Ramification theory of schemes
in mixed characteristic case

(joint work with K. Kato)

juin 28, 2005

Abstract

We define generalizations of classical invariants of ramification, for coverings on a variety of arbitrary dimension over a local field of mixed characteristic. For an ℓ-adic sheaf, we define its Swan class as a 0-cycle class supported on the closed fiber. We present a formula for the Swan conductor of cohomology and its relative version.

Let K be a complete discrete valuation field of characteristic 0 and F be the residue field of K. We assume F is a perfect field of characteristic $p > 0$.

Let U be a separated smooth scheme purely of dimension d of finite type over K. Let $f : V \to U$ be a finite étale morphism. The goal of this talk is to introduce a map

\[(\log, \Delta_v) : Z_d(V \times_U V) \to F_0 G(\overline{F}_F) \otimes_{\mathbb{Z}} \mathbb{Q}\]

and to show that this map gives generalizations of classical invariants of ramification.

0.1 source

Since $V \to U$ is assumed finite étale, the fiber product $V \times_U V$ is also finite étale over U and hence is smooth of dimension d over K. Thus, $Z_d(V \times_U V)$ is the free abelian group generated by the classes of irreducible components of $V \times_U V$. In particular, if U is connected and V is a Galois covering of Galois group G, it is identified with the free abelian group $\mathbb{Z}[G]$.

0.2 target

For a noetherian scheme X, the Grothendieck group of the category of coherent O_X-modules is denoted by $G(X)$. Let $F_n G(X) \subset G(X)$ denote the topological filtration generated by the classes of modules of dimension of support at most n.
For V as above, we define \mathcal{C}_V to be the category, whose objects are proper flat schemes Y over O_K containing V as a dense open subscheme. A morphism $Y' \to Y$ in \mathcal{C}_V is a morphism $Y' \to Y$ over O_K inducing the identity on V. We put

\[(0.2)\quad F_0G(\overline{V}_F) = \lim_{\leftarrow} \mathcal{C}_V F_0G(Y_F).\]

The transitions maps are proper push-forwards.

For a map $f : V \to U$ of separated smooth schemes of finite type over K, the push-forward map

\[(0.3)\quad f_* : F_0G(\overline{V}_F) \longrightarrow F_0G(\overline{U}_F)\]

is defined. In particular, taking $U = \text{Spec } K$, the degree map

\[(0.4)\quad \text{deg} : F_0G(\overline{V}_F) \longrightarrow \mathbb{Z}\]

is defined. For a finite flat map $f : V \to U$ of separated smooth schemes of finite type over K, the flat pull-back map

\[(0.5)\quad f^* : F_0G(\overline{U}_F) \longrightarrow F_0G(\overline{V}_F)\]

is defined by the flattening theorem of Raynaud-Gruson.

Contents

0.1 source ... 1
0.2 target ... 1

1 Classical case .. 3
1.1 different ... 3
1.2 Artin and Swan characters .. 3
1.3 Swan conductor ... 4

2 Definition of the map (0.1) ... 4
2.1 Logarithmic diagonal .. 4
2.2 Logarithmic localized intersection product 5

3 Ramification theory ... 6
3.1 different ... 6
3.2 Swan character class ... 6
3.3 Swan class .. 7
1 Classical case

Let K and F be as above. Let L be a finite separable extension and consider $f : V = \text{Spec } L \to U = \text{Spec } K$. Then, the target group $F_0\text{G}(\overline{V}_F)$ of the map (0.1) is $F_0\text{G}(\text{Spec } O_L \otimes_{O_K} F) = \mathbb{Z}$. The map $f^* : F_0\text{G}(\overline{U}_F) = \mathbb{Z} \to F_0\text{G}(\overline{V}_F) = \mathbb{Z}$ is the multiplication by the ramification index $e_{L/K}$ and the map $f_* : F_0\text{G}(\overline{U}_F) = \mathbb{Z} \to F_0\text{G}(\overline{V}_F) = \mathbb{Z}$ is the multiplication by the residual degree $f_{L/K}$. If L is a Galois extension of Galois group G, the source group $\mathbb{Z}_d(V \times_U V)$ is $\mathbb{Z}[G]$.

