Local Fourier transform and epsilon factors

joint work with AHMED ABBES

July 3, 2008, 17:00-18:00, at the Univ. of Tokyo

Abstract

The local epsilon factors appear in the constant term of the functional equation of the L-functions. Laumon proved a formula expressing the local epsilon factor using a local variant of ℓ -adic Fourier transform by a global and arithmetic method and deduced a product formula for the constant term. We will discuss a local and geometric method to prove Laumon's formula, under a certain assumption.

Plan

- 1. Laumon's formula.
- 2. local Fourier transform.
- 3. Witt vectors and Ramification.
- 4. blow-up.

1 Laumon's formula.

 ℓ -adic Fourier transform: k a field of characteristic p, later we will assume p > 2:

 $(\ell$ -adic sheaf on \mathbf{A}_k^1) \longrightarrow $(\ell$ -adic sheaf on \mathbf{A}_k^1).

Analogue of $\int_{\mathbb{R}} f(x)\psi(xy)dx$. Function-sheaf dictionary. local version: K, K^{\vee} local fields of characteristic $p > 0, G_K = \text{Gal}(\overline{K}/K), G_{K^{\vee}} =$

local version: K, K^{\vee} local fields of characteristic $p > 0, G_K = \text{Gal}(K/K), G_{K^{\vee}} = \text{Gal}(\overline{K^{\vee}}/K^{\vee})$:

 $(\ell$ -adic representations of G_K) \longrightarrow $(\ell$ -adic representations of $G_{K^{\vee}}$).

L-function: $k = \mathbb{F}_q$ finite field. *C* curve over *k*. \mathcal{F} ℓ -adic sheaf on *C*.

$$L(\mathcal{F}, t) = \prod_{x \in C} \det(1 - \operatorname{Fr}_x t : \mathcal{F}_{\bar{x}})^{-1} \in \overline{\mathbb{Q}_\ell}(t).$$

Functional equation and the product formula:

$$L(\mathcal{F},t) = \varepsilon(\mathcal{F})t^{-\chi(C_{\bar{k}},\mathcal{F})}L(\mathcal{F}^*,(qt)^{-1}).$$

$$\varepsilon(\mathcal{F}) = \prod_{x \in C} \varepsilon_x(\mathcal{F}_x)$$

The local epsilon factors $\varepsilon_x(\mathcal{F}_x)$ play an important role e.g. in the local Langlands correspondence.

Laumon's formula.

(1.1)
$$\det(-\operatorname{Fr}: F_{\psi}(\mathcal{F})) = \epsilon_x(\mathcal{F}_x)$$

Goal: Reprove Laumon's formula, under a certain assumption, by a *local* and *geometric* method, using a new construction from ramification theory.

2 local Fourier transform

 $k = \mathbb{F}_q.$

 \mathbf{P}_{k}^{1} projective line, x inhomogeneous coordinate. T completion at 0. K the fraction field of \mathcal{O}_T .

 $\mathbf{P}_k^{1\vee}$ the dual projective line, x^{\vee} inhomogeneous coordinate. T^{\vee} completion at ∞ . K^{\vee} the fraction field of $\mathcal{O}_{T^{\vee}}$.

 $V \ell$ -adic representation of the absolute Galois group G_K .

 $\mathcal{F}_!$ on T^{et} : zero-extension of the ℓ -adic sheaf corresponding to V. $\overline{\mathcal{L}}_{\psi_0}(xy)$ on $\mathbf{P}^1 \times \mathbf{P}^{1\vee}$: zero extension of the Artin-Schreier sheaf on $\mathbf{A}^1 \times \mathbf{A}^{1\vee} \subset$ $\mathbf{P}^1 \times \mathbf{P}^{1\vee}$ defined by the equation $X^p - X = xy$ and an additive character $\psi_0 : \mathbb{F}_p \to \overline{\mathbb{Q}_\ell}^{\times}$. Local Fourier transform:

$$F_{\psi_0}(\mathcal{F}_!) = \psi^1(\mathrm{pr}_1^*\mathcal{F}_! \otimes \mathcal{L}_{\psi_0}(xy), \mathrm{pr}_2).$$

The space of nearby cycles with respect to the second projection: ℓ -adic representation of $G_{K^{\vee}}$.

