 0 \\
\end{array} \]

\[\Rightarrow \quad \mathbb{P}^1 \mathbb{C} \cong \mathbb{C} \cup \{\infty\} \]

Möbius transform

\[P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^\times, \ b \in \mathbb{C} \right\} \quad z \mapsto a z + b \]

\[w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad z \mapsto -\frac{1}{z} \quad \text{ (inversion)} \]

\[G \text{ is generated by } P \text{ and } w. \]
Inversion element

\[G = PGL(2, \mathbb{C}) \quad \bowtie \quad \mathbb{P}^1 \mathbb{C} \cong \mathbb{C} \cup \{ \infty \} \]

Möbius transform

\[\divides O(3, 1) \quad \divides \mathbb{R}^{2,0} \]

\[P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^\times, \ b \in \mathbb{C} \right\} \quad z \mapsto az + b \]

\[w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad z \mapsto -\frac{1}{z} \quad \text{(inversion)} \]

\(G \) is generated by \(P \) and \(w \).
Inversion element

\[G = PGL(2, \mathbb{C}) \cong \mathbb{P}^{1} \mathbb{C} \cong \mathbb{C} \cup \{\infty\} \]

\[\cong O(3, 1) \cong \mathbb{R}^{2,0} \]

\[P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^\times, b \in \mathbb{C} \right\} \quad z \mapsto az + b \]

\[w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad z \mapsto -\frac{1}{z} \quad \text{(inversion)} \]

\[G \text{ is generated by } P \text{ and } w. \]

\[G = O(p + 1, q + 1) \cong \mathbb{R}^{p,q} \]

\[P = \{(A, b) : A \in O(p, q) \cdot \mathbb{R}^\times, b \in \mathbb{R}^{p+q}\} \quad x \mapsto Ax + b \]

\[w = \begin{pmatrix} I_p & -I_q \end{pmatrix} \quad \text{(inversion)} \]
Inversion element

\[G = \text{PGL}(2, \mathbb{C}) \sim \mathbb{P}^1 \mathbb{C} \sim \mathbb{C} \cup \{ \infty \} \]

\[\cong O(3, 1) \quad \cong \mathbb{R}^{2,0} \]

\[P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^\times, \ b \in \mathbb{C} \right\} \quad z \mapsto az + b \]

\[w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad z \mapsto -\frac{1}{z} \text{ (inversion)} \]

\(G \) is generated by \(P \) and \(w \).

\[G = O(p + 1, q + 1) \sim \mathbb{R}^{p,q} \]

\[\text{Möbius transform} \]

\[P = \{(A, b) : A \in O(p, q) \cdot \mathbb{R}^\times, \ b \in \mathbb{R}^{p+q}\} \quad x \mapsto Ax + b \]

\[w = \begin{pmatrix} I_p \\ -I_q \end{pmatrix} : (x', x'') \mapsto \frac{4}{|x'|^2 - |x''|^2}(-x', x'') \text{ (inversion)} \]
Unitary inversion operator \(\mathcal{F}_\Xi \)

\[p + q : \text{even} > 2 \]
\[G = O(p + 1, q + 1) \sim L^2(\Xi) \quad \text{minimal rep.} \]
Unitary inversion operator \mathcal{F}_Ξ

\[p + q : \text{even} > 2 \]
\[G = O(p + 1, q + 1) \sim L^2(\Xi) \quad \text{minimal rep.} \]

P-action \quad \cdots \quad \text{translation and multiplication}

w-action \quad \cdots \quad \mathcal{F}_\Xi \quad \text{(unitary inversion operator)}
Unitary inversion operator \mathcal{F}_Ξ

$p + q$: even > 2

$G = O(p + 1, q + 1) \hat{\sim} L^2(\Xi)$
minimal rep.

P-action \cdots translation and multiplication

w-action \cdots \mathcal{F}_Ξ (unitary inversion operator)

Problem Find the unitary operator \mathcal{F}_Ξ explicitly.
Unitary inversion operator \mathcal{F}_Ξ

$p + q$: even > 2

$$G = O(p + 1, q + 1) \overset{\sim}{\longrightarrow} L^2(\Xi)$$ minimal rep.

P-action \cdots translation and multiplication

ω-action \cdots \mathcal{F}_Ξ (unitary inversion operator)

Problem Find the unitary operator \mathcal{F}_Ξ explicitly.

Easy: express it as a composition of integral transforms and a known formula for other models (e.g. conformal model)

Challenging: to find a single and explicit formula in L^2 model
Unitary inversion operator \mathcal{F}_Ξ

$p + q$: even > 2

$$G = O(p + 1, q + 1) \overset{\sim}{\to} L^2(\Xi)$$

minimal rep.

P-action \cdots translation and multiplication

w-action \cdots \mathcal{F}_Ξ (unitary inversion operator)

Problem Find the unitary operator \mathcal{F}_Ξ explicitly.

