Wild ramification and Cotangent bundle

Takeshi Saito

Asian Mathematical Conference, Busan, June 30-July 4, 2013 Ramification of an ℓ -adic sheaf on a variety over a(n algebraically closed) field kchar $k = p > 0, \ \ell \neq p$

Smooth ℓ -adic sheaf \mathcal{F} on a smooth connected scheme U over k

 \Leftrightarrow

ℓ-adic representation

of the algebraic fundamental group $\pi_1(U, \bar{x})$

Ramification along the boundary;

 $X \supset U$ smooth over k,

 $j: U = X - D \rightarrow X$: open immersion

of the complement of

a divisor \boldsymbol{D} with simple normal crossings

 ${\mathcal F}$: smooth on U ramifies along D

divisor $D \subset X$ with simple normal crossings Locally, $X = A_k^n = \text{Spec } k[T_1, \dots, T_n]$ $\supset D = (T_1 \dots T_r) \ (0 \leq r \leq n)$

Want: Characteristic cycle

Char $j_!\mathcal{F}$

Linear combination of conic subvarieties of dimension $d = \dim X$ of the cotangent bundle $T^*X = V(\Omega^1_{X/k})$ of dimension 2d

- conic subvarieties: irreducible components of support of Char $j_!\mathcal{F}$
- classified by dimension of the fibers
- 0: 0-section coefficient = rank \mathcal{F}
- 1: subject of this talk (non-degenerate)
- \geq 2: ???

Analogy with \mathcal{D} -modules in char. 0 microlocal analysis Char \mathcal{M} for holonomic \mathcal{D} -module \mathcal{M} wild ramification in char p > 0vs irregular singularity in char 0

- Related works
- Deligne (unpublished) : using jet bundle
- Laumon : Euler number for surfaces
- Kato: rank 1
- Abbes-S.: Ramification group of local field with imperfect residue field

Expected properties of Char $j_!\mathcal{F}$:

- (1) Determined by wild ramification
- (2) Compute the characteristic class (SGA5) and the Euler number
- (3) Controls nearby cycles
- (4) Compatible with the pull-back

by non-characteristic morphism

.

Example 1: X curve (classical)

- (1) Char $j_!\mathcal{F}$
- $= -(\operatorname{rank} \mathcal{F} \cdot [T_X^* X] + \sum_{x \in D} \dim \operatorname{tot}_x(\mathcal{F}) \cdot [T_x^* X])$

(2) $C(j_!\mathcal{F})$ (characteristic class) = [Char $j_!\mathcal{F}$] in $H^2(T^*X, Q_\ell(1)) = H^2(X, Q_\ell(1))$

Consequently, if X is proper,

 $\chi_c(U,\mathcal{F}) = (\text{Char } j_!\mathcal{F}, [T_X^*X])_{T^*X}$

(Grothendieck-Ogg-Shafarevich)

$$(\chi_c(U,\mathcal{F})) = \sum_{q=0}^2 (-1)^q \dim H^q_c(U,\mathcal{F}))$$

12

(3) Induction formula: $\pi \colon X \to Y$ finite generically étale morphism of curves

dim
$$\operatorname{tot}_y \pi_* \mathcal{F} = \dim \operatorname{tot}_x \mathcal{F}$$

+ rank $\mathcal{F} \cdot \operatorname{length} \Omega^1_{X/Y,x}$

Example 2: \mathcal{F} tamely ramified along D (easy)

(1) Char
$$j_! \mathcal{F} = (-1)^d$$
rank $\mathcal{F} \cdot \sum_I [T^*_{X_I} X]$

$$d = \dim X, D = \bigcup_{i} D_{i}, X_{I} = \bigcap_{i \in I} D_{i}$$
$$T_{X_{I}}^{*} X \subset T^{*} X \times_{X} X_{I} : \text{ conormal bundle}$$

(2)
$$C(j_!\mathcal{F}) = [\text{Char } j_!\mathcal{F}],$$

 $\chi_c(U,\mathcal{F}) = \text{rank } \mathcal{F} \cdot \chi_c(U, \mathbf{Q}_\ell)$

Example 3: Artin-Schreier sheaf (typical) $X = A^2 = \text{Spec } k[x, y] \supset U = \text{Spec } k[x^{\pm 1}, y]$ (1) (i) \mathcal{F} defined by $t^p - t = \frac{1}{x^n}, \ p \nmid n$ Char $j_! \mathcal{F} = [T_X^* X] + (n+1) \cdot [T_D^* X]$

(rank $\mathcal{F} = 1$, $(-1)^2 = 1$, dim tot₀ = n + 1)

Example 3: Artin-Schreier sheaf (typical) $X = A^2 = \text{Spec } k[x, y] \supset U = \text{Spec } k[x^{\pm 1}, y]$ (1) (ii) $\mathcal{F} : t^p - t = \frac{y}{x^n}, p \mid n,$ ($(p, n) \neq (2, 2)$: non-exceptional case)

