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Abstract

These notes include the following selected topics: Discussion of Radon’s
paper (1917); totally geodesic Radon transforms on the sphere and
associated analytic families of intertwining operators; Radon trans-
forms on Grassmann manifolds and matrix spaces; the generalized
Minkowski-Funk transform for non-central spherical sections, and small
divisors for spherical harmonic expansions; the Busemann-Petty prob-
lem on sections of convex bodies. Basic classical ideas and some recent
results are presented in a systematic form.
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1. Introduction

According I.M. Gelfand [Ge], one of the basic problems of integral
geometry can be stated as follows. Given a manifold X, let Ξ be a
certain family of submanifolds of X. We write x ∈ X, ξ ∈ Ξ, and
consider the mapping

(1.1) f(x) → (Rf)(ξ) =

∫

ξ

f

that assigns to each sufficiently good function f on X a collection
of integrals of f over submanifolds ξ ∈ Ξ. The problem is to study
mapping properties of (1.1) (range, kernel, norm estimates) and find
explicit inversion formulas in appropriate function spaces. It is assumed
that Ξ itself is endowed with the structure of a manifold.

The mapping (1.1) is usually called the Radon transform of f .

Example 1.1. X = Rn; Ξ is the family of all hyperplanes in Rn.

Example 1.2. X = Sn is the unit sphere in Rn+1; Ξ is the family of
all (n− 1)-dimensional subspheres of Sn of radius 1.

Example 1.3. X = Gn,k is the Grassmann manifold of k-dimensional
subspaces of Rn, 1 ≤ k < n; Ξ = Gn,k′ is the similar manifold with
k′ > k.

An idea to study manifolds of submanifolds goes back to the 19th
century (J. Plücker, F. Klein, M.S. Lie).1 The celebrated paper by J.
Radon [Rad] contains fundamental ideas related to operators (1.1) in
important special cases and paves the way to further developments.
In this paper one can also find information about the history of the
problem. Namely, the problem was suggested to Radon by Blaschke.
Reconstruction of functions on S2 from their integrals over big circles
was studied by Minkowski [Min] (1904). In 1913 P. Funk [Fu1], who was
a student of D. Hilbert, reproduced Minkowski’s solution and showed
that the problem reduces to Abel’s integral equation.

This manuscript was prepared for our lectures at the University of
Tokyo in Summer 2006. It represents an updated and extended version
of our previous text [Ru13].

We start by reviewing basic ideas of the original paper by J. Radon
[Rad], and then proceed to the Minkowski-Funk transform and its gen-
eralizations for lower-dimensional central sections and Grassmannians

1Lie’s interest to the group theory was influenced by Klein, who was Plücker’s
student.
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(Sections 2-5). All these transforms and analytic families of intertwin-
ing operators generated by them, are of primary importance in the in-
tegral geometry of star-shaped/convex bodies. In Section 6 we discuss
the old problem of P. Ungar (1954) about injectivity of non-central
modifications of the Minkowski-Funk transform. To the best of our
knowledge, this problem is still unsolved. It has a number of refor-
mulations and leads to the realm of number theory. We present some
partial results which give a flavor of how challenging the problem is.
Section 7 is devoted to the Busemann-Petty problem (1956) on sec-
tions of convex bodies. For the hyperplane sections, it was solved only
recently due to the efforts of a number of people. The lower dimen-
sional version of the Busemann-Petty problem when dimension of the
section is 2 and 3 is still mysterious. There is a remarkable interplay
between Radon transforms of different kinds behind this problem. We
present the solution to the original Busemann-Petty problem in a clear
and simple form, and connect it with known results from Section 3.
Section 8 concludes our notes and deals with Radon transforms on the
space of real rectangular matrices. Here we follow our recent works
[OR1], [OR2], inspired by pioneering results due to Petrov [Pe1], [Pe2].

Acknowledgements. I am grateful to Professor Toshio Oshima for
the invitation to talk at the University of Tokyo and the hospitality
during my visit.

2. Radon’s paper

Radon begins his paper with the 2-dimensional case of lines in the
plane, and then proceeds to generalizations and other settings. We
start by reviewing basic ideas of Radon in the context of Example 1.1
for n dimensions.

Each hyperplane ξ in Rn is defined by

ξ = {x ∈ Rn : x · θ = t}, θ ∈ Sn−1, t ∈ R,

and the Radon transform (1.1) can be represented as

(Rf)(ξ) =

∫

x·θ=t

f(x)dm(x) =

∫

Rn

f(x)δ(x · θ − t)dx(2.1)

=

∫

θ⊥

f(tθ + u)du ≡ (Rf)(θ, t).

Here δ(·) is the usual delta function of one variable, θ⊥ is the (n− 1)-
dimensional subspace orthogonal to θ, dm(x) and du stand for the
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relevant induced Lebesque measures. For simplicity, we suppose that
f belongs to the Schwartz space S(Rn). Clearly,

(2.2) (Rf)(θ, t) = (Rf)(−θ,−t) (the symmetry property).

The following statement follows immediately from (1.1).

Proposition 2.1. The operator (2.1) commutes with rigid motions of
Rn. Namely, if τ : x → γx + y, γ ∈ O(n), y ∈ Rn, then

R : f(τx) → (Rf)(τξ).

This is the basic property of Rf . It means that in order to solve the
equation Rf = ϕ, it suffices to recover f only at one point, say x = 0,
and restrict the consideration to radial functions f(x) ≡ f0(|x|).

Let us pass to details. If f(x) ≡ f0(r), r = |x|, then by rotation (set
u = γθv, where γθ ∈ SO(n), γθen = θ, en = (0, . . . , 0, 1)), (2.1) yields

(Rf)(θ, t) =

∫

Rn−1

f0(|ten + v|)dv = σn−2

∞∫

0

f0(
√

t2 + s2)sn−2ds,

σn−2 = |Sn−2| = 2π(n−1)/2

Γ((n− 1)/2)
.

This gives the following important statement.

Proposition 2.2. If f(x) ≡ f0(|x|), then (Rf)(θ, t) ≡ ϕ0(t), where
ϕ0(t) is an even function defined by

(2.3) ϕ0(t) = σn−2

∞∫

|t|

f0(r) (r2 − t2)(n−3)/2rdr.

The integral (2.3) is of Abel type. To be more precise, we introduce
Riemann-Liouville (or Weyl) fractional integrals of the form

(2.4) v(t) = (Iα
−u)(t) =

1

Γ(α)

∞∫

t

u(r)(r − t)α−1dr, α > 0.

The inverse of (2.4) is called a fractional derivative. For sufficiently
good v(t), it can be written as

(2.5) u(t) = (Dα
−v) =

(
− d

dt

)m

(Im−α
− v)(t), ∀m ∈ N, m ≥ α.

If α ∈ N one can set m = α and get Da
−v =

(− d
dt

)m
v; see [SKM] for

more details.
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By changing variables, we write (2.3) as

ϕ0(
√

t) = π(n−1)/2(I
(n−1)/2
− f0(

√·))(t), t > 0,

so that

(2.6) f0(r) = π(1−n)/2(D(n−1)/2
− ϕ0(

√·))(r2).

This is the inversion formula for the Radon transform in the radial
case. If n is odd, then

(2.7) f0(r) = π(1−n)/2

(
− 1

2r

d

dr

)(n−1)/2

ϕ0(r).

Now let us recover f(x) from (Rf)(θ, t) = ϕ(θ, t) in the general case.
Fix x, and denote fx(y) = f(x + y). By (2.1),

(2.8) (Rfx)(θ, t) = ϕ(θ, t + x · θ),
and therefore

(2.9)

∫

SO(n)

(Rfx)(γθ, t)dγ =
1

σn−1

∫

Sn−1

ϕ(θ, t + x · θ)dθ.

The right hand side of (2.9) is the mean value of ϕ over all hyperplanes
at distance |t| from x. We denote

(2.10) (M∗
t ϕ)(x) =

1

σn−1

∫

Sn−1

ϕ(θ, t + x · θ)dθ.

Since R commutes with rotations, the left hand side of (2.9) is the
Radon transform of the radial function f0(|y|) =

∫
SO(n)

fx(γy)dγ. The

latter can be written as the spherical mean

f0(r) =
1

σn−1

∫

Sn−1

f(x + rθ)dθ
def
= (Mrf)(x),

and Proposition 2.2 yields the following

Theorem 2.3. For t ∈ R,

(M∗
t Rf)(x) = σn−2

∞∫

|t|

(Mrf)(x)(r2 − t2)(n−3)/2rdr(2.11)

= π(n−1)/2(I
(n−1)/2
− f0(

√·))(t2),
and therefore

(2.12) f(x) = π(1−n)/2 lim
r→0

(D(n−1)/2
− [(M∗√·Rf)(x)])(r).
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Now we introduce another important operator. Set t = 0 in (2.10),
and denote

(2.13) (R∗ϕ)(x) =
1

σn−1

∫

Sn−1

ϕ(θ, x · θ)dθ, x ∈ Rn,

where ϕ(θ, t) is a function on the manifold of all hyperplanes in Rn. The
operator (2.13) is called the dual Radon transform (this motivates “*”
in (2.10)). It represents an integral of ϕ over the set of all hyperplanes
through x. From (2.11) we get

(R∗Rf)(x) =
σn−2

σn−1

∞∫

0

rn−2dr

∫

Sn−1

f(x + rθ)dθ

=
σn−2

σn−1

∫

Rn

f(y)

|x− y|dy = (Hf)(x)

or

(2.14) R∗Rf = Hf.

For n = 3, Hf represents the well-known Newton potential. Discus-
sion of (2.14) can be found in Radon’s paper. It is worth noting that
the equality (2.14) was communicated to Radon by Blaschke who dis-
covered a striking connection of R and R∗ with the potential theory.

The integral Hf is a member of the analytic family of Riesz poten-
tials

(2.15) (Iαf)(x) =
1

γn(α)

∫

Rn

f(y)dy

|x− y|n−α
, γn,α =

2απn/2Γ(α/2)

Γ((n− α)/2)
,

which were introduced in 1935 in the thesis of O. Frostman (M. Riesz’
student) and studied thoroughly by M. Riesz. Formally, Iα = (−∆)−α/2

where ∆ is the Laplace operator. More information about Riesz po-
tentials can be found in [R1], [SKM]. In terms of (2.15), (2.14) reads

(2.16) R∗Rf = cnI
n−1f, cn = 2(2π)n−1.

Thus, operators R and R∗ can be inverted formally by

(2.17) R−1 = H−1R∗ = c−1
n (−∆)(n−1)/2R∗,

(R∗)−1 = RH−1 = c−1
n R(−∆)(n−1)/2.

These formulas were predicted in Radon’s paper. Rigorous justification
of (2.17) was given much later.

Fundamental ideas of Funk, Blaschke and Radon were extended to
more general settings in further developments.
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Resuming this section, we recall the basic tools implemented by
Radon:

1. Group of motions.
2. Mean value operators.
3. Riemann-Liouville fractional integrals and Riesz potentials.

One more important thing should be mentioned. I mean harmonic
analysis, which was not used by Radon but played a key role in Minkowski’s
treatment of the similar transform on the sphere.

Consider the Fourier transform

(2.18) f̂(ξ) =

∫

Rn

f(x)eix·ξdx.

Fix ξ = θρ, θ ∈ Sn−1, ρ > 0, and integrate (2.18) first over the hyper-
plane x · θ = t. We get

(2.19) f̂(θρ) =

∞∫

−∞

eitρdt

∫

x·θ=t

f(x)dm(x) = Ft→ρ(Rf)(θ, t)

where Ft→ρ denotes the one-dimensional Fourier transform. By the
symmetry (2.2), (2.19) extends to all ρ ∈ R.

The equality (2.19) is known as the Central Slice Theorem. It enables
us to invert the Radon transform using known inversion formulas for
the Fourier transform. Conversely, by using inversion formulas for the
Radon transform and the one-dimensional Fourier transform, one can
invert the Fourier transform in n dimensions. This observation plays
a crucial role in developing the Fourier analysis in numerous different
settings. For example, the inversion formula for the Fourier transform
on the real hyperbolic space results from those for the Mellin transform
and the horocycle transform [H2], [H4], [VK]. The latter is an analogue
of the euclidean Radon transform adapted to the hyperbolic space.

An excellent account of Radon’s contribution to integral geometry
is presented in [Gi2], [GGG2]. More information about Radon trans-
forms on the euclidean space and their k-plane generalizations can be
found in [GGG1], [GGG2], [GGV], [H2], [H4], [H5], [Ke], [Na]. Inver-
sion formulas for these transforms in the framework of Lp-spaces were
obtained in [Ru3]-[Ru5], [Ru8], [Ru9], [Ru14].
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3. The Minkowski-Funk transform and related topics

3.1. Historical notes. Let x ∈ Sn ⊂ Rn+1, x⊥ be the central hyper-
plane orthogonal to x. The Minkowski-Funk transform is defined by

(3.1) (Rf)(x) =

∫

Sn∩x⊥

f(y)dxy =

∫

x·y=0

f(y)dxy

where dxy denotes the induced Lebesgue measure on the “great circle”
Sn ∩ x⊥. For n = 2, this transform was studied by Minkowski [Min]
(1904) and later by Funk Fu1 (1913). Using decomposition in Legendre
functions, Minkowski proved injectivity of R on the space of continuous
functions. It means that Rf ≡ 0 implies f ≡ 0 for f ∈ Ceven(S2). Funk
reduced the equation Rf = ϕ to Abel’s integral equation by making
use of a suitable averaging operator.