Cf. Analogous operator for the oscillator rep.

$$M_p(n, \mathbb{R}) \overset{\sim}{\to} L^2(\mathbb{R}^n)$$

unitary inversion operator coincides with Euclidean Fourier transform $\mathcal{F}_{\mathbb{R}^n}$ (up to scalar)!

Geometric Analysis on Minimal Representations – p.28/49
Fourier transform \mathcal{F}_Ξ on Ξ

$$\Xi := \{\xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0\}$$

$$= \quad \text{(figure for } (p, q) = (2, 1))$$
Fourier transform \mathcal{F}_Ξ on Ξ

$$\Xi := \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0 \}$$

= (\text{figure for } (p, q) = (2, 1))

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n \\
\mathcal{F}_Ξ on $\Xi = $
Fourier transform \mathcal{F}_Ξ on Ξ

$$\Xi := \{\xi \in \mathbb{R}^{p+q} : \xi_1^2 + \cdots + \xi_p^2 - \xi_{p+1}^2 - \cdots - \xi_{p+q}^2 = 0\}$$

$$= \bigcap \quad \text{(figure for } (p, q) = (2, 1))$$

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

\mathcal{F}_Ξ on $\Xi = \bigcap$

Problem Define \mathcal{F}_Ξ and find its formula.
‘Fourier transform’ \mathcal{F}_Ξ on Ξ

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

\mathcal{F}_Ξ on $\Xi = \mathcal{C}_1$
‘Fourier transform’ \mathcal{F}_Ξ on Ξ

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

$\mathcal{F}^4 = \text{id}$

\mathcal{F}_Ξ on $\Xi = \bigcirc$
‘Fourier transform’ \mathcal{F}_Ξ on Ξ

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

$\mathcal{F}^4 = \text{id}$

\mathcal{F}_Ξ on $\Xi = \mathcal{F}_\Xi^2 = \text{id}$
Fourier trans. \mathcal{F}_{R^n} on \mathbb{R}^n

$Q_j \leftrightarrow -P_j$

$P_j \leftrightarrow Q_j$

$Q_j = x_j$ \hspace{1cm} (multiplication by coordinate function)

$P_j = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_j}$
‘Fourier transform’ \mathcal{F}_Ξ on Ξ

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

$$
\begin{align*}
Q_j & \mapsto -P_j \\
P_j & \mapsto Q_j
\end{align*}
$$

$Q_j = x_j$ (multiplication by coordinate function)

$$
P_j = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_j}
$$

$R_j = \Xi$ second order differential op. on Ξ

$R_j \mapsto Q_j$

Geometric Analysis on Minimal Representations – p.30/49
‘Fourier transform’ \mathcal{F}_Ξ on Ξ

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

- $Q_j \leftrightarrow -P_j$
- $P_j \leftrightarrow Q_j$

$Q_j = x_j$ (multiplication by coordinate function)

$P_j = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_j}$

$R_j = \Xi$ second order differential op. on Ξ

Bargmann–Todorov’s operators
‘Fourier transform’ \mathcal{F}_Ξ on Ξ

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

\[
\begin{align*}
Q_j &\quad \mapsto \quad -P_j \\
P_j &\quad \mapsto \quad Q_j
\end{align*}
\]

$Q_j = x_j$ \hspace{1cm} (multiplication by coordinate function)

$P_j = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_j}$

$R_j = \Xi$ \hspace{1cm} second order differential op. on Ξ

\[
\begin{align*}
Q_1^2 + \cdots + Q_p^2 - Q_{p+1}^2 - \cdots - Q_{p+q}^2 &= 0 \\
R_1^2 + \cdots + R_p^2 - R_{p+1}^2 - \cdots - R_{p+q}^2 &= 0
\end{align*}
\] on Ξ
Unitary inversion operator \mathcal{F}_Ξ

$p + q$: even > 2

\[G = O(p + 1, q + 1) \sim L^2(\Xi) \quad \text{minimal rep.} \]

P-action \cdots translation and multiplication on $L^2(\Xi)$

w-action \cdots \mathcal{F}_Ξ (unitary inversion operator)

Problem Find the unitary operator \mathcal{F}_Ξ explicitly.
Unitary inversion operator \mathcal{F}_Ξ

$p + q$: even > 2

$$G = O(p + 1, q + 1) \sim L^2(\Xi)$$ minimal rep.

P-action \cdots translation and multiplication on $L^2(\Xi)$

w-action \cdots \mathcal{F}_Ξ (unitary inversion operator)

Problem Find the unitary operaotr \mathcal{F}_Ξ explicitly.

Cf. Euclidean case $\varphi(t) = e^{-it}$ (one variable)

$$\mathcal{F}_{\mathbb{R}^N} f(x) = c \int_{\mathbb{R}^N} \varphi(\langle x, y \rangle) f(y) dy$$
Unitary inversion operator \mathcal{F}_Ξ

\[p + q: \text{even} > 2 \]
\[G = O(p + 1, q + 1) \sim L^2(\Xi) \]

P-action \hspace{1cm} translation and multiplication on $L^2(\Xi)$

w-action \hspace{1cm} \mathcal{F}_Ξ (unitary inversion operator)

Problem \hspace{1cm} Find the unitary operator \mathcal{F}_Ξ explicitly.

