
On the characteristic cycle of an étale sheaf

Takeshi Saito

25-26 septembre 2014, à l’IHES

Abstract

For an étale sheaf on a smooth variety over a perfect field of positive character-
istic, the characteristic cycle is expected to be defined. In this series of lectures, we
give a conditional definition and prove some of basic properties assuming the exis-
tence of a singular support satisfying certain local acyclicity conditions for families
of morphisms to curves and to surfaces. For a sheaf on a surface, the ramification
theory implies that the assumption is satisfied and we obtain unconditional results
consequently.

Deligne describes, in unpublished notes [4], a theory of characteristic cycles of an étale
sheaf assuming the existence of a closed subset of the cotangent bundle or a jet bundle
satisfying a certain local acyclicity condition on morphisms to curves. He sketches or
indicates proofs of the statements and formulates some conjectures. A crucial ingredient
of his arguments lies in the continuity of the Swan conductor [9].

The main purpose of this lectures is to give proofs of his statements and conjectures,
assuming the existence of a closed subset of the cotangent bundle, called a singular support,
satisfying certain local acyclicity conditions for families of morphisms to curves and to
surfaces. The statements include the Milnor formula (1.2) for an isolated characteristic
point of a morphism to a curve and the Euler-Poincaré formula (3.4).

The ramification theory developed in [12] provides a closed subset of the cotangent
bundle satisfying the required local acyclicity condition, on the complement of a closed
subset of codimension ≧ 2. Using this, we obtain unconditional results for surfaces [13]
including the Euler-Poincaré formula (3.4) without any assumption on ramification cf. [10],
[3]. The two definitions of the characteristic cycle one by the Milnor formula and the other
by the ramification theory are shown to be the same by reduction to the case of surfaces.

The proofs have two sides. A geometric side is the use of the universal family of
hyperplane sections and its variant cf. [8]. The more abstract side including the continuity
of the Swan conductor is based on the theory of vanishing cycles over a general base scheme
developed in [7], [11]. In this course, the focus will be put on the geometric side.

After formulating the defining property of a singular support using local acyclicity
of a family of morphisms to curves, we state the existence of the characteristic cycle
characterized by the Milnor formula for the total dimension of the space of vanishing
cycles at isolated characteristic points. We construct the characteristic cycle using the
universal family of morphisms defined by pencils by taking an embedding to a projective
space and prove the Milnor formula using the continuity of the Swan conductor. Finally,
we state fundamental properties of the characteristic cycles including the Euler-Poincaré
formula.
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1 Singular support and the characteristic cycle

A singular support is defined to be a conic closed subset of the cotangent bundle such that
a family of non-characteristic morphisms to curves with respect to it is local acyclic. The
characteristic cycle is defined as a cycle supported on the singular support satisfying the
Milnor formula for the total dimension of the vanishing cycles at an isolated characteristic
points.

1.1 Singular support and the local acyclicity

Let E be a vector bundle on a scheme X. Recall that a closed subset S of E is said to be
conic if it is stable under multiplication.

Definition 1.1. Let X be a smooth scheme over a field k. Let S = (Si)i∈I be a finite
family of conic closed subsets of the cotangent bundle T ∗X and let Ti = Si ∩ T ∗XX ⊂ X be
the intersections with the 0-section.

1. We say that a flat morphism f : X → C to a smooth curve C over k is non-
characteristic with respect to S if the inverse image of Si by the canonical map df : X ×C

T ∗C → T ∗X is a subset of the 0-section and if the restriction of f to Ti is flat for every
i ∈ I.

2. Let

(1.1)

W
f−−−→ Cy y

X ×B
pr2−−−→ B

be a commutative diagram of flat morphisms of smooth schemes over k such that W →
X×B is étale and C → B is smooth of relative dimension 1. We say that f : W → C over
B is non-characteristic with respect to S if for every closed point b of B, the morphism
fb : Wb = W ×B b → Cb = C ×B b on the fibers is non-characteristic with respect to the
pull-back of S by T ∗Wb → T ∗X.

Let k denote a perfect field of characteristic p > 0 and Λ a finite field of characteristic
̸= p.
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Definition 1.2. Let X be a smooth scheme of dimension d over k and K be a constructible
complex of Λ-modules on X.