Radon’s paper actually suggests the following two approaches to the
inversion problem:

(a) via averaging and fractional differentiation;
(b) via representation of R∗R as a potential operator.
The idea of (a) amounts to Funk. The idea of (b) is due to Blaschke

who communicated it to Radon. Both methods were extended to all n
as follows:

(1959) S. Helgason (the method (b) for n odd).
(1963) V.I. Semyanistyi (the method (b) for all n ≥ 2 by lifting to

the Fourier transform on Rn+1).
(1990) S. Helgason (the method (a) for all n ≥ 2).
(1998) B. Rubin (the method (b) for all n ≥ 2 by using harmonic

analysis on Sn).
The Minkowski-Funk transform (3.1) is also called the spherical Radon

transform and the Funk transform. Note that there exist “spherical
Radon transforms” of different kinds (see, e.g., [A], [Q]). Furthermore,
Funk was aware of Minkowski’s work (see [Rad], part C).

3.2. The hemispherical transform. In 1916 Funk [Fu2] considered
the following problem: How to reconstruct a star-shaped body from
its “half-volumes”? In polar coordinates the problem reduces to the
integral equation

(3.2) (Ff)(x) ≡
∫

x·y>0

f(y)dy = ϕ(x), x ∈ Sn,

with integration over the hemisphere {y ∈ Sn : x · y > 0}. Funk solved
this equation for n = 2 and zonal f ≡ f(yn+1) by reducing (3.2) to the
Abel integral equation. Campi [Ca] studied this equation for arbitrary
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f ∈ L2(S2) using decomposition in spherical harmonics. The case of
all n ≥ 2 and f ∈ Lp(Sn) (instead of f one can take a finite Borel
measure on Sn) was investigated by Rubin [Ru7].

As we shall see below, it is convenient to deal with the following
modification of Ff :

(3.3) (F̃ f)(x) ≡
∫

Sn

f(y) sign(x · y)dy = 2(Ff)(x)−
∫

Sn

f(y)dy.

3.3. Connection with the euclidean Fourier transform. Oper-
ators (3.1) and (3.2) arising in geometry are particular cases of more
general operators which are well known in PDE and harmonic analysis.
For 0 < Reα < 1, let

(3.4) (Aαf)(x) =
Γ(1− α)

21−απ(n+1)/2

∫

Sn

(−ix · y)α−1f(y)dy, x ∈ Sn,

where the branch of (...)α−1 is chosen so that

(3.5) (−ix · y)α−1 = |x · y|α−1
[
sin

απ

2
+i sin

(1−α)π

2
sgn(x · y)

]
.

A direct calculation yields

(3.6)

∫

Rn+1

f
(

ξ
|ξ|

)

|ξ|n+α
eiξ·ηdξ = cα,n|η|α−1(Aαf)

( η

|η|
)
, cα,n = 21−απ(n+1)/2.

For f ∈ C∞(Sn), the definition (3.4) and the equality (3.6) can be
extended to all α ∈ C by using analytic continuation. According to
(3.5), one can write

(3.7) Aαf = Uαf + iV αf,

where

(3.8) (Uαf)(x) =
Γ
(
(1− α)/2

)

2πn/2Γ(α/2)

∫

Sn

f(y)|x · y|α−1dy, α 6= 1, 3, 5, . . . ;

(3.9) (V αf)(x) =
Γ(1− α/2)

2πn/2Γ ((1 + α)/2)

∫

Sn

f(y)|x · y|α−1sgn(x · y)dy,

α 6= 2, 4, 6, . . . .

The operator Uα (V α) annihilates odd (even) functions. Furthermore,

(3.10) lim
α→0

Uαf = cRf, V 1f = cF̃ f, c =
π(1−n)/2

2
.
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Thus the Minkowski-Funk transform and the hemispherical transform
can be regarded as members of the analytic family {Aα} (or {Uα} and
{V α} respectively). Integrals Uαf are the Fourier symbols of gener-
alized Riesz potentials [Sa1]. The case α = 2 represents the cosine
transform

(3.11) (Cf)(x) =

∫

Sn

f(y)|x · y|dy

playing an important role in convexity [Ga1], [Sch2].
The formula (3.6) was known long ago (cf. [GŠ], [Es]). Connection

of Uα with the Fourier transform on Rn+1 was studied in detail by
Semyanistyi [Se1], [Se2], who established a remarkable equality

(3.12) (Uα)−1 = U1−n−α.

For α = 0, this gives an inversion formula for the Minkowski-Funk
transform, and the problem is how to represent the right hand side
of (3.12) explicitly (we shall return to this question later). Close re-
sults were obtained by Koldobsky [Ko1], [Ko3]. His “Blaschke-Levy
representation” (or the p-cosine transform)

(3.13) f →
∫

Sn

f(y)|x · y|pdy

(without a normalizing factor) mimics (3.8).

3.4. Fourier-Laplace multipliers and Sobolev spaces. All afore-
mentioned operators on Sn are spherical convolutions of the form

(3.14) (Af)(x) =

∫

Sn

f(y)a(x · y)dy.

Such operators can be investigated using the relevant harmonic analysis
on Sn (see, e.g., a survey paper [Sa2]). For operators (3.7)-(3.9) (which
include Minkowski-Funk, hemispherical, p-cosine and some other im-
portant transforms), this way is much less technical than lifting into
Rn+1. Moreover, it enables us to obtain a series of deep results. We re-
call some known facts. Let {Yj,k(x)} be an orthonormal basis of spher-
ical harmonics on Sn. Here j ∈ Z+ = {0, 1, 2, . . . }; k = 1, 2, . . . , dn(j)
where dn(j) is the dimension of the subspace of spherical harmonics of
degree j. It is known ([Mü], p. 4) that

dn(j) = (n + 2j − 1)
(n + j − 2)!

j! (n− 1)!
.
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If f =
∑
j,k

fj,kYj,k, fj,k =
∫

Sn f(x)Yj,k(x)dx (the Fourier-Laplace coeffi-

cients of f), then

(3.15) Af =
∑

j,k

λjfj,kYj,k

where λj’s are evaluated by the Funk-Hecke formula [Mü] as

(3.16) λj = σn−1

1∫

−1

a(τ)(1− τ 2)n/2−1Pj(τ)dτ,

σn−1 = |Sn−1| = 2πn/2/Γ(n/2), Pj(τ) being (the generalized) Legendre
polynomials. The sequence {λj} is called the Fourier-Laplace multiplier
of A, and we write A ∼ {λj}. The operator A is bounded on L2(Sn)
if and only if supj |λj| < ∞. If f ∈ C∞(Sn), and λj = O(jm),m > 0,
then the series

∑
j,k

λjfj,kYj,k(x) is absolutely and uniformly convergent

and represents a C∞-function [Ne].

Lemma 3.1. ([Ru1], Lemma 32.1) Let X be any of the spaces C(Sn),
Lp(Sn), 1 ≤ p < ∞, or M(Sn) (the Banach space of finite Borel mea-
sures on Sn). If the multiplier {λj} of the operator A satisfies

(3.17) λj =
N−1∑
j=0

cj

jδ+j
+ O(j−δ−N), j →∞,

for some δ ≥ 0, δ + N > n, then A (initially defined by (3.15) on
C∞-functions) can be extended to a linear bounded operator on X.

We denote by S ′ = S ′(Sn) the dual of C∞(Sn) (the space of dis-
tributions on Sn). Given γ ∈ R and p ∈ (1,∞), the Sobolev space
Lγ

p = Lγ
p(S

n) is defined by

Lγ
p = {f ∈ S ′ : f (γ) =

∑

j,k

(j + 1)γfj,kYj,k ∈ Lp}; ‖f‖Lγ
p

= ‖f (γ)‖p.

According to (3.16), by using tables of integrals [PBM], one can
obtain the following multiplier representations:

(3.18) Aα ∼ {ijaj,α}, i =
√−1, aj,α =

Γ(j/2 + (1− α)/2)

Γ(j/2 + (n + α)/2)
,

(3.19) Uα ∼ {uj,α}, uj,α =

{
(−1)j/2aj,α if j is even,

0 if j is odd,
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(3.20) V α ∼ {vj,α}, vj,α =

{
0 if j is even,

(−1)(j−1)/2aj,α if j is odd,

Since all multipliers have a power behavior for j → ∞ (up to oscil-
lation), the corresponding operators act from C∞(Sn−1) to C∞(Sn−1).
From (3.18)-(3.20), one can also obtain exact information about action
of Aα, Uα, V α in the scale Lγ

p of Sobolev spaces. The case p = 2 is
trivial. In the general case we have the following

Theorem 3.2. Let 1 < p < ∞, α ∈ C; α 6= 1, 3, 5, . . . .
(i) The operator Uα can be extended as a linear bounded operator,

acting from Lβ
p into Lγ

p provided

(3.21) Re α ≥ γ − β − n− 1

2
+

∣∣∣1
p
− 1

2

∣∣∣(n− 1).

(ii) If (3.21) fails, then there is an even function f0 ∈ Lβ
p so that

Uαf0 /∈ Lγ
p.

Corollary 3.3. The following proper embeddings hold:

(3.22) Lδ
p,even ⊂ Uα(Lp

even) ⊂ Lγ
p,even,

provided
(3.23)

γ = Re α+
n− 1

2
−

∣∣∣1
p
− 1

2

∣∣∣(n−1), δ = Re α+
n− 1

2
+

∣∣∣1
p
− 1

2

∣∣∣(n−1),

α /∈ {1, 3, 5, . . . } ∪ {−n,−n− 2,−n− 4, . . . }.
We explain the basic idea of how these statements can be proven

(see [Ru6], [Ru7]). Let f = f+ +f−, f±(x) = (f(x)±f(−x))/2. Then
Uαf = Uαf+ = Aαf+, ‖f+‖Lβ

p
≤ ‖f‖Lβ

p
. The estimate ‖Aαf‖Lγ

p
≤

const‖f‖Lβ
p

is equivalent to ‖A1f‖Lδ
p
≤ const‖f‖p, δ = γ−β−Re α+1.

This can be easily checked by using Strichartz’ multiplier theorem [Str1]
or Lemma 3.1. The operator A1f arises as a symbol of the Calderòn-
Zygmund singular integral. The above estimate of A1f holds if and
only if (3.21) is satisfied [G1]-[G3], [Kr]. The counter-exapmle that
proves (ii) can be built using the argument from [Kr, Sec. 5].

Note that for p = 2, the gap in (3.22) disappears, and we get

Uα(L2
even) = Lγ

2,even, γ = Re α +
n− 1

2
.

The case of the Minkowski-Funk transform corresponds to α = 0. For
the cosine transform one should set α = 2. Similar statements hold for
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V α. Note also that from (3.19) the inversion formula (3.12) becomes
obvious, and in the Minkowski-Funk case we get

(3.24) cU1−nRf = f, c =
π(1−n)/2

2
.

Thus we need a “convenient” representation of the operator U1−n.
This problem will be discussed in Section 4 in a more general set-up.

3.5. Restriction theorem. Let (RSnf)(x) be the Minkowski-Funk
transform on Sn ⊂ Rn+1, and let Sk, 2 ≤ k ≤ n − 1, be the section
of Sn by the coordinate plane Rk+1 = Re1 + . . . + Rek+1. What can
one say about the restriction of RSnf onto Sk? Suppose, for simplicity,
that f ∈ C∞

even(Sn). Then, for x ∈ Sk, (RSnf)(x) ∈ C∞
even(Sk), and

therefore it is represented as (RSkϕ)(x) with some ϕ ∈ C∞
even(Sk) which

is unique. An interesting result belonging to Fallert, Goodey, and Weil
[FGW], gives an elegant explicit formula for ϕ. A short derivation of
this formula is as follows.

Given u ∈ Sk, we denote by Sn−k(u) the (n − k)-dimensional unit
sphere in the subspace (Rk+1)⊥ + Ru, and set

(3.25) ϕ(u) =
1

2

∫

Sn−k(u)

f(x)|x · u|k−1dmu(x), v ∈ Sk,

where dmu(x) is the induced Lebesgue measure on Sn−k(u).

Theorem 3.4. If f ∈ C∞
even(Sn), and x ∈ Sk, then (RSnf)(x) =

(RSkϕ)(x), ϕ being defined by (3.25).

