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Abstract

We define generalizations of classical invariants of ramification, for coverings
on a variety of arbitrary dimension over a local field of mixed characteristic.
For an �-adic sheaf, we define its Swan class as a 0-cycle class supported on the
closed fiber. We present a formula for the Swan conductor of cohomology and
its relative version.

Let K be a complete discrete valuation field of characteristic 0 and F be the residue
field of K. We assume F is a perfect field of characteristic p > 0.

Let U be a separated smooth scheme purely of dimension d of finite type over K.
Let f : V → U be a finite étale morphism. The goal of this talk is to introduce a map

(( , ∆V ))log : Zd(V ×U V ) −−−→ F0G(VF )⊗�Q(0.1)

and to show that this map gives generalizations of classical invariants of ramification.

0.1 source

Since V → U is assumed finite étale, the fiber product V ×U V is also finite étale over
U and hence is smooth of dimension d over K. Thus, Zd(V ×U V ) is the free abelian
group generated by the classes of irreducible components of V ×U V . In particular, if
U is connected and V is a Galois covering of Galois group G, it is identified with the
free abelian group Z[G].

0.2 target

For a noetherian scheme X, the Grothendieck group of the category of coherent OX -
modules is denoted by G(X). Let FnG(X) ⊂ G(X) denote the topological filtration
generated by the classes of modules of dimension of support at most n.
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For V as above, we define CV to be the category, whose objects are proper flat
schemes Y over OK containing V as a dense open subscheme. A morphism Y ′ → Y in
CV is a morphism Y ′ → Y over OK inducing the identity on V . We put

F0G(VF ) = lim←− CV
F0G(YF ).(0.2)

The transitions maps are proper push-forwards.
For a map f : V → U of separated smooth schemes of finite type over K, the

push-forward map

f∗ : F0G(VF ) −−−→ F0G(UF )(0.3)

is defined. In particular, taking U = Spec K, the degree map

deg : F0G(VF ) −−−→ Z(0.4)

is defined. For a finite flat map f : V → U of separated smooth schemes of finite type
over K, the flat pull-back map

f∗ : F0G(UF ) −−−→ F0G(VF )(0.5)

is defined by the flattening theorem of Raynaud-Gruson.
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1 Classical case

Let K and F be as above. Let L be a finite separable extension and consider f :
V = Spec L → U = Spec K. Then, the target group F0G(VF ) of the map (0.1)
is F0G(Spec OL ⊗OK

F ) = Z. The map f∗ : F0G(UF ) = Z → F0G(VF ) = Z is
the multiplication by the ramification index eL/K and the map f∗ : F0G(VF ) = Z →
F0G(UF ) = Z is the multiplication by the residual degree fL/K . If L is a Galois
extension of Galois group G, the source group Zd(V ×U V ) is Z[G].

1.1 different

For a finite separable extension L of K, the different and its wild part are defined by

DL/K = lengthOL
Ω1

OL/OK
,(1.1)

Dlog
L/K = DL/K − (eL/K − 1).(1.2)

We have Dlog
L/K ≥ 0. The equality is equivalent to p � eL/K . For an intermediate

extension K ⊂ M ⊂ L, we have chain rules

DL/K = DL/M + eL/MDM/K(1.3)

Dlog
L/K = Dlog

L/M + eL/MDlog
M/K.(1.4)

1.2 Artin and Swan characters

If L is a Galois extension of Galois group G, the Artin character and the Swan character
are defined by

aL/K(σ) = aG(σ)(1.5)

=

{
DL/K if σ = 1

−lengthOL
OL/(σ(x)− x; x ∈ OL) if σ �= 1,

sL/K(σ) = sG(σ)(1.6)

=

{
Dlog

L/K if σ = 1

−lengthOL
OL/(σ(x)/x− 1;x ∈ OL \ {0}) if σ �= 1.

We have sG(σ) = 0 unless the order of σ is a power of p. We also have sG(σ) = sG(σ′)
if 〈σ〉 = 〈σ′〉.

For a subgroup H ⊂ G with corresponding intermediate extension M , we have

sH(σ) =

{
sG(1) − eL/MDlog

M/K if σ = 1

sG(σ) if σ �= 1
(1.7)
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and a similar equality for the Artin character, for σ ∈ H. For a quotient group G→ G
with corresponding intermediate extension M , we have

eL/M · sG(σ) =
∑

τ∈G,σ=τ̄

sG(τ )(1.8)

and a similar equality for the Artin character, for σ ∈ G. In particular, putting G = 1,
we obtain

∑
σ∈G aG(σ) =

∑
σ∈G sG(σ) = 0.