Cf. Euclidean case \hspace{1cm} $\varphi(t) = e^{-it}$ (one variable)

\[\mathcal{F}_{\mathbb{R}^N} f(x) = c \int_{\mathbb{R}^N} \varphi(\langle x, y \rangle) f(y) dy \]

Theorem E \hspace{1cm} Suppose $p + q: \text{even} > 2$

\[(\mathcal{F}_\Xi f)(x) = c \int_{\Xi} \Phi_{\frac{1}{2}(p+q-4)}(\langle x, y \rangle) f(y) dy \]
Idea: Apply Mellin–Barnes type integral to distributions.

Fix $m \in \mathbb{N}$. Take a contour L_m s.t.
Mellin–Barnes type integral

Idea: Apply Mellin–Barnes type integral to distributions.

Fix \(m \in \mathbb{N} \). Take a contour \(L_m \) s.t.

1) \(L_m \) starts at \(\gamma - i\infty \)
2) passes the real axis at \(s \)
3) ends at \(\gamma + i\infty \)

where

\[-m - 1 < s < -m\]

\[-1 < \gamma < 0\]
Explicit formula of \mathcal{F}_Ξ on Ξ

Theorem E ([4]) Suppose $p + q$: even > 2

$$(\mathcal{F}_\Xi f)(x) = c \int_\Xi \Phi_{\frac{1}{2}(p+q-4)}(\langle x, y \rangle) f(y) dy$$
Explicit formula of \mathcal{F}_Ξ on Ξ

Theorem E ([4])

Suppose $p + q$: even > 2

$$(\mathcal{F}_\Xi f)(x) = c \int_\Xi \Phi^{\varepsilon(p,q)}_{\frac{1}{2}(p+q-4)}(\langle x, y \rangle) f(y)\,dy$$

Here, $\varepsilon(p, q) = \begin{cases}
0 & \text{if } \min(p, q) = 1, \\
1 & \text{if } p, q > 1 \text{ are both odd,} \\
2 & \text{if } p, q > 1 \text{ are both even.}
\end{cases}$
Explicit formula of \mathcal{F}_Ξ on Ξ

Theorem E ([41]) Suppose $p + q$: even > 2

$$(\mathcal{F}_\Xi f)(x) = c \int_{\Xi} \Phi_{\frac{1}{2}(p+q-4)}^{\varepsilon(p,q)}(\langle x, y \rangle) f(y) dy$$

Here, $\varepsilon(p, q) = \begin{cases} 0 & \text{if } \min(p, q) = 1, \\ 1 & \text{if } p, q > 1 \text{ are both odd,} \\ 2 & \text{if } p, q > 1 \text{ are both even.} \end{cases}$

$$\Phi_{m}^{\varepsilon}(t) = \begin{cases} \int_{L_0} \frac{\Gamma(-\lambda)}{\Gamma(\lambda + 1 + m)} (2t)^{\lambda} d\lambda \\ \int_{L_m} \frac{\Gamma(-\lambda)}{\Gamma(\lambda + 1 + m)} (2t)^{\lambda} d\lambda \\ \int_{L_m} \frac{\Gamma(-\lambda)}{\Gamma(\lambda + 1 + m)} \left(\frac{(2t)^{\lambda}}{\tan(\pi\lambda)} + \frac{(2t)^{\lambda}}{\sin(\pi\lambda)} \right) d\lambda \end{cases} \begin{array}{ll} \text{for } \varepsilon = 0 \\ \text{for } \varepsilon = 1 \\ \text{for } \varepsilon = 2 \end{array}$$
Regularity of $\Phi^\varepsilon_m(t)$

Cf. Euclidean Fourier transform $e^{-it} \in \mathcal{A}(\mathbb{R}) \cap L^1_{\text{loc}}(\mathbb{R}) \cap \cdots$
Regularity of $\Phi^\varepsilon_m(t)$

Cf. Euclidean Fourier transform $e^{-it} \in \mathcal{A}(\mathbb{R}) \cap L^1_{\text{loc}}(\mathbb{R}) \cap \cdots$

Recall two distributions on \mathbb{R}

$\delta(t)$: Dirac’s delta function

t^{-1}: Cauchy’s principal value

$$= \lim_{s \to 0} \left(\int_{-\infty}^{-s} + \int_{s}^{\infty} \right) \langle \frac{1}{t}, \cdot \rangle dt$$

these are not in $L^1_{\text{loc}}(\mathbb{R})$
Regularity of $\Phi^\varepsilon_m(t)$

