Introduction

Goal: Define the characteristic cycle of a smooth ℓ -adic sheaf on a smooth variety in positive characteristic ramified along boundary as a cycle in the cotangent bundle of the variety and derive several consequences of the construction.

(Non-logarithmic version of an earlier result.)

Motivations:

• Analogy between the irregularity of \mathcal{D} -modules on a variety in characteristic 0 and the wild ramification of ℓ -adic sheaves on a variety in characteristic p > 0.

• Filtration by ramification groups of the absolute Galois group of a local field with not necessarily perfect residue field.

• (Mysterious) Appearance of differential forms in ramification theory.

Consequences:

- Compatibility with the pull-back by non-characteristic morphism.
- Characterization of the support of the characteristic cycle by cutting by curves.
- Local acyclicity for non-characteristic morphism.

• Description of the graded pieces of the filtration by ramification groups in terms of differential forms.

• Computing the characteristic class and the Euler number of an ℓ -adic sheaf.

Known results:

- Approach by Deligne using jet bundles.
- Rank 1 case by Kato.
- Logarithmic version by S. and Abbes-S.
- Characteristic class by Illusie and Abbes-S.

New aspects:

- Tangent bundle suffices.
- Localization to allow denominators in slope.

Main machinary to link ramification and the cotangent bundle:

• An additive structure on the boundary of a dilatation of the self product induced by an obvious groupoid structure.

1. Characteristic cycle

Notation:

k: a perfect field of characteristic p > 0.

X: a smooth scheme of dimension d over k.

D: a divisor of X with simple normal crossings. D_1, \ldots, D_h : irreducible components.

U = X - D: the complement.

 T^*X : the cotangent bundle.

 Λ : a local ring over $\mathbf{Z}[\frac{1}{p}, \zeta_p]$.

 \mathcal{F} : a locally constant constructible sheaf of free Λ -modules on U.

Assumptions:

• (simplifying) The ramification of \mathcal{F} along D is *isoclinic* of slope $R = r_1 D_1 + \cdots + r_h D_h$ where $r_i > 1$ are rational numbers (in general $r_i \ge 1$). (*isoclinic*: there is a *unique* jump on the representation of the Galois group of a local field associated to the sheaf.)

 $(R = D: \mathcal{F} \text{ is tamely ramified along } D.)$

• (serious) The ramification of \mathcal{F} along D is *non-degenerate* at multiplicity R.

Satisfied on a dense open subscheme such that the complement has codimension ≥ 2 . Main construction: We define

Char
$$\mathcal{F} \in Z_d(T^*X)_{\mathbf{Z}[\frac{1}{d}]}$$

It is a linear combination of positive rational coefficients of the classes of sub line bundles defined over finite étale coverings of finite radicial coverings of D + rank \mathcal{F} -times the class of the 0-section T_X^*X .

If X is a curve and $D = \{x\}$, Char $\mathcal{F} = \operatorname{rank} \mathcal{F} \cdot [T_X^*X] + \dim \operatorname{tot}_x \mathcal{F} \cdot [T_D^*X]$. dim $\operatorname{tot}_x \mathcal{F} = \operatorname{rank} \mathcal{F} + \operatorname{Sw}_x \mathcal{F}$.

Example: Artin-Schreier sheaf on $U = \text{Spec } k[x^{\pm 1}, y] \subset X = \text{Spec } k[x, y].$

(1) $t^p - t = 1/x^n \ (p \nmid n)$. Char $\mathcal{F} = [T_X^*X] + (n+1) \cdot [T_D^*X]$.

(2) $t^p - t = y/x^n$ $(p \mid n)$. Char $\mathcal{F} = [T_X^*X] + n \cdot [\text{line bundle generated by } dy \text{ over } D].$ **Pull-back**:

 $f: X' \to X$: morphism of smooth schemes such that $U' = f^{-1}(U)$ is the complement of a divisor $D' \subset X'$ with simple normal crossings.

 $f: X' \to X$ is *non-characteristic* with respect to the ramification of \mathcal{F} along D: The intersection of the inverse image of Char \mathcal{F} by $T^*X \times_X X' \to T^*X$ and $\operatorname{Ker}(T^*X \times_X X' \to T^*X')$ is contained in the zero-section.

(*non-characteristic*: generic with respect to the intersection with the characteristic cycle. A standard definition in the theory of \mathcal{D} -modules.)

 f^* Char \mathcal{F} : If $f: X' \to X$ is *non-characteristic* with respect to the ramification of \mathcal{F} along D, define f^* Char \mathcal{F} to be the push-forward of the pull-back by $T^*X \leftarrow T^*X \times_X X' \to T^*X'$. A cycle on T^*X' of dimension dim X'

Proposition 1 If $f: X' \to X$ is non-characteristic with respect to the ramification of \mathcal{F} along D, we have

Char
$$f^* \mathcal{F} = f^*$$
Char \mathcal{F} .

