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Introduction

A goal in number theory is to understand

— the finite extensions of Q, or equivalently,

— the absolute Galois group G� = Gal(Q/Q), or further equivalently,

— representations of G�.

Representations are classified by the degree. Representations of degree 1 are called
characters. By the theorem of Kronecker-Weber, a continuous character G� → C× is
a Dirichlet character

G� → Gal(Q(ζN)/Q)→ (Z/NZ)× → C×

for some N ≥ 1. Thus, there are too few continuous characters G� → C×. It is more
natural to consider �-adic characters for a prime �. �-adic cyclotomic character.

G� → Gal(Q(ζ�n , n ∈ N)/Q) = lim←− nGal(Q(ζ�n)/Q)→ lim←− n(Z/�nZ)× = Z×
� ⊂ Q×

� .

{�-adic character of G� potentially cristalline at �}
= {“geometric” �-adic character of G�}
= 〈Dirichlet characters, �-adic cyclotomic characters〉.

In the case where degree is 2, we expect to have (cf. [7])

{odd �-adic representation of G� of degree 2 potentially semi-stable at �}
= {odd “geometric” �-adic representation of G� of degree 2}
= { �-adic representation associated to modular form}.

In this course, we discuss on one direction ⊃ established by Shimura and Deligne
([14], [5]). The other direction ⊂ partly established by Wiles and others, which will
not be discussed here, has significant consequences including Fermat’s last theorem,
the modularity of elliptic curves, etc. ([2],[3]).
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1 Galois representations and modular forms

1.1 Modular forms

([14]) Let N ≥ 1 and k ≥ 2 be integers and ε : (Z/NZ)× → C× be a character. We will
define C-vector space Sk(N, ε) ⊂Mk(N, ε) of cusp forms and of modular forms of level
N , weight k and of character ε. We will see later that they are of finite dimension. For
ε = 1, we write Sk(N) ⊂Mk(N) for Sk(N, 1) ⊂Mk(N, 1).

A subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if there exists an integer
N ≥ 1 such that Γ ⊃ Γ(N) = Ker(SL2(Z) → SL2(Z/NZ)). In the following, we
mainly consider

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a ≡ 1, c ≡ 0 mod N

}
⊂ Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod N

}
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for N ≥ 1. We identify the quotient Γ0(N)/Γ1(N) with (Z/NZ)× by

(
a b
c d

)

→

d mod N . The indices are given by

[SL2(Z) : Γ0(N)] =
∏
p|N

(p + 1)pordp(N)−1 = N
∏
p|N

(
1 +

1

p

)
,

[SL2(Z) : Γ1(N)] =
∏
p|N

(p2 − 1)p2(ordp(N)−1) = N2
∏
p|N

(
1− 1

p2

)
.

The action of SL2(Z) on the Poincaré upper half plane H = {τ ∈ C|Im τ > 0}. For

γ =

(
a b
c d

)
∈ SL2(Z) and τ ∈ H , we put γ(τ) =

aτ + b

cτ + d
. For a holomorphic function

f on H , we define γ∗
kf by

γ∗
kf(τ) =

1

(cτ + d)k
f(γτ).

If k = 2, we have γ∗(fdτ) = γ∗
2(f)dτ .

Definition 1.1 Let Γ ⊃ Γ(N) be a congruence subgroup and k ≥ 2 be an integer. We
say that a holomorphic function f : H → C is a modular form (resp. a cusp form) of
weight k with respect to Γ, if the following conditions (1) and (2) are satisfied.

(1) γ∗
kf = f for all γ ∈ Γ.

(2) For each γ ∈ SL2(Z), γ∗
kf satisfies γ∗

kf(τ + N) = γ∗
kf(τ) and hence we have

a Fourier expansion γ∗
kf(τ) =

∑∞
n=−∞ a n

N
(γ∗

kf)qn
N where qN = exp(2πi τ

N
). Here, we

impose a n
N

(γ∗
kf) = 0 for n < 0 (resp. n ≤ 0) for every γ ∈ SL2(Z).

We put

Sk(Γ)� = {f |f is a cusp form of weight k w.r.t. Γ}
⊂ Mk(Γ)� = {f |f is a modular form of weight k w.r.t. Γ}

and define Sk(N) = Sk(Γ0(N)). The group Γ0(N) has a natural action on Sk(Γ1(N))
and the subgroup Γ1(N) acts trivially on it. Hence, the space Sk(Γ1(N)) has an action
of the quotient Γ0(N)/Γ1(N) = (Z/NZ)×. The action of d ∈ (Z/NZ)× on Sk(Γ1(N))
is denoted by 〈d〉 and is called the diamond operator. The space is decomposed by the
characters

Sk(Γ1(N)) =
⊕

ε:�/N�→�×
Sk(N, ε)

where Sk(N, ε) = {f ∈ Sk(Γ1(N))|〈d〉f = ε(d)f for all d ∈ (Z/NZ)×}. The fixed part
Sk(Γ1(N))Γ0(N) = Sk(N, 1) is equal to Sk(N) = Sk(Γ0(N)).
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1.2 Examples

([12]) Eisenstein series. k ≥ 4 even.

Gk(τ) =
∑

m,n∈�

′ 1

(mτ + n)k

is a modular form of weight k.

q-expansion. By differentiating the logarithms of sinπτ = πτ

∞∏
n=1

(
1− τ 2

n2

)
, one

obtains

−2πi

(
1

2
+

∞∑
n=1

qn

)
=

1

τ
+

∞∑
n=1

(
1

τ + n
+

1

τ − n

)
.

Applying q d
dq

= 1
2πi

d
dτ

k − 1-times, one gets

∞∑
n=1

nk−1qn =
(−1)k(k − 1)!

(2πi)k

∑
n∈�

1

(τ + n)k
.

For k ≥ 4 even, by putting σk−1(n) =
∑

d|n dk−1 and

Ek(q) = 1 +
2

ζ(1− k)

∞∑
n=1

σk−1(n)qn ∈ Q[[q]],

we obtain

(k − 1)!