We say that a finite union S =
∪

i∈I Si of irreducible conic closed subsets of dimension
d of the cotangent bundle T ∗X is a singular support of K if it satisfies the following
condition in the case d > 0:

(SS1) For a commutative diagram (1.1) of flat morphisms of smooth schemes over
k such that W → X × B is étale and C → B is of relative dimension 1, the morphism
f : W → C is locally acyclic relatively to the pull-back to W of K if the morphism f : W →
C is non-characteristic with respect to S.

If d = 0 and K ≠ 0, we require S = T ∗X.

Let SSK ⊂ T ∗X denote a singular support of K.

Lemma 1.3. 1. In the condition (SS1), one can replace locally acyclic by universally
locally acyclic.

2. If f : Y → X is a smooth morphism, the image f ∗SSK of SSK by the correspondence
T ∗X ← Y ×X T ∗X → T ∗Y is a singular support of f ∗K.

3. If a finite morphism f : X → Y is unramified, the image f∗SSK of SSK by the
correspondence T ∗X ← Y ×X T ∗X → T ∗Y is a singular support of f∗K.

4. (local acyclicity of smooth morphism) If HqK is locally constant for every q on the
complement of a finite closed subset Z ⊂ X, the union of the 0-section T ∗XX and the fiber
T ∗ZX is a singular support of K.

Ramification theory shows the existence of a singular support in codimension 1. Con-
sequently, a singular support exists if dimX ≦ 2 similarly as Lemma 1.3.4.

1.2 Characteristic cycle and the Milnor formula

Definition 1.4. Let f : X → C be a morphism to a smooth curve C over k and u be a
closed point of X. Let K be a constructible complex of Λ-modules on X and assume that
a singular support S = SSK exists. We say that u is an isolated characteristic point of f
relatively to K if there exists a neighborhood U of u such that the restriction of f to U {u}
is non-characteristic with respect to the restriction of the singular support S = SSK.

Let u be an isolated characteristic point and ω be a basis of T ∗C at f(u). Then
the section of T ∗X defined on a neighborhood of u by f ∗ω meets S = SSK properly
on a neighborhood of the fiber T ∗uX. Consequently, for a linear combination

∑
i ai[Si]

of irreducible components of S =
∪

i Si, the intersection number (
∑

i ai[Si], f
∗ω)T ∗X,u is

defined. Since Si are assumed conic, it is independent of the choice of ω and will be
denoted abusively as (

∑
i ai[Si], df)T ∗X,u.

Theorem 1.5.∗ Assume that S = SSK =
∪

i Si is a singular support of K. Then, there
exists a unique linear combination Char K =

∑
i ai[Si] with Z[1

p
]-coefficients satisfying

(1.2) − dim totϕu(K, f) = (Char K, df)T ∗X,u

for every morphism f : U → C to a smooth curve C defined on an étale neighborhood U
of a closed point u of X such that u is an isolated characteristic point of f .
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The total dimension dim tot = dim+Sw denotes the sum of the dimension with the
Swan conductor. Here and in the following, ∗ on a statement indicates that we assume the
existence of a singular support satisfying the condition (SS1). The Milnor formula proved
by Deligne in [1] is the case where K = Λ and Char K = (−1)d[T ∗XX].

Examples 1. Let U = X D be the complement of a divisor D =
∪

iDi with simple
normal crossing and K = j!F be the 0-extension of a locally constant constructible sheaf
F on U tamely ramified along D. Then, we have

Charj!F = (−1)d
∑
I

rankF · [T ∗DI
X]

where T ∗DI
X ⊂ T ∗X denotes the conormal bundle of the intersection DI =

∪
i∈I Di. The

formula (1.2) in this case is verified by E. Yang [14].
2. Assume d = 1 and let Z ⊂ X be a finite closed subset as in Lemma 1.3.4. Then,

we have
CharK = −

(
rankK · [T ∗X] +

∑
x∈Z

axK · [T ∗xX]
)

where axK denotes the Artin conductor dimKη̄ − dimKx + SwxK. The formula (1.2) in
this case is a consequence of the induction formula for the Swan conductor.

2 Construction of characteristic cycle

We define the characteristic cycle first a priori depending on an embedding to a projective
space by considering the universal family of pencils. We show the Milnor formula for
morphisms defined by pencils using the continuity of Swan conductor. Together with the
stability of the total dimension of vanishing cycles under deformation of morphisms to
curves, it implies the independence of the choice of an embedding to a projective space
and the Milnor formula in general.