Char $j_! \mathcal{F} = [T_X^* X] + n \cdot [\langle dy \rangle \text{ over } D \ (\simeq T^* D)]$

Points in Definition of Char $j_!\mathcal{F}$:

1. Invariant of wild ramification

(New method: Blow-up at the ram. locus

 $R \subset X$ in the diagonal $X \to X \times X$)

(More detail at the end, if time permits)

• Ramification of ${\mathcal F}$ is bounded by R+

for $R = \sum_{i} r_i D_i$, $r_i \ge 1$ rational (assume integer for simplicity)

Pts in Def. of Char $j_!\mathcal{F}$ (cnt'd.):

- 1. Invariant of wild ramification
- characteristic forms $(r = \operatorname{rank} \mathcal{F})$

$$\omega_1^{(i)}, \cdots, \omega_r^{(i)} \in \Gamma(D_i, \Omega^1_{X/k}(R) \otimes \mathcal{O}_{D_i})$$

(precisely speaking, defined over purely inseparable coverings of étale schemes D_{ij} over D_i) Pts in Def. of Char $j_!\mathcal{F}$ (cnt'd.):

Examples of characteristic forms (i) $t^p - t = \frac{1}{x^n}, p \nmid n$

$$\omega = d\frac{1}{x^n} = \frac{-ndx}{x^{n+1}} \in \Gamma(D, \Omega^1_{X/k}((n+1)D) \otimes \mathcal{O}_D)$$

(ii)
$$t^p - t = \frac{y}{x^n}, \ p \mid n, \ (p, n) \neq (2, 2)$$

$$\omega = d \frac{y}{x^n} = \frac{dy}{x^n} \in \Gamma(D, \Omega^1_{X/k}(nD) \otimes \mathcal{O}_D)$$

The exceptional case in (ii) :
$$t^2 - t = \frac{y}{x^2}$$

$$\omega = \frac{\sqrt{y}dx + dy}{x^2} \in \Gamma(D', \Omega^1_{X/k}(2D) \otimes \mathcal{O}_{D'})$$

 $D' \rightarrow D$: inseparable covering of degree 2

Pts in Def. of Char $j_!\mathcal{F}$ (cnt'd.):

2. Non-degenerate (Assumption)

 $(\Rightarrow \text{ component of support of Char } j_{!}\mathcal{F}$ $(\subset T^{*}X)$ has fiber dim ≤ 1 over X) D_{ij} are finite étale over D_{i} and $\omega_{1}^{(i)}, \cdots, \omega_{r}^{(i)}$ are nowhere vanishing (copy : characteristic forms

$$\omega_1^{(i)}, \cdots \omega_r^{(i)} \in \Gamma(D_{ij}, \Omega^1_{X/k}(R) \otimes \mathcal{O}_{D_{ij}})$$

defined over purely inseparable coverings of étale schemes D_{ij} over D_i , $r = rank\mathcal{F}$)

Pts in Def. of Char
$$j_!\mathcal{F}$$
 (cnt'd.):
characteristic forms
 $\omega_j^{(i)} \in \Gamma(D_{ij}, \Omega^1_{X/k}(R) \otimes \mathcal{O}_{D_{ij}})$ define
 $\omega_j^{(i)}: L(R) \times_X D_{ij} \to T^*X \times_X D_{ij} \to T^*X$

L(R): line bundle defined by the divisor RE.g. $t^p - t = \frac{y}{x^n} (p \mid n)$:

$$L(nD) \times_X D \to T^*X \times_X D : x^n \mapsto dy$$

Definition of Char $j_!\mathcal{F}$: Char $j_!\mathcal{F}$

$$= (-1)^d \left((\operatorname{rank} \mathcal{F}) \cdot [T_X^* X] + \sum_i r_i \cdot \sum_{j=1}^{\operatorname{rk}} \frac{[\operatorname{Im} \omega_j^{(i)}]}{[D_{ij} : D_i]} \right)$$

$$\omega_j^{(i)} \colon L(R) \times_X D_{ij} \to T^*X$$

defined by characteristic forms

Example of Char
$$j_!\mathcal{F}$$
:
 $t^p - t = \frac{y}{x^n} (p \mid n, (p, n) \neq (2, 2))$:
 $L(nD) \times_X D \to T^*X \times_X D : x^n \mapsto dy$
Char $j_!\mathcal{F}$

$$= (-1)^2 \Big(1 \cdot [T_X^* X] + n \cdot [\langle dy \rangle \text{ over } D(\simeq T^* D)] \Big)$$

Results on Char $j_{!}\mathcal{F}$: Characteristic class and the Euler number

$$C(j_!\mathcal{F}) = [\text{Char } j_!\mathcal{F}]$$

in $H^{2d}(X, Q_{\ell}(d))$ $(d = \dim X)$.