(2πi)k
Gk(τ) =

(k − 1)!

(2πi)k
(2ζ(k) + (Gk(τ)− 2ζ(k)))

= ζ(1− k) + 2

∞∑
n=1

σk−1(n)qn = ζ(1− k)Ek(q).

Recall that

ζ(−1) = − 1

12
, ζ(−3) =

1

120
, ζ(−5) = − 1

252
, . . . ∈ Q.⊕∞

k=0 Mk(1)� = C[E4, E6].

∆(q) =
1

123
(E3

4 − E2
6) = q

∞∏
n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn

is a cusp form of weight 12, level 1.
⊕∞

k=0 Sk(1)� = C[E4, E6] ·∆.

f11(q) = q

∞∏
n=1

(1− qn)2(1− q11n)2

is a basis of S2(11)� .
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1.3 Hecke operators

([14]) The Hecke operator Tn is defined as an endomorphism of Sk(Γ1(N)). Here we
only consider the case n = p is a prime. The general case is discussed later.

Tpf(τ) =
1

p

p−1∑
i=0

f

(
τ + i

p

)
+

{
pk−1〈p〉f (τ) if p � N

0 if p|N.

If f(τ) =
∑

n an(f)qn, we have

Tpf(τ) =
∑
p|n

an(f)qn/p +

{
pk−1

∑
n an(〈p〉f )qpn if p � N

0 if p|N.

The Hecke operators on Sk(Γ1(N)) are commutative to each other and formally satisfy
the relation

∞∑
n=1

Tnn−s =
∏
p�N

(1− Tpp
−s + 〈p〉pk−1p−2s)−1 ×

∏
p|N

(1− Tpp
−s)−1.

f ∈ Sk(N, ε) is called a normalized eigenform if Tnf = λnf for all n ≥ 1 and a1 = 1.
Since a1(Tnf) = an(f), if f ∈ Sk(N, ε) is a normalized eigenform, we have λn = an.
For a normalized eigenform f =

∑
n anqn, the subfield Q(f) = Q(an, n ∈ N) ⊂ C is a

finite extension of Q, as we will see later.
Since S12(1) = C∆, S2(11) = Cf11, the cusp forms ∆ and f11 are normalized eigen-

forms.
For f =

∑
n anqn ∈ Sk(N), the L-series is defined as a Dirichlet series

L(f, s) =

∞∑
n=1

ann−s.

It converges absolutely on Re s >
k + 1

2
. If f =

∑
n anqn ∈ Sk(N, ε) is a normalized

eigen form, we have an Euler product

L(f, s) =
∏
p�N

(1− app
−s + ε(p)pk−1p−2s)−1 ×

∏
p|N

(1− app
−s)−1.

1.4 Galois representations

([13]) p prime. A choice of an embedding Q → Qp defines an embedding G�p =

Gal(Qp/Qp) → G� = Gal(Q/Q). The Galois group G�p thus regarded as a subgroup
of G� is called the decomposition group. It is well-defined upto conjugacy.

Qp ⊂ Qur
p ⊂ Qp defines a normal subgroup Ip = Gal(Qp/Qur

p ) ⊂ G�p called the
inertia subgroup. The quotient G�p /Ip = Gal(Qur

p /Qp) is canonically identified with
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G�p = Gal(Fp/Fp). The map Ẑ = lim−→ nZ/nZ → G�p defined by sending 1 to the

Frobenius substitution ϕp; ϕ(a) = ap for all a ∈ Fp is an isomorphism.
V �-adic representation of G�. Eλ a finite extension of Q�. � is a prime. V Eλ

vector space of finite dimension. G� → GLEλ
V continuous representation.

There exists an integer N ≥ 1 such that V is unramified at p � N�.
Unramified: restriction to Ip is trivial.
For p � N�, det(1− ϕpt : V ) ∈ Eλ[t] is well-defined.

Definition 1.2 A 2-dimensional �-adic representation V is said to be associated to
a normalized eigen cusp form f =

∑
n anqn ∈ Sk(N, ε) if, for every p � N�, V is

unramified at p and
Tr(ϕp : V ) = ap(f)

for an embedding Q(f)→ Eλ.

We may replace the condition by

det(1− ϕpt : V ) = 1− ap(f)t + ε(p)pk−1t2.

The goal of this course is to explain the geometric proof of the following theorem.

Theorem 1.3 Let N ≥ 1, k ≥ 2 be integers and ε : (Z/NZ)× → C× be a character.
Let f ∈ Sk(N, ε) be a normalized eigenform and λ|� be place of Q(f). Then, there
exists an �-adic representation Vf,λ associated to f .

A consequence of the geometric construction and the Weil conjecture.

Corollary 1.4 (Ramanujan’s conjecture)

τ(p) ≤ p
11
2 .

Why Frobenius’s are so important.

Theorem 1.5 (Cebotarev’s density theorem) Let L be a finite Galois extension
of Q and C ⊂ Gal(L/Q) be a conjugacy class. Then there exist infinitely many prime
p such that L is unramifed at p and that C is the class of ϕp.

A generalization of Dirichlet’s Theorem on Primes in Arithmetic Progressions.
Consequence: V1, V2 �-adic representations. If there exists an integer N ≥ 1 such

that
Tr(ϕp : V1) = Tr(ϕp : V2)

for every prime p � N�, the semi-simplifications V ss
1 and V ss

2 are isomorphic to each
other. In particular, the �-adic representation associated to f is unique upto isomor-
phism, since it is irreducible by a theorem of Ribet.
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2 Modular curves and modular forms

2.1 Elliptic curves

([15]) k field of characteristic �= 2, 3. An elliptic curve over k is the smooth compacti-
fication of an affine smooth curve defined by

y2 = x3 + ax + b

where a, b ∈ k satisfying 4a3 + 27b2 �= 0. Or equivalently,

y2 = 4x3 − g2x− g3

where g2, g3 ∈ k satisfying g3
2−27g2

3 �= 0. More precisely, E is the curve in P2
k defined by

the homogeneous equation Y 2Z = X3+aXZ2+bZ3. The point O = (0 : 1 : 0) ∈ E(k) is
called the 0-section. Precisely speaking, an elliptic curve is a pair (E, O) of a projective
smooth curve E of genus 1 and a k-rational point O. The embedding E → P2

k is
defined by the basis (x, y, 1) of Γ(E,OE(3O)). For an elliptic curve E defined by
y2 = 4x3 − g2x− g3, the j-invariant is defined by

j(E) = 123 g3
2

g3
2 − 27g2

3

.