1.1 different

For a finite separable extension L of K, the different and its wild part are defined by

\begin{align}
D_{L/K} &= \text{length}_{O_L} \Omega_{O_L/O_K}^1, \\
D_{L/K}^{\log} &= D_{L/K} - (e_{L/K} - 1).
\end{align}

We have $D_{L/K}^{\log} \geq 0$. The equality is equivalent to $p \nmid e_{L/K}$. For an intermediate extension $K \subset M \subset L$, we have chain rules

\begin{align}
D_{L/K} &= D_{L/M} + e_{L/M} D_{M/K}, \\
D_{L/K}^{\log} &= D_{L/M}^{\log} + e_{L/M} D_{M/K}^{\log}.
\end{align}

1.2 Artin and Swan characters

If L is a Galois extension of Galois group G, the Artin character and the Swan character are defined by

\begin{align}
a_{L/K}(\sigma) &= a_G(\sigma) \\
&= \begin{cases} D_{L/K} & \text{if } \sigma = 1 \\
-\text{length}_{O_L} O_L/(\sigma(x) - x; x \in O_L) & \text{if } \sigma \neq 1,
\end{cases}
\end{align}

\begin{align}s_{L/K}(\sigma) &= s_G(\sigma) \\
&= \begin{cases} D_{L/K}^{\log} & \text{if } \sigma = 1 \\
-\text{length}_{O_L} O_L/(\sigma(x)/x - 1; x \in O_L \setminus \{0\}) & \text{if } \sigma \neq 1.
\end{cases}
\end{align}

We have $s_G(\sigma) = 0$ unless the order of σ is a power of p. We also have $s_G(\sigma) = s_G(\sigma')$ if $\langle \sigma \rangle = \langle \sigma' \rangle$.

For a subgroup $H \subset G$ with corresponding intermediate extension M, we have

\begin{align}s_H(\sigma) &= \begin{cases} s_G(1) - e_{L/M} D_{M/K}^{\log} & \text{if } \sigma = 1 \\
s_G(\sigma) & \text{if } \sigma \neq 1.
\end{cases}
\end{align}
and a similar equality for the Artin character, for \(\sigma \in H \). For a quotient group \(G \rightarrow \overline{G} \) with corresponding intermediate extension \(M \), we have

\[
(1.8) \quad e_{L/M} \cdot s_{\overline{G}}(\sigma) = \sum_{\tau \in G, \sigma = \overline{\tau}} s_G(\tau)
\]

and a similar equality for the Artin character, for \(\sigma \in G \). In particular, putting \(\overline{G} = 1 \), we obtain \(\sum_{\sigma \in G} a_G(\sigma) = \sum_{\sigma \in G} s_G(\sigma) = 0 \).

1.3 Swan conductor

Let \(M \) be an \(\ell \)-adic representation of the absolute Galois group \(G_K = \text{Gal}(\overline{K}/K) \). Let \(L \) be a finite Galois extension of \(K \) of Galois group \(G \) such that the reduction modulo \(\ell \) of the restriction to \(G_L \subset G_K \) is trivial. Then, the Swan conductor of \(M \) is defined by

\[
(1.9) \quad \text{Sw}(M) = \frac{f_{L/K}}{|G|} \sum_{\sigma \in G} s_{L/K}(\sigma) \text{Tr}(\sigma : M)
\]

\[
(1.10) \quad = \frac{f_{L/K}}{|G|} \sum_{\sigma \in G} s_{L/K}(\sigma) (\dim M^\sigma - \frac{\dim M^\sigma / M^p}{p - 1}).
\]

It is independent of \(L \) by (1.8). We can use the second equality as the definition for a mod-\(\ell \) representation.

The Hasse-Arf theorem asserts that \(\text{Sw}(M) \) is an integer. We have \(\text{Sw}(M) \geq 0 \) and the equality holds if and only if the restriction to the \(p \)-Sylow subgroup \(P_K \) of the inertia subgroup \(I_K \subset G_K \) is trivial. The equality (1.7) implies the induction formula

\[
(1.11) \quad \text{Sw}(\text{Ind}_{G_L}^{G_K} M) = f_{L/K}(\dim M \cdot D_{L/K}^\log + \text{Sw}(M)).
\]

2 Definition of the map (0.1)

2.1 Logarithmic diagonal

Let \(U \) be a separated smooth scheme of dimension \(d \) of finite type over \(K \) and \(X \) be a separated regular flat scheme of finite type over \(O_K \) containing \(U \) as the complement of a divisor \(D \) with simple normal crossing. Let \((X \times_{O_K} X)^{\sim} \) be the log self-product and the log diagonal closed immersion \(\Delta_X : X \rightarrow (X \times_{O_K} X)^{\sim} \). Its generic fiber \(X_K \rightarrow (X_K \times_K X_K)^{\sim} \) is a regular immersion of codimension \(d \).

We give a local description. Assume \(X = \text{Spec} A \) and \(D \) is defined by \(\prod_{i \in I} t_i \).