Proof. Let x = ek+1. If γ is a rotation in the 2-plane {ek+1, en+1} so
that γen+1 = ek+1, then (RSnf)(ek+1) =

∫
Sn−1 f(γσ)dσ. By passing to

bispherical coordinates

σ = ηcosθ + ζ sin θ, 0 ≤ θ ≤ π/2,

η ∈ Sk−1 ⊂ Re1 + . . . + Rek, ζ ∈ Sn−k−1 ⊂ Rek+1 + . . . + Ren,

[VK, pp. 12, 22], we have (RSnf)(ek+1) =
∫

Sk−1 A(η)dη,

(3.26) A(η) =

π/2∫

0

sinn−k−1 θ cosk−1θ dθ

∫

Sn−k−1

f(γ(ηcosθ + ζ sin θ)dζ.

Since γη = η and γζ ∈ (Rk+1)⊥ = Rek+2 + . . . + Ren+1 the inner
integral in (3.26) reads∫

Sn∩(Rk+1)⊥

f(η cosθ + ω sin θ)dω.
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Hence A(η) =
∫

Sn−k(η)
f(w)|w · η|k−1dw, and the result follows by rota-

tion invariance. ¤
Theorem 3.4 is of independent interest. It will also play an important

role in Section 8.

4. Totally geodesic Radon transforms on the sphere

4.1. Definition and basic properties. Mean value operators.
Let Ξ be the set of k-dimensional totally geodesic submanifolds (k-
geodesics) ξ ⊂ Sn, 1 ≤ k ≤ n − 1. Each k-geodesic is a section of Sn

by the relevant (k + 1)-dimensional plane in Rn+1 through the origin.
The case k = n−1 corresponds to “great circles”. The totally geodesic
Radon transform of a sufficiently good function f on Sn is defined by

(4.1) (Rf)(ξ) =

∫

ξ

f(x)dm(x) =

∫

d(x,ξ)=0

f(x)dm(x), ξ ∈ Ξ,

where dm(x) denotes the induced Lebesgue measure on ξ and d(x, ξ) is
the geodesic distance between x and ξ. For k = n− 1, (4.1) coincides
with the Minkowski-Funk transform.

To get a better feeling of how the distance d(x, ξ) can be measured,
we denote by {ξ} the (k + 1)-plane containing ξ, and by {ξ}⊥ the sub-
space orthogonal to {ξ}. If Pr{ξ}⊥x denotes the orthogonal projecton

of x onto {ξ}⊥, and V (x, ξ) is the (k + 2)-dimensional volume of the
parallelepiped spanned by x and some orthonormal basis in {ξ}, then

(4.2) sin[d(x, ξ)] = |Pr{ξ}⊥x| = V (x, ξ).

In particular, if ξ is a great circle orthogonal to y ∈ Sn, then sin[d(x, ξ)] =
|x · y|.

We introduce mean value operators which play a key role in the
following. Given f : Sn → C, ϕ : Ξ → C, and θ ∈ [0, π/2], let

(4.3) (Rθf)(ξ) =

∫

d(x,ξ)=θ

f(x)dm(x), (R∗
θϕ)(x) =

∫

d(x,ξ)=θ

ϕ(ξ)dµ(ξ),

where dm(x) and dµ(ξ) stand for the relevant normalized measures.
For θ = 0 we have R0f = σ−1

k Rf, R∗
0ϕ = R∗ϕ, where Rf is the Radon

transform (4.1), σk = |Sk|, and R∗ is called the dual geodesic Radon
transform.

In order to represent (4.3) in a rigorous analytic form we need some
notation. Let Rn+1 = Rk+1 × Rn−k, Rk+1 = Re1 + . . . + Rek+1,
Rn−k = Rek+2 + . . .+Ren+1, ei being coordinate unit vectors. In the
following σn = |Sn| = 2π(n+1)/2/Γ((n+1)/2), ξ0 = Sk is the unit sphere
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in Rk+1; G = SO(n+1); K = SO(n) and K ′ = SO(k+1)×SO(n−k)
are the isotropy subgroups of en+1 and ξ0 respectively. The set Ξ can be
identified with the Grassmann manifold G/K ′ of all (k+1)-dimensional
subspaces of Rn+1. We define an invariant measure dξ on Ξ by setting∫
Ξ

ϕ(ξ)dξ =
∫

G
ϕ(γξ0)dγ where

∫
G

dγ = 1.
For θ ∈ [0, π/2], let gk+1,n+1(θ) be the rotation in the plane (ek+1, en+1)

with the matrix

[
sin θ cosθ
−cosθ sin θ

]
, so that xθ = gk+1,n+1(θ)en+1 =

ek+1cosθ + en+1 sin θ and d(xθ, ξ0) = θ. Given x ∈ Sn, ξ ∈ Ξ, we
denote by rx, rξ arbitrary rotations satisfying rxen+1 = x, rξξ0 = ξ,
and set fξ(x) = f(rξx), ϕx(ξ) = ϕ(rxξ).

In this notation operators (4.3) are defined by

(4.4) (Rθf)(ξ) =

∫

K′

fξ(rgk+1,n+1(θ)en+1)dr,

(4.5) (R∗
θϕ)(x) =

∫

K

ϕx(ρ[gk+1,n+1(θ)]
−1ξ0)dρ.

Using (4.4) and (4.5), one can prove the following

Lemma 4.1. [H5], [Ru11]
(a) The following duality relation holds:

(4.6)

∫

Ξ

(Rθf)(ξ)ϕ(ξ)dξ =
1

σn

∫

Sn

f(x)(R∗
θϕ)(x)dx

provided that the integral in either side is finite for f and ϕ replaced
by |f | and |ϕ| respectively. In particular, for θ = 0,

(4.7)
1

σk

∫

Ξ

(Rf)(ξ)ϕ(ξ)dξ =
1

σn

∫

Sn

f(x)(R∗ϕ)(x)dx.

(b) Operators Rθ, R∗
θ are bounded on Lp, 1 ≤ p ≤ ∞. Namely,

(4.8) ‖Rθf‖(p) ≤ σ−1/p
n ‖f‖p, ‖R∗

θϕ‖p ≤ σ1/p
n ‖ϕ‖(p),

where ‖ · ‖(p) and ‖ · ‖p are Lp-norms on Ξ and Sn respectively.

As in the previous section, the general picture becomes more clear
if we regard the Radon transforms R, R∗ as members of a suitable
analytic family of intertwining operators commuting with rotations. In
order to find these operators, we proceed as follows. Following Funk
and Radon, we first note that Radon transforms of zonal (or radial)
functions admit representation of the Abel type.
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Lemma 4.2. [Ru11] Given x ∈ Sn, ξ ∈ Ξ, and a measurable function
a(t) on (0, 1), let

ω = d(en+1, x), a1(x) = a(cos ω) = a(xn+1),

θ = d(en+1, ξ), a2(ξ) = a(sin θ).

Then

(Ra1)(ξ) =
2σk−1

cosk−1θ

cosθ∫

0

(cos2θ − t2)k/2−1 a(t) dt,(4.9)

(R∗a2)(x) =
σk−1 σn−k−1

σn−1 sinn−2 ω

sin ω∫

0

(sin2 ω − t2)k/2−1 tn−k−1 a(t) dt.(4.10)

4.2. Analytic families of intertwining operators. Lemma 4.2 shows
the way how to introduce analytic families of intertwining operators in-
cluding R and R∗. Put a(t) = tα+k−n, α > 0, in (4.10), so that a2(ξ)
becomes

a2(ξ) = (sin[d(en+1, ξ)])
α+k−n.

A simple calculation yields

(R∗a2)(x) =
πk/2 σn−k−1 Γ(α/2)

σn−1 Γ((k + α)/2)
(1− x2

n+1)
(α+k−n)/2,

and by duality (4.7) we obtain∫

Ξ

(Rf)(ξ) (sin[d(en+1, ξ)])
α+k−n dξ = c

∫

Sn

f(y) (1− y2
n+1)

(α+k−n)/2 dy,

c =
πk/2 σk σn−k−1 Γ(α/2)

σn σn−1 Γ((k + α)/2)
.

Owing to SO(n + 1)-invariance, one can replace en+1 by x ∈ Sn and
get
(4.11)∫

Ξ

(Rf)(ξ) (sin[d(x, ξ)])α+k−n dξ = c

∫

Sn

f(y) (1− |x · y|2)(α+k−n)/2 dy.

For k = n − 1, the left hand side of (4.11) resembles operator Uα

from Section 3 (see (3.8)). The right hand side serves as a spherical
analog of the Riesz potential (2.15). After appropriate normalization
we arrive at the following intertwining operators:

(4.12) (Rαf)(ξ) = γn,k(α)

∫

Sn

(sin[d(x, ξ)])α+k−nf(x)dx,
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(4.13) (
∗
R

αϕ)(x) = γn,k(α)

∫

Ξ

(sin[d(x, ξ)])α+k−nϕ(ξ)dξ,

γn,k(α) =
Γ((n− α− k)/2)

2πn/2 Γ(α/2)
,

assuming Reα > 0, α + k − n 6= 0, 2, 4, . . . .
Looking at the right hand side of (4.11), we also set

(Qαf)(x) = cn,α

∫

Sn

(1− |x · y|2)(α−n)/2f(y)dy

= cn,α

∫

Sn

(sin[d(x, y)])α−nf(y)dy,(4.14)

cn,α =
Γ((n− α)/2)

2πn/2Γ(α/2)
, Reα > 0, α− n 6= 0, 2, 4, . . . .

These definitions can be extended to excluded values of α by in-
serting the relevant logarithmic factor [Ru11]. One can show that for
continuous f and ϕ,

(4.15) lim
α→0

Rαf = c1Rf, lim
α→0

∗
R

αϕ = c2R
∗ϕ,

c1 =
1

2πk/2
, c2 =

σk

2πk/2σn

.

Thus analytic families {Rα} and { ∗R α} actually include the Radon
transform and its dual (in the case k = n− 1 both families coincide).

By taking into account (4.2), we have

(4.16) Rn−k+1f = γn,k(n− k + 1)

∫

Sn

f(x)V (x, ξ)dx.

This provokes us to call operators (4.12) and (4.13) the generalized
cosine transforms. The potential type operator (4.14) will be called
the generalized sine transform.

Note that the kernel of the potential Qα has a point singularity x = y,

whereas the singularity of the kernel of Rα and
∗
R α is spread over the

k-dimensional circle ξ. Note also that the Fourier-Laplace multiplier
of Qα has the form

(4.17)
Γ((j + n− α)/2) Γ((j + 1)/2)

Γ((j + α + 1)/2) Γ((j + n)/2)
(∼ (j/2)−α as j →∞)
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(this can be checked using the Funk-Hecke formula (3.16) and [PBM,
2.21.2(3)]). For sufficiently good f , it follows that

(4.18) Q0f ≡ lim
α→0

Qαf = f.

The equality (4.11), which played so far a purely heuristic role, im-
plies

σn

σk

∗
R

αRf =
Γ(n/2)

Γ((n− k)/2)
Qα+kf.

More generally, the following statement holds.

Theorem 4.3 (Ru11). Let f ∈ L1(Sn), α ≥ 0. Then
(4.19)

λ
∗
R

αRf =
Γ((n− k)/2)

Γ(n/2)
R∗Rαf = Qα+kf, λ =

σn Γ((n− k)/2)

σk Γ(n/2)
.

In the case α + k − n = 0, 2, 4, . . ., the last equality in (4.19) holds if
and only if all Fourier-Laplace coefficients of f up to order α + k − n
are zeros.

This theorem has many remarkable consequences. Below we list
some of them.

4.3. Inversion formulas for C∞-functions. By (4.19),

(4.20) λ
∗
R

−kRf = f

(at least formally); cf. (3.24).
Let ∆ be the Beltrami-Laplace operator on Sn. The Fourier-Laplace

multiplier of ∆ is −j(j +n−1). Denote ∆α = [−∆+(n−α)(α−1)]/4.
By (4.17), for f ∈ C∞(Sn) we have

∆αQαf = Qα−2f, α− n 6= 0, 2, . . . ,

and therefore if α = 2m (6= n, n + 2, . . .) is an even positive integer,
then Qαf can be inverted by a polynomial of ∆. Owing to (4.19), this
observation leads to the following

Theorem 4.4. Let ϕ = Rf, f ∈ C∞
even(Sn), 1 ≤ k ≤ n− 1,

(4.21) Pm(∆) = ∆2∆4 . . . ∆2m

(i) If n is odd, then

(4.22) f = λPm(∆)
∗
R

2m−kϕ ∀m ≥ k/2.
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(ii) If n is even, then (4.22) is applicable only for k/2 ≤ m ≤ n/2− 1,
and another inversion formula also holds:
(4.23)

f = Pn/2(∆)
[ 2n

(n− 1)! σk

∫

Ξ

ϕ(ξ) log
1

sin[d(x, ξ)]
dξ

]
+

1

σk

∫

Ξ

ϕ(ξ)dξ.