Cf. Euclidean Fourier transform $e^{-it} \in \mathcal{A}(\mathbb{R}) \cap L^1_{\text{loc}}(\mathbb{R}) \cap \cdots$

Prop. ([4]) We have the identities mod $L^1_{\text{loc}}(\mathbb{R})$

$$\Phi^\varepsilon_m(t) \equiv \begin{cases}
0 & (\varepsilon = 0) \\
-\pi i \sum_{l=0}^{m-1} \frac{(-1)^l}{2^l(m - l - 1)!} \delta^{(l)}(t) & (\varepsilon = 1) \\
-\frac{l!}{2^l(m - l - 1)!} t^{-l-1} & (\varepsilon = 2)
\end{cases}$$
Regularity of $\Phi^\varepsilon_m(t)$

Cf. Euclidean Fourier transform $e^{-it} \in \mathcal{A}(\mathbb{R}) \cap L^1_{\text{loc}}(\mathbb{R}) \cap \cdots$

\[\Phi^\varepsilon_m(t) \equiv \begin{cases}
0 & (\varepsilon = 0) \\
-\pi i \sum_{l=0}^{m-1} \frac{(-1)^l}{2^l(m-l-1)!} \delta^{(l)}(t) & (\varepsilon = 1) \\
-i \sum_{l=0}^{m-1} \frac{l!}{2^l(m-l-1)!} t^{-l-1} & (\varepsilon = 2)
\end{cases} \]

Cor. \mathcal{F}_{Ξ} has a locally integrable kernel if and only if G is $O(p + 1, 2)$, $O(2, q + 1)$, or $O(3, 3)$ ($\cong SL(4, \mathbb{R})$).
Prop. ([4]) \(\Phi_m^\varepsilon(t) \) solves the differential equation
\[
(\theta^2 + m\theta + 2t)u = 0
\]
where \(\theta = t \frac{d}{dt} \).
Prop. (4) \(\Phi_{m}^{\varepsilon}(t) \) solves the differential equation
\[
(\theta^2 + m\theta + 2t)u = 0
\]
where \(\theta = t\frac{d}{dt} \).

Explicit forms
\[
\Phi_{m}^{0}(t) = 2\pi i (2t)^{m/2} J_{m}(2\sqrt{2t+})
\]
\[
\Phi_{m}^{1}(t) = \Phi_{m}^{0}(t) - \pi i \sum_{l=0}^{m-1} \frac{(-1)^l}{2^l(m-l-1)!} \delta^{(l)}(t)
\]
Prop. ([4]) \(\Phi_{m}(t) \) solves the differential equation

\[
(\theta^2 + m\theta + 2t)u = 0
\]

where \(\theta = t \frac{d}{dt} \).

Explicit forms

\[
\Phi_{m}^{0}(t) = 2\pi i (2t)^{-\frac{m}{2}} J_{m}(2\sqrt{2t+})
\]

\[
\Phi_{m}^{1}(t) = \Phi_{m}^{0}(t) - \pi i \sum_{l=0}^{m-1} \frac{(-1)^{l}}{2^{l}(m-l-1)!} \delta^{(l)}(t)
\]

\[
\Phi_{m}^{2}(t) = 2\pi i (2t)^{-\frac{m}{2}} Y_{m}(2\sqrt{2t+})
\]

\[
+ 4(-1)^{m+1} i (2t)^{-\frac{m}{2}} K_{m}(2\sqrt{2t-})
\]
Two constructions of minimal reps.

1. Conformal construction
 Theorems A, B
 v.s.

2. L^2 construction
 (Schrödinger model)
 Theorem D

3. Deformation of Fourier transforms
 (Theorems F, G, H)

Group action
Hilbert structure

Conservative quantity

‘Fourier transform’ \mathcal{F}_Ξ
Two constructions of minimal reps.

1. Conformal construction
 Theorems A, B

 v.s.

2. \(L^2 \) construction
 (Schrödinger model)
 Theorem D

 Clear \(\cdots \) advantage of the model

3. Deformation of Fourier transforms
 (Theorems F, G, H)
Deformation of Fourier transform $\mathcal{F}_{\mathbb{R}^N}$

\begin{align*}
\mathcal{F}_\Xi & \quad \ldots \quad \text{`Fourier transform' on } \Xi \subset \mathbb{R}^{p,q} \\
\mathcal{F}_{\mathbb{R}^N} & \quad \ldots \quad \text{Fourier transform on } \mathbb{R}^N
\end{align*}
Assume $q = 1$. Set $p = N$.

\[\mathbb{R}^{N,1} \supset \Xi = \begin{array}{c} \text{projection} \\ \downarrow \end{array} \mathbb{R}^N \]
Assume $q = 1$. Set $p = N$.

$$\mathbb{R}^{N,1} \supset \Xi = \text{projection} \rightarrow \mathbb{R}^N$$
Deformation of Fourier transform $\mathcal{F}_{\mathbb{R}^N}$

$\mathcal{F}_\Xi \quad \ldots \quad \text{‘Fourier transform’ on } \Xi \subset \mathbb{R}^{p,q}$

$\mathcal{F}_{\mathbb{R}^N} \quad \ldots \quad \text{Fourier transform on } \mathbb{R}^N$

Assume $q = 1$. Set $p = N$.