Results on Char $j_!\mathcal{F}$ (cnt'd.): If X is proper,

$$\chi_c(U,\mathcal{F}) = (\text{Char } j_!\mathcal{F}, [T_X^*X])_{T^*X}$$

(general'n of Grothendieck-Ogg-Shafarevich)

$$(\chi_c(U,\mathcal{F})) = \sum_{q=0}^{2d} (-1)^q \dim H^q_c(U,\mathcal{F}))$$

Results on Char $j_!\mathcal{F}$ (cnt'd.):

Pull-back by non characteristic morphism

 $f: X' \to X$ of smooth schemes

•
$$j': U' = f^{-1}(U) = X' - D' \to X'$$

• $f^*(\text{Char } j_!\mathcal{F}) \cap \text{Ker}(df \colon T^*X \times_X X' \to T^*X')$

is in the O-section

$$T^*X \stackrel{f}{\leftarrow} T^*X \times_X X' \stackrel{df}{\longrightarrow} T^*X'$$

Results on Char $j_!\mathcal{F}$ (cnt'd.): Pull-back by non characteristic morphism $f: X' \to X$ of smooth schemes

Char
$$j'_! f^* \mathcal{F} = df(f^*(\text{Char } j_! \mathcal{F}))$$

 $T^* X \xleftarrow{f} T^* X \times_X X' \xrightarrow{df} T^* X'$
Consequence: Char $j_! \mathcal{F}$ is

char'zed by restriction to curves $C \subset X$

Results on Char $j_!\mathcal{F}$ (cnt'd.):

Local acyclicity for non characteristic

smooth morphism $f \colon X \to Y$ of smooth schemes

• Char $j_! \mathcal{F} \cap df(T^*Y \times_Y X) \subset T^*X$

is in the 0-section $T^{\ast}_{X} \boldsymbol{X}$

$$T^*Y \times_Y X \xrightarrow{df} T^*X \supset \operatorname{Char} j_!\mathcal{F}$$

Results on Char $j_!\mathcal{F}$ (cnt'd.): Local acyclicity for non characteristic smooth morphism $f: X \to Y$ of smooth schemes

 $j_!\mathcal{F}$ is locally acyclic rel. to f

local acyclicity:

vanishing cycles $\phi^q = 0$ (dim Y = 1) or H^q (Milnor fibers)=0 (in general) for q > 0

Conjecture (Deligne): morphism $f: X \to A^1 = \text{Spec } k[t]$ non characteristic except at a closed pt x Then,

 $-\dim \operatorname{tot}_{x}\phi(j_{!}\mathcal{F}) = (\operatorname{Char} j_{!}\mathcal{F}, dt(X))_{T^{*}X}$

Conjecture:

 $-\dim \operatorname{tot}_x \phi(j_! \mathcal{F}) = (\operatorname{Char} j_! \mathcal{F}, dt(X))_{T^*X}$

Deligne-Milnor formula: $X = U, \mathcal{F} = Q_{\ell},$ x; isolated singularity of $X \rightarrow Y$ Consequence (Hasse-Arf): Char $j_!\mathcal{F}$ has integral coefficients New Method to study ramification:

• Partial blow-up $P^{(R)} \to X \times X$ at the ram. locus $R \subset X$ in the diagonal $X \to X \times X$ $(N_{X/P^{(R)}} = \Omega^{1}_{X/k}(R), \ N_{X/X \times X} = \Omega^{1}_{X/k})$ • Groupoid structure $P^{(R)} \times_{X} P^{(R)} \to P^{(R)}$ lifting

$$(X \times X) \times_X (X \times X) = X \times X \times X$$
$$\stackrel{\mathsf{pr}_{1^3}}{\to} X \times X$$

Blow-up to study ramification

(R integer coefficients > 1 for simplicity):

Groupoid structure on $P^{(R)}$ induces addition on a twisted tangent bundle $T(R) \times_X D = V(\Omega^1_{X/k}(R) \otimes \mathcal{O}_D)$ **Blow-up** to study ramification:

V: G-torsor over U, G finite

 $W^{(R)}$ largest open in the normalization étale over $P^{(R)}$

Blow-up to study ramification:

Ram'n of G-torsor V over U bounded by R+:

is extended to $X \to W^{(R)}$ (largest open étale over $P^{(R)}$) Blow-up to study ramification: Ram'n of G-torsor V over U bounded by R+: $U = V/G \rightarrow V \times V/\Delta G$ is ext'd to $X \rightarrow W^{(R)}$

 $W^{(R)}$ largest open étale over $P^{(R)}$ $\Rightarrow W^{(R)} \rightarrow P^{(R)}$ morphism of groupoids **Blow-up** to study ramification:

Non-degenerate:

étale morphism $W^{(R)} \to P^{(R)}$ of groupoids induces a finite étale morphism $E^{(R)} \longrightarrow T(R) \times_X D$

of smooth group schemes over ${\cal D}$

- **Blow-up** to study ramification:
- Non-degenerate:
- Finite étale morphism $E^{(R)} \to T(R) \times_X D$
- of smooth group schemes over ${\cal D}$
- Classification of étale isogeny
- to vector bundle by linear forms (defined over inseparable covering)
- defines characteristic forms