The equality (4.19) enables us to obtain explicit inversion formulas
for the generalized cosine transform Rαf (see [Ru11] for details).

The formula (4.22) for m = k/2, k even, was obtained by Helgason
[H1], [H5]. Theorem 4.4 (for any 1 ≤ k ≤ n− 1) was proved in [Ru11].
Inversion of operators Rα for k = n− 1 was studied in detail in [Ru2].

4.4. Inversion formulas for non-smooth functions. Suppose we
want to invert Rf for f ∈ Lp(Sn) or f ∈ C(Sn). In view of (4.20), the

problem is how we can realize operator
∗
R −k. Below we consider two

approaches to this problem.
4.4.1. Reduction to the Abel integral equation. This approach
was developed by Helgason [H2]. Given x ∈ Sn and t ∈ (−1, 1), we
denote

(4.24) (Mtf)(x) =
(1− t2)(1−n)/2

σn−1

∫

{y∈Sn: x·y=t}
f(y)dσ(y).

The integral (4.24) represents the mean value of f on the planar section
of Sn by the hyperplane x · y = t, and dσ(y) stands for the induced
Lebesgue measure on this section. We introduce the Riemann-Liouville
fractional integrals [SKM]

(4.25) (Iα
0+ψ)(t) =

1

Γ(α)

∫ t

0

ψ(τ)(t− τ)α−1dτ, t > 0.

Lemma 4.5. Let f ∈ L1
even(Sn) and R∗

θ be the mean value operator
defined by (4.3), (4.5). Then

(4.26) (R∗
θRf)(x) = 2πk/2(cosθ)1−k(I

k/2
0+ ψx)(cos2θ),

ψx(τ) = τ−1/2(M√
τf)(x).

By inverting the fractional integral in (4.26), we obtain the following

Theorem 4.6. ([H3] - [H5], [Ru11]) Suppose that β > 0 is chosen so
that k/2 + β = m ∈ N. Then

f(x) =
1

πk/2Γ(β)

[( d

dv2

)m
∫ v

0

(v2 − u2)β−1uk(R∗
cos−1(u)Rf)(x)du

]
v=1

.
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If k is even, then

f(x) =
1

2πk/2

[( d

dv2

)k/2
[vk−1(R∗

cos−1(v)Rf)(x)]
]

v=1
.

For f ∈ Lp(Sn), 1 ≤ p < ∞, all derivatives in these formulas exist in
the a.e. sense and in the Lp-norm. If f ∈ C(Sn) they are understood
in the usual sense for each x ∈ Sn.

There is another way to invert the fractional integral in (4.26). This
employs so-called Marchaud’s fractional derivatives [Ru1], [SKM], and
enables us to replace derivatives in Theorem 4.6 by finite differences.
For k = 1, the inversion formula is especially simple.

Theorem 4.7. [Ru12] Let ϕ = Rf, f ∈ Lp(Sn), 1 ≤ p < ∞. Then

(4.27) f =
R∗ϕ
2π

+
1

2π

π/2∫

0

R∗ϕ−R∗
θϕ

sin2 θ
cosθ dθ,

π/2∫

0

= lim
ε→0

π/2∫

ε

,

where the limit is understood in the Lp-norm and in the a.e. sense. If
f ∈ C(Sn), then lim

ε→0
is uniform.

4.4.2. Direct regularization with the aid of “wavelet trans-
forms”. The idea is as follows. We start with (4.13) and replace the
power function aα+k−n where a = sin[d(x, ξ)], by the formula

(4.28) aα+k−n =
1

cα,w

∞∫

0

w(a/t)

tn−α−k+1
dt, cα,w =

∞∫

0

w(s)
ds

s1+α+k−n
.

The auxiliary function w is assumed to be sufficiently good. It will be
specified later. Let us replace (sin[d(x, ξ)])α+k−n in (4.13) according to
(4.28) and change the order of integration. We get

(4.29) (
∗
R

αϕ)(x) =
γn,k(α)

cα,w

∞∫

0

(Wϕ)(x, t)

t1−α
dt,

(4.30) (Wϕ)(x, t) =
1

tn−k

∫

Ξ

ϕ(ξ)w
(sin[d(x, ξ)]

t

)
dξ.

If w decays sufficiently fast at infinity and

(4.31)

∞∫

0

τ j+n−k−1w(τ)dτ = 0 ∀j = 0, 2, 4, . . . , 2[k/2],
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then (4.29) can be extended to α = −k, and we have [RR], [Ru11]

(4.32)

∞∫

0

(WRf)(x, t)

t1+k
dt ≡ lim

ε→0

∞∫

ε

(
. . .

)
= cf(x),

where the limit is understood in the Lp-norm and in the a.e. sense. If
f ∈ C(Sn), then lim

ε→0
is uniform. The constant c = c(α, k, n, w) can be

evaluated explicitly.
Owing to (4.31), we call (Wϕ)(x, t) a continuous wavelet transform

associated to the analytic family { ∗R α}. Various applications of con-
tinuous wavelet transforms in fractional calculus and integral geometry
are discussed in [BR], [Ru1], [Ru3], [Ru6], [Ru15] where one can find
further references.

5. Radon transforms on Grassmann manifolds

5.1. Setting of the problem. Let Gn,k, Gn,k′ be a pair of Grassmann
manifolds of linear k-dimensional and k′-dimensional subspaces of Rn

respectively. Suppose that 1 ≤ k < k′ ≤ n − 1. Each “point” η ∈
Gn,k (ξ ∈ Gn,k′) is a non-oriented k-plane (k′-plane) in Rn passing
through the origin. According to Example 1.3, the Radon transform of
a sufficiently good function f(η) on Gn,k is defined by

(5.1) (Rf)(ξ) =

∫

η⊂ξ

f(η)dξη, ξ ∈ Gn,k′ ,

dξη being a suitable measure on the space of planes η in ξ. Our goal is
to find explicit inversion formulas for (5.1).

Let us discuss this problem. The first question is for what triples
(k, k′, n) the problem is meaningful. Clearly, one should assume

(5.2) dim Gn,k′ ≥ dim Gn,k

(otherwise R has a non-trivial kernel). By taking into account that
dim Gn,k = k(n− k), we conclude that (5.2) is equivalent to k + k′ ≤ n
(for k < k′). Thus the natural framework for the inversion problem is

(5.3) 1 ≤ k < k′ ≤ n− 1, k + k′ ≤ n.

For k = 1, f can be regarded as an even function on the unit sphere
Sn−1 ⊂ Rn, and (Rf)(ξ) represents the totally geodesic Radon trans-
form from Section 4. For k > 1, k′ + k = n, some inversion formulas
were announced by Petrov [Pe1] in 1967. His method employs mod-
ification of the plane waves decomposition. Unfortunately all proofs
in Petrov’s article are skipped, and his inversion formulas contain a
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divergent integral that should be understood somehow in a regularized
sense. Another approach, which is based on the use of differential forms
was suggested by Gel’fand, Graev and Šapiro [GGŠ] in 1970 (see also
[GGR]). The third approach was developed by Grinberg [Gr], Gonza-
lez [Go] and Kakehi [K]. It agrees with the idea of Blaschke-Radon (cf.
(2.17)) to apply a certain differential operator to the composition of
the Radon transform and its dual. This method relies on harmonic
analysis on Grassmannians. The second and the third approaches are
applicable only to k′−k even. Note also that all aforementioned meth-
ods deal only with C∞-functions and resulting inversion formulas are
rather complicated.

Below we show how the original Funk-Radon approach via Abel in-
tegrals can be adapted to (5.1). Following this way, one can obtain
explicit inversion formulas in all admissible dimensions (5.3) for func-
tions f , belonging to C(Gn,k) and Lp(Gn,k), 1 ≤ p < ∞.

5.2. Some preparations. Any treatment of functions on Grassman-
nians reduces inevitably to functions of matrix argument. We recall
some basic facts. Let Mn,k, n ≥ k, be the space of real matrices having
n rows and k columns. We identify Mn,k with the real Euclidean space

Rnk so that for x = (xi,j) the volume element is dx =
∏n

i=1

∏k
j=1 dxi,j.

In the following x′ denotes the transpose of x. Let Sk be the space of
k× k real symmetric matrices r = (ri,j), ri,j = rj,i. It can be identified
with the Euclidean space of k(k + 1)/2 dimensions with the volume el-
ement dr =

∏
i≤j dri,j. In Sk we consider a convex cone Pk of positive

definite matrices r. For r ∈ Pk, we write r > 0. Given r1 and r2 in Sk,
the inequality r1 > r2 means r1 − r2 > 0.

We denote by Vn,n−k the Stiefel manifold of orthonormal k-frames in
Rn. This can be identified with the set of matrices x ∈ Mn,k so that
x′x = Ik (the identity k × k matrix). For x ∈ Vn,n−k, dx denotes a
measure on Vn,n−k which is O(n) left-invariant, O(k) right-invariant,
and normalized by

σn,k ≡ vol(Vn,n−k) =

∫

Vn,n−k

dx =
2kπnk/2

Γk(n/2)

[Muir, p. 70], [J, p. 57]. Here Γk(α) is the Siegel Gamma function
(5.9). If k = 1 then Vn,1 is the unit sphere Sn−1, and for n = k, Vn,n =
O(n) represents the orthogonal group in Rn. Furthermore, Vn,n−k =
O(n)/O(n − k), and Gn,k = Vn,n−k/O(k). Each function on Gn,k can
be regarded as an O(k) right-invariant function on Vn,n−k.
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It is convenient to define the Radon transform (5.1) in a slightly
different form as follows:

(5.4) (Rf)(ξ) =

∫

ξ

f(x)dm(x), ξ ∈ Gn,k′ , k′ > k.

It means that f(x) is integrated over all k-frames x in ξ with respect to
the relevant normalized measure. If k = 1 (the case of totally geodesic
transforms on Sn−1), (5.4) can be inverted by Helgason’s formula (cf.
Theorem 4.6). Namely,

(5.5) f(x) = c
[( d

d(u2)

)k′−1
u∫

0

(M∗
vRf)(x)vk′−1(u2−v2)(k′−3)/2dv

]
u=1

.

Here f is an even function on Sn−1, c = 2k′−1/(k′ − 2)!σk′−1, σk′−1 is
the area of the unit sphere Sk′−1, and M∗

v is the mean value operator

(5.6) (M∗
v ϕ)(x) =

∫

{ξ: d(x, ξ∩Sn−1)=cos−1(v)}

ϕ(ξ) dm(ξ), x ∈ Sn−1.

Our goal is to extend (5.5) to the higher rank case k > 1. The
assumption of evenness of f is replaced by right invariance under the
group O(k), so that f becomes a function on the Grassmann manifold
Gn,k. The domain of integration in (5.6) can be characterized as the
set of all ξ ∈ Gn,k′ so that

x · Prξx = length(x)× length(Prξx)× v = v2,

Prξx being orthogonal projection of the unit vector x onto the plane ξ.
A natural generalization of (5.6) reads

(5.7) (M∗
r ϕ)(x) =

∫

{ξ: x′Prξx=r}

ϕ(ξ)dm(ξ), x ∈ Vn,n−k, r ∈ Pk,

where dm(ξ) denotes the relevant normalized measure.

5.3. G̊arding-Gindikin fractional integrals. The scalar averaging
parameter v in (5.6) is replaced in (5.7) by the matrix-valued parameter
r ∈ Pk. According to this, the one-dimensional Riemann-Liouville
integral (4.25), arising in Helgason’s scheme and leading to (5.5), should
be replaced by its counterpart associated to the cone Pk. To this end,
we employ the G̊arding-Gindikin fractional integral defined by

(5.8) (Iα
+w)(r) =

1

Γk(α)

r∫

0

w(s) (det(r − s))α−dds,
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d = (k + 1)/2, Re α > d− 1, r ∈ Pk.

The integration in (5.8) is performed over the “interval” (0, r) = {s :
s ∈ Pk, r − s ∈ Pk}, and Γk(α) is the Siegel Gamma function

(5.9) Γk(α) =

∫

Pk

e−tr(r)|det(r)|α−ddr, tr(r) = trace of r.

This integral converges absolutely for Re α > d − 1, and represents a
product of usual Γ-functions:

(5.10) Γk(α) = πk(k−1)/4Γ(α)Γ(α− 1

2
) . . . Γ(α− k − 1

2
).

For k = 1, (5.8) coincides with (4.25). Integrals (5.8) were intro-
duced by L. G̊arding [G̊a] in 1947, who was inspired by M. Riesz, C.
Siegel, and S. Bochner. Substantial generalizations of (5.8) are due to
S. Gindikin [Gi1].

Fractional integrals (5.8) enjoy the semigroup property

(5.11) Iα
+Iβ

+f = Iα+β
+ f, f ∈ L1

loc(Pk), Re α, Re β > d− 1.

