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Abstract

We introduce the Swan class of an �-adic etale sheaf on a variety over a local
field. It is a generalization of the classical Swan conductor measuring the wild
ramification and is defined as a 0-cycle class supported on the reduction. We
establish a Riemann-Roch formula for the Swan class.

Let K be a complete discrete valuation field of characteristic 0. We assume that
the residue field F is a perfect field of characteristic p > 0.

Let U be a separated scheme of finite type over K and F be an �-adic sheaf on U
where � is a prime different from p. The etale cohomology H∗

c (UK̄ ,F) with compact
support defines an �-adic representation of the absolute Galois group GK = Gal(K̄/K).
We will give a formula for the alternating sum Sw H∗

c (UK̄ ,F) of the Swan conductor.
In the case where U is smooth over K and F is a smooth sheaf on U , it takes the form

Sw H∗
c (UK̄ ,F)− rank F × Sw H∗

c (UK̄ , Q�) = deg SwF .

We will have a relative version of the formula for an arbitrary sheaf F and an
arbitrary morphism U → V . The general version will be formulated by introducing a
map

SwU : K0(U, F�) −−−→ F0G(UF )� .

Here K0(U, F�) denotes the Grothendieck group of constructible F�-sheaves on U and
F0G(UF )� denotes the dimension 0-part of the Grothendieck group of coherent modules
on the reduction of U whose precise definition will be given later. Note that the
reduction modulo � defines a natural map K0(U, Q�) → K0(U, F�). In the case U =
Spec K, we have

K0(Spec K, F�) = K0(RepGK
(F�)), F0G(Spec KF )� = G(F )� = Q

and, for an F�-representation V of GK , we have

SwSpec K(V ) = Sw(V ).

The main result in this talk is the following.
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Theorem 1 Let f : U → V be a morphism of separated schemes of finite type over
K. Then, the diagram

K0(U, F�)
SwU−−−→ F0G(UF )�

f!

�
�f!

K0(V, F�)
SwV−−−→ F0G(V F )�

is commutative.

First, we define the group F0G(UF )� and the map SwU : K0(U, F�)→ F0G(UF )� .
For a noetherian scheme X, the Grothendieck group of the category of coherent OX-

modules is denoted by G(X). Let FnG(X) ⊂ G(X) denote the topological filtration
generated by the classes of modules of dimension of support at most n.

Let U be a separated scheme of finite type over K. We define CU to be the category,
whose objects are proper schemes X over the integer ring OK containing U as a dense
open subscheme. A morphism X ′ → X in CU is a morphism X ′ → X over OK inducing
the identity on U . We put

F0G(UF ) = lim←− CU
F0G(XF ).(0.1)

The transitions maps are proper push-forwards.
If U = Spec K, Spec OK is the initial object of CSpec K by the valuative criterion

and consequently we have F0G(Spec KF ) = Z.
For a map f : U → V of separated schemes of finite type over K, the push-forward

map

f∗ : F0G(UF ) −−−→ F0G(VF )(0.2)

is defined. In particular, taking V = Spec K, the degree map

deg : F0G(UF ) −−−→ Z(0.3)

is defined.
For a finite flat map f : U → V of separated schemes of finite type over K, the flat

pull-back map

f ∗ : F0G(VF ) −−−→ F0G(UF )(0.4)

is defined by the flattening theorem of Raynaud-Gruson.
The Grothendieck group K0(U, F�) is generated by the classes of smooth sheaves on

smooth subschemes. Thus, we first define SwU(F) assuming U is smooth over K and
F is a smooth F�-sheaf on U . Let V → U be a finite etale Galois covering of Galois
group G trivializing F .

We put

Sw
naive

(F) =
1

|G|
∑

σ∈G(p)

−f∗((Γσ, ∆V ))log
V ×KV · TrBr(σ : M) ∈ F0G(UF )�(ζp∞ ).
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Here G(p) ⊂ G denotes the set of elements of order a power of p and TrBr(σ : M) denotes

the Brauer trace of the F�-representation of G corresponding to F . If U = Spec K and
V = Spec L, then the term −f∗((Γσ, ∆V ))log

V ×KV is the Swan character SwL/K(σ) and
the above formula is nothing but the classical definition of the Swan conductor.