S arbitrary base scheme. an elliptic curve over S is a pair (E, O) of a proper
smooth curve f : E → S of genus 1 and a section O : S → E. f∗OE = OS and
f∗Ω1

E/S = O∗Ω1
E/S = ωE is an invertible OS-module.

Addition. For a scheme X, the Picard group Pic(X) is the isomorphism class group
of invertible OX -modules. If X is a smooth proper curve over a field k, the Picard group
Pic(X) is equal to the divisor class group

Coker(div : k(X)× →
⊕

x:closed points of X

Z)

where for a non-zero rational function f ∈ k(X)× its divisor divf is (ordxf)x. The
degree map deg : Pic(X)→ Z is induced by the degree map

⊕
x:closed points of X Z→ Z,

whose x-component is the multiplication by [κ(x) : k].
Let E be an elliptic curve over a scheme S. For a scheme T over S, the degree map

deg : Pic(E ×S T )→ Z(T ) has a section Z(T )→ Pic(E ×S T ) defined by 1 
→ [O(O)].
For an invertible OE×ST -module L, its degree degL : T → Z is the locally constant
function defined by degL(t) = deg(L|E×T t). The pull-back 0∗ : Pic(E ×S T )→ Pic(T )
also has a section f ∗ : Pic(T )→ Pic(E ×S T ). Thus, we have a decomposition

Pic(E ×S T ) = Z(T )⊕ Pic(T )⊕ Pic0
E/S(T )

and a functor Pic0
E/S : (Schemes/S) → (Abelian groups) is defined. We define a

morphism of functors E → Pic0
E/S by sending P ∈ E(T ) to the projection of the class

[OET
(P )].
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Theorem 2.1 (Abel’s theorem) The morphism E → Pic0
E/S of functors is an iso-

morphism.

The inverse Pic0
E/S → E is defined as follows. For [L] ∈ Pic0

E/S(T ), the support of
the cokernel of the natural map f ∗

T fT∗(L(O))→ L(O) defines a section T → E ×S T .
Since Pic0

E/S is a sheaf of abelian groups, the isomorphism E → Pic0
E/S defines a

group structure on the scheme E over S. For a morphism f : E → E ′, the pull-back
map f ∗ : Pic0

E′/S → Pic0
E/S defines the dual f ∗ : E ′ → E. we have f ∗ ◦ f = [deg f ]E

and f ◦ f ∗ = [deg f ]E′.
For an elliptic curve E over a field k, the addition on E(k) is described as follows.

Let P, Q ∈ E(k). The line PQ meets E at the third point R′. The divisor [P ]+[Q]+[R′]
is linearly equivalent to the divisor [O] + [R] + [R′], where R is the opposite of R with
respect to the x-axis. Thus, we have [P ] + [Q] + [R′] = [O] + [R] + [R′] in Pic(E) and
([P ]− [O]) + ([Q]− [O]) = [R]− [O] in Pic0(E). Hence we have P + Q = R in E(k).

2.2 Elliptic curves over C

([15]) To give an elliptic curve over C is equivalent to give a complex torus of dimension
1, as follows.

Let E be an elliptic curve over C. Then, E(C) is a connected compact abelian
complex Lie group of dimension 1. Let Lie E be the tangent space of E(C) at the
origin. It is a C-vector space of dimension 1. The exponential map exp : Lie E → E(C)
is surjective and the kernel is a lattice of E(C) and is identified with the singular
homology H1(E(C), Z). A lattice L of a complex vector space V of finite dimension is
a free abelian subgroup generated by an R-basis.

Conversely, let L be a lattice of C. The ℘-function is defined by

x = ℘(z) =
1

z2
+
∑
ω∈L

′
(

1

(z − ω)2
− 1

ω2

)
.

Since

y =
d℘(z)

dz
= −2

∑
ω∈L

1

(z − ω)3
,

it satisfies the Weierstrass equation

y2 = 4x3 − g2x− g3

where g2 = 60
∑

ω∈L
′ 1
ω4 and g3 = 140

∑
ω∈L

′ 1
ω6 . If L = Z + Zτ for τ ∈ H , we have

g2 = 60G4(τ) = 60 · (2πi)4

3!

1

120
E4 =

(2πi)4

12
E4,

g3 = 140G6(τ) = 140 · (2πi)6

5!

(
− 1

252

)
E6 = −(2πi)6

63
E6
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and hence

g3
2 − 27g2

3 = (2πi)12 1

123
(E3

4 − E2
6) = (2πi)12∆ �= 0.

Thus the equation y2 = 4x3 − g2x − g3 defines an elliptic curve E over C. The map
C/L → E(C) defined by z 
→ (℘(z), ℘′(z)) is an isomorphism of compact Riemann
surfaces.

2.3 Modular curves over C

([14]) We put

R = {lattices in C}, R̃ = {(ω1, ω2) ∈ C×2|Imω1

ω2

> 0}.

The multiplication defines an action of C× on R and on R̃. The map H → R̃ : τ →
(τ, 1) induces a bijection H → C×\R̃. We consider the map R̃ → R sending (ω1, ω2)

to 〈ω1, ω2〉 and an action of SL2(Z) on R̃ defined by

(
a b
c d

)(
ω1

ω2

)
=

(
aω1 + bω2

cω1 + dω2

)
.

It induces a bijection
SL2(Z)\R̃ → R.

The map sending a lattice L to the isomorphism class of the elliptic curve C/L
defines bijections

SL2(Z)\H → (SL2(Z)×C×)\R̃ → C×\R
→ {isomorphism classes of elliptic curves over C}.