If f is compactly supported away from the boundary bd(Pk) and in-
finitely smooth (we write f ∈ C∞

c (Pk)), then α → Iα
+f is an entire

function, and (5.11) extends to all α, β ∈ C so that I0
+f = f . Let

D ≡ Ds = det

(
ηi,j

∂

∂si,j

)
, ηi,j =

{
1 if i = j
1/2 if i 6= j.

(5.12)

For m ∈ N and sufficiently good f ,

(5.13) DmIα
+f = Iα−m

+ f, Re α > m + d− 1

(see, e.g., [G̊a]). If f ∈ L1
loc(Pk), α ∈ C, m ∈ N, then (5.13) is under-

stood in the sense of distributions over the space C∞
c (Pk) of test func-

tions. Note that Dm is a hyperbolic differential operator, and (5.13)
leads to solution of the corresponding Cauchy problem with data on
bd(Pk) [G̊a].

5.4. Main results. In the previous sections the inversion procedure
for Radon transforms starts with radial (or zonal) functions. In the
higher-rank case the situation is the same, but the notion of zonality
should be specified.

Definition 5.1. Let I` denote the ` × ` identity matrix, and σ` =[
0
I`

]
∈ Vn,` be the coordinate `-frame (for ` = 1, σ` is the north pole

of Sn−1). A function f on Vn,n−k is called `-zonal if it is left-invariant
under all orthogonal transformations g ∈ O(n) preserving σ`.
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Given a square matrix A, we denote |A| = det(A). If x is an orthog-
onal frame then {x} denotes a subspace spanned by x.

Theorem 5.2. Suppose that f ∈ L1(Vn,n−k) is `-zonal and O(k) right-
invariant, 1 ≤ k ≤ n− 1.

(i) Let 1 ≤ ` ≤ min (k, n − k) (= rank Gn,k). Then for almost all
x ∈ Vn,n−k, one can write

f(x) = f0(s), s = σ′`xx′σ` ∈ P`

(note that xx′σ` = Pr{x}σ` and s1/2 ∼ cos({x}, {σ`}, i.e. s1/2 serves as
an analog of cosine of the “angle” between {x} and {σ`}).

Furthermore,

(5.14)
1

σn,k

∫

Vn,n−k

f(x)dx =
Γ`(n/2)

Γ`(k/2) Γ`((n− k)/2)

I`∫

0

f0(s)dµ(s),

(5.15) dµ(s) = |s|(k−`−1)/2|Il − s|(n−k−`−1)/2ds

(this formula is well known for k = ` = 1).
(ii) Let ϕ(ξ) = (Rf)(ξ), ξ ∈ Gn,k′ , 1 ≤ k < k′ ≤ n− 1. Suppose that

1 ≤ ` ≤ min (k, n− k′) (= min(rank Gn,k, rank Gn,k′)).

Then

(5.16) (Rf)(ξ) = F0(S), S = σ′`Prξσ` ∈ P` (∼ cos2(ξ, {σ`}))
where F0 is an Abel type integral of f0 (in the G̊arding-Gindikin sense).
The function f0(s) can be recovered by the formula

(5.17) f0(s) =
Γ`(k/2)

Γ`(k′/2)
|s|−(k−`−1)/2DmIm−α

+ [|S|(k′−`−1)/2F0(S)](s),

α = (k′ − k)/2, m ∈ N, m > (k′ − 1)/2,

where Dm is understood in the sense of distributions.

Theorem 5.2 follows from the relevant Abel type representation of
the Radon transform of `-zonal functions in terms of G̊arding-Gindikin
fractional integrals [GR]. There exists an analog of Theorem 5.2 for the
dual Radon transform (R∗ϕ)(x) that averages ϕ(ξ) over all ξ ∈ Gn,k′

containing x ∈ Vn,n−k. Note also that the rank-one case, corresponding
to the geodesic transform on Sn−1, contains in these theorems.

A higher-rank generalization of Helgason’s formula (5.5) is given by
the following
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Theorem 5.3. [GR] Let f ∈ Lp(Vn,n−k), 1 ≤ p ≤ ∞ (we identify
L∞(Vn,n−k) with the space C(Vn,n−k) of continuous functions). Suppose
that f is O(k) right-invariant and ϕ(ξ) = (Rf)(ξ), ξ ∈ Gn,k′ where

1 ≤ k < k′ ≤ n− 1, k + k′ ≤ n.

Then for any integer m > (k′ − 1)/2 and α = (k′ − k)/2,

(5.18) f =
Γk(k/2)

Γk(k′/2)

(Lp)

lim
s→Ik

(DmIm−α
+ [|r|α−1/2M∗

r ϕ])(s),

where M∗
r is the mean value operator (5.7), and differentiation is under-

stood in the sense of distributions. In particular, for k′−k = 2`, ` ∈ N,

(5.19) f =
Γk(k/2)

Γk(k′/2)

(Lp)

lim
s→Ik

(D`[|r|`−1/2M∗
r ϕ])(s).

A few words about technical tools are in order. A key role in our
argument belongs to the following lemma on bi-Stiefel decomposition
which generalizes Lemma 3.7 from [Herz, p. 495] and extends the
notion of bi-spherical coordinates [VK, pp. 12, 22] to Stiefel manifolds.

Lemma 5.4. Let k and ` be arbitrary integers satisfying 1 ≤ k ≤ ` ≤
n− 1, k + ` ≤ n. Almost all x ∈ Vn,n−k can be represented in the form

x =

[
ur1/2

v(Ik − r)1/2

]
, u ∈ V`,k, v ∈ Vn−`,k, r ∈ Pk,

so that

∫

Vn,n−k

f(x)dx =

Ik∫

0

dν(r)

∫

V`,k

du

∫

Vn−`,k

f

([
ur1/2

v(Ik − r)1/2

])
dv,

dν(r) = 2−k|r|γ|Ik − r|δdr, γ =
`− k − 1

2
, δ =

n− `− k − 1

2
.

The proof of this statement, given in [GR], follows the same lines
as Lemma 3.7 from [Herz]. A simpler proof was suggested by Genkai
Zhang [Zh].

Open problem. Theorems 5.2 and 5.3 contain differentiation in
the sense of distributions. This is inevitable in the framework of the
method, by taking into account convergence conditions of G̊arding-
Gindikin fractional integrals. It would be interesting to derive point-
wise inversion formulas for these integrals and for the Radon transform
(5.1). For the rank-one case such formulas are well-known (cf. Theorem
4.7).
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6. The generalized Minkowski-Funk transform and small
divisors

6.1. Setting of the problem. Let Sn be the unit sphere in Rn+1, n ≥
1. For fixed θ ∈ (0, π/2), we consider the following integral operators
on Sn defined by

(6.1) Bθf(x) =

∫

{y: x·y> cos θ}

f(y)dy,

(6.2) Sθf(x) =

∫

{y: x·y=cos θ}

f(y)dσ(y).

In (6.1) f is integrated over the spherical cap (or the geodesic ball) of
radius θ centered at x ∈ Sn, and (6.2) represents an integral of f over
the corresponding spherical section. We call (6.1) and (6.2) the spheri-
cal cap transform and the spherical section transform, respectively. Our
interest to these operators is motivated by the following

Problem A. Let K be a star-shaped body in Rn+1, n ≥ 1, centered
at the origin O, and let Γθ, θ ∈ (0, π/2), be a solid cone of revolution
with vertex O and a fixed vertex angle 2θ. Is it possible to recover the
shape of K if intersection volumes voln+1(K ∩ gΓθ) are known for all
rotations g∈SO(n+1)?

The case θ = π/2 corresponds to the Funk problem for half-volumes
and the hemispherical transform (3.2).

Question: Are operators (6.1) and (6.2) injective on C∞(Sn) for
θ = π/3?

If you don’t like π/3, you may take π/4, π/6, or any other θ 6=
π/2. This innocent question still has no answer rather than in some
particular cases which will be indicated below.

In fact, the problem is much more general. It would be interesting to
study kernels (subspaces of zeros) and boundedness properties of these
operators (e.g., in Sobolev spaces). In most of the cases it is not clear
whether these kernels have finite or infinite dimension. Moreover, as
we shall see below, it can happened that the operator is injective and
bounded from one Sobolev space to another, but the inverse operator
is unbounded (this observation is due to R.S. Strichartz).

As in Theorem 3.2, one can characterize all pairs (Lγ
p , L

δ
p) of Sobolev

spaces so that operators (6.1), (6.2) are bounded from Lγ
p to Lδ

p [Ru10].

We restrict our consideration to L2- Sobolev spaces

Hs(Sn) = Ls
2(S

n), −∞ < s < ∞.
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The following example illustrates main difficulties of the problem.

Example 6.1. Consider the operator Sθ on the unit circle (the case

n = 1). If f has the Fourier decomposition f(x) ∼ ∑
j

eijxf̂(j), then

Sθf(x) = f(x + θ) + f(x− θ) ∼
∑

j

eijxf̂(j)cos(jθ).

This operator is bounded from L2 to L2 for all θ. If θ/π is a rational
number, then dimker Sθ = ∞, and the inverse operator is bounded from
L̃2 to L̃2, where L̃2 is the quotient space L2/ ker Sθ. If θ/π is irrational,
then ker Sθ = {0}, the operator is injective, but the inverse S−1

θ is
unbounded from L2 to L2 because infj |cos(jθ)| = 0. One can take
a “smaller” space Hs, s > 0, and ask, for which s the operator S−1

θ

is bounded from Hs to L2. From the small divisors theory (see, e.g.,
[Ar], [Yo]) it is known that the answer depends on how fast θ/π can
be approximated by rationals. In other words, the answer depends on
diophantine properties of θ/π. Thus a simple question from geometry
leads to deep problems in number theory.

This example shows how complicated the problem is in higher di-
mensions, where instead of usual Fourier series one deals with spher-
ical harmonic expansions. The theory of small divisors grew up from
celestial mechanics. It was developed in works by Poincaré, Arnold,
Moser, Herman, Yoccoz and others for the torus. To the best of my
knowledge, analogues theory for Sn has not been created so far, and
we encounter a series of challenging open problems.

The first breakthrough for the operator Bθ on S2 was made by P. Un-
gar [Un] in 1954. In his paper entitled “Freak theorem about functions
on a sphere”, he proved that the set of all θ for which Bθ is injective
and the set of all θ for which Bθ is non-injective are both dense in
(0, π/2). After Ungar, there was no essential progress in the problem,
rather than very important reformulation in terms of multipliers for
spherical harmonic expansions.

Now we switch to another problem, that came from PDE.
Problem B. Let 4 be the Beltrami-Laplace operator on Sn. Given

a fixed number θ ∈ (0, π) and a function ϕ on Sn, the problem is to
find a solution u = u(x, ω), (x, ω) ∈ Sn × [0, π], of the spherical wave
equation

(6.3) 4u = uωω +

(
n− 1

2

)2

u
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satisfying

(6.4) u(x, θ) = ϕ(x), uω(x, 0) = 0.

For θ = 0 this is the usual Cauchy problem on Sn which was studied
by Lax and Phillips [LP]. We wonder, for which θ and ϕ a solution
of the aforementioned “shifted problem” exists, is unique and stable
under small perturbation of θ and ϕ. Furthermore, how many solu-
tions, and which solutions exactly, satisfy the homogeneous problem
corresponding to ϕ ≡ 0?

The problem can be regarded as a spherical modification of the cele-
brated Dirichlet problem for the vibrating string with fixed ends. The
latter was rejected by Hadamard as ill-posed and studied later by Fox
and Pucci [FP], Arnold [Ar] and others using tools of number theory.

It turns out that operators (6.1), (6.2), and the Problem B can be
studied simultaneously in the framework of the following analytic fam-
ily of “fractional integrals”

(6.5) (Mα
t f)(x) =

cn,α

(1− t2)α−1+n/2

∫

x·y>t

(x · y − t)α−1f(y)dy,

cn,α = 2α−1π−n/2Γ(α + n/2)/Γ(α), Re α > 0, t = cosθ ∈ (−1, 1).

For Re α ≤ 0, Mα
t f is defined by analytic continuation. We call (6.5)

the generalized Minkowski-Funk transform by taking into account that
for n = 2 and t = 0, the special cases α = 0 and α = 1 were studied
by Minkowski and Funk. For α = 1 and α = 0, Mα

t f coincides with
operators (6.1) and (6.2) respectively. For α = (1 − n)/2, u(x, ω) =
(Mα

cos ωf)(x), represents the Lax-Phillips solution to the Cauchy prob-
lem for the wave equation (6.3). For arbitrary α, it gives a solution to
the Cauchy problem to the more general Euler-Poisson-Darboux equa-
tion. The latter was studied by many authors on spaces of constant
curvature.

6.2. Reformulation of the problem in terms of the Fourier-
Laplace multipliers. The Fourier-Laplace multiplier mα

t (j) of Mα
t

can be explicitly evaluated using by the Funk-Hecke formula (3.16).
We have

(6.6) mα
t (j) = Γ

(
α +

n

2

)(√1− t2

2

)1−α−n/2

P
1−α−n/2
j−1+n/2 (t)

where P µ
ν (t) (−1 < t < 1) is the associated Legendre function [Er].