2.1 Universal family of pencils

Assume that X is quasi-projective and let L be an ample invertible OX-module. Let
E ⊂ Γ(X,L) be a subspace of finite dimension defining an immersion X → P = P(E∨) =
(E∨ {0})/Gm = Proj S•E. We assume that the following condition on E ⊂ Γ(X,L) is
satisfied:

(E) On the base change to an algebraic closure k̄ of k, for every pairs of distinct points
u ̸= v of X(k̄), the composition

(2.1) E ⊗ k̄ ⊂ Γ(X,L)⊗ k̄ → Lu/m
2
uLu ⊕ Lv/m

2
vLv

is a surjection.

The condition (E) is satisfied if we replace L by L⊗n and E by E(n) = Im(SnE →
Γ(X,L⊗n)) for an integer n ≧ 3.

The dual projective space P∨ = P(E) parametrizes hyperplanes in P. For a line
L ⊂ P∨, let AL ⊂ P be the intersection of hyperplanes parametrized by L. The blow-
up XL → X at X ∩ AL is an isomorphism on the complement X◦L = X (X ∩ AL).
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Let pL : XL → L denote the morphism defined by the pencil and p◦L : X
◦
L → L be the

restriction.
First, we define the characteristic cycle CharEK a priori depending on E so that the

Milnor formula for pL holds for a generic pencil. Let H = {(x,H) ∈ P × P∨ | x ∈ H} ⊂
P×P∨ be the universal family of hyperplanes and

(X ×P∨) ∩H = X ×P H→ P∨

be the universal family of hyperplane sections. By the exact sequence 0 → Ω1
P(1) →

E⊗OP → OP(1)→ 0, we identify H ⊂ P×P∨ with the projective space bundle P(T ∗P)
and X ×P H with its restriction P(X ×P T ∗P).

We construct the universal family of morphisms defined by pencils. LetG = G(2, E) be
the Grassmannian variety parametrizing lines in P∨ and let A ⊂ P×G be the universal
linear subspace of codimension 2. The flag bundle D = Fl(1, 2, E) ⊂ P∨ × G is the
universal family of lines. We define (X ×G)′ by the left cartesian square of the diagram

(2.2)

X ×P H ←−−− (X ×G)′ −−−→ X ×Gy y y
P∨ ←−−− D −−−→ G.

The upper right arrow is the blow up at (X ×G) ∩A = X ×P A and is an isomorphism
on the complement (X ×G)◦ = (X ×G) X ×P A. At the point of G corresponding to
a line L ⊂ P∨, the fiber of the right square defines X ← XL → L and the restriction to
the intersection with (X ×G)◦ defines p◦L : X

◦
L → L.

Let S̃ ⊂ X ×P T ∗P denote the inverse image of S = SSK ⊂ T ∗X by the surjection
X ×P T ∗P→ T ∗X and let

(2.3) P(S̃) ⊂ P(X ×P T ∗P) = X ×P H

be the projectivization. For an irreducible component of S =
∪

i Si, let Ti = Si∩T ∗XX ⊂ X
be the intersection with the 0-section and let P∨i = P(Ei) ⊂ P∨ = P(E) be the subspace
defined by the kernel Ei of E ⊂ Γ(X,L) → Γ(Ti,L ⊗OX

OTi
). Define R>0(S) ⊂ R(S) ⊂

X ×P H to be the unions

(2.4) R>0(S) =
∪

i:dimTi>0

(Ti ×P∨i ) ⊂ R(S) =
∪
i

(Ti ×P∨i ) ⊂ X ×P H

Define an open subset (X × G)◦◦ ⊂ (X × G)◦ to be the largest one such that the

intersection Z with the inverse image of P(S̃) ⊂ X ×P H is quasi-finite over G and that

the intersection with the inverse image of R>0(S̃) ⊂ X ×P H is empty.

Lemma 2.1.∗ 1. For a point (u, L) of (X ×G)◦, the following conditions are equivalent:
(1) u ∈ X◦L is an isolated characteristic point of p◦L : X

◦
L → L with respect to K.

(2) (u, L) ∈ (X ×G)◦◦.

2. On the complement X ×P H P(S̃) ∪ R(S), the morphism X ×P H → P∨ is
universally locally acyclic relatively to the pull-back of K.

