Characteristic cycle and singular support of an etale sheaf

X smooth /& perfect char \(p > 0 \)

\(K \) constructible complex of \(\Lambda \)-modules, for \(\text{Xet } \Lambda \text{ for } k \neq p \)

Goal. Define \(\text{Ch}_{\text{et}} X \) as a cycle on the cotangent bundle \(T^*X \)

Prove. Index formula for \(\text{Enri-Poincare} \text{ char.} \)

Milnor formula for vanishing cycles.

Goal has been attained for

- Tameley ramified case
- Curves
- Surfaces
- Higher dimension?

First step. Define singular support

- Conic closed subset of \(T^*X \)
- Underlying set of \(\text{Ch}_{\text{et}} X \)

Satisfying conditions \((SS!) \) \& \((SS4)\)

Thm 1. Assume \(S \subset T^*X \) satisfies \((SS4)\).

Then there exists a unique \(\text{Ch}_{\text{et}} X \) supported on \(S \) satisfying the Milnor formula. If \(X \) is proper, it also satisfies the index formula.

2. If \(S \) satisfies \((SS4)\), it also satisfies \((SS!)\).

Conversely, if \(S \cap (T^*X) \) satisfies \((SS!)\), it satisfies \((SS4)\).

This means that the goal will be attained if one can construct \(S \) satisfying \((SS!)\).

Ramification implies construction of \(S \) for surfaces.
1. Classical cases

2. Milnor formula.

3. Conditions (SS!) & (SS4)

4. Points i. Proof:

1. $X \supset U = X - D$, $j : U \subset X$. $K = j^! \mathcal{F} F \hat{\otimes} c\mathcal{O}_U$

 - tamely ramified along $D = UD$; simple n.c.d.

 $\text{Char } K = (-1)^d \text{rk } \sum \frac{[T^k_x X]}{I} \text{ canonical bundle}$

 - curve

 $\text{Char } K = \left(\inf \sum \dim_{\text{tot}} (f_\ast \mathcal{F}) \cdot [T^k_x X] \right)_{X \in \mathcal{D}} \text{ O-section fiber}$

2. $u \in U \to X \ (f \ast f =) \text{ df section of } T^* X \text{ on } U$

 flat if isolated chart, $\text{df}(U) \cap S$ isolated.

 C smooth curve

 $- \dim \text{tot } \phi_u (\mathcal{F}, f) = (\text{Char } K, \text{ df })_{T^* C}$

 space of var. cycles; intersection number

3. $S \subset T^* X$ conic closed div.

 non characteristic morphism (generalization of smooth)

 $f : W \to X$, $g : X \to Y$

 SS! / SS4

 non char = good property for K

 g local acyclicity (smooth = loc. acyclic rel to n.c. shift)

 f can isom $f^! \mathcal{K} \otimes Rf^! \mathcal{A} \to RF^! \mathcal{K}$ is isom.

 \mathcal{J} is propagation for K.

 (Poincare duality for smooth morphism)
non characteristic.

\[f : W \to X, \quad d = \dim X, \quad b = \dim W \]

(1) \(f^* S = W \times_X S \) is finite over \(T^* W \) w.r.t.

canonical morphism \(W \times X \times T^* X \to T^* W \)

(2) Any cohomology of \(f^* S \) are of \(\dim b \).

\[g : X \to Y \quad \text{flat,} \quad d = \dim X, \quad c = \dim Y \]

(1) inverse image of \(S \) by \(X \times_T Y \to TX \)

is a subset of the \(\mathcal{O} \)-section

(2) \(\forall y \in Y \), any cohomology of \(S \times_Y y \) is of \(\dim d - c \).

4.2. \[g : X \to Y \quad \text{(smooth,)} \]

\[i : Y \hookrightarrow Y \]

\[i^* Y \]

- \(i \) non-chaotic \(\iff \) \(g \) non-chaotic on a \(\text{Whb} \) of \(W \).

- \(i \) propagating \(\iff \) \(g \) loc. acyclic

\[\Rightarrow SGA 4 \cdot \frac{1}{2} \cdot \text{App à Th. finitude (without smoothness)} \]

\[\Rightarrow \text{Reduction to \(Y \)} \text{curve,} \quad \mathcal{P} = \bigotimes \zeta^* \mathcal{R} \]

1. \(X \in \mathcal{P} \).

local \(\mathcal{R} \)ech transform.

- Vanishing cycles over general base scheme

- \((\text{semi}) \) continuity of Swan conductor

\[f : W \to X \quad \text{non-chaotic} \Rightarrow \text{Ch} \cdot f^* \mathcal{K} = (-1)^{d-b} f^! \text{Ch} \cdot \mathcal{K} \]

- \(f \) immersion, induction on codim.

\[\text{codim} = 1 \quad \text{reduction to } d = 2, \quad \text{global argument} \]

- Index formula: induction on \(\text{dim} \) using G-O-S