$\mathbb{R}^{N,1} \supset \Xi = \begin{array}{c}
\text{projection} \\
\text{deform}
\end{array} \rightarrow \mathbb{R}^N$

$a = 1 \quad \quad \quad \quad \quad \quad a = 2$
(k, a)-deformation of $\exp \frac{t}{2}(\Delta - |x|^2)$

Fourier transform

$$\mathcal{F}_{\mathbb{R}^N} = c \exp \left(\frac{\pi i}{4} \left(\Delta - |x|^2 \right) \right)$$
(k, a)-deformation of \(\exp \frac{t}{2}(\Delta - |x|^2) \)

Fourier transform

self-adjoint op. on \(L^2(\mathbb{R}^N) \)

\[
F_{\mathbb{R}^N} = c \exp \left(\frac{\pi i}{4} \left(\Delta - |x|^2 \right) \right)
\]

phase factor \(\Delta \) Laplacian

\[
= e^{\frac{\pi i N}{4}}
\]
(k, a)-deformation of $\exp \frac{t}{2}(\Delta - |x|^2)$

Fourier transform

self-adjoint op. on $L^2(\mathbb{R}^N)$

$$\mathcal{F}_{\mathbb{R}^N} = c \exp \left(\frac{\pi i}{4} (\Delta - |x|^2) \right)$$

phase factor \quad Laplacian

$$= e^{\frac{\pi i N}{4}}$$

Hermite semigroup

$$I(t) := \exp \frac{t}{2}(\Delta - |x|^2)$$

R. Howe (oscillator semigroup, 1988)
\[(k, a)\text{-deformation of } \exp \frac{t}{2}(\Delta - |x|^2)\]

Hankel-type transform on \(\Xi\)

self-adjoint op. on \(L^2(\mathbb{R}^N, \frac{dx}{|x|})\)

\[\mathcal{F}_\Xi = c \exp \left(\frac{\pi i}{2} (|x|\Delta - |x|) \right)\]

phase factor \(\varphi\) and Laplacian

\[= e^{\frac{\pi i (N-1)}{2}}\]

“Laguerre semigroup” ([5], 2007 Howe 60th birthday volume)

\[\mathcal{I}(t) := \exp t(|x|\Delta - |x|)\]
\((k, a)\)-deformation of \(\exp \frac{t}{2} (\Delta - |x|^2)\)

\((k, a)\)-generalized Fourier transform

self-adjoint op. on \(L^2(\mathbb{R}^N, \vartheta_{k,a}(x) dx)\)

\[
\mathcal{F}_{k,a} = \begin{cases}
 c \exp \left(\frac{\pi i}{2a} \left(|x|^{2-a} \Delta_k - |x|^a \right) \right)
\end{cases}
\]

phase factor \(= e^{i \frac{\pi (N+2(k)+a-2)}{2a}}\)

Dunkl Laplacian

\((k, a)\)-deformation of Hermite semigroup ([11], 2009)

\[
\mathcal{I}_{k,a}(t) := \exp \frac{t}{a} \left(|x|^{2-a} \Delta_k - |x|^a \right)
\]

\(k\): multiplicity on root system \(\mathcal{R}\), \(a > 0\)
Special values of holomorphic semigroup $I_{k,a}(t)$

(k, a)-generalized Fourier transform $F_{k,a}$

\[t \rightarrow \frac{\pi i}{2} \]

Holomorphic semigroup $I_{k,a}(t)$

- $a \rightarrow 2$
- $t \rightarrow \frac{\pi i}{2}$
- $k \rightarrow 0$

Dunkl transform

Hermite semigroup

Laguerre semigroup

- $a \rightarrow 1$
- $t \rightarrow \frac{\pi i}{2}$
- $k \rightarrow 0$

- $k \rightarrow 0$
- \(t \rightarrow \frac{\pi i}{2} \)

Fourier transform

Hankel transform

Geometric Analysis on Minimal Representations – p.41/49
Special values of holomorphic semigroup $\mathcal{I}_{k,a}(t)$

(k, a)-generalized Fourier transform $\mathcal{F}_{k,a}$

$t \rightarrow \frac{\pi i}{2}$

Holomorphic semigroup $\mathcal{I}_{k,a}(t)$

$a \rightarrow 2$

$a \rightarrow 1$

$\mathcal{I}_{k,2}(t)$

$\mathcal{I}_{k,1}(t)$

Dunkl transform

Hermite semigroup

Laguerre semigroup

$\mathcal{F}_{k,1}$

$t \rightarrow \frac{\pi i}{2}$

$k \rightarrow 0$

$k \rightarrow 0$

Fourier transform

Hankel transform

$a \rightarrow 2$

$a \rightarrow 1$
Special values of holomorphic semigroup \(I_{k,a}(t) \)

\[(k, a)\)-generalized Fourier transform \(F_{k,a} \)

\[t \rightarrow \frac{\pi i}{2} \]

