Local Fourier transform and epsilon factors

joint work with Ahmed Abbes

July 3, 2008, 17:00-18:00, at the Univ. of Tokyo

Abstract

The local epsilon factors appear in the constant term of the functional equation of the L-functions. Laumon proved a formula expressing the local epsilon factor using a local variant of ℓ-adic Fourier transform by a global and arithmetic method and deduced a product formula for the constant term. We will discuss a local and geometric method to prove Laumon's formula, under a certain assumption.

Plan

1. Laumon's formula.
2. local Fourier transform.
3. Witt vectors and Ramification.
4. blow-up.

1 Laumon's formula.

ℓ-adic Fourier transform: k a field of characteristic p, later we will assume $p>2$:
$\left(\ell\right.$-adic sheaf on $\left.\mathbf{A}_{k}^{1}\right) \longrightarrow\left(\ell\right.$-adic sheaf on $\left.\mathbf{A}_{k}^{1}\right)$.
Analogue of $\int_{\mathbb{R}} f(x) \psi(x y) d x$. Function-sheaf dictionary.
local version: K, K^{\vee} local fields of characteristic $p>0, G_{K}=\operatorname{Gal}(\bar{K} / K), G_{K^{\vee}}=$ $\operatorname{Gal}\left(\bar{K}^{\vee} / K^{\vee}\right)$:
(ℓ-adic representations of $\left.G_{K}\right) \longrightarrow\left(\ell\right.$-adic representations of $\left.G_{K^{\vee}}\right)$.
L-function: $k=\mathbb{F}_{q}$ finite field. C curve over $k . \mathcal{F} \ell$-adic sheaf on C.

$$
L(\mathcal{F}, t)=\prod_{x \in C} \operatorname{det}\left(1-\operatorname{Fr}_{x} t: \mathcal{F}_{\bar{x}}\right)^{-1} \in \overline{\mathbb{Q}_{\ell}}(t) .
$$

Functional equation and the product formula:

$$
L(\mathcal{F}, t)=\varepsilon(\mathcal{F}) t^{-\chi\left(C_{\bar{k}}, \mathcal{F}\right)} L\left(\mathcal{F}^{*},(q t)^{-1}\right) .
$$

$$
\varepsilon(\mathcal{F})=\prod_{x \in C} \varepsilon_{x}\left(\mathcal{F}_{x}\right)
$$

The local epsilon factors $\varepsilon_{x}\left(\mathcal{F}_{x}\right)$ play an important role e.g. in the local Langlands correspondence.

Laumon's formula.

$$
\begin{equation*}
\operatorname{det}\left(-\operatorname{Fr}: F_{\psi}(\mathcal{F})\right)=\epsilon_{x}\left(\mathcal{F}_{x}\right) \tag{1.1}
\end{equation*}
$$

Goal: Reprove Laumon's formula, under a certain assumption, by a local and geometric method, using a new construction from ramification theory.

2 local Fourier transform

$k=\mathbb{F}_{q}$.
\mathbf{P}_{k}^{1} projective line, x inhomogeneous coordinate. T completion at $0 . K$ the fraction field of \mathcal{O}_{T}.
$\mathbf{P}_{k}^{1 \vee}$ the dual projective line, x^{\vee} inhomogeneous coordinate. T^{\vee} completion at ∞. K^{\vee} the fraction field of $\mathcal{O}_{T^{\vee}}$.
$V \ell$-adic representation of the absolute Galois group G_{K}.
$\mathcal{F}_{!}$on $T^{e t}$: zero-extension of the ℓ-adic sheaf corresponding to V.
$\overline{\mathcal{L}}_{\psi_{0}}(x y)$ on $\mathbf{P}^{1} \times \mathbf{P}^{1 \vee}$: zero extension of the Artin-Schreier sheaf on $\mathbf{A}^{1} \times \mathbf{A}^{1 \vee} \subset$ $\mathbf{P}^{1} \times \mathbf{P}^{1 \vee}$ defined by the equation $X^{p}-X=x y$ and an additive character $\psi_{0}: \mathbb{F}_{p} \rightarrow \overline{\mathbb{Q}}^{\times}$.

Local Fourier transform:

$$
F_{\psi_{0}}\left(\mathcal{F}_{!}\right)=\psi^{1}\left(\operatorname{pr}_{1}^{*} \mathcal{F}_{!} \otimes \mathcal{L}_{\psi_{0}}(x y), \operatorname{pr}_{2}\right)
$$

The space of nearby cycles with respect to the second projection: ℓ-adic representation of $G_{K^{\vee}}$.