The following statement is immediate from (6.6).
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Theorem 6.2. Let α and s be real numbers,

α 6= −n/2− `, ` ∈ Z+; ρ = α + (n− 1)/2.

Then
(i) mα

t (j) = O(j−ρ) as j →∞, and therefore Mα
t is a linear bounded

operator from Hs into Hs+ρ;

(ii) Mα
t is injective on Hs if and only if P

1−α−n/2
j−1+n/2 (t) 6= 0 ∀j ∈ Z+;

The exponent s + ρ in (i) is best possible. An analogue of (i) is
known in the more general scale Lα

p [Ru10]. The statement (ii) reduces
the injectivity problem to studying zeros of the associated Legendre

functions P
1−α−n/2
j−1+n/2 (t) regarding as functions of j with fixed t. For

α = 0, 1, this statement is due to Schneider [Sch1] (see also [BZ]).
The criterion (ii) looks elegant. However, it does not resolve the

problem and represents only the first step. We still cannot retrieve from
(ii) any answer about injectivity for specific t = cosθ, say, θ = π/3, and
further investigation is needed.

Example 6.3. Let n = 3, α = 1. One can show that

(6.7) m1
t (j) =

3Γ(j)

Γ(j + 3)

cosθ sin(j + 1)θ − (j + 1) sin θ cos(j + 1)θ

sin3 θ
.

Thus the operator Bθ (see (6.1)) on S3 is injective if and only if

(6.8) tan(j + 1)θ 6= (j + 1) tan θ, for all integers j ≥ 1.

The case θ = π/4 can be treated manually, and we get the following

Proposition 6.4. The operator Bπ/4 is injective on S3.

It is not clear, how to manage (6.8) in the general case, especially if
θ/π is irrational.

In the next two subsections we present some results from [Ru10]
which shed some light to the problem.

6.3. Some partial results. Let

θ = βπ, β ∈ (0, 1); t = cos(βπ), β 6= 1/2,

H̃s = Hs/ker Mα
t if ker Mα

t 6= {0}, and H̃s = Hs otherwise.

One should discriminate between the two cases: β rational (β ∈ Q),
and β irrational (β /∈ Q).

For simplicity, we restrict to the cases α = 0 and α = 1 corresponding
to operators Bθ and Sθ, and suppose that n ≥ 2 (other cases can be
found in [Ru10]). All theorems presented below are proven by making
use of explicit representation of the first two terms in the asymptotic
expansion of the multiplier mα

t (j) as j →∞.



NOTES ON RADON TRANSFORMS 31

Theorem 6.5. Let n ≥ 2 and θ be a rational multiple of π. If n 6=
3, then Bθ and Sθ have a finite-dimensional kernel. If n = 3, then
dimker Sθ < ∞ and dimkerBθ = ∞.

Dimensions of the kernels can be estimated from above. This enables
us to treat some special cases manually. For example, the following
statement holds.

Proposition 6.6. Operators Bθ and Sθ are injective on S2 for θ = π/3
and θ = π/4.

Let us characterize the action of inverses of Bθ and Sθ in the scale
of quotient spaces H̃s, assuming that θ is a rational multiple of π. We
set β = θ/π = a/b where a and b are relatively prime positive integers.
Denote

ρ = (n + 1)/2, ψn(θ) = b(n− 1)(1− 2β)/4

for the operator Bθ, and

ρ = (n− 1)/2, ψn(θ) = b(n− 1)(1− 2β)/4− b/2

for the operator Sθ. For the sake of simplicity, in the following theorem
we write Mθ instead of Bθ and Sθ.

Theorem 6.7. If ψn(θ) /∈ Z, then (Mθ)
−1 is bounded from H̃s+ρ to

H̃s, and therefore

Mθ(H̃s) = H̃s+ρ.

If ψn(θ) ∈ Z, then (Mθ)
−1 is unbounded from H̃s+ρ+µ to H̃s for all

µ ∈ [0, 1), but it is bounded from H̃s+ρ+1 to H̃s. In this case the
following proper embeddings hold:

H̃s+ρ+1 ⊂ Mθ(H̃s) ⊂ H̃s+ρ.

Example 6.8. Let θ = π/3. In this case ψn(θ) = (n − 1)/4 for Bθ,
and ψn(θ) = (n− 7)/4 for Sθ. Hence

Bθ(H̃s) = H̃s+(n+1)/2 if n 6= 1(mod 4), i.e. n 6= 1, 5, 9, 13, . . . .

Otherwise H̃s+(n+3)/2 ⊂ Bθ(H̃s) ⊂ H̃s+(n+1)/2. Similarly,

Sθ(H̃s) = H̃s+(n−1)/2 if n 6= 3(mod 4), i.e. n 6= 3, 7, 11, 15, . . . .

Otherwise H̃s+(n+1)/2 ⊂ Sθ(H̃s) ⊂ H̃s+(n−1)/2.

In the irrational case we have the following general statement.

Theorem 6.9. If t = cosβπ, ρ = α + (n − 1)/2, and β is irrational,
then Mα

t is bounded from Hs into Hs+ρ, but (Mα
t )−1 is unbounded from

Hs+ρ+µ into Hs for any µ ∈ [0, 1).
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Proof. By (6.6),

|mα
t (j)| ≤ c

Γ(j + (n + 1)/2− ρ)

Γ(j + (n + 1)/2)
[|| jβ − r||+ O(j−1)]

where || a|| = inf
k∈Z

|a − k| is the distance from r to the nearest integer,

and r = (ρ − 1 − β(n − 1))/2. By the Tchebychef-Kronecker theorem
[HW, Theorem 440, p. 365], there exist infinitely many j’s satisfying
‖jβ − r‖ < 3/j. Hence inf

j≥1
jρ+µ|mα

t (j)| = 0 ∀µ ∈ [0, 1), and we are

done. ¤
Remark 6.10. An analogue of this theorem for µ ≥ 1 represents an
open problem.

6.4. The cases α = (1 − n)/2 and α = (3 − n)/2. In these cases
mα

t (j) has an especially simple form:

(6.9) m
(1−n)/2
t (j) = cos(j + λ)βπ, m

(3−n)/2
t (j) =

sin(j + λ)βπ

(j + λ) sin βπ
,

where λ = (n− 1)/2. For irrational β, the operator Mα
t , t = cos(βπ),

acting fromHs toHs+ρ, ρ = α+(n−1)/2, is injective, and the bounded-
ness of (Mα

t )−1 is determined by the following diophantine inequalities:

‖qβ + 1/2‖ < cq−µ if α = (1− n)/2, n is odd;

‖(q − 1/2)β + 1/2‖ < cq−µ if α = (1− n)/2, n is even;

‖qβ‖ < cq−µ if α = (3− n)/2, n is odd;

‖(q − 1/2)β‖ < cq−µ if α = (3− n)/2, n is even.

Theorem 6.11. For µ ∈ [0, 1), (Mα
t )−1 is unbounded from Hs+ρ+µ to

Hs. If µ ≥ 1, then (Mα
t )−1 is bounded from Hs+ρ+µ to Hs if and only

if there is a constant c > 0 such that the corresponding diophantine
inequality has only finitely many solutions q ∈ N.

In the case “α = 0, n = 3”, related to the spherical section transform
Sθ on S3, the corresponding diophantine inequality is the simplest, and
more information can be obtained. To this end, we recall some facts
from number theory.

An algebraic number of degree d is a number which satisfies an al-
gebraic equation a0x

d + a1x
d−1 + . . . + ad = 0 with integer coefficients,

and does not satisfy any similar equation of lower degree.
Roth’s theorem([Schm2], p. 116). If β is a real algebraic number

of degree d ≥ 2, then for each µ > 1, the inequality ‖qβ‖ < 1/qµ has
only finitely many solutions q ∈ N.
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A real number β is called a Liouville number if it can be rapidly
approximated by rationals in the sense that for every m ∈ N there
exist integers p and q > 1 such that |β − p/q| < q−m. The set L of
all Liouville numbers has Lebesgue measure zero. It includes all ratio-
nals and infinitely many (actually c) transcendentals, but no algebraic
irrationals [Schm1], [PM].

The following theorem resumes our results for the spherical section
transform Sθ on S3 if θ is an irrational multiple of π (the rational case
was considered in Theorem 6.7).

Theorem 6.12. Let θ = βπ, β ∈ I \Q, I = (0, 1).
(a) Sθ : Hs → Hs+1 is injective.
(b) (Sθ)

−1 is unbounded from Hs+1+µ to Hs for all µ ∈ [0, 1) and all
β ∈ I \Q.

(c) (Sθ)
−1 is unbounded from Hs+2 to Hs for almost all β ∈ I.

(d) If µ > 1, then (Sθ)
−1 is bounded from Hs+1+µ to Hs for almost

all β ∈ I (by Roth’s theorem this is true for all algebraic numbers of
degree ≥ 2).

(e) If β is a Liouville number, then (Sθ)
−1 is unbounded from Hs1 to

Hs2 for any pair of Sobolev spaces.

Open problem. It would be interesting to obtain similar results in
other dimensions, and also for the spherical cap transform Bθ.

7. The Busemann-Petty problem

The “classical” theory of Radon transforms focuses on such prob-
lems as injectivity, inversion, action in function spaces, characterization
of the range, and related problems of harmonic analysis. Interesting
problems of another kind arise if one applies these transforms (and
their fractional modifications) to characteristic functions of bounded
domains. Then geometric properties of domains come into play, and
the researcher finds himself in the realm of geometry with its specific
problems, methods, language, and the way of thinking. As an example,
we consider the following problem which was posed by Busemann and
Petty in 1956 [BP].

Let K and L be origin-symmetric convex bodies in Rn, and u⊥ the
central hyperplane orthogonal to the unit vector u. Suppose that

(7.1) voln−1(K ∩ u⊥) ≤ voln−1(L ∩ u⊥) ∀u ∈ Sn−1.

Does it follow that

(7.2) voln(K) ≤ voln(L) ?
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Many authors contributed to this problem; see, e.g., [BZh], [BFM],
[Ga1]- [Ga3], [GKS], [Ko4], [RZ], [Z2] and references therein.

Theorem 7.1. The Busemann-Petty problem has an affirmative an-
swer if and only if n ≤ 4.

For n = 2 the answer is obvious. Different proofs of the “if” and
“only if” parts were suggested. By making use of results from Sections
2 and 3, these proofs can be essentially simplified as follows.

Each origin-symmetric star body K can be identified with its radial
function

ρK(u) = sup{λ ≥ 0 : λu ∈ K, u ∈ Sn−1} (∈ Ceven(Sn−1)),

so that voln(K) = n−1
∫

Sn−1 ρn
K(u)du.

Definition 7.2. We denote by K∞+ the class of origin-symmetric con-
vex bodies K in Rn such that ρK ∈ C∞(Sn−1) and the boundary of K
has a positive Gaussian curvature at each point.

Lemma 7.3. The Busemann-Petty problem has an affirmative answer
if (7.1) implies (7.2) for any K, L ∈ K∞+ .

Proof. Let K ′ and L′ be origin-symmetric convex bodies so that (7.1)
holds, but (7.2) fails. There exist approximating bodies K,L ∈ K∞+
satisfying K ⊂ K ′, L′ ⊂ L, and voln(K) > voln(L) (see, e.g., [Ga1],
p. 438, and [Hö], Lemma 2.3.2). This contradicts to the assumption of
the lemma. ¤

Owing to Lemma 7.3, it suffices to prove Theorem 7.1 for K, L ∈ K∞+ .
Let us consider the hyperplane Radon transform

(Pf)(u, t) =

∫

Rn

f(x) δ(t− x · u) dx, t ∈ R, u ∈ Sn−1,

and its fractional analog [Ru3], [Se1]

(7.3) (Pαf)(u, t) =
1

γ1(α)

∫

Rn

f(x)|t− x · u|α−1dx,

γ1(α) =
π1/22αΓ(α/2)

Γ((1− α)/2)
, Re α > 0, α 6= 1, 3, 5, . . . .

This is the Riesz potential of (Pf)(u, t) in the t-variable (cf. (2.15)).
Suppose that f(x) = χK(x) is the characteristic function of a body
K ∈ K∞+ , and denote

Fα
K(u) = (PαχK)(u, 0), (ϕ, ψ) =

∫

Sn−1

ϕ(u)ψ(u)du.
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By passing to polar coordinates, we have

(7.4) Fα
K(u) =

1

γ1(α)

∫

K

|x · u|α−1dx = cα(Uαρn+α−1
K )(u),

where cα = 21−απn/2−1(n + α − 1)−1, and Uα is the operator (3.8)
corresponding to the Fourier-Laplace multiplier (3.19). Since ρK ∈
C∞

even(Sn−1), and ρK > 0, then (Uαρn+α−1
K )(u) extends by analyticity

(as the Fourier-Laplace series) to all complex α 6= 1, 3, 5, . . . , and this
extension belongs to C∞

even(Sn−1). Owing to (7.4), the same holds for
Fα

K(u) if we exclude α = 1− n.
The function Fα

K(u) and the operator Uα play a key role in the
sequel. We recall (see (3.10), (3.19)) that U0 = 2−1π(1−n)/2R, R being
the Minkowski-Funk transform, and the Fourier-Laplace multiplier of
Uα obeys

(7.5) uj,αuj,2−n−α = 1, j even, (i.e. (Uα)−1 = U2−n−α),

provided

(7.6) α 6= 1, 3, 5, . . . , α 6= 1− n,−n− 1,−n− 3, . . . .

