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Abstract. We prove that, for a Poisson vertex algebra V , the canonical injective
homomorphism of the variational cohomology of V to its classical cohomology is an
isomorphism, provided that V , viewed as a differential algebra, is an algebra of dif-
ferential polynomials in finitely many differential variables. This theorem is one of the
key ingredients in the computation of vertex algebra cohomology. For its proof, we
introduce the sesquilinear Hochschild and Harrison cohomology complexes and prove a
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vanishing theorem for the symmetric sesquilinear Harrison cohomology of the algebra
of differential polynomials in finitely many differential variables.
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