Holomorphic semigroup \(I_{k,a}(t) \)

\[a \rightarrow 2 \]

\[a \rightarrow 1 \]

\(I_{k,2}(t) \)

\[t \rightarrow \frac{\pi i}{2} \]

\[k \rightarrow 0 \]

Dunkl transform

\(k \rightarrow 0 \)

Hermite semigroup

\[t \rightarrow \frac{\pi i}{2} \]

Laguerre semigroup

\[k \rightarrow 0 \]

Fourier transform

\[\leftrightarrow \text{‘unitary inversion operator’} \Rightarrow \]

the Weil representation of the metaplectic group \(Mp(N, \mathbb{R}) \)

Hankel transform

\[\leftrightarrow \text{the minimal representation of the conformal group } O(N + 1, 2) \]
(k, a)-deformation of Hermite semigroup

\[k = (k_\alpha): \text{ multiplicity of root system } \mathcal{R} \text{ in } \mathbb{R}^N \]

\[\mathcal{H}_{k,a} := L^2(\mathbb{R}^N, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_\alpha} \, dx) \]
\[(k, a)\)-deformation of Hermite semigroup

\[k = (k_\alpha) : \text{multiplicity of root system } \mathcal{R} \text{ in } \mathbb{R}^N \]

\[\mathcal{H}_{k,a} := L^2(\mathbb{R}^N, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_\alpha} \, dx) \]

Thm F ([11]) Assume \(a > 0\) and \(a + \sum k_\alpha + N - 2 > 0\).

\[\mathcal{I}_{k,a}(t) := \exp \frac{t}{a} (|x|^{2-a} \Delta_k - |x|^a) \text{ is a holomorphic semigroup} \]

on \(\mathcal{H}_{k,a} \) for \(\Re t > 0 \).
\((k, a)\)-deformation of Hermite semigroup

\(k = (k_\alpha) \): multiplicity of root system \(\mathcal{R} \) in \(\mathbb{R}^N \)

\(\mathcal{H}_{k,a} := L^2(\mathbb{R}^N, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_\alpha} \, dx) \)

Thm F ([11]) Assume \(a > 0 \) and \(a + \sum k_\alpha + N - 2 > 0 \).

\(\mathcal{I}_{k,a}(t) := \exp \frac{t}{a} (|x|^{2-a} \Delta_k - |x|^a) \) is a holomorphic semigroup on \(\mathcal{H}_{k,a} \) for \(\text{Re} \, t > 0 \).

\[\mathcal{I}_{k,a}(t_1) \circ \mathcal{I}_{k,a}(t_2) = \mathcal{I}_{k,a}(t_1 + t_2) \quad \text{for Re} \, t_1, t_2 \geq 0 \]

\((\mathcal{I}_{k,a}(t)f, g)\) is holomorphic for \(\text{Re} \, t > 0 \), for \(\forall f, \forall g \)
\((k, a)\)-deformation of Hermite semigp

\(k = (k_\alpha)\): multiplicity of root system \(R\) in \(\mathbb{R}^N\)

\[\mathcal{H}_{k,a} := L^2(\mathbb{R}^N, |x|^{a-2} \prod_{\alpha \in R} |\langle x, \alpha \rangle|^{k_\alpha} \, dx)\]

Thm F ([11]) Assume \(a > 0\) and \(a + \sum k_\alpha + N - 2 > 0\).

\[\mathcal{I}_{k,a}(t) := \exp \frac{t}{a} (|x|^{2-a} \Delta_k - |x|^a)\]

is a holomorphic semigp on \(\mathcal{H}_{k,a}\) for \(\Re t > 0\).

Point: The unitary rep on \(\mathcal{H}_{k,a}\) is \(SL(2, \mathbb{R})\)-admissible (i.e. discretely decomposable and finite multiplicities)
(k, a)-deformation of Hermite semigroup

\[k = (k_\alpha): \text{multiplicity of root system } \mathcal{R} \text{ in } \mathbb{R}^N \]

\[\mathcal{H}_{k,a} := L^2(\mathbb{R}^N, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_\alpha} \, dx) \]

Thm F ([11]) Assume $a > 0$ and $a + \sum k_\alpha + N - 2 > 0$.

\[\mathcal{I}_{k,a}(t) := \exp \frac{t}{a} (|x|^{2-a} \Delta_k - |x|^a) \text{ is a holomorphic semigroup} \]

on $\mathcal{H}_{k,a}$ for $\Re t > 0$.