We consider the case where $V = \operatorname{Ind}_{G_L}^{G_K} L_{\chi}$ is monomial.

L: a finite separable extension of K. $\chi: G_L \to \overline{\mathbb{Q}_\ell}^{\times}$ a character.

More precise goal: We assume χ is wildly ramified. We put $S = \text{Spec } \mathcal{O}_L$ and let $f: S \to T$ be the map defined by the inclusion $K \subset L$. First, we define a map $g: S \to T^{\vee}$ and construct a diagram

 $F_{\psi_0}(\mathcal{F}_!)$

Then, we compute the pull-back

$$g^*F_{\psi_0}(\mathcal{F}_!) = \psi^1(\mathrm{pr}_1(\mathcal{G}_{\chi})_! \otimes \mathcal{L}_{\psi_0}(xy), \mathrm{pr}_2)$$

and prove the following.

Theorem 1 There exists an isomorphism

(2.1)
$$F_{\psi_0}(\mathcal{F}) \to g_*(\mathcal{G}_{\chi} \otimes \mathcal{L}_{\psi_0}(f^* x g^* y) \otimes \mathcal{K}(\frac{1}{2} \frac{f^* dx}{g^* dy}) \otimes \mathcal{Q})$$

under a certain assumption formulated in the next section.

Here the Kummer sheaf $\mathcal{K}(\frac{1}{2}\frac{f^*dx}{g^*dy})$ is defined by the square root of $\frac{1}{2}\frac{f^*dx}{g^*dy} \in L^{\times}$ and $\mathcal{Q} = H_c^1(\mathbf{A}^1, \mathcal{K}(x) \otimes \mathcal{L}_{\psi_0}(x))$ is the rank 1 representation on which the Frobenius acts as the quadratic Gauss sum $-\sum_{x \in \mathbb{F}_q} \psi_0(\operatorname{Tr}_{\mathbb{F}_q}/\mathbb{F}_p x^2)$.

Some partial results have been studied by Fu Lei.

We deduce Laumon's formula (1.1) from the isomorphism (2.1) in Theorem 1. The key ingredients are:

Explicit and standard computation of the local epsilon factors.

Explicit reciprocity law for Artin-Schreier-Witt theory.

Induction formula for the local epsilon factors.

3 Witt vectors and Ramification

Decompose the character $\chi = \chi_t \cdot \chi_w$ where χ_t is tamely ramified and χ_w is defined by a Witt vector $a = (a_0, \ldots, a_m) \in W_{m+1}(L)$ via the Artin-Schreier-Witt theory $W_{m+1}(L) \to H^1(L, \mathbb{Z}/p^{n+1}\mathbb{Z})$ for a fixed embedding $\mathbb{Z}/p^{n+1}\mathbb{Z} \to \overline{\mathbb{Q}_\ell}^{\times}$. We assume that the Swan conductor $n = \text{Sw } \chi = \text{Sw } \chi_w > 0$ and that $a \in \text{Fil}^n W_{m+1}(L)$ namely

$$p^{m-i}$$
 ord $a_i \leq -n$ for $i = 0, \dots, m$.

We put

$$F^{m}da = \sum_{i=0}^{m} a^{p^{m-i}} d\log a_{i} = \alpha d\log t$$

using a notation for the de Rham-Witt complexes. The assumption implies $\operatorname{ord} \alpha = -n$.

We define $y \in L^{\times}$ by

$$F^m da + c \cdot db = 0$$

and put

$$d = \operatorname{ord} \frac{d \log b}{d \log t}, \quad d' = \operatorname{ord} \frac{d \log c}{d \log t}$$

We assume

$$2d + pd' \le (p-2)n$$

The assumption means that the wild ramification of χ is deeper than those of f and g.

