Wild ramification and the characteristic cycle of an ℓ -adic sheaf

Takeshi Saito

Abstract

We measure the wild ramification of an l-adic etale sheaf by introducing blowups of the self-product at the ramification locus in the diagonal.

Using the geometric construction, we define the characteristic cycle of an ℓ adic sheaf as a cycle on the logarithmic cotangent bundle and prove that the intersection with the 0-section gives the characteristic class, under a certain condition.

1 Ramification along a divisor

Let k be a perfect field of characteristic p > 0, X be a smooth scheme of dimension d over k and $U = X \setminus D$ be the complement of a divisor D with simple normal crossings. We consider a smooth ℓ -adic sheaf \mathcal{F} on U.

We construct a commutative diagram

where $R = r_1 D_1 + \cdots + r_m D_m$ is a linear combination of the irreducible components D_1, \ldots, D_m of D with rational coefficients $r_i \ge 0, r_i \in \mathbb{Q}$. For simplicity in this note, we will assume $r_i > 0, r_i \in \mathbb{Z}$.

We define the log blow up

$$(X \times X)' \to X \times X$$

to be the blow-up at $D_1 \times D_1, D_2 \times D_2, \ldots, D_m \times D_m$. We define the log product $(X \times X)^{\sim} \subset (X \times X)'$ to be the complement of the proper transforms of $D \times X$ and $X \times D$. The diagonal map $\delta : X \to X \times X$ is uniquely lifted to the log diagonal map $\tilde{\delta} : X \to (X \times X)^{\sim}$. The conormal sheaf $\mathcal{N}_{X/(X \times X)^{\sim}}$ is canonically identified with the locally free \mathcal{O}_X -module $\Omega^1_X(\log D)$ of rank d.

We define

$$(X \times X)^{[R]} \to (X \times X)'$$

to be the blow-up at the divisor $R \subset X$ in the log diagonal $X \subset (X \times X)'$. We define an open subscheme $(X \times X)^{(R)} \subset (X \times X)^{\sim} \times_{(X \times X)'} (X \times X)^{[R]}$ to be the complement of the proper transforms of the exceptional divisors of $(X \times X)^{\sim}$. The log diagonal map $\delta' : X \to (X \times X)'$ is uniquely lifted to a closed immersion $\delta^{(R)} : X \to (X \times X)^{(R)}$. The projections $(X \times X)^{(R)} \to X$ are smooth. The conormal sheaf $\mathcal{N}_{X/(X \times X)^{(R)}}$ is canonically identified with the locally free \mathcal{O}_X -module $\Omega^1_X(\log D)(R)$.

We consider the commutative diagram

$$U \times U \xrightarrow{j^{(R)}} (X \times X)^{(R)}$$

$$\delta_U \uparrow \qquad \qquad \uparrow_{\delta^{(R)}}$$

$$U \xrightarrow{j} X$$

of open immersions and the diagonal immersions.

Definition 1 Let \mathcal{F} be a smooth sheaf on $U = X \setminus D$. We define a smooth sheaf \mathcal{H} on $U \times U$ by $\mathcal{H} = \mathcal{H}om(\mathrm{pr}_2^*\mathcal{F}, \mathrm{pr}_1^*\mathcal{F})$. Let $R = \sum_i r_i D_i \geq 0$ be an effective divisor with rational coefficients.

We say that the log ramification of \mathcal{F} along D is bounded by R+ if the identity $1 \in \operatorname{End}_U(\mathcal{F}) = \Gamma(U, \mathcal{E}nd_U(\mathcal{F})) = \Gamma(X, j_*\mathcal{E}nd_U(\mathcal{F}))$ is in the image of the base change map

(1.1)
$$\Gamma(X, \delta^{(R)*}j_*^{(R)}\mathcal{H}) \longrightarrow \Gamma(X, j_*\mathcal{E}nd_U(\mathcal{F})) = \operatorname{End}_U(\mathcal{F}).$$