By the Parseval equality, (7.5) implies the following

Lemma 7.4. If K,L ∈ K∞+ , then for α ∈ C satisfying (7.6),

(Fα
K , F 2−n−α

L ) = c
∑

j even

∑

k

(ρn+α−1
K )j,k(ρ

1−α
L )j,k = c(ρn+α−1

K , ρ1−α
L ),

c = cαc2−n−α =
2nπn−2

(n + α− 1)(1− α)
.

In particular, for α = 0,

(7.7) (F 0
K , F 2−n

L ) = cn(ρn−1
K , ρL), cn =

2nπn−2

n− 1
.

Lemma 7.5. For K,L ∈ K∞+ , the following statements are equivalent:
(i) F 2−n

K ≥ 0.
(ii) (7.1) implies (7.2).
(iii) ρK = Rg, where g ∈ C∞

even(Sn−1), g ≥ 0.

Proof. By (7.4), F 2−n
K = c2−nU

2−nρK . Owing to (7.5), it follows that
U0F 2−n

K = c2−nρK or ρK = Rg, g = 2−nπ3/2−nF 2−n
K . The latter implies

equivalence of (i) and (iii).
Now we prove equivalence of (i) and (ii). Given a hyperplane H =

{x : x · u = t}, let

(7.8) AK(u, t) ≡ (PχK)(u, t) = voln−1(K ∩H)
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be a parallel section function of K in the direction u. For each u,
the function t → AK(u, t) is even and infinitely differentiable in a
sufficiently small interval (−ε, ε). Since

(7.9) Fα
K(u) =

2

γ1(α)

∞∫

0

tα−1AK(u, t)dt, Reα > 0, α 6= 1, 3, 5, . . . ,

then F 0
K(u) = AK(u, 0). Suppose that F 2−n

K ≥ 0 and (7.1) holds. Then
F 0

K(u) ≤ F 0
L(u), and (7.7) yields∫
ρn

K = (ρn−1
K , ρK) = c−1

n (F 0
K , F 2−n

K ) ≤ c−1
n (F 0

L, F 2−n
K )

= (ρn−1
L , ρK) ≤

( ∫
ρn

L

)1−1/n( ∫
ρn

K

)1/n

,

∫
=

∫
Sn−1 . Thus (i) implies (ii).

To prove the converse, we follow some ideas of Lutwak [Lu] and
Gardner [Ga1]. Suppose that F 2−n

K (u) is negative for some u, and
introduce a C∞

even-function F (u) which is non-negative if F 2−n
K < 0 and

0 otherwise. Let h = U2−nF (∈ C∞
even), and define a star body L by

ρn−1
L = ρn−1

K − εh, ε > 0. If ε is sufficiently small, then L ∈ K∞+ (see
[Ga1], p. 439). Furthermore, by (7.4) and (7.5),

(7.10) F 0
K = c0U

0ρn−1
K = c0U

0[ρn−1
L + εh] = F 0

L + εc0F.

On the one hand, we have U0ρn−1
L = U0ρn−1

K − εF , and therefore,
voln−1(L ∩ u⊥) ≤ voln−1(K ∩ u⊥). On the other hand, by (7.10),

(ρn−1
K , ρK) = c−1

n (F 0
K , F 2−n

K ) = c−1
n (F 0

L, F 2−n
K ) + εc0c

−1
n (F, F 2−n

K )

< c−1
n (F 0

L, F 2−n
K ) = (ρn−1

L , ρK).

This implies voln(K) < voln(L), that contradicts (ii). ¤
Let us investigate for which n the inequality F 2−n

K (u) ≥ 0 does hold.
By taking into account that F 2−n

K (u) is the analytic continuation (a.c.)
of the integral (7.9), we have the following

Lemma 7.6. Let K ∈ K∞+ . If n is odd then

(7.11) F 2−n
K (u) = λn

∞∫

0

t1−n
[
AK(u, t)−

(n−3)/2∑
j=0

t2j

(2j)!
A

(2j)
K (u, 0)

]
dt,

λn = 2n−1π−1/2Γ((n− 1)/2)/Γ(1− n/2).

If n is even then

(7.12) F 2−n
K (u) = (−1)1+n/2A

(n−2)
K (u, 0).
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Proof. A similar statement can be found in [GKS], [BFM], [Ko4]. A
simple proof is as follows. By the well-known formula from [GS, Chap-
ter 1, Sec. 3], for −` < Re α < −` + 1, ` ∈ N, we have

(7.13) a.c.

∞∫

0

tα−1AK(u, t)dt =

∞∫

0

tα−1
[
AK(u, t)−

`−1∑
j=0

tj

j!
A

(j)
K (u, 0)

]
dt.

Since all derivatives of AK(u, t) of odd order are zero at t = 0, then for

` odd, the sum
∑`−1

j=0 can be replaced by
∑`

j=0, and (7.13) holds for
−`− 1 < Re α < −` + 1. It follows that for n odd one can set ` = n in
(7.13) and obtain (7.11) with

λn = lim
α→2−n

2

γ1(α)
= lim

α→2−n

Γ((1− α)/2)

2α−1π1/2Γ(α/2)
=

Γ((n− 1)/2)

21−nπ1/2Γ(1− n/2)
.

On the other hand, the duplication formula for Γ-functions yields

Fα
K(u) =

1

cos(απ/2) Γ(α)

∞∫

0

tα−1AK(u, t)dt,

and for n even we have

F 2−n
K (u) = (−1)1+n/2a.c.

{ 1

Γ(α)

∞∫

0

tα−1AK(u, t)dt
}

α=2−n

= (−1)1+n/2A
(n−2)
K (u, 0).

¤
Corollary 7.7. If K ∈ K∞+ then

(7.14) F 2−n
K (u) =





2

π

∞∫

0

AK(u, 0)− AK(u, t)

t2
dt if n = 3,

−A′′
K(u, 0) if n = 4.

Now we can complete the proof of the positive part of Theorem 7.1.
Since K ∈ K∞+ is convex, then by (7.14), F 2−n

K (u) ≥ 0 for n = 3, 4. It
remains to apply Lemmas 7.5 and 7.3.

The negative result for n ≥ 5 can be obtained by making use of the
idea belonging to Fallert, Goodey, and Weil [FGW]. The argument is
as follows. For n = 5, a nice counter-example was given in [GKS] (see
also [BZh], [Ga1], [Ko4], [Pa]). For n > 5, suppose the contrary, that
the problem has an affirmative answer. Let K ∈ K∞+ be a convex body
in R5. Then ρK = RS4ϕ (see notation in Sec. 3.5), where, by Lemma
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7.5 and due to the negative result for n = 5, ϕ is non-positive. Let
K0 ∈ K∞+ be a convex body in Rn, n > 5, so that the restriction of ρK0

onto S4 coincides with ρK . According to our assumption and Lemma
7.5, ρK0 = RSn−1f for some non-negative f ∈ C∞

even(Sn−1). Then, by
Theorem 3.4, ϕ is positive, and we arrive at contradiction.

7.1. The lower-dimensional Busemann-Petty problem. It is nat-
ural to generalize the Busemann-Petty problem (7.1)-(7.2) to sections
of dimension less than n − 1. Let Gn,i, 1 ≤ i ≤ n − 1, be the Grass-
mann manifold of i-dimensional subspaces of Rn and let K and L be
origin-symmetric convex bodies in Rn. Suppose that

(7.15) voli(K ∩ ξ) ≤ voli(L ∩ ξ) ∀ξ ∈ Gn,i.

Does it follow that

(7.16) voln(K) ≤ voln(L) ?

This problem was posed in [Z1], [BZh]. For i = n − 1, this is the
usual Busemann-Petty problem. If i = 2 and n = 4, an affirmative
answer follows from that in the case i = n − 1. Bourgain and Zhang
[BZh] proved that for i > 3 the answer is negative. This proof was
corrected in [RZ]. Another proof was given in [Ko2]. For i = 2, or 3,
the answer is generally unknown. However, in the special case, when
K is a body of revolution, the answer for i = 2 and 3 is affirmative
[GrZ], [RZ], [Z1].

In the last decade, a series of attempts were made to attack the cases
i = 2 and i = 3; see [Mi], [Ru17], [Ru18], [RZ], [Y] for recent results in
this direction and some generalizations.

8. Radon transforms on matrix spaces

The present section deals with Radon transforms of functions of ma-
trix argument. These transforms were introduced by Petrov [Pe1] in
1967. After first publications on this subject [Pe1, Pe2, Sh1, Sh2], it
became clear that these transforms have a number of striking distinc-
tive features which do not happen in the classical theory of similar
transforms over planes in Rn. Some of these features are still mysteri-
ous, therefore the interest to Radon transforms on matrix spaces was
renewed in recent years; see [GK, Gra, OR1, OR2, Ru16].

Let us describe the essence of the matter. Let Mn,m, n ≥ m, be the
space of n×m real matrices x = (xi,j), We fix an integer k, 1 ≤ k < n,
and let Vn,n−k = {ξ ∈ Mn,m : ξ′ξ = In−k} be the Stiefel manifold of
orthonormal (n− k)-frames in Rn. Here ξ′ denotes the transpose of ξ,
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and In−k is the identity matrix. Let T be the manifold of matrix planes
τ in Mn,m defined by

(8.1) τ ≡ τ(ξ, t)={x ∈ Mn,m : ξ′x = t}, ξ∈Vn,n−k, t∈Mn−k,m.

The Radon transform associated to planes (8.1) and the relevant dual
transform are defined by

(8.2) f̂(τ) =

∫

x∈τ

f(x), ϕ̌(x) =

∫

τ3x

ϕ(τ),

the integration being performed against the corresponding canonical
measures. We call (8.2) the rank-one Radon transforms if m = 1, and
the higher-rank Radon transforms if m > 1.

To avoid possible confusion, we note that notation f̂ for the Radon
transform in this section differs from Rf in the previous sections. We
denote by S(Mn,m) the Schwartz space of infinitely differentiable rapidly
decreasing functions on Mn,m ∼ Rnm. The Fourier transform of a
function f ∈ L1(Mn,m) is defined by

(8.3) (Ff)(y) =

∫

Mn,m

exp(tr(iy′x))f(x)dx, y ∈ Mn,m .

8.1. The k-plane transform in Rn. The case m = 1 is well-investigated;
see [GGG2, H5, Ru14] and references therein. In this case, T = Gn,k

is the manifold of non-oriented k-planes in Rn, and integrals in (8.2)
represent the usual k-plane transform and its dual. Specifically, if
x ∈ Rn, ξ ∈ Vn,n−k, t ∈ Rn−k, and τ ≡ τ(ξ, t) ∈ Gn,k, then

f̂(τ) =

∫

{y∈Rn: ξ′y=0}

f(y + ξt) dξy, ϕ̌(x) =

∫

SO(n)

ϕ(γτ0 + x)dγ,

where τ0 is an arbitrary fixed k-plane through the origin and dξy stands
for the Lebesgue measure on the plane {y ∈ Rn : ξ′y = 0}.

We equip Gn,k with the measure dτ = dξdt. The dual k-plane trans-
form ϕ̌(x) is well defined for any locally integrable function ϕ. Exis-
tence of the k-plane transform is characterized by the following theo-
rem.

Theorem 8.1. [So]
(i) Let f be a continuous function on Rn, satisfying f(x) = O(|x|−a).

If a > k, then the k-plane transform f̂(τ) is finite for all τ ∈ Gn,k.

(ii) If f ∈ Lp, 1 ≤ p < n/k, then f̂(τ) is finite for almost all τ ∈ Gn,k.

Conditions for a and p in (i) and (ii) are sharp.
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Inversion problem for the k-plane transform is overdetermined if k <
n− 1, because in this case, the dimension (n− k)(k + 1) of the target
space is greater than the dimension n of the source space. Regarding
characterization of the range of the map f → f̂ on the Schwartz space
of rapidly decreasing functions, see [Gonz1], [Gonz1], [Pe3], [Ri].