Then, we have

\[
(X \times_{O_K} X)^{\sim} = A \otimes_{O_K} A[U_i^{\pm 1} (i \in I)]/(t_i \otimes 1 - U_i(1 \otimes t_i) (i \in I))
\]

and the log diagonal map is defined by the map

\[
A \otimes_{O_K} A[U_i^{\pm 1} (i \in I)]/(t_i \otimes 1 - U_i(1 \otimes t_i) (i \in I)) \rightarrow A
\]

sending \(a \otimes 1 \) and \(1 \otimes a \) to \(a \in A \) and \(U_i \) to 1 for \(i \in I \).
2.2 Logarithmic localized intersection product

Theorem 1 Let the notation be as above. Then,

1. There exists a unique map

\[(\mathcal{F}, \Delta_X)^{\log} : G((X \times_{O_K} X)^\sim) \longrightarrow G(X_F)\]

such that for a coherent module \mathcal{F} and an integer $q > d$, we have

\[(([\mathcal{F}], \Delta_X))^{\log} = (-1)^q([\text{Tor}_q^{O(X \times_{O_K} X)^\sim}(\mathcal{F}, O_X)] - [\text{Tor}_{q+1}^{O(X \times_{O_K} X)^\sim}(\mathcal{F}, O_X)]).\]

2. The map (2.1) induces a map

\[((\mathcal{F}, \Delta_X))^{\log} : G((X_K \times_K X_K)^\sim) \longrightarrow G(X_F).\]

Further, it maps $F_{d+i}G((X_K \times_K X_K)^\sim)$ into $F_iG(X_F)$ for $i \in \mathbb{Z}$.

Now we define the map (0.1).

Corollary 2 Let $f : U \rightarrow V$ be a finite étale morphism. Then, there exists a unique map

\[((\mathcal{F}, \Delta_Z))^{\log} : Z_d(V \times_U V) \longrightarrow F_0G(\nabla_F) \otimes_{\mathbb{Q}}\]

that makes the diagram

\[(2.3)\]

\[
\begin{array}{ccc}
Z_d(V \times_U V) & \longrightarrow & F_0G(\nabla_F) \otimes_{\mathbb{Z}} \mathbb{Q} \\
\otimes_{O_{V \times_K V}O_{W \times_K W}} & & \downarrow \text{projection} \\
F_dG(W \times_U W) & \longrightarrow & F_0G(Y_F) \otimes_{\mathbb{Z}} \mathbb{Q} \\
\uparrow \text{restriction} & & \uparrow \text{projection} \\
F_dG((Z_K \times_K Z_K)^\sim) & \longrightarrow & F_0G(Z_F) \\
\end{array}
\]

commutative for an arbitrary diagram

\[(2.4)\]

\[
\begin{array}{ccc}
W & \subset & Z \\
g \downarrow & & \downarrow \\
V & \subset & Y \\
f \downarrow & & \downarrow \\
U & \subset & X \\
\end{array}
\]

of schemes over O_K satisfying the following conditions:
(2.4.1) X is a proper flat scheme over O_K containing U as the complement of a Cartier divisor B. The generic fiber X_K is smooth and the divisor B_K has simple normal crossings.

(2.4.2) Y is a proper flat scheme over O_K containing V as a dense open subscheme. Namely, Y is an object of \mathcal{C}_V.

(2.4.3) Z is a proper regular scheme over O_K containing W as the complement of a divisor D with simple normal crossings.

(2.4.4) The quadrangles are Cartesian.

(2.4.5) The proper map $g: W \to V$ is generically finite of constant degree $[W : V]$.

3 Ramification theory

Let K and F be as above. Let $f: V \to U$ be a finite étale morphism of separated smooth schemes purely of dimension d of finite type over K. We define generalizations of classical invariants recalled in Section 1 to higher dimension by using the map

\[(0.1) \quad ((, \Delta_{\nabla}))^{\log}: Z_d(V \times_U V) \longrightarrow F_0G(\nabla_F) \otimes_{\mathbb{Z}} \mathbb{Q}.
\]

3.1 different

We define the wild different by

\[(3.1) \quad D^{\log}_{V/U} = (([V \times_U V] - [\Delta_V], \Delta_{\nabla}))^{\log} = f^*(([[\Delta_U], \Delta_{\nabla}))^{\log} - (([\Delta_V], \Delta_{\nabla}))^{\log}
\]

in $F_0G(\nabla_F) \otimes_{\mathbb{Z}} \mathbb{Q}$. For a finite étale morphism $g: V' \to V$, we have obviously a chain rule

\[(3.2) \quad D_{V'/V} = D_{V'/V} + g^*D_{V/U}.
\]

3.2 Swan character class

If V is a Galois covering of Galois group G, we define the Swan character class $s_{V/U}(\sigma) \in F_0G(\nabla_F) \otimes_{\mathbb{Z}} \mathbb{Q}$ by

\[(3.3) \quad s_{V/U}(\sigma) = s_G(\sigma) = \begin{cases} D^{\log}_{V/U} & \text{if } \sigma = 1, \\ -((\Gamma_\sigma, \Delta_{\nabla}))^{\log} & \text{if } \sigma \neq 1. \end{cases}
\]

