Euler-Poincaré characteristic and ramification of an ℓ -adic sheaf

(joint work with A. Abbes and K. Kato)

June 20, 2005

Abstract

We introduce the characteristic class and the Swan class for an ℓ -adic sheaf. We show that they compute the Euler characteristic and give their relations.

Plan

- 1. Characteristic class.
- 2. Swan class and the Grothendieck-Ogg-Shafarevich formula.
- 3. Relation between the characteristic class and the Swan class.

1 Characteristic class.

Let F be a perfect field of characteristic p > 0. Let X be a separated scheme of finite type over F and \mathcal{F} be an ℓ -adic sheaf on X. Then the characteristic class

$$C(\mathcal{F}) \in H^0(X, K_X)$$

is defined as follows. Here and in the following $K_X = a^! \Lambda$ where $a: X \to F$. Hence if

X is smooth of dimension d, the characteristic class $C(\mathcal{F})$ is defined in $H^{2d}(X, \Lambda(d))$. We consider

$$1 \in Hom(\mathcal{F}, \mathcal{F}) = H^0_X(X \times X, R\mathcal{H}om(p_2^*\mathcal{F}, p_1^!\mathcal{F})) \\ = H^0_X(X \times X, R\mathcal{H}om(p_1^*\mathcal{F}, p_2^!\mathcal{F})).$$

By the natural pairing, $R\mathcal{H}om(p_2^*\mathcal{F}, p_1^!\mathcal{F}) \otimes R\mathcal{H}om(p_1^*\mathcal{F}, p_2^!\mathcal{F}) \to K_{X \times X}$, their pairing is defined and gives the characteristic class as

$$C(\mathcal{F}) = \langle 1, 1 \rangle = H^0_X(X \times X, K_{X \times X}) = H^0(X, K_X).$$

If X is smooth of dimension d and \mathcal{F} is smooth of rank r, we have $C(\mathcal{F}) = r$. $(-1)^{d} c_{d}(\Omega^{1}_{X/F}).$

If X is proper, the Lefschetz trace formula in SGA 5 gives

$$\operatorname{Tr} C(\mathcal{F}) = \chi(X_{\bar{F}}, \mathcal{F}).$$

2 Swan class and the G-O-S formula

Let $j: U \to X$ be an open immersion and consider $j_! \mathcal{F}$ where \mathcal{F} is a smooth sheaf on U. We define the Swan class Sw \mathcal{F} in $CH_0(X \setminus U)_{\mathbb{Q}}$.

Assume for simplicity that there is a finite étale Galois covering $V \to U$ trivializing \mathcal{F} . In general, we consider the Brauer trace.

First recall the case of curves. Let G be the Galois group and take $\sigma \in G$. Let $X \supset U$ and $Y \supset V$ be the compactification. Then the graph $\Gamma_{\sigma} \subset Y \times Y$ looks like

• • • .

In the log brow-up $(Y \times Y)'$, it looks like

We define

$$s_{V/U}(\sigma) = \begin{cases} -(\Gamma_{\sigma}, \Delta_Y)_{(Y \times Y)'} & \text{if } \sigma \neq 1 \\ -\sum_{\tau \neq \sigma} s_{V/U}(\tau) & \text{if } \sigma = 1. \end{cases}$$

· · · .

The Swan class is defined by

Sw
$$\mathcal{F} = \frac{1}{|G|} \sum_{\sigma \in G} f_* s_{V/U}(\sigma) \operatorname{Tr}(\sigma : M)$$

where M is the representation of G corresponding to \mathcal{F} . This is an exact geometric reformulation of the classical definition. The Hasse-Arf theorem tells us that Sw \mathcal{F} is in $CH_0(X \setminus U)$ even we have a denominator in the defining equation.

In higher dimension, we need to take an alteration. But, it works and we define Sw \mathcal{F} in $CH_0(X \setminus U)_{\mathbb{O}}$.

Conjecture 1 Sw \mathcal{F} is in the image of $CH_0(X \setminus U)$.

OK if dim $U \leq 2$. Reduction to rank 1. Explicit computation below.

Theorem 2 We have

$$\chi_c(U_{\bar{F}}, \mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot \chi_c(U_{\bar{F}}, \Lambda) - \operatorname{deg} \operatorname{Sw} \mathcal{F}.$$

The key ingredient is a Lefschetz trace formula for an open variety. Changing notation, $U \subset X$, $\tilde{\Gamma} \subset (X \times X)'$ and let $(D \times X)'$ and $(X \times D)'$ be the proper transforms.

Theorem 3 Assume $\tilde{\Gamma} \cap (D \times X)' \subset \tilde{\Gamma} \cap (X \times D)'$. Then, we have

$$\operatorname{Tr}(\Gamma^*: H^*(U_{\bar{F}}, \mathbb{Q}_{\ell})) = (\Gamma, \Delta)_{(X \times X)'}$$

3 Relation between the characteristic class and the Swan class.

Conjecture 4

$$C(j_{!}\mathcal{F}) = \operatorname{rank}\mathcal{F} \cdot C(j_{!}\Lambda) - \operatorname{clSw} \mathcal{F}.$$

OK under a technical assumption. It is satisfied if dim $U \leq 2$. Conjecture 4 is a refinement of Theorem 2. Rank 1 case.

Kato defined a divisor $D_{\mathcal{F}}$. He also defined a 0-cycle class $c_{\mathcal{F}} \in CH_0(X \setminus U)$ by

$$c_{\mathcal{F}} = (-1)^{d-1} \{ c_* (\Omega^1_{X/F} (\log D)) (1 - D_{\mathcal{F}})^{-1} D_{\mathcal{F}}) \}_{\dim 0}$$

assuming the cleaness condition. It is satisfied if dim $U \leq 2$ after a blow-up.

Theorem 5 Assume \mathcal{F} satisfies the cleaness condition. Then, we have

$$C(j_!\mathcal{F}) = C(j_!\Lambda) - c_{\mathcal{F}}.$$

Conjecture 6 Under the same assumption, we have

$$Sw \mathcal{F} = c_{\mathcal{F}}$$

One can prove Conjecture 6 under some additional technical conditions. The conditions are satisfied if dim $U \leq 2$.

Sketch of Proof of Theorem 5.

Assume for simplicity dim U = 1. Let $D = \operatorname{Sw} \mathcal{F} = c_{\mathcal{F}}$ be the Swan divisor. Let $(X \times X)^{(D)} \to (X \times X)'$ be the blow up of D in the log diagonal $X \subset (X \times X)'$. Then, it induces an immersion $X \to (X \times X)^{(D)}$ and $(X \times X)^{(D)}$ is smooth on a neighborhood of X. Then, using the fact that $\mathcal{H}om(p_2^*\mathcal{F}, p_1^*\mathcal{F})$ is extended to a smooth sheaf on the neighborhood, one can conclude that $C(j_!\mathcal{F}) = (X, X)_{(X \times X)^{(D)}}$. Similarly, we get $C(j_!\Lambda) = (X, X)_{(X \times X)'}$. Since $(X, X)_{(X \times X)^{(D)}} = (X, X)_{(X \times X)'} - D$, the assertion follows.