We consider the case where $V=\operatorname{Ind}_{G_{L}}^{G_{K}} L_{\chi}$ is monomial.
L : a finite separable extension of $K . \chi: G_{L} \rightarrow \overline{\mathbb{Q}}^{\times}$a character.
More precise goal: We assume χ is wildly ramified. We put $S=\operatorname{Spec} \mathcal{O}_{L}$ and let $f: S \rightarrow T$ be the map defined by the inclusion $K \subset L$. First, we define a map $g: S \rightarrow T^{\vee}$ and construct a diagram

Then, we compute the pull-back

$$
g^{*} F_{\psi_{0}}\left(\mathcal{F}_{!}\right)=\psi^{1}\left(\operatorname{pr}_{1}\left(\mathcal{G}_{\chi}\right)!\otimes \mathcal{L}_{\psi_{0}}(x y), \operatorname{pr}_{2}\right)
$$

and prove the following.
Theorem 1 There exists an isomorphism

$$
\begin{equation*}
F_{\psi_{0}}(\mathcal{F}) \rightarrow g_{*}\left(\mathcal{G}_{\chi} \otimes \mathcal{L}_{\psi_{0}}\left(f^{*} x g^{*} y\right) \otimes \mathcal{K}\left(\frac{1}{2} \frac{f^{*} d x}{g^{*} d y}\right) \otimes \mathcal{Q}\right) \tag{2.1}
\end{equation*}
$$

under a certain assumption formulated in the next section.
Here the Kummer sheaf $\mathcal{K}\left(\frac{1}{2} \frac{f^{*} d x}{g^{*} d y}\right)$ is defined by the square root of $\frac{1}{2} \frac{f^{*} d x}{g^{*} d y} \in L^{\times}$and $\mathcal{Q}=H_{c}^{1}\left(\mathbf{A}^{1}, \mathcal{K}(x) \otimes \mathcal{L}_{\psi_{0}}(x)\right)$ is the rank 1 representation on which the Frobenius acts as the quadratic Gauss sum $-\sum_{x \in \mathbb{F}_{q}} \psi_{0}\left(\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}} x^{2}\right)$.

Some partial results have been studied by Fu Lei.
We deduce Laumon's formula (1.1) from the isomorphism (2.1) in Theorem 1. The key ingredients are:

Explicit and standard computation of the local epsilon factors.
Explicit reciprocity law for Artin-Schreier-Witt theory.
Induction formula for the local epsilon factors.

3 Witt vectors and Ramification

Decompose the character $\chi=\chi_{t} \cdot \chi_{w}$ where χ_{t} is tamely ramified and χ_{w} is defined by a Witt vector $a=\left(a_{0}, \ldots, a_{m}\right) \in W_{m+1}(L)$ via the Artin-Schreier-Witt theory $W_{m+1}(L) \rightarrow H^{1}\left(L, \mathbb{Z} / p^{n+1} \mathbb{Z}\right)$ for a fixed embedding $\mathbb{Z} / p^{n+1} \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell} \times$. We assume that the Swan conductor $n=\operatorname{Sw} \chi=\operatorname{Sw} \chi_{w}>0$ and that $a \in \operatorname{Fil}^{n} W_{m+1}(L)$ namely

$$
p^{m-i} \operatorname{ord} a_{i} \leq-n \quad \text { for } i=0, \ldots, m
$$

We put

$$
F^{m} d a=\sum_{i=0}^{m} a^{p^{m-i}} d \log a_{i}=\alpha d \log t
$$

using a notation for the de Rham-Witt complexes. The assumption implies ord $\alpha=-n$.
We define $y \in L^{\times}$by

$$
F^{m} d a+c \cdot d b=0
$$

and put

$$
d=\operatorname{ord} \frac{d \log b}{d \log t}, \quad d^{\prime}=\operatorname{ord} \frac{d \log c}{d \log t} .
$$

We assume

$$
2 d+p d^{\prime} \leq(p-2) n
$$

The assumption means that the wild ramification of χ is deeper than those of f and g.