We have $s_G(\sigma) = 0$ unless the order of σ is a power of p. We expect but do not know $s_G(\sigma) = s_G(\sigma')$ if $\langle \sigma \rangle = \langle \sigma' \rangle$. We have equalities analogous to (1.7) and (1.8).
3.3 Swan class

Let F be a smooth ℓ-adic sheaf on U. We take a finite étale Galois covering $f : V \rightarrow U$ trivializing the reduction \overline{F}. Let G be the Galois group and M be the representation of G corresponding to \overline{F}. Then, we define the Swan class $SwF \in F_0G(\overline{U}) \otimes_{\mathbb{Z}} \mathbb{Q}$ and the naive Swan class $Sw^{\text{naive}}F \in F_0G(\overline{U}) \otimes_{\mathbb{Z}} \mathbb{Q}(\zeta_p^{\infty})$ by

$$SwF = \frac{1}{|G|} \sum_{\sigma \in G} f_* s_G(\sigma) \left(\dim M^\sigma - \frac{\dim M^\sigma/M^{\sigma p}}{p-1} \right),$$

$$Sw^{\text{naive}}F = \frac{1}{|G|} \sum_{\sigma \in G_{(p)}} f_* s_G(\sigma) \tr^{Br}(\sigma : \dim M)$$

where $G_{(p)} = \{ \sigma \in G | \text{the order of } \sigma \text{ is a power of } p \}$ and \tr^{Br} denotes the Brauer trace. They are independent of V by an analogue of (1.8). The Swan class SwF is the image of the naive Swan class by the projection $\mathbb{Q}(\zeta_p^{\infty}) \rightarrow \mathbb{Q}$.

We expect the following generalization of the Hasse-Arf theorem.

Conjecture 3 The Swan class $SwF \in F_0G(\overline{U}) \otimes_{\mathbb{Z}} \mathbb{Q}$ is in the image of $F_0G(\overline{U})$

Theorem 4 Conjecture 3 is true if $\dim U = 1$.

Proof. By the induction formula below, it is reduced to the rank 1 case. In the rank 1 case, one can compute the Swan class explicitly in terms of the ramification divisor in the sense of Kato.

Conjecture 3 implies a conjecture of Serre:

The Artin central function for an isolated fixed point is a character.

We have a conductor formula.

Theorem 5 If $V = \text{Spec } K$, we have

$$SwR\Gamma_c(U_\overline{\mathbb{F}_\ell}, \mathcal{F}) = \deg Sw\mathcal{F} - \rank \mathcal{F} \cdot \deg((\Delta_U, \Delta_{\overline{V}}))^\log.$$

Further if $\mathcal{F} = \mathbb{Q}_\ell$, we obtain

$$SwR\Gamma_c(U_\overline{\mathbb{F}_\ell}, \mathbb{Q}_\ell) = -\deg((\Delta_U, \Delta_{\overline{V}}))^\log.$$

Proof. A logarithmic Lefschetz trace formula for open variety and the associativity for the localized intersection product.

We expect have the following relative version.

Conjecture 6 Let $f : U \rightarrow V$ be a smooth morphism of relative dimension d of separated smooth schemes of finite type over K. We assume that there exist a proper smooth scheme X over V containing U as the complement of a divisor D with relative simple normal crossings.

Then, for a smooth $\overline{\mathbb{Q}_\ell}$-sheaf or a smooth $\overline{\mathbb{F}_\ell}$-sheaf \mathcal{F}, we have

$$\rank Rf_*\mathcal{F} \cdot ((\Delta_V, \Delta_{\overline{V}}))^\log - SwRf_*\mathcal{F} = f_*(\rank \mathcal{F} \cdot ((\Delta_U, \Delta_{\overline{V}}))^\log - Sw\mathcal{F}).$$
We can prove Conjecture 6 if $\dim V = 0$.
Note that we have
\[
\text{rank} Rf_! \mathcal{F} = \text{rank} \mathcal{F} \cdot \text{rank} Rf_! \mathbb{Q}_\ell = \text{rank} \mathcal{F} \cdot (-1)^d \deg c_d(\Omega^1_{X/V}(\log D)).
\]
The equality (3.8) is equivalent to the combination of
\[
\begin{align*}
(3.9) \quad & Sw Rf_! \mathcal{F} = f_* Sw \mathcal{F} + \text{rank} \mathcal{F} \cdot Sw Rf_! \mathbb{Q}_\ell, \\
(3.10) & Sw Rf_! \mathbb{Q}_\ell = (-1)^d \deg c_d(\Omega^1_{X/V}(\log D)) \cdot ((\Delta_V, \Delta_V))^{\log} - f_* ((\Delta_U, \Delta_U))^{\log}.
\end{align*}
\]
If $d = 0$, in other words, if $f : V \to U$ is finite étale, the right hand side of (3.10) is $f_* D_{V/U}^{\log}$.

8