1.3 Swan conductor

Let M be an �-adic representation of the absolute Galois group GK = Gal(K/K). Let
L be a finite Galois extension of K of Galois group G such that the reduction modulo
� of the restriction to GL ⊂ GK is trivial. Then, the Swan conductor of M is defined
by

Sw(M) =
fL/K

|G|
∑
σ∈G

sL/K(σ)Tr(σ : M)(1.9)

=
fL/K

|G|
∑
σ∈G

sL/K(σ)(dimMσ − dim Mσ/Mσp

p− 1
).(1.10)

It is independent of L by (1.8). We can use the second equality as the definition for a
mod-� representation.

The Hasse-Arf theorem asserts that Sw(M) is an integer. We have Sw(M) ≥ 0
and the equality holds if and only if the restriction to the p-Sylow subgroup PK of the
inertia subgroup IK ⊂ GK is trivial. The equality (1.7) implies the induction formula

Sw(IndGK
GL

M) = fL/K(dim M ·Dlog
L/K + Sw(M)).(1.11)

2 Definition of the map (0.1)

2.1 Logarithmic diagonal

Let U be a separated smooth scheme of dimension d of finite type over K and X be a
separated regular flat scheme of finite type over OK containing U as the complement
of a divisor D with simple normal crossing. Let (X ×OK

X)∼ be the log self-product
and the log diagonal closed immersion ∆X : X → (X ×OK

X)∼. Its generic fiber
XK → (XK ×K XK)∼ is a regular immersion of codimension d.

We give a local description. Assume X = Spec A and D is defined by
∏

i∈I ti.
Then, we have

(X ×OK
X)∼ = A⊗OK

A[U±1
i (i ∈ I)]/(ti ⊗ 1− Ui(1⊗ ti) (i ∈ I))

and the log diagonal map is defined by the map

A⊗OK
A[U±1

i (i ∈ I)]/(ti ⊗ 1− Ui(1⊗ ti) (i ∈ I))→ A

sending a⊗ 1 and 1⊗ a to a ∈ A and Ui to 1 for i ∈ I .
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2.2 Logarithmic localized intersection product

Theorem 1 Let the notation be as above. Then,
1. There exists a unique map

(( , ∆X))log : G((X ×OK
X)∼) −−−→ G(XF )(2.1)

such that for a coherent module F and an integer q > d, we have

(([F ], ∆X))log = (−1)q([T or
O(X×OK

X)∼
q (F , OX)]− [T or

O(X×OK
X)∼

q+1 (F , OX)]).

2. The map (2.1) induces a map

(( , ∆X))log : G((XK ×K XK)∼) −−−→ G(XF ).(2.2)

Further, it maps Fd+iG((XK ×K XK)∼) into FiG(XF ) for i ∈ Z.

Now we define the map (0.1).

Corollary 2 Let f : U → V be a finite étale morphism. Then, there exists a unique
map

(0.1) (( , ∆V ))log : Zd(V ×U V ) −−−→ F0G(VF )⊗�Q

that makes the diagram

Zd(V ×U V )
(( ,∆V ))log

��

⊗OV ×KV
OW×KW

��

F0G(VF )⊗�Q

projection

��
FdG(W ×U W )

����������������������
F0G(YF )⊗�Q

FdG((ZK ×XK
ZK)∼)

restriction

��

(( ,∆Z ))log
�� F0G(ZF )

1
[W :V ]

g∗

��

(2.3)

commutative for an arbitrary diagram

W
⊂ ��

g

��

Z

���
��

��
��

��
��

��
��

��
V

⊂ ��

f
��

Y

U
⊂ �� X

(2.4)

of schemes over OK satisfying the following conditions:
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(2.4.1) X is a proper flat scheme over OK containing U as the complement of a Cartier
divisor B. The generic fiber XK is smooth and the divisor BK has simple normal
crossings.

(2.4.2) Y is a proper flat scheme over OK containing V as a dense open subscheme.
Namely, Y is an object of CV .

(2.4.3) Z is a proper regular scheme over OK containing W as the complement of a
divisor D with simple normal crossings.

(2.4.4) The quadrangles are Cartesian.