Definition 1 is related to the filtration by ramification groups in the following way. Let D_i be an irreducible component and K_i be the fraction field of the completion $\widehat{\mathcal{O}}_{X,\xi_i}$ of the local ring at the generic point ξ_i of D_i . We will often drop the index i in the sequel. The sheaf \mathcal{F} defines an ℓ -adic representation $\mathcal{F}_{\bar{\eta}_i}$ of the absolute Galois group $G_{K_i} = \operatorname{Gal}(\overline{K_i}/K_i)$. The filtration $G_{K,\log}^r \subset G_K, r \in \mathbb{Q}, r > 0$ by the logarithmic ramification groups is defined. We put $G_{K,\log}^{r+} = \overline{\bigcup_{q>r} G_{K,\log}^q}$.

Lemma 2 The following conditions are equivalent.

(1) There exists an open neighborhood of ξ_i such that the log ramification of \mathcal{F} along D is bounded by R+.

(2) The action of $G_{K_i,\log}^{r_i+}$ on $\mathcal{F}_{\bar{\eta}_i}$ is trivial.

The open subscheme $U \times U \subset (X \times X)^{(R)}$ is the complement of the inverse image $E = (X \times X)^{(R)} \times_X D$. The inverse image E is canonically identified with the vector bundle $\mathbf{V}(\Omega^1_X(\log D)(R)) \times_X D$.

Proposition 3 Assume that the log ramification is bounded by R+. Then, for every geometric point \bar{x} of D, the restriction $(j_*\mathcal{H})|_{E_{\bar{x}}}$ on the geometric fiber is isomorphic to the direct sum $\bigoplus_f \mathcal{L}_f^{\oplus n_f}$ where \mathcal{L}_f is a smooth rank one sheaf defined by the Artin-Schreier equation $T^p - T = f$ and f denotes a linear form on the vector space $E_{\bar{x}}$.

Proposition 3 has the following consequence. Let D_i be an irreducible component of D. The graded piece $\operatorname{Gr}_{\log}^{r_i} G_{K_i} = G_{K,\log}^{r_i}/G_{K,\log}^{r_i+}$ is abelian. The restriction of $\mathcal{F}_{\bar{\eta}_i}$ to $G_{K,\log}^{r_i}$ is decomposed into direct sum of characters $\bigoplus_{\chi} \chi^{n_{\chi}}$. The fiber $\Theta_{\log}^{(r_i)} = E^+ \times_{D^+} \xi_i$ at the generic point ξ_i is a vector space over the function field F_i of D_i . The restriction of $j_*\mathcal{H}$ on the geometric fiber $\Theta_{\log,\overline{F_i}}^{(r_i)}$ is decomposed as $\bigoplus_{\chi} \operatorname{End}_{I_i}(\mathcal{F}_{\bar{\eta}_i}) \otimes \mathcal{L}_{\chi}$ where \mathcal{L}_{χ} is a smooth rank one sheaf defined by the Artin-Schreier equation $T^p - T = f_{\chi}$ where $f_{\chi} = \operatorname{rsw} \chi$ is a linear form on $\Theta_{\log,\overline{F_i}}^{(r_i)}$ called the refined Swan character of χ .

Theorem 4 The graded quotient $\operatorname{Gr}_{\log}^r G_K$ is annihilated by p and the map

(1.2)
$$\operatorname{Hom}(\operatorname{Gr}^r_{\log}G_K, \mathbb{F}_p) \longrightarrow \operatorname{Hom}_{\overline{F}_i}(\Theta^{(r)}_{\log}, \overline{F}_i)$$

sending a character χ to the refined Swan character $f_{\chi} = rsw \ \chi$ is an injection.