The basic inversion methods for the k-plane transform are the fol-
lowing [GGG1], [H5], [Ke], [Ru14]:

1. The Fourier transform method (F. John, I.M. Gelfand, S. Helga-
son).

2. The method of mean value operators (J. Radon, S. Helgason).
3. The method of Riesz potentials (J. Radon, B. Fuglede, S. Helga-

son).
4. Decomposition in plane waves (I.M. Gelfand)
In these notes, we focus on the second method. As in Section 2,

we average ϕ = f̂ over all k-planes at fixed distance r > 0 from x by
setting

(8.4) ϕ̌r(x) =

∫

SO(n)

ϕ(γτr + x) dγ.

Here τr is an arbitrary fixed k-plane with the property dist(τr, 0) = r.
The map ϕ → ϕ̌r is also known as theshifted dual k-plane transform.

Theorem 8.2. Let f ∈ Lp, 1 ≤ p < n/k. If

gx(r) =
1

σn−1

∫

Sn−1

f(x +
√

rθ) dθ

is the spherical mean of f , then

(f̂ )∨√r(x) = πk/2(I
k/2
− gx)(r),

where I
k/2
− is the Riemann-Liouville fractional integration operator (2.4).

This theorem implies the following inversion formulas for the k-plane
transform ϕ = f̂ :

For k even:

(8.5) f(x) = π−k/2
(
− 1

2r

d

dr

)k/2

ϕ̌r(x)
∣∣∣
r=0

(a local formula);
For k odd:

(8.6) f(x) = π−k/2
(
− d

ds

)m

(I
m−k/2
− ψx)(r)

∣∣∣
r=0

, ∀m > k/2

(a non-local formula).
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8.2. The higher-rank Radon transform on matrix spaces. Ex-
istence and injectivity. Let us consider the general case of Radon
transforms over matrix planes (8.1) in the space Mn,m of real rectan-
gular matrices. For details and additional information, the reader is
addressed to [OR1, OR2]. Precise meaning of integrals (8.2) is the
following:
(8.7)

f̂(ξ, t) =

∫

{y∈Mn,m: ξ′y=0}

f(y+ ξt) dξy, ϕ̌(x) =
1

σn,n−k

∫

Vn,n−k

ϕ(ξ, ξ′x) dξ,

where ξ ∈ Vn,n−k, t ∈ Mn−k,m, σn,n−k = vol(Vn,n−k) is defined in Section
5.2, and dξy stands for the Lebesgue measure on the plane {y ∈ Mn,m :
ξ′y = 0}.
Remark 8.3. Each τ ∈ T is an ordinary km-dimensional plane in Rnm,
but the set T has measure zero in the manifold T′ of all km-dimensional
planes in Rnm. Specifically, by taking into account that dim Vn,m =
m(2n−m− 1)/2 [Muir, p. 67], we have

dim T = dim(Vn,n−k ×Mn−k,m)/O(n− k)

= (n− k)(n + k − 1)/2 + m(n− k)− (n− k)(n− k − 1)/2

= (n− k)(k + m).

Hence

dim T
′ − dim T = (nm− km)(km + 1)− (n− k)(k + m)

= k(n− k)(m2 − 1) > 0 if m > 1.

As in the previous section, the first question is for which functions
f on Mn,m the Radon transform f̂ does exist.

Theorem 8.4. (i) Let f be a continuous function on Mn,m, satisfying
f(x) = O(det(Im + x′x)−a/2). If a > k + m − 1, then the Radon

transform f̂(τ) is finite for all τ ∈ T.

(ii) If f ∈ Lp(Mn,m), and p0 = (n + m− 1)/(k + m− 1), then f̂(τ) is
finite for almost all τ ∈ T provided 1 ≤ p < p0.

Conditions for a and p in this theorem cannot be improved.
Our main focus is inversion formulas for the Radon transform f̂ .

First we have to figure out what triples (n,m, k) are admissible for
this purpose. It is natural to conjecture that dimension of the target
space T must be greater than or equal to the dimension of the source
space Mn,m. This is equivalent to 1 ≤ k ≤ n−m. The validity of this
conjecture can be derived from the following theorem.



42 B. RUBIN

Projection-slice theorem. Let f ∈ S(Mn,m), 1 ≤ k ≤ n − m. If
ξ ∈ Vn,n−k and b ∈ Mn−k,m, then

(8.8) (Ff)(ξb) = F [f̂(ξ, ·)](b).
Theorem 8.5. (i) If 1 ≤ k ≤ n−m, then the Radon transform f → f̂
is injective on S(Mn,m).
(ii) For k > n−m, the Radon transform is non-injective on S(Mn,m).

Formula (8.8) can also be used for inversion of the Radon transform
on S(Mn,m) in terms of the Fourier transform.

8.3. The G̊arding-Gindikin fractional integrals and the method
of mean value operators. In this subsection we demonstrate how the
method of mean value operators and the relevant fractional-calculus
technique (cf. Section 2, 4.4, 8.1) can be generalized to functions of
matrix argument.

Let Pm be the cone of positive definite symmetric m ×m real ma-
trices,

Γm(α) =

∫

Pm

det(r)α−(m+1)/2 exp(−tr(r))dr

the generalized gamma function associated to Pm; cf. (5.9). The
G̊arding-Gindikin fractional integrals of a function f on Pm are de-
fined by

(Iα
+f)(s) =

1

Γm(α)

∫

Pm∩(s−Pm)

f(r)det(s− r)α−(m+1)/2dr,

(Iα
−f)(s) =

1

Γm(α)

∫

s+Pm

f(r)det(r − s)α−(m+1)/2dr, s ∈ Pm,

[G̊a, Gi1]. If f is good enough (e.g., infinitely differentiable and com-
pactly supported away from the boundary of Pm, then both integrals
are absolutely convergent if and only if Re α > (m − 1)/2 and extend
analytically to all α ∈ C as entire functions. Explicit representations
of these analytic continuations for the values α = 0, 1

2
, 1, 3

2
, . . . , m−1

2
are

of particular importance.

Theorem 8.6. (i) The integrals Iα
±f are convolutions with positive

measures if and only if α is real and belongs to the “Wallach set”

W =

{
0,

1

2
, 1,

3

2
, . . . ,

m− 1

2

}
∪

{
α : α >

m− 1

2

}
.
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(ii) For all k ∈ N,

(I
k/2
+ f)(s) = π−km/2

∫

{ω∈Mk,m: ω′ω<s}

f(s− ω′ω)dω,

(I
k/2
− f)(s) = π−km/2

∫

Mk,m

f(s + ω′ω)dω,

Moreover,

(I0
±f)(s) = f(s).

The G̊arding-Gindikin fractional integrals were originally introduced
in [G̊a, Gi1] for the purposes which lie far away from the scope of
our consideration. It was striking that they also arise in the theory
of Radon transforms if we consider these transforms on the so-called
radial functions.

Definition 8.7. A function f on Mn,m is said to be radial if f(γx) =
f(x), ∀γ ∈ O(n). Similarly, a function ϕ(τ) ≡ ϕ(ξ, t) on T is radial if
ϕ(γξ, t) = ϕ(ξ, t), ∀γ ∈ O(n).

One can show that each radial function f on Mn,m has the form
f(x) = f0(x

′x) and each radial function ϕ on T can be written as
ϕ(ξ, t) = ϕ0(t

′t).

Theorem 8.8. If f(x) = f0(x
′x) and ϕ(ξ, t) = ϕ0(t

′t), then

f̂(ξ, t) = πkm/2 (I
k/2
− f0)(t

′t),

ϕ̌(x) = c det(x′x)(m+1−n)/2(I
k/2
+ Φ0)(x

′x), c =
πkm/2σn−k,m

σn,m

,

Φ0(s) = det(s)(n−k−m−1)/2ϕ0(s).

If m = 1, these expressions coincide with the similar ones for the
k-plane transforms in Rn [Ru14].

Theorem 8.8 paves the way to the general (not necessarily radial)
case, when the inversion method of mean value operators can be ap-
plied. To implement this method, we need in Mn,m a certain equivalent
of the Euclidean distance.

Definition 8.9. A matrix-valued distance between points x and y in
Mn,m is a positive definite matrix defined by

(8.9) d(x, y) = [(x− y)′(x− y)]1/2.
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A matrix-valued distance between x ∈ Mn,m and τ = τ(ξ, t) ∈ T is
defined accordingly as

(8.10) d(x, τ) = [(ξ′x− t)′(ξ′x− t)]1/2.

For m = 1, both notions coincide with their prototypes in Rn.
We also introduce the shifted dual Radon transform of a function

ϕ(τ) ≡ ϕ(ξ, t) on T. Given a point z ∈ Mn−k,m at matrix distance s1/2

from the origin (i.e. z′z = s), we define

(8.11) ϕ̌s(x) =
1

σn,n−k

∫

Vn,n−k

ϕ(ξ, ξ′x + z)dξ.

This is a mean value operator that can be formally written as

ϕ̌s(x) =

∫

d(x,τ)=s1/2

ϕ(τ)

and coincides with the usual dual Radon transform (cf. (8.7)) if s = 0.

Theorem 8.10. Let

f ∈ Lp(Mn,m), 1 ≤ p <
n + m− 1

k + m− 1
.

Then

(8.12) (f̂)∨s (x) = πkm/2(I
k/2
− Fx)(s)

where

Fx(r) =
1

σn,m

∫

Vn,m

f(x + vr1/2)dv

is the mean value of f at x.

Owing to Theorem 8.10, in order to reconstruct f from f̂ , it suffices
to invert fractional integral on the right-hand side of (8.12) and then
pass to the limit as r → 0. To accomplish this procedure, we introduce
the differential operator

D = (−1)mdet

(
ηi,j

∂

∂ri,j

)
, ηi,j =

{
1 if i = j
1/2 if i 6= j,

acting in the r-variable, r = (ri,j) ∈ Pm. Let D(Pm) be the space of
C∞ functions which are compactly supported away from the boundary
of Pm. If f ∈ D(Pm), then DjIα

−f = Ij−α
− f for all α ∈ C.
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Theorem 8.11. Let f ∈ Lp(Mn,m),

1 ≤ k ≤ n−m, 1 ≤ p <
n + m− 1

k + m− 1
.

If ϕ(τ) = f̂(τ) and Φx(s) = ϕ̌s(x), then

f(x) = π−km/2
(Lp)

lim
r→0

(Dk/2Φx)(r),

where Dk/2 is understood in the sense of D′(Pm)-distributions.

The reader is referred to [OOR, OR2] for details and alternative
inversion methods, based on implementation of Riesz potentials and
wavelet transforms.
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[Fu2] , Über eine geometrische Anwendung der Abelschen Integralgle-
ichung, Math. Ann., 77 (1916), 129–135.



46 B. RUBIN

[G1] Gadzhiev, A.D., On differential properties of the symbol of a multidimen-
sional singular integral operator, Mat. Sbornik, 114 (1981), 483–510.

[G2] , Differential properties of the symbol of a singular operator in
spaces of Bessel potentials on the sphere, Izvestia Akademii Nauk Azer-
baidzhanskoi SSR. Ser. fiziko-tekhnicheskikh i matem. nauk, Baku, Izd-
vo AN Azerb. SSR, 1982, no. 1, 134–140 (in Russian).

[G3] , Exact theorems on multipliers of spherical expansions and some
applications, in ”Special problems of function theory”, vyp. 4, Baku, Izd-
vo Elm, 1989, 73–100 (in Russian).

[G̊a] G̊arding, G.L., The solution of Cauchy’s problem for two totally hyper-
bolic linear differential equations by means of Riesz integrals, Ann. of
Math., 48 (1947), 785-826.

[Ga1] Gardner, R.J., Intersection bodies and the Busemann-Petty problem,
Trans. Amer. Math. Soc., 342 (1994), 435–445.

[Ga2] , A positive answer to the Busemann-Petty problem in three di-
mensions, Ann. of Math. (2), 140 (1994), 435–447.

[Ga3] , Geometric tomography, Cambridge University Press, New York,
1995.

[GKS] Gardner, R. J., Koldobsky, A., and Schlumprecht, T., An analytic solu-
tion to the Busemann-Petty problem on sections of convex bodies, Ann.
of Math. (2), 149 (1999), 691–703.

[Ge] Gelfand, I. M., Integral geometry and its relation to the theory of group
representations, Russian Math. Surveys, 15 (1960), 143–151.

[GGG1] Gel’fand, I.M., Gindikin, S.G., and Graev, M.I., Integral geometry in
affine and projective spaces, Journal of Soviet Mathematics, 18 (1982),
no. 1, 39–167 (Translated from Itogi Nauki i Tekhniki, Ser. Sovr. Prob-
lemy Matem., Vol. 16 (1980), 53–226).

[GGG2] Gel’fand, I.M., Gindikin, S.G., and Graev, M.I., Selected topics in inte-
gral geometry, Translations of Mathematical Monographs, AMS, Provi-
dence, Rhode Island, 2003.

[GGR] Gel’fand, I.M., Graev, M.I., and Rosu, R.,The problem of integral geome-
try and intertwining operators for a pair of real Grassmannian manifolds,
J. Operator Theory, 12 (1984), 339–383.
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