Proof. 2. It follows from (SS1b) below.
The condition (SS1) may be replaced by an equivalent condition on a family of smooth

divisors. We say that an unramified morphism Y → X is regular of codimension r if it is
a regular immersion of codimension r étale locally on Y .
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Definition 2.2. Let the notation be as in Definition 1.1.
1. We say that an unramified morphism i : Y → X regular of codimension 1 over k is

non-characteristic with respect to S if the intersection of Si ×X Y with the kernel of the
surjection Y ×X T ∗X → T ∗Y is a subset of the 0-section and if the unramified morphism
Ti ×X Y → Ti is also regular of codimension 1 for every i ∈ I.

2. Let

(2.5)

Y
f−−−→ By y

X −−−→ Spec k

be a commutative diagram of flat morphisms of smooth schemes over k such that Y → X
is smooth and that the induced morphism i : Y → X × B is unramified and is regular of
codimension 1. We say that i : Y → X ×B over B is non-characteristic with respect to S
if for every closed point b of B, the morphism ib : Yb = Y ×B b→ X is non-characteristic
with respect to S.

The condition in 1 that Ti×XY → Ti is regular of codimension 1 implies that Si×XY →
Si is also regular of codimension 1. The condition (SS1) is equivalent to the following:

(SS1b) For a commutative diagram (2.5) as in Definition 2.2.2, the morphism f : Y → B
is locally acyclic relatively to the pull-back to Y of K if the morphism i : Y → X ×B over
B is non-characteristic with respect to S.

2.2 Continuity of Swan conductor

Definition 2.3. Let f : Z → S be a quasi-finite morphism of schemes. We say that a
function φ : Z → Z is flat over S if for every geometric point x → Z and for every
generalization s = f(x)← t of geometric points of S, we have

(2.6) φ(x) =
∑

z∈Z(x)×S(s)
t

φ(z)

where Z(x) and S(s) denote strict localizations.

If a constructible function φ is flat over S and if Z → S is étale, the function φ is
locally constant.

The following is a partial generalization of the semi-continuity of Swan conductor by
Deligne-Laumon [9].

Proposition 2.4. Let

Z ⊂ X

p
��@

@@
@@

@@
@

f // Y

g
����
��
��
��

S

be a commutative diagram of morphisms locally of finite presentation of schemes. Assume
that Z is a closed subscheme of X quasi-finite over S and that g : Y → S is smooth of
relative dimension 1.
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Let Λ be a finite field with characteristic invertible on S and let K be a constructible
complex of Λ-modules on X. Assume that the restriction f : X Z → Y is locally acyclic
relatively to the restriction of K and that p : X → S is locally acyclic relatively to K. Then,
the function φ : Z → Z defined by

φ(z) = dim totϕz(K|Xs , fs)

where s = p(z) is constructible and flat over S.

Idea of Proof. We use the formalism of nearby cycles with general base scheme. Apply
Deligne-Laumon [9] to RΨfK using that the local acyclicity of p : X → S relatively to K
implies the local acyclicity of

←
g relatively to RΨfK.

Corollary 2.5.∗ Let the notation be as in Lemma 2.1 and define a function φ : Z → Z by

(2.7) φ(u, L) = − dim totϕu(K, pL).

Then the function φ is constructible and flat over G.

Proof. We apply Proposition 2.4 to

Z ⊂ (X ×G)◦◦

%%JJ
JJJ

JJJ
JJ

// D

����
��
��
��

G

and the pull-back of K. The local acyclicity of (X ×G)◦◦ → G relatively to K is satisfied
by the generic local acyclicity of Deligne [2]. Lemma 2.1.2 implies the local acyclicity of
(X ×G)◦◦ Z → D relatively to K.

By Corollary 2.5, the function φ is constant ai on a dense open subscheme Z◦i ⊂ Z

of the inverse image of P(S̃i) ⊂ X ×P H of each irreducible component of S =
∪

i Si.

Under the assumption (E), the restriction of p : X ×P H → P∨ to P(S̃i) is generically

finite. Let [ξi : ηi]insep denote the inseparable degree of P(S̃i) → p(P(S̃i)). We define the
characteristic cycle by

(2.8) CharEK =
∑
i

− ai
[ξi : ηi]insep

[Si].

By the definition of CharEK, for p◦L : X◦L → L, the Milnor formula (1.2)

(2.9) − dim totϕu(K, pL) = (CharEK, dpL)T ∗X,u

holds at an isolated characteristic point u if (u, L) ∈ Z is contained in
⨿

i Z
◦
i .