2 Characteristic cycle

For a non-trivial character χ : $\operatorname{Gr}_{\log}^{r} G_{K} \to \mathbb{F}_{p}$, the refined Swan character rsw χ : $\Theta_{\log}^{(r)} \to \overline{F}_{i}$ defines an \overline{F}_{i} -rational point [rsw χ] : Spec $\overline{F}_{i} \to \mathbf{P}(\Omega_{X}^{1}(\log D)^{*})$. We define a reduced closed subscheme $T_{\chi} \subset \mathbf{P}(\Omega_{X}^{1}(\log D)^{*})$ to be the Zariski closure $\overline{\{[\operatorname{rsw} \chi](\operatorname{Spec} \overline{F}_{i})\}}$ and let $L_{\chi} = \mathbf{V}(\mathcal{O}_{T_{\chi}}(1))$ be the pull-back to T_{χ} of the tautological sub line bundle $L \subset T^{*}X(\log D) \times_{X} \mathbf{P}(\Omega_{X}^{1}(\log D)^{*})$. The inclusion $T_{\chi} \to$ $\mathbf{P}(\Omega_{X}^{1}(\log D)^{*})$ corresponds to a surjection $\Omega_{X}^{1}(\log D)^{*} \otimes \mathcal{O}_{T_{\chi}} \to \mathcal{O}_{T_{\chi}}(1)$ and hence defines a commutative diagram

$$(2.1) \qquad \begin{array}{cccc} L_{\chi} & \longrightarrow & T^*X(\log D) \times_X D_i & \longrightarrow & T^*X(\log D) = \mathbf{V}(\Omega^1_X(\log D)^*) \\ & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & T_{\chi} & \xrightarrow{\pi_{\chi}} & D_i & \longrightarrow & X. \end{array}$$

We put

(2.2)
$$SS_{\chi} = \frac{1}{[T_{\chi}:D_i]} \pi_{\chi*}[L_{\chi}]$$

in $Z_d(T^*X(\log D) \times_X D_i)_{\mathbb{Q}}$.

Let \mathcal{F} be a smooth ℓ -adic sheaf on $U = X \setminus D$ and $R = \sum_i r_i D_i$ be an effective divisor with rational coefficients $r_i \geq 0$. In the rest of talk, we assume that \mathcal{F} satisfies the following conditions:

- (R) The log ramification of \mathcal{F} along D is bounded by R+.
- (C) For each irreducible component D_i of D, the closure $\overline{S_{\mathcal{F}} \times F_i}$ is finite over D_i and the intersection $\overline{S_{\mathcal{F}} \times F_i} \cap D_i$ with the 0-section is empty.

The conditions imply $\mathcal{F}_{\bar{\eta}_i} = \mathcal{F}_{\bar{\eta}_i}^{(r_i)}$ for every irreducible component D_i of D.

Definition 5 Let \mathcal{F} be a smooth Λ -sheaf on $U = X \setminus D$ satisfying the conditions (R) and (C).

For an irreducible component D_i of D with $r_i > 0$, let $\mathcal{F}_{\bar{\eta}_i} = \sum_{\chi} n_{\chi} \chi$ be the direct sum decomposition of the representation induced on $\operatorname{Gr}_{\log}^{r_i} G_{K_i}$. We define the characteristic cycle by

(2.3)
$$CC(\mathcal{F}) = (-1)^d \left(\operatorname{rank} \, \mathcal{F} \cdot [X] + \sum_{i,r_i > 0} r_i \cdot \sum_{\chi} n_{\chi} \cdot [SS_{\chi}] \right)$$

in $Z^d(T^*X(\log D))_{\mathbb{Q}}$.

Theorem 6 Let X be a smooth scheme over k and D be a divisor with simple normal crossings. Let \mathcal{F} be a smooth ℓ -adic sheaf on $U = X \setminus D$ satisfying the conditions (R) and (C).

Then we have

$$(CC(\mathcal{F}), X)_{T^*X(\log D)} = C(j_!\mathcal{F})$$

where the right hand side denotes the characteristic cycle of $j_!\mathcal{F}$. In particular, if X is proper, we have $(CC(\mathcal{F}), X)_{T^*X(\log D)} = \chi_c(U_{\bar{k}}, \mathcal{F})$.

Questions: 1. How we deal with more than one R?

2. What we can do in mixed characteristic case?

3. Does the same construction work to study irregular singularities of \mathcal{D} -modules?