The quotient Y (1)(C) = SL2(Z)\H is called the modular curve of level 1. The map

j : SL2(Z)\H → C

defined by the j-invariant

j(τ) = 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
=

E3
4

∆

is an isomorphism of Riemann surfaces.
For an integer N ≥ 1, similarly the map sending (ω1, ω2) ∈ R̃ to the pair (E, P ) =(

C/〈ω1, ω2〉,
ω2

N

)
defines a bijection

Γ1(N)\H → (Γ1(N)× C×)\R̃

→
{

isom. classes of pairs (E, P ) of an elliptic curve
E over C and a point P ∈ E(C) of order N

}
.

Note that
cω1 + dω2

N
≡ ω2

N
mod 〈ω1, ω2〉 since c ≡ 0, d ≡ 1 mod N . The quotient

Γ1(N)\H is denoted by Y1(N)(C) and is called the modular curve of level Γ1(N).
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The diamond operators act on Y1(N)(C). For d ∈ (Z/NZ)×, the action of 〈d〉
is given by 〈d〉(E, P ) = (E, dP ). The quotient Γ0(N)\H = (Z/NZ)×\Y1(N)(C) is
denoted by Y0(N)(C) and is called the modular curve of level Γ0(N). We have a
natural bijection

Γ0(N)\H →
{

isom. class of a pair (E, C) of an elliptic curve E
over C and a cyclic subgroup C ⊂ E(C) of order N

}
.

We have finite flat maps Y1(N)→ Y0(N)→ Y (1) = A1 of open Riemann surfaces.
The degree of the maps are given by

[Y1(N) : Y0(N)] = 
(Z/NZ)×/{±1} =

{
ϕ(N)/2 if N ≥ 3

1 if N ≤ 2,

and [Y0(N) : Y (1)] = [SL2(Z) : Γ0(N)].
Let X1(N) and X0(N) be the compactifications of Y1(N) and Y0(N). The maps

Y1(N) → Y0(N) → Y (1) = A1 are uniquely extended to finite flat maps X1(N) →
X0(N)→ X(1) = P1 of compact Riemann surfaces or equivalently of projective smooth
curves over C.

We have S2(N) = Γ(X0(N), Ω1). Applying the Riemann-Hurwitz formula to the
map j : X0(N)→ X(1) = P1, we obtain the genus formula

g(X0(N)) = g0(N) = 1 +
1

12
[SL2(Z) : Γ0(N)]− 1

2
ϕ∞(N)− 1

3
ϕ6(N)− 1

4
ϕ4(N)

where

ϕ6(N) =

{
0 if 9|N or if ∃p|N, p ≡ −1 mod 3

2

{p|N : p ≡ 1 mod 3}

if otherwise,

ϕ4(N) =

{
0 if 4|N or if ∃p|N, p ≡ −1 mod 4

2

{p|N : p ≡ 1 mod 4}

if otherwise.

and ϕ∞(NM) = ϕ∞(N)ϕ∞(M) if (N, M) = 1 and, for a prime p and e > 0,

ϕ∞(pe) =

{
2p(e−1)/2 if e odd

(p + 1)pe/2−1 if e even.

g0(11) = 1 and hence X0(11) is an elliptic curve, defined by the equation y2 = 4x3−
124
3

x− 2501
27

, where ∆ =
(

124
3

)
− 27

(
2501
27

)2
= −115. We have S2(11) = Γ(X0(11), Ω1) =

Cdx
y

.

Universal elliptic curve. We consider the semi-direct product Γ1(N) � Z2 with

respect to the left action by tγ−1. We define an action of C× × Γ1(N) � Z2 on R̃ × C

10



by

c((ω1, ω2), z) = ((cω1, cω2), cz)

γ((ω1, ω2), z) = ((aω1 + bω2, cω1 + dω2), z)

(m, n)((ω1, ω2), z) = ((ω1, ω2), z + mω1 + nω2).

for c ∈ C×, γ =

(
a b
c d

)
∈ Γ1(N) and (m, n) ∈ Z2. The projection R̃ × C → R̃ is

compatible with C× × Γ1(N) � Z2 → C× × Γ1(N).
Assume N ≥ 4. By taking the quotient, we obtain

E1(N) = (Γ1(N) � Z2)\(H × C)→ Y1(N) = Γ1(N)\H.

The fiber at τ ∈ H is the elliptic curve C/Z + Zτ . It has the following modular
interpretation. For a holomorphic family E → S of elliptic curve together with a
section P : S → E of order N , there exists a unique morphism S → Y1(N) such that
(E, P ) is isomorphic to the pull-back of the universal elliptic curve E1(N) and the

section defined by z =
ω2

N
.

2.4 Modular curves and modular forms

Let N ≥ 4. Let ωY1(N) be the invertible sheaf 0∗ΩE1(N)/Y1(N) where 0 : Y1(N)→ E1(N)
is the 0-section of the universal elliptic curve. Then, we have

{f : H → C|f holomorphic and satisfies (1) in Definition 1.1} = Γ(Y1(N), ω⊗k).

By the isomorphism ω⊗2 → ΩY1(N) : dz⊗2 
→ dτ , the left hand side is identified with
Γ(Y1(N), ω⊗k−2 ⊗ ΩY1(N)).

Assume N ≥ 5. Then the universal elliptic curve E1(N) → Y1(N) is uniquely
extended to a smooth group scheme E1(N) → X1(N) whose fibers at cusps are Gm.
Let ωX1(N) = O∗ΩE1(N)/X1(N). Then we have ω⊗2 = Ω(log(cusps)) and

Mk(Γ1(N)) = Γ(X1(N), ω⊗k) ⊃ Sk(Γ1(N)) = Γ(X1(N), ω⊗k−2 ⊗ ΩX1(N)).

For N ≥ 5, there exists a constant C satisfying deg ω = C · [SL2(Z) : Γ1(N)]. The
isomorphism ω⊗2 → Ω1

X1(N)(log cusps) implies

2g1(N)− 2 +
1

2

∑
d|N

ϕ(
N

d
)ϕ(d) = 2C · [SL2(Z) : Γ1(N)].

