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Rigidity in Banach spaces

e Mazur-Ulam theorem (1932): Let X,Y be
Banach spaces and

f: X—=Y

an onto isometry. Then f is affine.

e Kadec theorem (1960): Any two separable
Infinite dimensional Banach spaces are
homeomorphic.




Work of Lindenstrauss and later Enflo Iin the
1960s showed that If we add the assumption

that the home
theorem are o
not all separa

omorphisms in the Kadec
uantitatively continuous, then
nle Infinite dimensional Banach

spaces are equivalent.

he situation has been clarified in an

important theorem of M. Ribe (1976).



Finite representability

Definition (R. C. James): A Banach space X Is
finitely representable in a Banach space Y If
there exists a constant K such that for every
finite dimensional subspace F of X there
exists a linear operator

1':F =Y

satisfying

Ve e F,  Klz|| 2 || T = [|=|



Examples

e The function space L,, () is finitely
representable in the sequence space E

e Hilbert space is finitely representable in every
Infinite dimensional Banach space
(Dvoretzky’s theorem).



Local properties

If X Is finitely representable in Y then it inherits
all the quantitative linear properties of finite
dimensional subspaces of Y.

An example of a consequence: if for every
integer n and every x1,...,T, € Y we have

Zel ..... €n =11 €11 + - + €nTn|
2n

(e.g.,if Y = Lp, n>2)

Then X has the same property.
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Abjjectionf : X — Y Is called a
uniform homeomorphism if f, f~*
are both uniformly continuous.
Equivalently, for allx,y € X,

a(llz —yl) = || f(z) = f) = B(l|lz —yl)

where lim; ,g a(t) =0



Ribe’s theorem (1976)

If X and Y are uniformly homeomorphic then
X Is finitely representable in Y and vice
versa.

Other proofs: Heinrich- Mankiewicz (1982),
Bourgain’s discretization theorem (1987); Giladi-
N.-Schechtman (2011), Li-N. (2011).



The Ribe program (Bourgain,
1986)

e Linear local properties of Banach spaces are
“metric properties”. Redefine them using only
the notion of distance.

e Once this Is done, the definition is meaningful
for general metric spaces.

e Extend the linear theory to general metric
spaces.

e Applications to geometric objects that have
nothing to do with linear spaces.



Rigidity in mathematics

e Equivalence in a "weaker” category actually
implies equivalence in a “stronger” category.

e A powerful statement about the stronger
category.

e The philosophy of the Ribe program: this can
say something deep about the weaker
category; concepts, invariants, and theorems
that make sense In the stronger category can
maybe be formulated in the weaker category.



A rigidity theorem might lead to a new
understanding of the weaker category that is
motivated by insights that originally came up
naturally in the presence of more structure.

Reversing in this way the usual implications
of a rigidity result is not obvious, and, if
possible, might require much work.



Rademacher type

A randomized triangle inequality: for every
Banach space X and everyx1,...,x, € X,

n

n
ZH%H > e, ene{-1,1) ZQ‘%
i=1

1=1

Definition: X is said to have Rademacher type

p>1if i L/p i
(Z) >E(S e,
i=1

1=1




e Hilbert space has Rademacher type 2 (by
parallelogram identity).

e Every Banach space has Rademacher type
1

e The space L, (u) has Rademacher type
min{p, 2} (by Khinchine’s inequality).



Type of metric spaces?

By Ribe’s theorem, Rademacher type p is
preserved under uniform homeomorphisms.
Can we define this notion using only distances
between points (using no linear structure)?

e Enflo (Hilbert’s fifth problem in infinite
dimensions, 1960’s and 1970’s).

e Gromov (1983).
e Bourgain-Milman-Wolfson (1986).



The idea

Givenzy,...,x, € X definef : {—1,1}" = X
by f(G) — f(ela . '7€n) — Z?:l €;Lg

Using this notation, the Rademacher type p
Inequality becomes:

El[f(e) = F(=o)ll
< (ZE[Hf(el,...,en) — f(el,...,—ei,...,en)Hp])



E{]|lf(e) = f(=e)ll]
n 1/p
< (ZE[Hf(el,...,en)—f(el,...,—ei,...,en)Hp])
1=1
This inequality involves only distances, if we

Ignore the fact that f itself is defined using linear
combinations of vectors.



e Definition. A metric space (X,d) has type p If
forevery f : {—1,1}" — X we have

Eld(f(e), f(—e€))]

1/p
(ZE fler, ... €n), f(el,...,—ei,...,en))p]>

e The implied constant may depend on X, but
not on n or f.

e As in the case of Banach spaces, every
metric space has type 1 (a randomized
triangle inequality).



The problem

e Clearly, for Banach spaces the metric
definition implies Rademacher type p, since
Rademacher type p corresponds to a special
class of functions f (linear functions).

e Do Banach spaces with Rademacher type p
also have type p as metric spaces?

e Still open...



Bourgain-Milman-Wolfson,
Pisier
Theorem. If a Banach space X has

Rademacher type p then for every ¢>0 it also
has type p-¢ as a metric space.