Point: The unitary rep on $\mathcal{H}_{k,a}$ is $SL(2, \mathbb{R})$-admissible (i.e. discretely decomposable and finite multiplicities)

\[\Rightarrow \forall \text{ Spectrum of } |x|^{2-a} \Delta_k - |x|^a \text{ is discrete and negative} \]
\[(k, a)\text{-deformation of Hermite semigroup}

\begin{align*}
k &= (k_\alpha) : \text{multiplicity of root system } \mathcal{R} \text{ in } \mathbb{R}^N \\
\mathcal{H}_{k,a} &:= L^2(\mathbb{R}^N, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_\alpha} \, dx)
\end{align*}

Thm F (11) Assume \(a > 0\) and \(a + \sum k_\alpha + N - 2 > 0\).

\[\mathcal{I}_{k,a}(t) := \exp \frac{t}{a} \left(|x|^{2-a} \Delta_k - |x|^a \right)\]
is a holomorphic semigroup on \(\mathcal{H}_{k,a}\) for \(\text{Re } t > 0\).

Point: The unitary rep on \(\mathcal{H}_{k,a}\) is \(SL(2, \mathbb{R})\)-admissible

(i.e. discretely decomposable and finite multiplicities)

\[\implies\text{automorphisms of the ring of operators.}\]

\[a = 1 \implies SL(2, \mathbb{Z})\text{ action on degenerate DAHA (Cherednik)}\]
$$(k, a)$$-deformation of Hermite semigroup

$$k = (k_\alpha):$$ multiplicity of root system $${\mathcal R}$$ in $${\mathbb R}^N$$

$${\mathcal H}_{k,a} := L^2({\mathbb R}^N, |x|^{a-2} \prod_{\alpha \in {\mathcal R}} |\langle x, \alpha \rangle|^{k_{\alpha}} \, dx)$$

Thm F (11) Assume $a > 0$ and $a + \sum k_\alpha + N - 2 > 0$.

$${\mathcal I}_{k,a}(t) := \exp \frac{t}{a} (|x|^{2-a} \Delta_k - |x|^a)$$ is a holomorphic semigroup on $${\mathcal H}_{k,a}$$ for $\Re t > 0$.

$${\mathcal F}_{k,a} := \int_{c} {\mathcal I}_{k,a}(\frac{\pi i}{2})$$

phase factor
(k, a)-deformation of Hermite semigp

\[k = (k_\alpha): \text{ multiplicity of root system } \mathcal{R} \text{ in } \mathbb{R}^N \]
\[\mathcal{H}_{k,a} := L^2(\mathbb{R}^N, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_\alpha} \, dx) \]

Thm E ([11]) Assume $a > 0$ and $a + \sum k_\alpha + N - 2 > 0$. $\mathcal{I}_{k,a}(t) := \exp \left(\frac{t}{a} (|x|^{2-a} \Delta_k - |x|^a) \right)$ is a holomorphic semigp on $\mathcal{H}_{k,a}$ for $\text{Re } t > 0$.

\[\mathcal{F}_{k,a} := c \mathcal{I}_{k,a}(\frac{\pi i}{2}) \]

phase factor
\[e^{i \frac{\pi (N+2 \langle k \rangle + a - 2)}{2a}} \]
Generalized Fourier transform $\mathcal{F}_{k,a}$

$$\mathcal{F}_{k,a} = c \mathcal{I}_{k,a}(\frac{\pi i}{2})$$
Generalized Fourier transform $\mathcal{F}_{k,a}$

$$\mathcal{F}_{k,a} = c \mathcal{I}_{k,a}(\frac{\pi i}{2}) = c \exp \left(\frac{\pi i}{2a} \left(|x|^{2-a} \Delta_k - |x|^a \right) \right)$$

Thm G 1) $\mathcal{F}_{k,a}$ is a unitary operator
Generalized Fourier transform $\mathcal{F}_{k,a}$

$$\mathcal{F}_{k,a} = c \mathcal{I}_{k,a} \left(\frac{\pi i}{2} \right) = c \exp \left(\frac{\pi i}{2a} (|x|^{2-a} \Delta_k - |x|^a) \right)$$

Thm G

1) $\mathcal{F}_{k,a}$ is a unitary operator

2) $\mathcal{F}_{0,2} =$ Fourier transform on \mathbb{R}^N

3) $\mathcal{F}_{k,a}$ is of finite order $\iff a \in \mathbb{Q}$

4) $\mathcal{F}_{k,a}$ intertwines $|x|^a$ and $-|x|^{2-a} \Delta_k$
Generalized Fourier transform $\mathcal{F}_{k,a}$

$$\mathcal{F}_{k,a} = c \mathcal{I}_{k,a}(\frac{\pi i}{2}) = c \exp\left(\frac{\pi i}{2a}(|x|^{2-a} \Delta_k - |x|^a)\right)$$