In particular, for p ≥ 5, we have

2g1(p)− 2 + p− 1 = 2C · (p2 − 1).

11



Since g1(5) = 0, we have C = 1
24

and

dim S2(Γ1(N)) = g1(N) =


1 +

1

24
[SL2(Z) : Γ1(N)]− 1

4

∑
d|N

ϕ(
N

d
)ϕ(d) if N ≥ 5,

0 if N ≤ 4.

By Riemann-Roch, we have

dim Sk(Γ1(N)) = deg(ω⊗(k−2) ⊗ Ω1) + χ(X1(N),O) = (k − 2) deg ω + g1(N)− 1

=
k − 1

24
[SL2(Z) : Γ1(N)]− 1

4

∑
d|N

ϕ(
N

d
)ϕ(d)

for k ≥ 3, N ≥ 5.

2.5 Modular curves over Z[ 1
N ]

Let N ≥ 1 be an integer. We say a section P : T → E of an elliptic curve E → T is
exactly of order N , if NP = 0 and if Pt ∈ Et(t) is of order N for every point t ∈ T .
We define a functorM1(N) : (Scheme/Z[ 1

N
])→ (Sets) by

M1(N)(T ) =

{
isomorphism classes of pairs (E, P ) of an elliptic curve

E → T and a section P ∈ E(T ) exactly of order N

}
.

Theorem 2.2 For an integer N ≥ 4, the functorM1(N) is representable by a smooth
affine curve over Z[ 1

N
].

Namely, there exist a smooth affine curve Y1(N)�[ 1
N

] over Z[ 1
N

] and a pair (E, P )

of elliptic curves E → Y1(N)�[ 1
N

] and a section P : Y1(N)�[ 1
N

] → E exactly of order N
such that the map

HomScheme/�[ 1
N

](T, Y1(N)�[ 1
N

])→M1(N)(T )

sending f : T → Y1(N)�[ 1
N

] to the class of (f ∗E, f ∗P ) is a bijection for every scheme T

over Z[ 1
N

].
If N ≤ 3, the functor M1(N) is not representable because there exists a pair

(E, P ) ∈M1(N)(T ) with a non-trivial automorphism. More precisely, by étale descent,
there exist 2 distinct elements (E, P ), (E ′, P ′) ∈M1(N)(T ) whose pull-backs are equal
for some étale covering T ′ → T .

Proof of Theorem for N = 4. Let E → T be an elliptic curve over a scheme T
over Z[1

2
] and P be a section of exact order 4. We take a coordinate so that 2P =

(0, 0), P = (1, 1), 3P = (1,−1) and let dy2 = x3 + ax2 + bx+ c be the equation defining
E. Then the line y = x meets E at 2P and is tangent to E at P . Thus we have
x3 + (a− d)x2 + bx + c = x(x− 1)2. Namely, E is defined by dy2 = x3 + (d− 2)x2 + x.

Y1(4)�[ 1
4
] is given by SpecZ[

1

4
][d,

1

d(d− 4)
].

12



To prove the general case, we consider the following variant. For an elliptic curve
E and an integer r ≥ 1, let E[r] = Ker([r] : E → E) denote the kernel of the
multiplication by r. We define a functorM(r) : (Scheme/Z[1

r
])→ (Sets) by

M(r)(T ) =

{
isom. classes of pairs (E, (P, Q)) of an elliptic curve E → T
and P, Q ∈ E(T ) defining an isomorphism (Z/rZ)2 → E[r]

}
.

Theorem 2.3 For an integer r ≥ 3, the functor M(r) is representable by a smooth
affine curve Y (r)�[ 1

r
] over Z[1

r
].

Proof for r = 3. Y (3) = SpecZ[1
3
][µ, 1

µ3−1
]. E ⊂ P2 is defined by X3 + Y 3 + Z3 −

3µXY Z and O = (0, 1,−1), P = (0, 1,−ω2), Q = (1, 0,−1).
r = 4. Let E be the universal elliptic curve over Y1(4). Then, Y (4) is the open and

closed subscheme of E[4] defined by the condition that (P, Q) defines an isomorphism
(Z/4Z)2 → E[4].

If r is divisible by s = 3 or 4, one can construct Y (r)�[ 1
r
] as a finite étale scheme

over Y (s)�[ 1
r
]. In general, Y (r)�[ 1

r
] is obtained by patching the quotient Y (r)�[ 1

sr
] =

Y (sr)�[ 1
sr

]/Ker(GL2(Z/rsZ)→ GL2(Z/rZ)) for s = 3, 4.

Y (r)�[ 1
r
] for r = 1, 2 are also defined as the quotients. The j-invariant defines

an isomorphism Y (1) → A1
�. The Legendre curve y2 = x(x − 1)(x − λ) defines an

isomorphism SpecZ[1
2
][λ, 1

λ(λ−1)
]→ Y (2)�[ 1

2
].

By the Weil pairing recalled below, the scheme Y (r)�[ 1
r
] is naturally a scheme over

Z[1
r
, ζr]. For P, Q ∈ E[r](S) and L be an invertible OE-module corresponding to

P . Since [r]∗L = 0, a canonical isomorphism Q∗[r]∗L = O∗[r]∗L is defined. Since
[r](Q) = 0, we have another canonical isomorphism Q∗[r]∗L = 0∗L = O∗[r]∗L. By
comparing them, we obtain an invertible function (P, Q)N on S. Its N -th power is 1
and hence (P, Q)N ∈ µN .

Y1(N)�[ 1
N

] is constructed as the quotient

Y (N)�[ 1
N

]/

{(
a b
c d

)
∈ GL2(Z/NZ)

∣∣∣∣ a = 1, c = 0

}
.

Y1(N)�[ 1
N

] for N ≤ 3 are also defined as the quotients.

