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Abstract

We introduce the characteristic class and the Swan class for an �-adic sheaf.
We show that they compute the Euler characteristic and give their relations.

Plan
1. Characteristic class.
2. Swan class and the Grothendieck-Ogg-Shafarevich formula.
3. Relation between the characteristic class and the Swan class.

1 Characteristic class.

Let F be a perfect field of characteristic p > 0. Let X be a separated scheme of finite
type over F and F be an �-adic sheaf on X. Then the characteristic class

C(F) ∈ H0(X, KX)

is defined as follows. Here and in the following KX = a!Λ where a : X → F . Hence if
X is smooth of dimension d, the characteristic class C(F) is defined in H2d(X, Λ(d)).

We consider

1 ∈ Hom(F ,F) = H0
X(X × X, RHom(p∗2F , p!

1F))

= H0
X(X × X, RHom(p∗1F , p!

2F)).

By the natural pairing, RHom(p∗2F , p!
1F) ⊗ RHom(p∗1F , p!

2F) → KX×X , their pairing
is defined and gives the characteristic class as

C(F) = 〈1, 1〉 = H0
X(X × X, KX×X) = H0(X, KX).

If X is smooth of dimension d and F is smooth of rank r, we have C(F) = r ·
(−1)dcd(Ω

1
X/F ).

If X is proper, the Lefschetz trace formula in SGA 5 gives

TrC(F) = χ(XF̄ ,F).
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2 Swan class and the G-O-S formula

Let j : U → X be an open immersion and consider j!F where F is a smooth sheaf on
U . We define the Swan class Sw F in CH0(X \ U)� .

Assume for simplicity that there is a finite étale Galois covering V → U trivializing
F . In general, we consider the Brauer trace.

First recall the case of curves. Let G be the Galois group and take σ ∈ G. Let
X ⊃ U and Y ⊃ V be the compactification. Then the graph Γσ ⊂ Y × Y looks like

· · · .

In the log brow-up (Y × Y )′, it looks like

· · · .

We define

sV/U(σ) =

{
−(Γσ, ∆Y )(Y ×Y )′ if σ �= 1

−∑
τ �=σ sV/U(τ) if σ = 1.

The Swan class is defined by

Sw F =
1

|G|
∑
σ∈G

f∗sV/U(σ)Tr(σ : M)

where M is the representation of G corresponding to F . This is an exact geometric
reformulation of the classical definition. The Hasse-Arf theorem tells us that Sw F is
in CH0(X \ U) even we have a denominator in the defining equation.

In higher dimension, we need to take an alteration. But, it works and we define
Sw F in CH0(X \ U)� .

Conjecture 1 Sw F is in the image of CH0(X \ U).

OK if dim U ≤ 2. Reduction to rank 1. Explicit computation below.

Theorem 2 We have

χc(UF̄ ,F) = rank F · χc(UF̄ , Λ) − deg Sw F .

The key ingredient is a Lefschetz trace formula for an open variety. Changing
notation, U ⊂ X, Γ̃ ⊂ (X × X)′ and let (D × X)′ and (X × D)′ be the proper
transforms.

Theorem 3 Assume Γ̃ ∩ (D × X)′ ⊂ Γ̃ ∩ (X × D)′. Then, we have

Tr(Γ∗ : H∗(UF̄ , Q�)) = (Γ̃, ∆)(X×X)′ .
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3 Relation between the characteristic class and the

Swan class.

Conjecture 4
C(j!F) = rankF · C(j!Λ) − clSw F .

OK under a technical assumption. It is satisfied if dim U ≤ 2.
Conjecture 4 is a refinement of Theorem 2.
Rank 1 case.
Kato defined a divisor DF . He also defined a 0-cycle class cF ∈ CH0(X \ U) by

cF = (−1)d−1{c∗(Ω1
X/F (log D))(1 − DF)−1DF)}dim0

assuming the cleaness condition. It is satisfied if dim U ≤ 2 after a blow-up.

Theorem 5 Assume F satisfies the cleaness condition. Then, we have

C(j!F) = C(j!Λ) − cF .

Conjecture 6 Under the same assumption, we have

Sw F = cF .

One can prove Conjecture 6 under some additional technical conditions. The con-
ditions are satified if dim U ≤ 2.

Sketch of Proof of Theorem 5.
Assume for simplicity dim U = 1. Let D = SwF = cF be the Swan divisor. Let

(X × X)(D) → (X × X)′ be the blow up of D in the log diagonal X ⊂ (X × X)′.
Then, it induces an immersion X → (X × X)(D) and (X × X)(D) is smooth on a
neighborhood of X. Then, using the fact that Hom(p∗2F , p∗1F) is extended to a smooth
sheaf on the neighborhood, one can conclude that C(j!F) = (X, X)(X×X)(D). Similarly,
we get C(j!Λ) = (X, X)(X×X)′ . Since (X, X)(X×X)(D) = (X, X)(X×X)′−D, the assertion
follows.
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