Ramification theory of schemes in mixed characteristic case

(joint work with K. Kato)

juin 28, 2005

Abstract

We define generalizations of classical invariants of ramification, for coverings on a variety of arbitrary dimension over a local field of mixed characteristic. For an ℓ -adic sheaf, we define its Swan class as a 0-cycle class supported on the closed fiber. We present a formula for the Swan conductor of cohomology and its relative version.

Let K be a complete discrete valuation field of characteristic 0 and F be the residue field of K. We assume F is a perfect field of characteristic p > 0.

Let U be a separated smooth scheme purely of dimension d of finite type over K. Let $f: V \to U$ be a finite étale morphism. The goal of this talk is to introduce a map

 $(0.1) \qquad \qquad ((\ ,\Delta_{\overline{V}}))^{\log}: Z_d(V \times_U V) \longrightarrow F_0G(\overline{V}_F) \otimes_{\mathbb{Z}} \mathbb{Q}$

and to show that this map gives generalizations of classical invariants of ramification.

0.1 source

Since $V \to U$ is assumed finite étale, the fiber product $V \times_U V$ is also finite étale over U and hence is smooth of dimension d over K. Thus, $Z_d(V \times_U V)$ is the free abelian group generated by the classes of irreducible components of $V \times_U V$. In particular, if U is connected and V is a Galois covering of Galois group G, it is identified with the free abelian group $\mathbb{Z}[G]$.

0.2 target

For a noetherian scheme X, the Grothendieck group of the category of coherent O_X modules is denoted by G(X). Let $F_nG(X) \subset G(X)$ denote the topological filtration generated by the classes of modules of dimension of support at most n. For V as above, we define \mathcal{C}_V to be the category, whose objects are proper flat schemes Y over O_K containing V as a dense open subscheme. A morphism $Y' \to Y$ in \mathcal{C}_V is a morphism $Y' \to Y$ over O_K inducing the identity on V. We put

(0.2)
$$F_0 G(\overline{V}_F) = \underline{\lim}_{\mathcal{C}_V} F_0 G(Y_F).$$

The transitions maps are proper push-forwards.

For a map $f: V \to U$ of separated smooth schemes of finite type over K, the push-forward map

$$(0.3) f_*: F_0G(\overline{V}_F) \longrightarrow F_0G(\overline{U}_F)$$

is defined. In particular, taking U = Spec K, the degree map

$$(0.4) \qquad \qquad \deg: F_0 G(\overline{V}_F) \longrightarrow \mathbb{Z}$$

is defined. For a finite flat map $f: V \to U$ of separated smooth schemes of finite type over K, the flat pull-back map

(0.5)
$$f^*: F_0 G(\overline{U}_F) \longrightarrow F_0 G(\overline{V}_F)$$

is defined by the flattening theorem of Raynaud-Gruson.

Contents

	0.1	source	1	
	0.2	target	1	
1	Classical case			
	1.1	different	3	
	1.2	Artin and Swan characters	3	
	1.3	Swan conductor	4	
2	Definition of the map (0.1)			
	2.1	Logarithmic diagonal	4	
	2.2	Logarithmic localized intersection product	5	
3	Ramification theory			
	3.1	different	6	
	3.2	Swan character class	6	
	3.3	Swan class	7	

1 Classical case

Let K and F be as above. Let L be a finite separable extension and consider f: $V = \text{Spec } L \to U = \text{Spec } K$. Then, the target group $F_0G(\overline{V}_F)$ of the map (0.1) is $F_0G(\text{Spec } O_L \otimes_{O_K} F) = \mathbb{Z}$. The map $f^* : F_0G(\overline{U}_F) = \mathbb{Z} \to F_0G(\overline{V}_F) = \mathbb{Z}$ is the multiplication by the ramification index $e_{L/K}$ and the map $f_* : F_0G(\overline{V}_F) = \mathbb{Z} \to$ $F_0G(\overline{U}_F) = \mathbb{Z}$ is the multiplication by the residual degree $f_{L/K}$. If L is a Galois extension of Galois group G, the source group $Z_d(V \times_U V)$ is $\mathbb{Z}[G]$.