The Atkin-Lehner involution wN : Y1(N)�[ 1
N

,ζN ] → Y1(N)�[ 1
N

,ζN ] is defined by send-

ing (E, P ) to (E/〈P 〉, Image of Q) such that (P, Q)N = ζN .
The Q-vector space Sk(Γ1(N))� = Γ(X1(N)� , ω⊗k−2 ⊗ Ω1) gives a Q-structure of

the C-vector space Sk(Γ1(N))� = Γ(X1(N)� , ω⊗k−2 ⊗ Ω1).
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2.6 Hecke operators

For integers N, n ≥ 1, we define a functor T1(N, n)�[ 1
N

] : (Schemes/Z[ 1
N

])→ (Sets) by

T1(N, n)�[ 1
N

](T )

=


isom. class of a triple (E, P, C) of an elliptic curve E over T , a
section P : T → E exactly of order N and a subgroup scheme
C ⊂ E finite flat of degree n over T such that 〈P 〉 ∩ C = O


and a morphism s : T1(N, n)�[ 1

N
] →M1(N)�[ 1

N
] of functors sending (E, P, C) to (E, P ).

The functor T1(N, n)�[ 1
N

] is representable by a finite flat scheme T1(N, n)�[ 1
N

] over

Y1(N)�[ 1
N

], if N ≥ 4. It is uniquely extended to a finite flat map of proper normal

curves s : T 1(N, n)�[ 1
N

] → X1(N)�[ 1
N

].
For an elliptic curve E → T and a subgroup scheme C ⊂ E finite flat of degree

n, the quotient E ′ = E/C is defined and the induced map E → E ′ is finite flat of
degree n. The structure sheaf OE′ is the kernel of pr∗1 − µ∗ : OE → OE×T C where
pr1, µ : E ×T C → E denote the projection and the addition respectively. By this
construction, we may identify the set T1(N, n)�[ 1

N
](T ) with

isom. class of a pair (E → E ′, P ) of finite flat morphism
E → E ′ of elliptic curves over T of degree n and a section

P : T → E exactly of order N such that 〈P 〉 ∩Ker(E → E′) = O


.

We define a morphism t : T1(N, n)�[ 1
N

] →M1(N)�[ 1
N

] of functors sending (E → E ′, P )

to (E ′, Image of P ), It also induces a finite flat map of proper curves t : T 1(N, n)�[ 1
N

] →
X1(N)�[ 1

N
].

For an integer n ≥ 1, we define the Hecke operator Tn : Sk(Γ1(N)) → Sk(Γ1(N))
as s∗ ◦ t∗ where s, t : T 1(N, n)�[ 1

N
] → X1(N)�[ 1

N
] are the maps defined above. The

push-forward map s∗ is induced by the trace map. The group (Z/NZ)× has a natural
action on the functor M1(N). Hence it acts on Sk(Γ1(N)). For d ∈ (Z/NZ)×, the
action is denoted by 〈d〉 and called the diamond operator.

We define the Hecke algebra by

Tk(Γ1(N)) = Q[Tn, n ∈ N, 〈d〉, d ∈ (Z/NZ)×] ⊂ EndSk(Γ1(N)).

Proposition 2.4 The map

Sk(Γ1(N))� → Hom�(Tk(Γ1(N)), C) (1)

sending a cusp form f to the linear form T 
→ a1(Tf) is an isomorphism.

Proof. Suffices to show that the pairing (T, f) 
→ a1(Tf) is non-degenerate. If
f ∈ Sk(Γ1(N))� is in the kernel, an(f) = a1(Tnf) = 0 for all n and f =

∑
n an(f)qn = 0.

If T ∈ Tk(Γ1(N)) is in the kernel, Tf is in the kernel for all f ∈ Sk(Γ1(N))� since
a1(T

′Tf) = a1(TT ′f) = 0 for all T ′ ∈ Tk(Γ1(N)). Hence Tf = 0 and T = 0.
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Corollary 2.5 The isomorphism (1) induces a bijection of finite sets

{f ∈ Sk(Γ1(N))� |normalized eigenform} → Hom�-algebra(Tk(Γ1(N)), C) (2)

Proof. Let ϕ be the linear form corresponding to f . ϕ(1) = 1 is equivalent
to a1(f) = 1. If ϕ is a ring hom, we have an(Tf) = a1(TnTf) = ϕ(TnT ) =
ϕ(T )ϕ(Tn) = ϕ(T )a1(Tnf) = ϕ(T )an(f) for every n ≥ 1 and T ∈ Tk(Γ1(N)). Thus,
Tf =

∑
n an(Tf)qn =

∑
n ϕ(T )an(f)qn = ϕ(T )f and f is a normalized eigenform.

Conversely, if f is a normalized eigenform and Tf = λT f for each T ∈ Tk(Γ1(N)), we
have ϕ(T ) = a1(Tf) = a1(λT f) = λT a1(f) = λT . Thus ϕ is a ring homomorphism.

For a normalized eigenform f ∈ Sk(Γ1(N))� , the subfield Q(f) ⊂ C is the image
of the corresponding Q-algebra homomorphism Tk(Γ1(N)) → C and hence is a finite
extension of Q.

3 Construction of Galois representations: the case

k = 2

3.1 Galois representations and finite étale group schemes

For a field K, we have an equivalence of categories

(finite étale commutative group schemes over K)→ (finite GK-modules)

defined by A 
→ A(K). The inverse is given by M 
→ Spec(HomGK
(M, K).

In the case K = Q, it induces an equivalence

(finite étale commutative group schemes over Z[
1

N
])→ (

finite G�-modules
unramified at p � N

)

for N ≥ 1.

Lemma 3.1 Let p � N . The action of ϕp on A(Q) = A(Fp) is the same as that defined
by the geometric Frobenius endomorphism Fr : A�p → A�p .

To define an �-adic representation of G� unramified at p � N�, it suffices to con-
struct an inverse system of finite étale commutative group schemes over Z[ 1

N
] of Z/�nZ-

modules.

