東京北京パリ数論幾何セミナー
Seminaire de Geometrie Arithmetique Paris-Pekin-Tokyo, 巴黎北京東京算術幾何討論班

毎月第2水曜  056号室
午後5時半から6時半 (パリが夏時間のとき)  午後6時から7時 (パリが冬時間のとき) 
インターネットで、東大数理とIHES とMorningside centerで双方向同時中継します。
2018年12月12日(水) 18時00分から

G. Chenevier (CNRS, Université Paris-Sud)
A higher weight (and automorphic) generalization of the Hermite-Minkowski theorem

I will show that for any integer N, there are only finitely many cuspidal algebraic automorphic representations of GL_m over Q whose Artin conductor is N and whose "weights" are in the interval {0,...,23} (with m varying). Via the conjectural yoga between geometric Galois representations (or motives) and algebraic automorphic forms, this statement may be viewed as a generalization of the classical Hermite-Minkowski theorem in algebraic number theory. I will also discuss variants of these results when the base field Q is replaced by an arbitrary number field.
2019年1月16日(水) 18時00分から

Lei Fu 扶磊 (Yau Mathematical Sciences Center, Tsinghua University)
p-adic Gelfand-Kapranov-Zelevinsky systems

Using Dwork's trace formula, we express the exponential sum associated to a Laurent polynomial as the trace of a chain map on a twisted de Rham complex for the torus over the p-adic field. Treating the coefficients of the polynomial as parameters, we obtain the p-adic Gelfand-Kapranov-Zelevinsky (GKZ) system, which is a complex of D^\dagger-modules with Frobenius structure.

オーガナイザー: 志甫 淳、辻 雄、斎藤 毅、 Ahmed Abbes (CNRS, IHES), Fabrice Orgogozo (CNRS, Ecole Polytechnique), 田 野 (Tian Ye), 田 一超(Tian Yichao, Morningside center, HIM Bonn)、 鄭 維哲(Zheng Weizhe, Morningside center)
終わったもの