1.1 different

For a finite separable extension L of K, the different and its wild part are defined by

(1.1)
$$D_{L/K} = \text{length}_{O_L} \Omega^1_{O_L/O_K},$$

(1.2)
$$D_{L/K}^{\log} = D_{L/K} - (e_{L/K} - 1).$$

We have $D_{L/K}^{\log} \geq 0$. The equality is equivalent to $p \nmid e_{L/K}$. For an intermediate extension $K \subset M \subset L$, we have chain rules

(1.3)
$$D_{L/K} = D_{L/M} + e_{L/M} D_{M/K}$$

(1.4) $D_{L/K}^{\log} = D_{L/M}^{\log} + e_{L/M} D_{M/K}^{\log}.$

1.2 Artin and Swan characters

If L is a Galois extension of Galois group G, the Artin character and the Swan character are defined by

$$(1.5) \quad a_{L/K}(\sigma) = a_G(\sigma)$$

$$= \begin{cases} D_{L/K} & \text{if } \sigma = 1 \\ -\text{length}_{O_L}O_L/(\sigma(x) - x; x \in O_L) & \text{if } \sigma \neq 1, \end{cases}$$

$$(1.6) \quad s_{L/K}(\sigma) = s_G(\sigma)$$

$$= \begin{cases} D_{L/K}^{\log} & \text{if } \sigma = 1 \\ -\text{length}_{O_L}O_L/(\sigma(x)/x - 1; x \in O_L \setminus \{0\}) & \text{if } \sigma \neq 1 \end{cases}$$

We have $s_G(\sigma) = 0$ unless the order of σ is a power of p. We also have $s_G(\sigma) = s_G(\sigma')$ if $\langle \sigma \rangle = \langle \sigma' \rangle$.

For a subgroup $H \subset G$ with corresponding intermediate extension M, we have

(1.7)
$$s_H(\sigma) = \begin{cases} s_G(1) - e_{L/M} D_{M/K}^{\log} & \text{if } \sigma = 1\\ s_G(\sigma) & \text{if } \sigma \neq 1 \end{cases}$$

and a similar equality for the Artin character, for $\sigma \in H$. For a quotient group $G \to \overline{G}$ with corresponding intermediate extension M, we have

(1.8)
$$e_{L/M} \cdot s_{\overline{G}}(\sigma) = \sum_{\tau \in G, \sigma = \overline{\tau}} s_G(\tau)$$

and a similar equality for the Artin character, for $\sigma \in \overline{G}$. In particular, putting $\overline{G} = 1$, we obtain $\sum_{\sigma \in G} a_G(\sigma) = \sum_{\sigma \in G} s_G(\sigma) = 0$.

1.3 Swan conductor

Let M be an ℓ -adic representation of the absolute Galois group $G_K = \operatorname{Gal}(\overline{K}/K)$. Let L be a finite Galois extension of K of Galois group G such that the reduction modulo ℓ of the restriction to $G_L \subset G_K$ is trivial. Then, the Swan conductor of M is defined by

(1.9)
$$\operatorname{Sw}(M) = \frac{f_{L/K}}{|G|} \sum_{\sigma \in G} s_{L/K}(\sigma) \operatorname{Tr}(\sigma : M)$$

(1.10)
$$= \frac{f_{L/K}}{|G|} \sum_{\sigma \in G} s_{L/K}(\sigma) (\dim M^{\sigma} - \frac{\dim M^{\sigma}/M^{\sigma^p}}{p-1}).$$

It is independent of L by (1.8). We can use the second equality as the definition for a mod- ℓ representation.

The Hasse-Arf theorem asserts that Sw(M) is an integer. We have $Sw(M) \ge 0$ and the equality holds if and only if the restriction to the *p*-Sylow subgroup P_K of the inertia subgroup $I_K \subset G_K$ is trivial. The equality (1.7) implies the induction formula

(1.11)
$$\operatorname{Sw}(\operatorname{Ind}_{G_L}^{G_K} M) = f_{L/K}(\dim M \cdot D_{L/K}^{\log} + \operatorname{Sw}(M))$$

2 Definition of the map (0.1)

2.1 Logarithmic diagonal

Let U be a separated smooth scheme of dimension d of finite type over K and X be a separated regular flat scheme of finite type over O_K containing U as the complement of a divisor D with simple normal crossing. Let $(X \times_{O_K} X)^{\sim}$ be the log self-product and the log diagonal closed immersion $\Delta_X : X \to (X \times_{O_K} X)^{\sim}$. Its generic fiber $X_K \to (X_K \times_K X_K)^{\sim}$ is a regular immersion of codimension d.

We give a local description. Assume X = Spec A and D is defined by $\prod_{i \in I} t_i$. Then, we have

$$(X \times_{O_K} X)^{\sim} = A \otimes_{O_K} A[U_i^{\pm 1} \ (i \in I)]/(t_i \otimes 1 - U_i(1 \otimes t_i) \ (i \in I))$$

and the log diagonal map is defined by the map

$$A \otimes_{O_K} A[U_i^{\pm 1} \ (i \in I)]/(t_i \otimes 1 - U_i(1 \otimes t_i) \ (i \in I)) \to A$$

sending $a \otimes 1$ and $1 \otimes a$ to $a \in A$ and U_i to 1 for $i \in I$.