3.2 Jacobian of a curve and its Tate module

Consider the case g0(N) = 1, e.g. N = 11. Then, E = X0(N) is an elliptic curve and the
Tate module V�E = Q� ⊗ lim←− nE[�n](Q) defines a 2-dimensional �-adic representation.
To construct the Galois representation in the general case, we need to introduce the
Jacobian.
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Let X → S be a proper smooth curve with geometrically connected fibers of genus
g. For simplicity, we assume X → S has a section s : S → X. Similarly as in Section
1.2, we have a decomposition

Pic(X ×S T ) = Z(T )⊕ Pic(T )⊕ Pic0
X/S(T )

and a functor Pic0
X/S : (Schemes/S)→ (Abelian groups) is defined.

Theorem 3.2 The functor Pic0
X/S is representable by a proper smooth scheme J =

JacX/S with geometrically connected fibers of dimension g.

The proper group scheme (=abelian scheme) JacX/S is called the Jacobian of X. If
g = 1, Abel’s theorem says that the canonical map E → JacE/S is an isomorphism.

Let f : X → Y be a finite flat morphism of proper smooth curves. The pull-
back of invertible sheaves defines the pull-back map f ∗ : JacY/S → JacX/S. We also
have a push-forward map defined as follows. The norm map f∗ : f∗Gm,X → Gm,Y

defines a push-forward of Gm-torsors and a map Pic(X) → Pic(Y ), for a finite flat
map f : X → Y of schemes. They define a map of functors and hence a morphism
f∗ : JacX/S → JacY/S. The composition f∗ ◦ f ∗ is the multiplication by deg f .

If f : X → Y is a finite flat map of proper smooth curves over a field, then the
isomorphism Coker(div : k(X)× →

⊕
x Z) → Pic(X) has the following compatibility.

The pull-back f ∗ : Pic(Y ) → Pic(X) is compatible with the inclusion f ∗ : k(Y )× →
k(X)× and the map

⊕
y Z→

⊕
x Z sending the basis ey to

∑
x �→y e(x/y) ·ex. The push-

forward f∗ : Pic(X)→ Pic(Y ) is compatible with the norm map f∗ : k(X)× → k(Y )×

and the map
⊕

x Z→
⊕

y Z sending the basis ex to [κ(x) : κ(y)]ey for y = f(x).
Weil pairing. Let N ≥ 1 be an integer invertible on S. Then, a non-degenerate

pairing JX/S[N ] × JX/S[N ] → µN of finite étale groups schemes is defined as follows.
First, we recall that, for invertible OX -modules L andM, the pairing 〈L,M〉 is defined
as an invertible OS-module. It is characterized by the bilinearity and by 〈L,M〉 =
fD∗L|D if M = OX(D) for a divisor D ⊂ X finite flat over S. If L = f ∗L0, we have
〈L,M〉 = L⊗degM

0 .
If N [L] = 0 ∈ Pic0(X/S), we have L⊗N = f ∗L0 for some L0 ∈ Pic(S). Hence,

for M ∈ Pic(X) of degree 0, we have a trivialization 〈L,M〉⊗N = 〈L⊗N ,M〉 =
〈f ∗L0,M〉 = f ∗L⊗ degM

0 = OS. If N [M] = 0 ∈ Pic0(X/S), we have another trivializa-
tion 〈L,M〉⊗N = OS. By comparing them, we obtain an invertible function 〈L,M〉N
on S, whose N -th power turns out to be 1. Thus the Weil pairing 〈L,M〉N ∈ Γ(S, µN)
is defined. In the case X = E is an elliptic curve, this is the same as the Weil pairing
defined before.

Jacobian over C. Let X be a smooth proper curve over C, or equivalently a compact
Riemann surface. The canonical map

H1(X, Z)→ Hom(Γ(X, Ω), C)

is defined by sending γ to the linear form ω 
→
∫

γ
ω. It is injective and the image is a

lattice. A canonical map

Pic0(X) = JX(C)→ Hom(Γ(X, Ω), C)/Image H1(X, Z) (3)
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is defined by sending [P ] − [Q] to the class of the linear form ω 
→
∫ P

Q
ω. This is an

isomorphism of compact complex tori. Thus, in this case, the N -torsion part JacX/� [N ]
of the Jacobian is canonically identified with H1(X, Z)⊗ Z/NZ.

For a finite flat map f : X → Y of curves, the isomorphism (3) has the following
functoriality. The pull-back f ∗ : Pic0(Y ) → Pic0(X) is compatible with the dual of
the push-forward map f∗ : Γ(X, Ω) → Γ(Y, Ω) and the pull-back map H1(Y, Z) →
H1(X, Z). The push-forward f∗ : Pic0(X) → Pic0(Y ) is compatible with the dual of
the pull-back map f ∗ : Γ(Y, Ω) → Γ(X, Ω) and the push-forward map H1(X, Z) →
H1(Y, Z).

The isomorphism JacX/� [N ]→ H1(X, Z)⊗Z/NZ is compatible with the pull-back
and the push-forward for a finite flat morphism. By the isomorphism JacX/� [N ] →
H1(X, Z)⊗Z/NZ, the Weil pairing JacX/� [N ]×JacX/� [N ]→ µN is identified with the
pairing induced by the cap-product H1(X, Z)×H1(X, Z)→ Z.

The Tate module of Jacobian. Let X be a proper smooth curve over a field k with
geometrically connected fiber of genus g and � be a prime number invertible in k. We
put

V� JacX/k = Q� ⊗ lim←− nJacX/k[�
n](k̄) = Q� ⊗ lim←− nPic(Xk̄)[�

n].

Corollary 3.3 Let N ≥ 1 be an integer and X be a proper smooth curve over Z[ 1
N

] with
geometrically connected fibers of genus g. Then, V� JacX�/� is an �-adic representation
of G� of degree 2g unramified at p � N�.