We expect that the naive Swan class Sw
naive

(F) ∈ F0G(UF )�(ζp∞ ) in fact lies in

F0G(UF )� . Since we do not know this in general, we define the Swan class Sw(F)

to be the image of Sw
naive

(F) by the natural projection F0G(UF )�(ζp∞ ) → F0G(UF )�
induced by lim−→ n

1
[�(ζpn ):�]

Tr�(ζpn )/� .

A first approximation of ((Γσ, ∆V ))log
V ×KV is the intersection product (Γσ, ∆Y )Y ×F Y if

we pretend that V is a smooth variety over F , that V admits a smooth compactification
Y and that the action of σ is extended to on Y . This approximation requires the
following three modifications.

1. Log blow-up: We further assume that the complement Y \ V =
⋃n

i=1 Di is
a divisor with simple normal crossings. Then, we replace Y ×F Y by the blow-up
(Y ×F Y )′ at D1 ×D1, D2 ×D2, . . . , Dn ×Dn.

2. Alteration: Since we do not know if there exists a smooth compactification Y ,
we consider a proper surjective generially finite morphism g : W → V and a smooth
compactification W ⊂ Z such that the complement Z \ W is a divisor with simple
normal crossings. We consider the intersection product in (Z ×F Z)′ and 1

[W :V ]
g∗.

3. Localized intersection product. Since our schemes are defined over OK but not
over F . We need to use a new intersection theory introduced in [1] which is briefly
recalled below.

The localized intersection product ((Γσ, ∆V ))log
V ×KV with the log diagonal is defined

using an alteration. We consider a diagram

W −−−→ Z

g

�
V

�
f

�
U −−−→ X

(0.5)

of schemes over OK satisfying the following conditions:

(0.5.1) X is an object of CU such that U ⊂ X is the complement of a Cartier divisor B.

(0.5.2) Z is a proper regular scheme over OK containing W as the complement of a
divisor D with simple normal crossings.

(0.5.3) The proper map g : W → V is generically finite of constant degree [W : V ].

We consider the log self-product (Z×OK
Z)∼ and the log diagonal closed immersion

∆Z : Z → (Z ×OK
Z)∼. Its generic fiber ZK → (ZK ×K ZK)∼ is a regular immersion
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of codimension d. We give a local description. Assume Z = Spec A and D is defined
by

∏
i∈I ti. Then, we have

(Z ×OK
Z)∼ = A⊗OK

A[U±1
i (i ∈ I)]/(ti ⊗ 1− Ui(1⊗ ti) (i ∈ I))

and the log diagonal map is defined by the map

A⊗OK
A[U±1

i (i ∈ I)]/(ti ⊗ 1− Ui(1⊗ ti) (i ∈ I))→ A

sending a⊗ 1 and 1⊗ a to a ∈ A and Ui to 1 for i ∈ I.
Let d be the dimension of U . We define the logarithmic localized intersection

product
(( , ∆Z))log

(Z×OK
Z)∼ : Fd+1G((Z ×OK

Z)∼)→ F0G(ZF )

by

(([F ], ∆Z))log
(Z×OK

Z)∼ = (−1)q([T or
O(Z×OK

Z)∼
q (F , OZ)]− [T or

O(Z×OK
Z)∼

q+1 (F , OZ)])

for a coherent O(Z×OK
Z)∼-module F , by taking an arbitrary integer q > d.

The localized intersection product ((Γσ, ∆V ))log
V ×KV ∈ F0G(V F )� is defined as

1

[W : V ]
g∗(((g × g)∗Γσ, ∆Z))log

(Z×OK
Z)∼.

by taking a lifting (g × g)∗Γσ ∈ Fd+1G((Z ×OK
Z)∼) of (g × g)∗Γσ ∈ FdG(W ×K W ).