4 Blow-up

Define a map $g: S \rightarrow T^{\vee}$ by $c \in L^{\times}$and consider the diagram (2.1). For simplicity, we assume L is a tamely ramified and totally ramified extension of K with respect to g. Let $(S \times S)^{\prime}$ denote the blow up of $S \times S$ at the closed point s of the diagonal and $(S \times S)^{\sim} \subset(S \times S)^{\prime}$ denote the complement of the proper transforms of $S \times s$ and $s \times S$. Let $\gamma: S \rightarrow S \times T^{\vee}$ be the graph of g. We consider the diagram

Let $\Gamma \subset S \times T^{\vee}$ be the graph of $g: S \rightarrow T^{\vee}$ and $\Gamma_{S} \subset(S \times S)^{\sim}$ denote the proper transform of the inverse image $\Gamma \times_{T^{\vee}} S$. Then, by the assumption $d^{\prime}=0, \Gamma_{S}^{\widetilde{ }}$ is finite etale over S. By the dimension formula for the local Fourier transform, we have $\operatorname{dim} F_{\psi_{0}}\left(\mathcal{F}_{!}\right)=\operatorname{deg} g$. The cohomology sheaf ψ^{1} is supported on the closed fiber $\Gamma_{S}^{\sim} \times{ }_{S} s$.

Let $\delta^{\sim}: S \rightarrow(S \times S)^{\sim}$ be the \log diagonal map. We will define an isomorphism

$$
\begin{equation*}
\psi^{1}\left(\operatorname{pr}_{1}^{*} \mathcal{G}_{\chi} \otimes \mathcal{L}_{\psi_{0}}\left(b_{1} c_{2}\right)\right)_{\delta \sim(\bar{s})} \rightarrow \mathcal{G}_{\chi} \otimes \mathcal{L}_{\psi_{0}}(b c) \otimes \mathcal{K}\left(\frac{1}{2} \frac{d b}{d c}\right) \otimes \mathcal{Q} . \tag{4.1}
\end{equation*}
$$

This will imply the isomorphism (2.1). We put $\mathcal{H}=\mathcal{H o m}\left(\operatorname{pr}_{2}^{*} \mathcal{G}_{\chi}, \operatorname{pr}_{1}^{*} \mathcal{G}_{\chi}\right)$ on $\eta \times \eta \subset$ $S \times S$. Then the left hand side is isomorphic to

$$
\mathcal{G}_{\chi} \otimes \mathcal{L}_{\psi_{0}}\left(b_{2} c_{2}\right) \otimes \psi^{1}\left(\mathcal{H} \otimes \mathcal{L}_{\psi_{0}}\left(\left(b_{1}-b_{2}\right) c_{2}\right)\right)_{\delta \sim(\bar{s})}
$$

and the isomorphism (4.1) is reduced to

$$
\begin{equation*}
\psi^{1}\left(\mathcal{H} \otimes \mathcal{L}_{\psi_{0}}\left(\left(b_{1}-b_{2}\right) c_{2}\right)\right)_{\delta_{\sim}(\bar{s})} \rightarrow \mathcal{K}\left(\frac{1}{2} \frac{d b}{d c}\right) \otimes \mathcal{Q} \tag{4.2}
\end{equation*}
$$

According to the decomposition $\chi=\chi_{t} \cdot \chi_{w}$, we have $\mathcal{G}_{\chi}=\mathcal{G}_{t} \otimes \mathcal{G}_{w}$ and $\mathcal{H}_{\chi}=$ $\mathcal{H}_{t} \otimes \mathcal{H}_{w}$. Since \mathcal{H}_{t} is extended to a smooth sheaf on $(S \times S)^{\sim}$ and since the stalk $\mathcal{H}_{t, \delta \sim(s)}$ is trivial, we may assume $\chi=\chi_{w}$ is defined by a Witt vector a.

We define an isomorphism (4.2) assuming $n=2 r$ is even. We blow-up r-times the closed point $s \in S \subset(S \times S)^{\sim}$ in the \log diagonal to define $(S \times S)^{(r)} \subset(S \times$ $S)^{[r]} \rightarrow(S \times S)^{\sim}$. Then some elementary computation on Witt vectors shows that $\mathcal{H} \otimes \mathcal{L}_{\psi_{0}}\left(\left(b_{1}-b_{2}\right) c_{2}\right)$ is extended to a smooth sheaf on $(S \times S)^{(r)}$. Further, the restriction to the exceptional divisor $\Theta^{(r)} \subset(S \times S)^{(r)}$ is isomorphic to the Artin-Schreier sheaf $\mathcal{L}_{\psi_{0}}\left(\frac{1}{2} \beta w^{2}\right)$ where $\beta=t^{n} b^{\prime} c^{\prime}$. Thus the assertion follows from the isomorphism

$$
H_{c}^{1}\left(\mathbf{A}^{1}, \mathcal{L}_{\psi_{0}}\left(\frac{1}{2} \beta w^{2}\right)\right) \rightarrow \mathcal{K}\left(\frac{1}{2} \frac{d b}{d c}\right) \otimes \mathcal{Q}
$$