The geometric “puzzie”

We are given a Banach space X for which we
know the following inequality for all
parallelopipeds:

> diagonal o > edgeP t/p
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But now, we are given an arbitrary set of 2"

vectors vy,...,Un € X
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Pisier’s approach (1987)

Every f : {—1,1}" — X has a Fourier
expansion

flz)= > f(AHW
ACH{1,...,n}
where
Walx) = H T;
1€ A

()



Vector-valued heat semigroup
ForteRand f:{-1,1}" - X

Then for t>0, _
Ifll > T2 flle > e ™| f]la

where

Il = [z (=113, x) = E{[f(e)]]




Duality

Fix s>0 that will be determined later.
There exists g* : {—1,1}" — X* such that

1 > |lg*(¢)| foralle € {—1,1}"
and
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Linearization via interpolation
between two hypercubes

Define for every t>0,

g/ {-1,1}" x{-1,1}" —» X~



g; (€ 6’)

Z Z ~ADEGE AN 4 iy (0

=1 AC{1,...,n
1€EA
+®7 (e, €)

where forallh1,...,h, : {—1,1}" = X,

*Je,e’ (I);k (E, 6/) (Z E;hz(e)) — ()

1=1




Forf:{—1,1}" = X andi € {1,...,n} define

Difle
— f(ela"'7€i—1717€i+17°'°7€n)_f(€17°'°7€i—1a_17€i+17°°°76n)
=2 ) [ AWl
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So, for all >0,

max “(e, €
( ax i >H)

>t 1) Y Al g (a) (

AC{1,....n}

n

Z e;D; f(€)
i—1

AN

f(A)

)



Sincel > ||g*(¢)|| for everye € {—1,1}"™ also
1> ||gi (e, €)| forall €, € {—1,1}" .
This follows from convexity and tensorization.

So, we proved that for all t>0,

n

2(€t — 1) 41e,e’ Z EfLD’Lf(E)

1=1

> Y AleTMlgH(a) (F(a))

AC{L1,...,n}




Integration of this inequality:

S




Pisier’s inequality

So,
" rog (=) B |[Senisal | = 1511
2 es — 1 ! — ¢ -

log logn
nlogn

Optimal choice of s Is s =

e [[|f(€) = f(=e)l]
S (logn)Ee e Zd@Dif(E)

1=1




If X has Rademacher type p then for every

fixede € {—1,1}",

4e

n

Z e;D; f (€)

1=1

(—G)H

n 1/p
< (ZDJ(e)p)

So, by Pisier’'s inequality
Eel[f(e) —



Not quite the Bourgain-Milman-Wolfson
theorem because of the logarithmic term, but
also we got power p instead of power p-e.

One can manipulate this inequality to get rid of
the logarithmic term at the cost of changing the
power to p-c.



Improve Pisier’s inequality?

e Talagrand (1993): the logarithmic term In
Pisier’'s inequality is needed in general.

e N.-Schechtman (2002): the logarithmic term
can be replaced by a constant depending on
the geometry of X but not on the dimension n
If XIs a UMD Banach space (martingale
differences are unconditional; includes L,
spaces, p>1). Thus for a wide class of
spaces we know that their Rademacher type
IS the same as their type as metric spaces.



Completion of the Ribe
program for Rademacher type

e Open: can the logarithmic term in Pisier’'s
iInequality be removed if X has nontrivial
Rademacher type?

e Mendel-N. (2007): a different definition of
type p of metric spaces (scaled Enflo type p)
which is equivalent to Rademacher type p.



Unigque obstruction

When does a metric space X have type p>17?

> diagonal o > edgeP t/p
2m - 2m




Obvious obstruction: there exists K>0 such that
for all nthereis f : {—1,1}" — X satisfying

Klle =€y 2 d(f(e), f(€') = [le = €]lx

> diagonal S

2™ -

1
(Zela)'" <




Theorem (Bourgain-Milman-Wolfson, Pisier):
The only obstruction for a metric space not to
nave nontrivial type Is that it contains
nypercubes of arbitrarily high dimension with bi-
_ipschitz distortion O(1).




Further impact of the Ribe
program: metric theories
motivated by linear insights

The (often surprising) successes of the Ribe
program motivate a powerful variant of this
program: a variety of useful theorems on
general metric spaces that are analogues of
Important results in Banach space theory.



The ultrametric skeleton
theorem (Mendel-N., 2011)

For every ¢>0 there exists c_ >0 such that if
(X,d) Is a compact metric space and u Is a
Borel probability measure on X then X has a
compact subset S that embeds into an
ultrametric space with distortion O(1/e) and
there Is a Borel probablility measure v
supported on S such that

Ve e X, Vr >0, (u(B(z,cer))™¢>v(B(z,r))



Sharp solution of Bourgain-Figiel-Milman
nonlinear Dvoretzky problem (1986). Bartal-
Linial-Mendel-N. (2002), Mendel-N. (2006), N.-
Tao (2010).

Solution of Tao’s nonlinear Dvoretzky problem
for Hausdorff dimension (Mendel-N., 2006).

Solution of Urbanski’s problem (Keleti-Mathe-
Zindulka, 2012).

Talagrand’s majorizing measures theorem.

Best known lower bounds for the randomized k-
server problem.

Only known way to construct approximate
distance oracles with constant query time, other

proximity data structures.



Bourgain’s super-reflexivity theorem (1986).

Markov convexity (Lee-Peres-N., 2006, and Mendel-
N., 2008), geometry of trees, Lipschitz quotients.

Metric cotype (Mendel-N., 2006). Metric Maurey-Pisier
theorem, coarse embeddings, metric dichotomies.

Markov type (Ball, 1990), N.-Peres-Schramm-Sheffield
(2005), Johnson-Lindenstrauss Lipschitz extension
problem (1983). Applications to group theory (Austin-
N.-Peres, 2008, N.-Peres, 2009+2010).

Bi-Lipschitz embedding theory: Bourgain (1985),
Arora-Lee-N. (2007), Sparsest Cut Problem (Linial-
London-Rabinovich, Goemans-Linial).

Nonlinear spectral gaps and construction of super-
expanders: V. Lafforgue (2007) and Mendel-N. (2009).
Applications to coarse geometry.