(2.4.5) The proper map g : W → V is generically finite of constant degree [W : V ].

3 Ramification theory

Let K and F be as above. Let f : V → U be a finite étale morphism of separated
smooth schemes purely of dimension d of finite type over K. We define generalizations
of classical invariants recalled in Section 1 to higher dimension by using the map

(0.1) (( , ∆V ))log : Zd(V ×U V ) −−−→ F0G(VF )⊗�Q.

3.1 different

We define the wild different by

Dlog
V/U = (([V ×U V ]− [∆V ], ∆V ))log = f∗(([∆U ], ∆U))log − (([∆V ], ∆V ))log(3.1)

in F0G(VF ) ⊗�Q. For a finite étale morphism g : V ′ → V , we have obviously a chain
rule

DV ′/V = DV ′/V + g∗DV/U .(3.2)

3.2 Swan character class

If V is a Galois covering of Galois group G, we define the Swan character class sV/U (σ) ∈
F0G(VF )⊗�Q by

sV/U(σ) = sG(σ) =

{
Dlog

V/U if σ = 1,

−((Γσ, ∆V ))log if σ �= 1.
(3.3)

We have sG(σ) = 0 unless the order of σ is a power of p. We expect but do not know
sG(σ) = sG(σ′) if 〈σ〉 = 〈σ′〉. We have equalities analogous to (1.7) and (1.8).
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3.3 Swan class

Let F be a smooth �-adic sheaf on U . We take a finite étale Galois covering f : V → U
trivializing the reduction F . Let G be the Galois group and M be the representation
of G corresponding to F . Then, we define the Swan class SwF ∈ F0G(U) ⊗�Q and
the naive Swan class SwnaiveF ∈ F0G(U)⊗�Q(ζp∞) by

SwF =
1

|G|
∑
σ∈G

f∗sG(σ)(dimMσ − dimMσ/Mσp

p− 1
),(3.4)

SwnaiveF =
1

|G|
∑

σ∈G(p)

f∗sG(σ)TrBr(σ : dim M)(3.5)

where G(p) = {σ ∈ G| the order of σ is a power of p} and TrBr denotes the Brauer
trace. They are independent of V by an analogue of (1.8). The Swan class SwF is the
image of the naive Swan class by the projection Q(ζp∞)→ Q.

We expect the following generalization of the Hasse-Arf theorem.

Conjecture 3 The Swan class SwF ∈ F0G(U)⊗�Q is in the image of F0G(U)

Theorem 4 Conjecture 3 is true if dimU = 1.

Idea of Proof. By the induction formula below, it is reduced to the rank 1 case. In
the rank 1 case, one can compute the Swan class explicitly in terms of the ramification
divisor in the sense of Kato.

Conjecture 3 implies a conjecture of Serre:

The Artin central function for an isolated fixed point is a character.

We have a conductor formula.

Theorem 5 If V = Spec K, we have

SwRΓc(UK ,F) = degSwF − rankF · deg((∆U , ∆U))log.(3.6)

Further if F = Q�, we obtain

SwRΓc(UK , Q�) = −deg((∆U , ∆U))log.(3.7)

Idea of Proof. A logarithmic Lefschetz trace formula for open variety and the
associativity for the localized intersection product.

We expect have the following relative version.

Conjecture 6 Let f : U → V be a smooth morphism of relative dimension d of
separated smooth schemes of finite type over K. We assume that there exist a proper
smooth scheme X over V containing U as the complement of a divisor D with relative
simple normal crossings.

Then, for a smooth Q̄�-sheaf or a smooth F̄�-sheaf F , we have

rankRf!F · ((∆V , ∆V ))log − SwRf!F = f∗(rankF · ((∆U , ∆U))log − SwF).(3.8)
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We can prove Conjecture 6 if dimV = 0.
Note that we have

rankRf!F = rankF · rankRf!Q� = rankF · (−1)ddeg cd(Ω
1
X/V (log D)).

The equality (3.8) is equivalent to the combination of

SwRf!F = f∗SwF + rankF · SwRf!Q�,(3.9)

SwRf!Q� = (−1)ddeg cd(Ω
1
X/V (log D)) · ((∆V , ∆V ))log − f∗((∆U , ∆U))log.(3.10)

If d = 0, in other words, if f : V → U is finite étale, the right hand side of (3.10) is
f∗D

log
V/U .
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