We define Sw(F) in the general case. The Grothendieck group K0(U, F�) is gen-
erated by the classes [F ] of smooth sheaves F on smooth subschemes Z. Their re-
lations are generated by [F ] = [F ′] + [F/F ′] for smooth subsheaves F ′ ⊂ F and
[F ] = [FZ′] + [FZ\Z′] for smooth closed subschemes Z ′ ⊂ Z. Thus the follwing propo-

sition implies that the map K0(U, F�)→ F0G(UF )� is well-defined.

Proposition 2 (excision) Let V → U be a finite etale Galois covering of smooth
schemes over K and σ be an element of the Galois group. Let U ′ ⊂ U be a smooth
closed subscheme and U ′′ be the complement. We put V ′ = U ′×U V and V ′′ = U ′′×U V .
Then we have

((Γσ, ∆V ))log = ((Γσ|V ′ , ∆V ′))log + ((Γσ|V ′′ , ∆V ′′))log.

We sketch the proof of Theorem 1. We will prove

SwV Rf!F = f∗SwUF .

We may put the following additional assumptions by devissage.

• F�-sheaf F on U is smooth.
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• The scheme V is smooth over K.

• Either of the following holds.

(0) U → V is finite and étale.

(1) U → V is a smooth curve. More precisely, there exists a proper smooth
curve X → V of genus g and a divisor D ⊂ X finite etale over V of degree
d such that U = X \D and 2g − 2 + d > 0.

In the case (0), it is an analogue of the induction formula for the Swan conductor
and proved in exactly the same way.

To prove the case (1), we consider a commutative diagram

U ′ f ′
−−−→ V ′

�
�

U
f−−−→ V

of separted smooth schemes of finite type over K where the vertical arrows are finite
etale Galois coverings. Let G and G′ be the Galois groups respectively. We may further
assume that the pull-back of Rf!F� to V ′ is constant. Then, it suffices to show that

f∗((Γσ, ∆V ))log = TrBr(σ′ : Rf ′
! F�) · ((Γσ′ , ∆V ′))log

for an element σ ∈ G of order a power of p.
By alteration, this follows from an associativity formula for localized intersection

product and from the log Lefschetz trace formula below.

Theorem 3 Let L be a complete discrete valuation field and X and X ′ be a proper
and strictly semi-stable scheme purely of relative dimension d over the integer ring OL.
Let D ⊂ X and D′ ⊂ X ′ be divisors with simple normal crossings relative to OL and
U = XL \DL and U ′ = X ′

L \D′
L be the complements in the generic fiber.

We consider X and X ′ as log schemes with the log structure MX = j∗O×
U ∩OX and

MX′ = j′∗O×
U ′ ∩ OX′ where j : U → X and j′ : U ′ → X ′ are the open immersions. Let

P be an fs-monoid and P → Γ(X, MX) and P → Γ(X ′, MX′) be frames.
Let Γ be a closed subscheme of U ×L U ′. Assume that the closure Γ̄ of Γ in (XL×L

X ′
L)′ satisfies Γ̄L ∩D

(1)′
L ⊂ Γ̄L ∩D

(2)′
L .

Let f : Xt → X ′
t be a morphism of log schemes compatible with the frames and

γf : Xt → (X×OL
X ′)∼ be the log graph map. Let [Γ̃] ∈ K((X×OL

X ′)∼) be an element

lifting [OΓ] ∈ K((XL ×L X ′
L)∼) and γ∗

f [Γ̃] ∈ K(Xt) be the pull-back.
Let Γ∗ ◦ f∗ : H∗

log,c(Xt̄, Q�)→ H∗
log,c(Xt̄, Q�) denote the composition

H∗
log,c(Xt̄, Q�)

f∗−−−→ H∗
log,c(X

′̄
t, Q�) −−−→ H∗

c (U ′̄
L
, Q�)

Γ∗
�

H∗
log,c(Xt̄, Q�) ←−−− H∗

c (UL̄, Q�).

(0.6)

5



Then, we have

Tr(Γ∗ ◦ f∗ : H∗
log,c(Xt̄, Q�)) = degγ∗

f [Γ̃](0.7)
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