Thm G
1) $\mathcal{F}_{k,a}$ is a unitary operator
2) $\mathcal{F}_{0,2}$ = Fourier transform on \mathbb{R}^N
 $F_{k,a}$ = Dunkl transform on \mathbb{R}^N
 $\mathcal{F}_{0,1}$ = Hankel transform on $L^2(\mathbb{R}_+)$
3) $\mathcal{F}_{k,a}$ is of finite order $\iff a \in \mathbb{Q}$
4) $\mathcal{F}_{k,a}$ intertwines $|x|^a$ and $-|x|^{2-a} \Delta_k$

\implies generalization of classical identities such as Hecke identity, Bochner identity, Parseval–Plancherel formulas, Weber’s second exponential integral, etc.
Application to special functions

Minimal reps (↔ group)
Application to special functions

Minimal reps (≤ group)
≈ Maximal symmetries (≤ space)

⇒
Application to special functions

Minimal reps (≅ group)
≈ Maximal symmetries (≅ space)

⇒ ‘Special functions’, ‘orthogonal polynomials’ associated to 4th order differential eqn $[2a, 2b]$
Application to special functions

Minimal reps (↔ group)
≈ Maximal symmetries (↔ space)

⇒ ‘Special functions’, ‘orthogonal polynomials’
associated to 4th order differential eqn \([2a, 2b]\)
with 4 parameters

\[
\begin{pmatrix}
p, q \\
l, m
\end{pmatrix}
\]

dimension branching laws (multiplicity-free)

Special case \(q = 1\): Laguerre polynomials \(4 = 2 \times 2\)
Heisenberg-type inequality

\[\| | x |^{\alpha} f(x) \|_k \| \| \xi |^{\alpha} (\mathcal{F}_k, a f)(\xi) \|_k \geq \frac{2 \langle k \rangle + N + a - 2}{2} \| f(x) \|_k^2 \]

\(k \equiv 0, \ a = 2 \) \hspace{1cm} \cdots \ \text{Weyl–Pauli–Heisenberg inequality for Fourier transform } \mathcal{F}_{\mathbb{R}^N}

\(k: \text{ general}, \ a = 2 \) \hspace{1cm} \cdots \ \text{Heisenberg inequality for Dunkl transform } \mathcal{D}_k \ (\text{Rösler, Shimeno})

\(k \equiv 0, \ a = 1, \ N = 1 \) \hspace{1cm} \cdots \ \text{Heisenberg inequality for Hankel transform}
Special values of holomorphic semigroup $\mathcal{I}_{k,a}(t)$

(k, a)-generalized Fourier transform $\mathcal{F}_{k,a}$

$t \rightarrow \frac{\pi i}{2}$

(a → 2)

Holomorphic semigroup $\mathcal{I}_{k,a}(t)$

$a \rightarrow 1$

$\mathcal{I}_{k,2}(t)$

$t \rightarrow \frac{\pi i}{2}$

$k \rightarrow 0$

(a → 1)

$\mathcal{I}_{k,1}(t)$

$t \rightarrow \frac{\pi i}{2}$

$k \rightarrow 0$

Dunkl transform

Hermite semigroup

Fouier transform

Laguerre semigroup

Hankel transform

$\mathcal{F}_{k,1}$

\leftrightarrow ‘unitary inversion operator’ \Rightarrow

the Weil representation of the metaplectic group $Mp(N, \mathbb{R})$

the minimal representation of the conformal group $O(N + 1, 2)$
Hidden symmetries in $L^2(\mathbb{R}^N, \mathcal{V}_{k,a}(x) \, dx)$

Coxeter group

$k \to 0$

$(k, a : \text{general})$

\[\mathfrak{c} \times \widetilde{SL(2, \mathbb{R})} \]

$O(N) \times \widetilde{SL(2, \mathbb{R})}$

\[O(N + 1, 2) \sim \]

$a \to 1$

$a \to 2$

\[Mp(N, \mathbb{R}) \]
Bessel functions

\[J_\nu(z) = \left(\frac{z}{2} \right)^\nu \sum_{j=0}^{\infty} \frac{(-1)^j \left(\frac{z}{2} \right)^{2j}}{j! \Gamma(j + \nu + 1)} \]

\[I_\nu(z) := e^{-\frac{\sqrt{-1} \nu \pi}{2}} J_\nu \left(e^{\frac{\sqrt{-1} \pi}{2}} z \right) \]

\[Y_\nu(z) := \frac{J_\nu(z) \cos \nu \pi - J_{-\nu}(z)}{\sin \nu \pi} \] (second kind)

\[K_\nu(z) := \frac{\pi}{2 \sin \nu \pi} \left(I_{-\nu}(z) - I_\nu(z) \right) \] (third kind)
Geometric analysis on minimal reps of $O(p, q)$

[1] Laguerre semigroup and Dunkl operators · · ·

[2] Special functions associated to a fourth order differential equation · · ·

[4] Schrödinger model of minimal rep. · · ·

[5] Inversion and holomorphic extension · · ·

[6] Analysis on minimal representations · · ·

Collaborated with

S. Ben Saïd, J. Hilgert, G. Mano, J. Möllers and B. Ørsted