Let P(C̃harEK) denote the cycle
∑

i−
ai

[ξi : ηi]insep
[P(S̃i)]. Then, the intersection num-

ber (CharEK, dpL)T ∗X,u equals the intersection number (P(C̃harEK), XL)X×PH,u. We con-
sider the cartesian diagram

X ×P H ←−−− (X ×G)′ ←−−− XLy y y
P∨ ←−−− D ←−−− Ly y

G ←−−− [L].
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The intersection number (CharEK, dpL)T ∗X,u = (P(C̃harEK), XL)X×PH,u is further equal

to degree at u of the fiber over [L] of the pull-back of P(C̃harEK) to (X ×G)◦◦ by the
top arrow, supported on a scheme Z quasi-finite over G. Hence it is the value at (u, L) of
another function on Z flat over G.

Since two flat functions are equal if they are equal on a dense open, Corollary 2.5 implies
that the Milnor formula (1.2) holds for p◦L : X

◦
L → L at every isolated characteristic point

u.

2.3 Stability of the total dimension of the space of vanishing
cycles

To complete the proof of Theorem 1.5, we show a stability of the total dimension of
the space of vanishing cycles under small deformation of morphisms to curves. For two
morphisms f : X → Y and g : X → Y of schemes and the closed subscheme Z ⊂ X
defined by an ideal sheaf IZ ⊂ OX , we say g ≡ f mod IZ if the restrictions f |Z : Z → Y
and g|Z : Z → Y are equal.

Proposition 2.6.∗ Let f : X → C be a morphism to a smooth curve and u be an isolated
characteristic point of f with respect to K. Then, there exists an integer N ≧ 1 such
that for every morphism g : V → C defined on an étale neighborhood V of u satisfying
g ≡ f mod mN

u , the point u is also an isolated characteristic point of g and we have

(2.10) dim totϕu(K, g) = dim totϕu(K, f).

Proof. It is easy to see the existence of N such that g ≡ f mod mN
u implies that the point

u is also an isolated characteristic point of g. Assume g ≡ f mod mN
u , V = X and C = A1.

Define a homotopy h : X ×A1 → C ×A1 connecting g to h by h = (1− t)f + tg. Then,
it suffices to apply Proposition 2.4 to the diagram

{u} ×A1 ⊂X ×A1

pr2 $$H
HH

HH
HH

HH
H

h // C ×A1

pr2{{vvv
vv
vv
vv
v

A1

.

The morphism pr2 : X × A1 → A1 is locally acyclic relatively to the pull-back of K the
generic local acyclicity and h : X ×A1 Z → C ×A1 is locally acyclic relatively to the
pull-back of K by (SS1).

By approximation, one deduces easily from Proposition 2.6 that CharEK is independent
of E and that the Milnor formula (1.2) for a general morphism is reduced to its special
case (2.9) for a morphism defined by a pencil.

3 Properties of characteristic cycle

Lemma 3.1.∗ For a finite unramified morphism f : X → Y , we have

Charf∗K = f∗CharK.
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The right hand side denotes the image by the correspondence T ∗X ← X ×Y T ∗Y →
T ∗Y .

To prove further properties, we require that the singular support satisfies a local acyclic-
ity condition for family of morphisms to surfaces.

Definition 3.2. Let X be a smooth scheme over a field k and S = (Si)i∈I be a finite
family of conic closed subsets of the cotangent bundle T ∗X.

1. We say that a smooth morphism f : X → P to a smooth surface P over k is non-
characteristic with respect to S if the intersection of Si with the image of df : X×P T

∗P →
T ∗X is a subset of the 0-section and if the restriction to the intersection Ti = Si∩T ∗XX ⊂ X
with the 0-section of f is flat for every i ∈ I.

2. Let P → B be a smooth morphism of relative dimension 2 of smooth schemes
over k and W → X × B be an étale morphism over k. We say that a smooth morphism
f : W → P over B is non-characteristic with respect to S if for every closed point b of B,
the morphism fb : Wb = W ×B b → Pb = P ×B b on the fibers is non-characteristic with
respect to the pull-back of S by T ∗Wb → T ∗X.