2.2 Logarithmic localized intersection product

Theorem 1 Let the notation be as above. Then,

1. There exists a unique map

(2.1)
$$((,\Delta_X))^{\log} : G((X \times_{O_K} X)^{\sim}) \longrightarrow G(X_F)$$

such that for a coherent module \mathcal{F} and an integer q > d, we have

$$(([\mathcal{F}], \Delta_X))^{\log} = (-1)^q ([\mathcal{T}or_q^{O_{(X \times O_K X)^{\sim}}}(\mathcal{F}, O_X)] - [\mathcal{T}or_{q+1}^{O_{(X \times O_K X)^{\sim}}}(\mathcal{F}, O_X)]).$$

2. The map (2.1) induces a map

(2.2)
$$((\ ,\Delta_X))^{\log} : G((X_K \times_K X_K)^{\sim}) \longrightarrow G(X_F).$$

Further, it maps $F_{d+i}G((X_K \times_K X_K)^{\sim})$ into $F_iG(X_F)$ for $i \in \mathbb{Z}$.

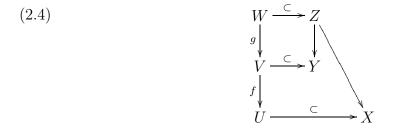
Now we define the map (0.1).

Corollary 2 Let $f: U \to V$ be a finite étale morphism. Then, there exists a unique map

$$(0.1) \qquad ((\ ,\Delta_{\overline{V}}))^{\log}: Z_d(V \times_U V) \longrightarrow F_0G(\overline{V}_F) \otimes_{\mathbb{Z}} \mathbb{Q}$$

that makes the diagram

commutative for an arbitrary diagram



of schemes over O_K satisfying the following conditions:

- (2.4.1) X is a proper flat scheme over O_K containing U as the complement of a Cartier divisor B. The generic fiber X_K is smooth and the divisor B_K has simple normal crossings.
- (2.4.2) Y is a proper flat scheme over O_K containing V as a dense open subscheme. Namely, Y is an object of C_V .
- (2.4.3) Z is a proper regular scheme over O_K containing W as the complement of a divisor D with simple normal crossings.
- (2.4.4) The quadrangles are Cartesian.
- (2.4.5) The proper map $g: W \to V$ is generically finite of constant degree [W:V].

3 Ramification theory

Let K and F be as above. Let $f: V \to U$ be a finite étale morphism of separated smooth schemes purely of dimension d of finite type over K. We define generalizations of classical invariants recalled in Section 1 to higher dimension by using the map

$$(0.1) \qquad ((\ ,\Delta_{\overline{V}}))^{\log}: Z_d(V \times_U V) \longrightarrow F_0G(\overline{V}_F) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

3.1 different

We define the wild different by

$$(3.1) \qquad D_{V/U}^{\log} = \left(\left([V \times_U V] - [\Delta_V], \Delta_{\overline{V}} \right) \right)^{\log} = f^* \left(\left([\Delta_U], \Delta_{\overline{U}} \right) \right)^{\log} - \left(\left([\Delta_V], \Delta_{\overline{V}} \right) \right)^{\log} \right)$$

in $F_0G(\overline{V}_F) \otimes_{\mathbb{Z}} \mathbb{Q}$. For a finite étale morphism $g: V' \to V$, we have obviously a chain rule

(3.2)
$$D_{V'/V} = D_{V'/V} + g^* D_{V/U}.$$

3.2 Swan character class

If V is a Galois covering of Galois group G, we define the Swan character class $s_{V/U}(\sigma) \in F_0G(\overline{V}_F) \otimes_{\mathbb{Z}} \mathbb{Q}$ by

(3.3)
$$s_{V/U}(\sigma) = s_G(\sigma) = \begin{cases} D_{V/U}^{\log} & \text{if } \sigma = 1, \\ -((\Gamma_{\sigma}, \Delta_{\overline{V}}))^{\log} & \text{if } \sigma \neq 1. \end{cases}$$

We have $s_G(\sigma) = 0$ unless the order of σ is a power of p. We expect but do not know $s_G(\sigma) = s_G(\sigma')$ if $\langle \sigma \rangle = \langle \sigma' \rangle$. We have equalities analogous to (1.7) and (1.8).

