曲面上のルーマーの特性について。

1. 2ルーマーの特性について。
2. 高所体の分項群
3. 余次元 1 位点
4. 曲面の場合

1. \mathbb{P}^1 級数 $p > 0$ 代数閉体 \mathbb{C} 類数
 \[X, \mathbb{C} \text{ smooth} \Rightarrow X \cong \mathbb{C} \text{ 異形} \]

期待。 特性値 $\text{Char}(\mathbb{F})$ は全体式 T^*X として

次元で特性値とその定義工数、次元の体質 \mathbb{F} と \mathbb{C}

・加法性 $0 \rightarrow T \rightarrow T' \rightarrow 0$ exact なので
 \[\text{Char}(\mathbb{F}) = \text{Char}(\mathbb{F}') + \text{Char}(\mathbb{F}'') \]
 \mathbb{F}' 密な開集 \mathbb{F}, $\mathbb{F}'' \rightarrow \mathbb{F}$ 同形。

・étale local.

・Euler 数 X proper $\exists X(X, \mathbb{F}) = C(C(X, \mathbb{F}), T^*_X X)^+$ 0 で

・vanishing cycle. $f : X \rightarrow \mathbb{C}$ smooth curve なflat射

\[\dim \text{tor} \psi_X (X, f) = C(\text{Char} \mathbb{F}, df)T^*_X X. \]

例 1. $D \subset X$ div. w.s.n.c. f smooth on $U = X - D$

 tamely ramified along $D = U D$.

\[\text{Char}(\mathbb{F}) = (-1)^d \text{rank} \mathbb{F} \sum \text{rank} \mathbb{F} T^*_D X. \]

2. $\dim X = 1$. f smooth on $U = X - D$.

\[\text{Char}(\mathbb{F}) = -\text{rank} \mathbb{F} T^*_X X + \sum \dim \text{tor} \psi_X T^*_X X. \]
2. X smooth, D smooth div. $\& \text{gen } H_+$

K \rightarrow $\text{st} \otimes \text{st}$, F 副船体 $\text{O}_{Q} \equiv \text{H}(F)$

$G_{K} = \text{Ge}(k_{\text{Q}}^{\text{op}} / K)$ $G_{K}^{r} \cong G_{K}^{r+}$ 分岐群 α が関連

$G_{K}^{r} = \text{I}_{K} \Rightarrow G_{K}^{r+} = P_{K}$ $G_{K}^{r+} = U \text{Ge}_{K}^{s}$

$V \rightarrow U = X - D$ first etale $G_{D, 0}$ 被覆の D が $(r+1)$ の分岐

n^{-1} 以下と設く $r > 1$ 重要な約式

$R = rD$ と記

$T_{X(\mathbb{R})} \times DC \rightarrow (X \times X)(\mathbb{R}) \rightarrow U \times U$

$= G_{K}^{r} / G_{K}^{r+}$ abel, P_{K}^{et} 一m 指標群から

射 (G_{K}^{r} / G_{K}^{r+}) - \rightarrow D_{x}(\mathbb{R}) \otimes F_{v}$ $\text{定} \sim$

$x \rightarrow \text{chan}(x)$ の特異形式

3. X, D, K as above $\tilde{\eta} = \text{Sp} - K^{\text{op}}$

$\forall U = X - D$ が smooth 連層 $\tilde{\eta}_{U}, G_{K}$ の関連表現,

slope decomposition $\tilde{\eta}_{U} = \bigoplus \tilde{\eta}^{(r)}$, G_{K} 不分解 $= \bigoplus \tilde{\eta}^{(s)}$

特異分解 $\tilde{\eta}^{(r)} = \bigoplus \bigoplus_{x \in \text{chan}(x)} \text{chan}(x)$

以下 $r > 1$ integer, chan_x 下同様 f_{n} $\tilde{\eta}_{x}$ to Et_{x}

(for simplicity)

$\text{chan}(x) : L_{x}(\mathbb{R}) \rightarrow T_{x}^{\text{et}}(x)$ トレースから値関数への単射
定义:
\[
\text{Chan}(\mathcal{g}; f) = (-1)^d \left(\text{rank } \mathcal{g} \cdot [T^d \mathcal{X}] + \text{rank } \mathcal{f} \cdot [T^d \mathcal{D}] \right) \\
+ \sum_{i>1} r_i \sum_{x} \nu_x [\text{Chan } x] \\
T^d \mathcal{X} \text{ a divisor cycle}
\]

\[
\text{DT}(\mathcal{g}; f) = \sum_{n=1} \nu_x \text{rank } \mathcal{g}^{(n)} \cdot D \\
x \text{ a divisor}
\]

4.

\[
\text{Chan}(\mathcal{g}; f) = \nu \cdot \text{rank } \mathcal{g} \cdot [T^d \mathcal{X}] + \text{Chan}(\mathcal{g}) + \sum_{x \in \mathcal{X}} \nu_x [T^d_x \mathcal{X}]
\]

Radon变换. X proj smooth, L vey ample E = \Gamma(X, L)

X \rightarrow P = P(E) \\
H \subset P \times P^* \text{ univ. hyperplane}

\[
X \times H \rightarrow P^* \text{ univ. family of hyperplane sections}
\]

\[
R_{\mathcal{g}}(\mathcal{g}; f) = R_{\mathcal{g}} \cdot P^* \mathcal{g}; f \text{ on } P^*
\]

R_{\mathcal{g}}(\mathcal{g}; f) \text{ 分解显示 } P^* \mathcal{g} \text{ 因子。}

X^* \times \text{多项式 } T_{i, x} \mathcal{D} \text{ 的改名分叉 } D \text{ a genus, pt } \mathcal{g} \text{ 的有限相关}

有限个 n 的点 x \in D \text{ 的双对超平面 } H_x.

系数 n_x \text{ 使 } DT(R_{\mathcal{g}}(\mathcal{g}; f)) \text{ 显示 } H_x \text{ 的系数使其与 } T_{i, x, H_x} \text{ 一次结合作}

\[
\text{Chan}(\mathcal{g}; f) \text{ 未定义了 } (\text{不变成比例条件})
\]
理 1. $\text{Char } (\mathbb{F}_p)$ は p に従って well-defined.

2. $\dim_{\mathbb{Q}} (\text{df}_f) = C (\text{Char } (\mathbb{F}_p), df)_x$

弧点特徴類のとき

3. $\chi_c (\mathbb{F}_p, \mathbb{F}_p) = (\text{Char } (\mathbb{F}_p), T^*_x X) \rightarrow x$

2 と 1, 3. 2 が核心。

便元で。分歧理論、関係への制限、vanishing cycle と vanishing

変形での vanishing cycle の安定性。
Hensel の補題 (Elkik), vanishing cycle の極限, vanishing cycle の変形 (Deligne-Kato)

さらに、pencil の変形
Milnor の (Deligne SGA 7) と明の方法（を採用）