Cutting by curves:

 $DT(\mathcal{F}) := \operatorname{rank} \mathcal{F} \cdot R.$

C: curve on X meeting components of D transversally at x.

Proposition 2

dim
$$\operatorname{tot}_x \mathcal{F}|_C \leq (C, DT(\mathcal{F}))_x$$
.

= is equivalent to that the immersion $C \rightarrow X$ is non-characteristic.

 $\Sigma \subset TX$: union of hyperplane bundles annihilated by non-vanishing sections of Char \mathcal{F} . = is further equivalent to that $T_x C \subset T_x X$ is not in Σ .

Local acyclicity:

smooth morphism $f: X \to Y$ is *non-characteristic* with respect to the ramification of \mathcal{F} along D: D has simple normal crossings relatively to Y and for every closed point $y \in Y$, the immersion $X_y \to X$ of the fiber is non-characteristic with respect to the ramification of \mathcal{F} along D:

Proposition 3 If $f: X \to Y$ is non-characteristic with respect to the ramification of \mathcal{F} along D and if f is of relative dimension 1, $j_{!}\mathcal{F}$ is universally locally acyclic.

 $j: U = X - D \rightarrow X$: open immersion.

locally acyclic: $H^*(X_{\bar{x}}, j_!\mathcal{F}) \to H^*(X_{\bar{x}} \times_{Y_{f(\bar{x})}} \bar{t}, j_!\mathcal{F})$ is an isomorphism for every geometric point $\bar{x} \to X$ and every generalization $\bar{t} \to Y$ of the composition $\bar{x} \to X \to Y$. **Pamification groups:** D; irreducible ξ ; generic point of D, $K = \operatorname{Frac}(\hat{O}_{rec})$; local field

Ramification groups: *D*: irreducible. ξ : generic point of *D*. $K = \operatorname{Frac}\mathcal{O}_{X,\xi}$: local field at ξ . complete dvf with residue field $\kappa(\xi) =$ function field *F* of *D*.

 $G_K = \text{Gal}(K^{\text{sep}}/K)$: absolute Galois group of K. G_K^r : filtration by ramification groups defined by Abbes-S. V: representation of G_K defined by \mathcal{F} . R = rD.

 $G_K^{r+} = \bigcup_{s>r} G_K^s$ acts trivially on V. Induced action of $\operatorname{Gr}^r G_K = G_K^r / G_K^{r+}$.

Proposition 4 $\operatorname{Gr}^r G_K$ is a pro-finite abelian group killed by p. There is a canonical injection

$$\operatorname{Hom}_{\mathbf{F}_p}(\operatorname{Gr}^r G_K, \mathbf{F}_p) \to \operatorname{Hom}_{\bar{F}}(\mathfrak{m}^r_{K^{\operatorname{sep}}}/\mathfrak{m}^{r+}_{K^{\operatorname{sep}}}, \Omega^1_{X/k, \xi} \otimes \bar{F}).$$

 $\mathfrak{m}_{K^{\text{sep}}}^{r} = \{a \in K^{\text{sep}} \mid \text{ord}_{K} a \geq r\}, \mathfrak{m}_{K^{\text{sep}}}^{r+} = \{a \in K^{\text{sep}} \mid \text{ord}_{K} a > r\}.$ Characteristic class and Euler number:

Characteristic class $C(j_!\mathcal{F}) \in H^{2d}(X, j_!\Lambda(d))$. If X is proper, Tr $C(j_!\mathcal{F}) = \chi_c(U_{\bar{k}}, \mathcal{F}) = \sum_{i=0}^{2d} (-1)^i \operatorname{rank} H^i_c(U_{\bar{k}}, \mathcal{F})$.

Proposition 5

$$[\text{Char }\mathcal{F}] = C(j_!\mathcal{F}) \in H^{2d}(X, j_!\Lambda(d)).$$

[Char \mathcal{F}]: the cohomological cycle class.

2. Additive structure (Definition of the characteristic cycle)

Assumption • (simplifying) The coefficients $r_i > 1$ are integers (in general rational numbers).

 $P_n = X^{n+1}$. $P_n^{(R)}$: Blow up $P_n = X^{n+1}$ at $R \subset X \subset X^{n+1}$ embedded by the diagonal. Then, remove the proper transforms of the inverse images of $D \subset X$ by the n+1 projections $X^{n+1} \to X$.