4 Blow-up

Define a map $g: S \to T^{\vee}$ by $c \in L^{\times}$ and consider the diagram (2.1). For simplicity, we assume L is a tamely ramified and totally ramified extension of K with respect to g. Let $(S \times S)'$ denote the blow up of $S \times S$ at the closed point s of the diagonal and $(S \times S)^{\sim} \subset (S \times S)'$ denote the complement of the proper transforms of $S \times s$ and $s \times S$. Let $\gamma: S \to S \times T^{\vee}$ be the graph of g. We consider the diagram

Let $\Gamma \subset S \times T^{\vee}$ be the graph of $g: S \to T^{\vee}$ and $\Gamma_S^{\sim} \subset (S \times S)^{\sim}$ denote the proper transform of the inverse image $\Gamma \times_{T^{\vee}} S$. Then, by the assumption d' = 0, Γ_S^{\sim} is finite etale over S. By the dimension formula for the local Fourier transform, we have $\dim F_{\psi_0}(\mathcal{F}_!) = \deg g$. The cohomology sheaf ψ^1 is supported on the closed fiber $\Gamma_S^{\sim} \times_S s$.

Let $\delta^{\sim}: S \to (S \times S)^{\sim}$ be the log diagonal map. We will define an isomorphism

(4.1)
$$\psi^{1}(\mathrm{pr}_{1}^{*}\mathcal{G}_{\chi}\otimes\mathcal{L}_{\psi_{0}}(b_{1}c_{2}))_{\delta^{\sim}(\bar{s})}\to\mathcal{G}_{\chi}\otimes\mathcal{L}_{\psi_{0}}(bc)\otimes\mathcal{K}(\frac{1}{2}\frac{db}{dc})\otimes\mathcal{Q}$$

This will imply the isomorphism (2.1). We put $\mathcal{H} = \mathcal{H}om(\mathrm{pr}_2^*\mathcal{G}_{\chi}, \mathrm{pr}_1^*\mathcal{G}_{\chi})$ on $\eta \times \eta \subset S \times S$. Then the left hand side is isomorphic to

$$\mathcal{G}_{\chi}\otimes\mathcal{L}_{\psi_0}(b_2c_2)\otimes\psi^1(\mathcal{H}\otimes\mathcal{L}_{\psi_0}((b_1-b_2)c_2))_{\delta\sim(\bar{s})}$$

and the isomorphism (4.1) is reduced to

(4.2)
$$\psi^{1}(\mathcal{H} \otimes \mathcal{L}_{\psi_{0}}((b_{1}-b_{2})c_{2}))_{\delta^{\sim}(\bar{s})} \to \mathcal{K}(\frac{1}{2}\frac{db}{dc}) \otimes \mathcal{Q}.$$

According to the decomposition $\chi = \chi_t \cdot \chi_w$, we have $\mathcal{G}_{\chi} = \mathcal{G}_t \otimes \mathcal{G}_w$ and $\mathcal{H}_{\chi} = \mathcal{H}_t \otimes \mathcal{H}_w$. Since \mathcal{H}_t is extended to a smooth sheaf on $(S \times S)^{\sim}$ and since the stalk $\mathcal{H}_{t,\delta^{\sim}(s)}$ is trivial, we may assume $\chi = \chi_w$ is defined by a Witt vector a.

We define an isomorphism (4.2) assuming n = 2r is even. We blow-up *r*-times the closed point $s \in S \subset (S \times S)^{\sim}$ in the log diagonal to define $(S \times S)^{(r)} \subset (S \times S)^{[r]} \to (S \times S)^{\sim}$. Then some elementary computation on Witt vectors shows that $\mathcal{H} \otimes \mathcal{L}_{\psi_0}((b_1 - b_2)c_2)$ is extended to a smooth sheaf on $(S \times S)^{(r)}$. Further, the restriction to the exceptional divisor $\Theta^{(r)} \subset (S \times S)^{(r)}$ is isomorphic to the Artin-Schreier sheaf $\mathcal{L}_{\psi_0}(\frac{1}{2}\beta w^2)$ where $\beta = t^n b'c'$. Thus the assertion follows from the isomorphism

$$H^1_c(\mathbf{A}^1, \mathcal{L}_{\psi_0}(\frac{1}{2}\beta w^2)) \to \mathcal{K}(\frac{1}{2}\frac{db}{dc}) \otimes \mathcal{Q}.$$