3.3 Swan class

Let \mathcal{F} be a smooth ℓ -adic sheaf on U. We take a finite étale Galois covering $f: V \to U$ trivializing the reduction $\overline{\mathcal{F}}$. Let G be the Galois group and M be the representation of G corresponding to $\overline{\mathcal{F}}$. Then, we define the Swan class $\mathrm{Sw}\mathcal{F} \in F_0G(\overline{U}) \otimes_{\mathbb{Z}} \mathbb{Q}$ and the naive Swan class $\mathrm{Sw}^{\mathrm{naive}}\mathcal{F} \in F_0G(\overline{U}) \otimes_{\mathbb{Z}} \mathbb{Q}(\zeta_{p^{\infty}})$ by

(3.4)
$$\operatorname{Sw}\mathcal{F} = \frac{1}{|G|} \sum_{\sigma \in G} f_* s_G(\sigma) (\dim M^{\sigma} - \frac{\dim M^{\sigma}/M^{\sigma^p}}{p-1}),$$

(3.5)
$$\operatorname{Sw}^{\operatorname{naive}} \mathcal{F} = \frac{1}{|G|} \sum_{\sigma \in G_{(p)}} f_* s_G(\sigma) \operatorname{Tr}^{Br}(\sigma : \dim M)$$

where $G_{(p)} = \{ \sigma \in G | \text{ the order of } \sigma \text{ is a power of } p \}$ and Tr^{Br} denotes the Brauer trace. They are independent of V by an analogue of (1.8). The Swan class $\operatorname{Sw}\mathcal{F}$ is the image of the naive Swan class by the projection $\mathbb{Q}(\zeta_{p^{\infty}}) \to \mathbb{Q}$.

We expect the following generalization of the Hasse-Arf theorem.

Conjecture 3 The Swan class $Sw \mathcal{F} \in F_0G(\overline{U}) \otimes_{\mathbb{Z}} \mathbb{Q}$ is in the image of $F_0G(\overline{U})$

Theorem 4 Conjecture 3 is true if $\dim U = 1$.

Idea of Proof. By the induction formula below, it is reduced to the rank 1 case. In the rank 1 case, one can compute the Swan class explicitly in terms of the ramification divisor in the sense of Kato.

Conjecture 3 implies a conjecture of Serre:

The Artin central function for an isolated fixed point is a character.

We have a conductor formula.

Theorem 5 If V = Spec K, we have

(3.6)
$$\operatorname{Sw} R\Gamma_c(U_{\overline{K}}, \mathcal{F}) = \operatorname{deg} \operatorname{Sw} \mathcal{F} - \operatorname{rank} \mathcal{F} \cdot \operatorname{deg}((\Delta_U, \Delta_{\overline{U}}))^{\log}.$$

Further if $\mathcal{F} = \mathbb{Q}_{\ell}$, we obtain

(3.7)
$$\operatorname{Sw} R\Gamma_c(U_{\overline{K}}, \mathbb{Q}_\ell) = -\operatorname{deg}((\Delta_U, \Delta_{\overline{U}}))^{\log}.$$

Idea of Proof. A logarithmic Lefschetz trace formula for open variety and the associativity for the localized intersection product.

We expect have the following relative version.

Conjecture 6 Let $f : U \to V$ be a smooth morphism of relative dimension d of separated smooth schemes of finite type over K. We assume that there exist a proper smooth scheme X over V containing U as the complement of a divisor D with relative simple normal crossings.

Then, for a smooth $\overline{\mathbb{Q}}_{\ell}$ -sheaf or a smooth $\overline{\mathbb{F}}_{\ell}$ -sheaf \mathcal{F} , we have

(3.8)
$$\operatorname{rank} Rf_! \mathcal{F} \cdot ((\Delta_V, \Delta_{\overline{V}}))^{\log} - \operatorname{Sw} Rf_! \mathcal{F} = f_*(\operatorname{rank} \mathcal{F} \cdot ((\Delta_U, \Delta_{\overline{U}}))^{\log} - \operatorname{Sw} \mathcal{F}).$$

We can prove Conjecture 6 if $\dim V = 0$. Note that we have

$$\operatorname{rank} Rf_! \mathcal{F} = \operatorname{rank} \mathcal{F} \cdot \operatorname{rank} Rf_! \mathbb{Q}_{\ell} = \operatorname{rank} \mathcal{F} \cdot (-1)^d \operatorname{deg} c_d(\Omega^1_{X/V}(\log D)).$$

The equality (3.8) is equivalent to the combination of

 $(3.9) \quad \operatorname{Sw} Rf_{!}\mathcal{F} = f_{*}\operatorname{Sw} \mathcal{F} + \operatorname{rank} \mathcal{F} \cdot \operatorname{Sw} Rf_{!}\mathbb{Q}_{\ell},$ $(3.10) \operatorname{Sw} Rf_{!}\mathbb{Q}_{\ell} = (-1)^{d} \operatorname{deg} c_{d}(\Omega^{1}_{X/V}(\log D)) \cdot ((\Delta_{V}, \Delta_{\overline{V}}))^{\log} - f_{*}((\Delta_{U}, \Delta_{\overline{U}}))^{\log}.$

If d = 0, in other words, if $f : V \to U$ is finite étale, the right hand side of (3.10) is $f_*D_{V/U}^{\log}$.