 P_n have a natural multiplicative structure: $P_n \times_X P_m \to P_{n+m}$. $P_n^{(R)}$ inherit it and have $P_n^{(R)} \times_X P_m^{(R)} \to P_{n+m}^{(R)}$. (groupoid)

 $T_n^{(R)} = P_n^{(R)} \times_X D$ have an additive structure. $T_n^{(R)} \times_D T_m^{(R)} \to T_{n+m}^{(R)}$. (commutative group) Canonical isomorphism $T^{(R)} = T_1^{(R)} = TX(-R) \times_X D$.

 $V \rightarrow U = X - D$: finite étale *G*-torsor.

 $Q_n^{(R)}$: normalization.

 $W_n^{(R)} \subset Q_n^{(R)}$: the largest open subschemes étale over $P_n^{(R)}$.

 $V^{n+1}/\Delta G$ have a multiplicative structure.

Definition 6 The ramification of V over U along D is bounded by R+ if the image of the canonical map $X = Q_0^{(R)} \to Q_1^{(R)}$ is in $W_1^{(R)}$.

If bounded by R+, then $W_n^{(R)}$ inherit a multiplicative structure.

Definition 6 is an obvious necessary condition (the existence of unit).

It is in fact a sufficient condition.

Cartesian diagram

$$\begin{array}{cccc} E_n^{(R)} & \stackrel{\subset}{\longrightarrow} & W_n^{(R)} \\ \downarrow & & \downarrow \\ T_n^{(R)} & \stackrel{\subset}{\longrightarrow} & P_n^{(R)}. \end{array}$$

 $E^{(R)} = E_1^{(R)}$ is a smooth group scheme over D and $E^{(R)} \to T^{(R)} = TX(-R) \times_X D$ is an étale morphism of smooth group schemes over D.

 $E^{(R)0} \subset E^{(R)}$: open subgroup scheme such that for every point x of D, the fiber $E_x^{(R)0}$ is connected.

Definition 7 The ramification of V over U along D is non-degenerate at multiplicity R if $E^{(R)0} \to T^{(R)}$ is finite (and étale).

Finite: No splitting $E_x^{(R)} \to T_x^{(R)}$ for $x \in D$. Extension

$$0 \longrightarrow G^{(R)} \longrightarrow E^{(R)0} \longrightarrow T^{(R)} \longrightarrow 0$$

by a finite étale group scheme $G^{(R)} = \operatorname{Ker}(E^{(R)0} \to T^{(R)})$ of \mathbf{F}_p -vector spaces over D.

Classification of extensions of a vector bundle by a finite étale group scheme of \mathbf{F}_{p} -vector spaces:

(Characteristic form) $G^{(R)^{\vee}} \longrightarrow T^{(R)^{\vee}} = T^*X(R) \times_X D$

injection defined over a radicial covering of D.

Abelian and logarithmic setting: refined Swan conductor defined by Kato.

Character of $G^{(R)}$ defines a sub line bundle of T^*X defined over the pull-back of a finite étale scheme $G^{(R)^{\vee}} - D$ to a radicial covering of D.

Definition 8 Characteristic cycle.

Char
$$\mathcal{F} = \operatorname{rank} \mathcal{F} \cdot [T_X^* X] + \sum_i r_i \cdot \operatorname{rank} \cdot [L(-R)|_{G^{(R)^{\vee}} \times_D D_i} - D_i]$$

where the pull-back to $G^{(R)^{\vee}} \times_D D_i - D_i$ of the line bundle L(-R) is regarded as a cycle of the cotangent bundle T^*X by the map induced by the characteristic form.

(rank is a locally constant function on $G^{(R)^{\vee}} \times_D D_i - D_i$.)

Rational coefficients $M = m_1 D_1 + \cdots + m_h D_h$: $m_i \ge 1$ and $m_i r_i$ integers.

 $P_n^{(D,M)} \to P_n(D)$: log smooth defined by $t_i = u_i s_i^{m_i}, u_i$ invertible.

 $P_n^{(D,M)}$ is the log product $(P_n(D) \times \mathbf{A}^h) \times_{[\mathbf{N}^h + \mathbf{N}^h]} [\mathbf{N}^h]$ with respect to the surjection $\mathrm{id} + (m_i) \colon \mathbf{N}^h + \mathbf{N}^h \to \mathbf{N}^h$.

 $P_n^{(R,M)} \to P_n^{(D,M)}$: Blow-up $P_n^{(D,M)}$ at the inverse image of R-D by $P_0^{(D,M)} \to X = P_0$ embedded by the map $P_0^{(D,M)} \to P_n^{(D,M)}$ induced by the diagonal map $X = P_0 \to X^{n+1} = P_n$. Then, remove the proper transform of the inverse image of D by $P_n^{(D,M)} \to P_n^{(D)} \to X$.