Definition 3.3. Let X be a smooth scheme of dimension d over k and K be a constructible
complex of Λ-modules on X. We consider the following condition on the singular support
SSK =

∪
i∈I Si :

(SS2) For a commutative diagram of smooth morphisms of smooth schemes over k

(3.1)

W
f−−−→ Py y

X ×B −−−→ B

where W → X×B is étale and P → B is of relative dimension 2, the morphism f : W → P
is locally acyclic relatively to the pull-back to W of K if the morphism f : W → P is non-
characteristic with respect to S.

If dimX ≦ 2, (SS2) is satisfied trivially. For an integer m > 2, we define the condi-
tion (SSm) by replacing surface in the definition of (SS2) by smooth scheme of (relative)
dimension m.

Similarly as (SS1), we have an equivalent condition:
(SS2b) For a commutative diagram (2.5) as in Definition 2.2.2 with Y → B smooth and

with codimension 1 replaced by codimension 2, the morphism f : Y → B is locally acyclic
relatively to the pull-back to Y of K if the morphism f : Y ×X → B is non-characteristic
with respect to S.

We introduce a slightly stronger notion than the non-characteristicity for the immersion
of a smooth divisor defined in Definition 2.2.1.

Definition 3.4. Let i : Y → X be the closed immersion of a smooth divisor non-characteristic
with respect to S. We say that i : Y → X is strictly non-characteristic with respect to S
further if the divisor Ti ∩ Y ⊂ Ti is reduced and irreducible.

Theorem 3.5.∗∗ Assume that a singular support SSK of K satisfies also the condition
(SS2). Let i : Y → X be a strictly non-characteristic regular immersion of a smooth
divisor. Then i!SSK ∪ T ∗Y Y is a singular support of i∗K and we have

(3.2) Chari∗K = −i!CharK
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The right hand side of (3.2) is define by the correspondence T ∗X ← Y ×XT ∗X → T ∗Y .
Here and in the following, ∗∗ on a statement indicates that we assume the existence of a
singular support satisfying the conditions (SS1) and (SS2).

Theorem 3.6. Let j : U → X be the open immersion of the complement U = X D of a
divisor D with simple normal crossings and F be a locally constant constructible sheaf on
U such that the ramification along D is strongly non-degenerate. Then the characteristic
cycle Char j!F equals to that defined by ramification theory. In other words, the latter also
satisfies the Milnor formula (1.2).

Proof of Theorems. The proof goes Theorem 3.6 in dimension ≦ 2 ⇒ Theorem 3.5 ⇒
Theorem 3.6 in dimension > 2. We will only sketch the proof of the implication Theorem
3.6 in dimension ≦ 2 ⇒ Theorem 3.5, if the time allows. The proof of Theorem 3.6 in
dimension 2 uses a global argument, as in [4].

Corollary 3.7.∗∗ Let f : Y → X be a smooth morphism. Then we have

(3.3) Charf ∗K = f ∗CharK

The right hand side denotes the image by the correspondence T ∗X ← X ×Y T ∗Y →
T ∗Y .

Theorem 3.8.∗∗ Assume that X is projective and smooth and that SSK satisfies the
conditions (SSm) for all m ≦ d = dimX. Then we have

(3.4) χ(X,K) = (Char K, T ∗XX)T ∗X .

Proof. We prove the equality (3.4) by induction on dimX. If dimX = 0, it is clear.

Lemma 3.9. There exists a pencil L such that pL : XL → L has at most isolated charac-
teristic points, that for a general hyperplane H ∈ L the immersions i : Y = X ∩H → X
and i′ : Z = X∩AL → Y are strictly non-characteristic and that the isolated characteristic
points of the morphism pL : XL → L are not contained in the inverse image of X ∩ AL.

Let XL → X be the blow-up at X ∩ AL. Then, we have

χ(X,K) = χ(XL,K)− χ(Z,K)

and

χ(XL,K) = 2χ(Y,K)−
∑
u

dim totϕu(K, pL)

by the Grothendieck-Ogg-Shafarevich formula [5]. By the hypothesis of induction, Theo-
rem 3.5 and by the Milnor formula, we have

χ(Y,K) = (i∗Char K, T ∗Y Y )T ∗Y , χ(Z,K) = (i′∗Char K, T ∗ZZ)T ∗Z

and

− dim totϕu(K, pL) = (Char K, dpL)T ∗X,u.

Substituting them and computing some Chern classes, we obtain (3.4).
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[10] ——, Caractéristique d’Euler-Poincaré des faisceaux constructibles sur une surface,
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[11] F. Orgogozo, Modifications et cycles évanescents sur une base de dimension supérieure
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