Proof. The multiplication [�n] : JacX/�[ 1
N�

] → JacX/�[ 1
N�

] is finite étale. Hence

JacX/� [�n](Q) = JacX/� [�n](C) = H1(X, Z) ⊗ Z/�nZ is isomorphic to (Z/�nZ)2g as a

Z/�nZ-module and V� JacX�/� is isomorphic to H1(X, Z) ⊗ Q� � Q2g
� as a Q�-vector

space. Since JacX/�[ 1
N�

][�
n] is a finite étale scheme over Z[ 1

N�
], the �-adic representation

V� JacX�/� is unramified at p � N�.
Let f : X → X be an endomorphism of a proper smooth curve over a field k. Let

Γf , ∆ ⊂ X × X be the graphs of f and of the identity and let (Γf , ∆X)X×kX be the
intersection product. Then, for a prime number � invertible in k, the Lefschetz trace
formula gives us

(Γf , ∆X)X×kX = 1− Tr(f∗ : T�JX) + deg f.

Assume k = Fp and apply the Lefschetz trace formula to the iterates of the Frobe-
nius endmorphism F : X → X. Then we obtain

Card X(Fpn) = 1− Tr(F n
∗ : T�JX) + pn

and

Z(X, t) = exp

∞∑
n=1

CardX(Fpn)

n
tn =

det(1− F∗t : T�JX)

(1− t)(1− pt)
.

Thus, for a proper smooth curve X over Z[ 1
N

] and a prime p � N�, we have

det(1− ϕpt : T�JX) = Z(X ⊗�[ 1
N

] Fp, t)(1− t)(1− pt).
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Theorem 3.4 (Weil) Let α be an eigenvalue of ϕp on T�JX. Then, α is an algebraic
integer and its conjugates have complex absolute values

√
p.

3.3 Construction of Galois representations

Eichler-Shimura isomorphism

Proposition 3.5 The canonical map

H1(X1(N), Z)⊗�R→ Hom(S2(Γ1(N)), C) = Hom(Γ(X1(N), Ω), C)

is an isomorphism of T2(Γ1(N))�-modules.

Proof. The T2(Γ1(N))-module structure is defined by T ∗ on S2(Γ1(N)) and is
defined by T∗ on H1(X1(N), Q) for T ∈ T2(Γ1(N)). Thus, it follows from the equality∫

f∗γ
ω =

∫
γ
f ∗ω.

It follows from Proposition that the Fourier coefficients an(f) are integers in the
number field Q(f) for a normalized eigenform f .

Corollary 3.6 V�(J1(N)) is a free T2(Γ1(N))��
-module of rank 2.

Proof. By Propositions 2.4 and 3.5 and by fpqc descent, H1(X1(N), Q) is a free
T2(Γ1(N))-module of rank 2. Hence V�(J1(N)) = H1(X1(N), Q) ⊗ Q� is also free of
rank 2.

For a place λ|� of Q(f), we put

Vf,λ = V�(J1(N))⊗T2(Γ1(N))��
Q(f)λ.

Vf,λ is a 2-dimensional �-adic representation unramified at p � N�.

Theorem 3.7 Vf,λ is associated to f . Namely, for p � N�, we have

det(1− ϕpt : Vf,λ) = 1− ap(f)t + εf(p)pt2.

Corollary 3.8 If we put 1−ap(f)t+ εf(p)pt2 = (1−αt)(1−βt), the complex absolute
values of α and β are

√
p.

By Lemma 3.1, the left hand side det(1 − ϕpt : Vf,λ) is equal to det(1 − Frpt :
V�(J1(N)�p )⊗Q(f)λ).

Lemma 3.9 The map H1(X1(N), Q)→ Hom(H1(X1(N), Q), Q) sending α to the lin-
ear form β 
→ Tr(α ∩ wNβ) is an isomorphism of T2(Γ1(N))-modules.

Proof. It suffices to show T∗ ◦ w = w ◦ T ∗. We define w̃ : T1(N, n) → T1(N, n)
by sending (E, P, C) → (E ′, Q′, C ′) where E ′ = E/(〈P 〉 + C), Q′ is the image of
Q ∈ E/C[N ] such that (Image of P, Q) = ζN and C ′ is the kernel of the dual of
E/〈P 〉 → E ′. Then, we have s ◦ w̃ = w ◦ t, t ◦ w̃ = w ◦ s and hence T∗ ◦ w = w ◦ T ∗.
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3.4 Congruence relation

Let S be a scheme over Fp and E be an elliptic curve over S. The commutative diagram

E
FrE−−−→ E� �

S
FrS−−−→ S

defines a map F : E → E(p) = E ×S↙FrS
S called the Frobenius. The dual V = F ∗ :

E(p) → E is called the Verschiebung. We have V ◦ F = [p]E , F ◦ V = [p]E(p).

Lemma 3.10

det(1− Frpt : V�(J1(N)�p )) = det(1− 〈p〉Fr∗pt : V�(J1(N)�p )).

Proof. First, we show Fr ◦ w = 〈p〉 ◦ w ◦ Fr. We have

Fr ◦ w(E, P ) = Fr(E/〈P 〉, Q) = (E(p)/〈P (p)〉, Q(p)),

〈p〉 ◦ w ◦ Fr(E, P ) = 〈p〉 ◦ w(E(p), P (p)) = (E(p)/〈P (p)〉, pQ′)

where (P (p), Q′)N = (P, Q)N . Since (P (p), Q(p))N = (P, Q)p
N = (P (p), pQ′)N , we have

Fr ◦ w = 〈p〉 ◦ w ◦ Fr. Hence, we have w ◦ Fr = Fr ◦ 〈p〉−1 ◦ w.
Thus, for α, β ∈ J1(N)�p [�n], we have

〈F∗α, wβ〉 = 〈w ◦ F∗α, β〉 = 〈(w ◦ F )∗α, β〉
= 〈(Fr ◦ 〈p〉−1 ◦ w)∗α, β〉 = 〈α, w〈p〉∗F ∗β〉

and the assertion follows.
Let N ≥ 1 be an integer and p � N be a prime number. We define two maps

a, b :M1(N)�p →M1,0(N)�p

by sending (E, P ) to (E, P, F : E → E(p)) and to (E(p), P (p), V : E(p) → E) respec-
tively. The compositions are given by(

s ◦ a s ◦ b
t ◦ a t ◦ b

)
=

(
id F
F 〈p〉

)
. (4)

The maps a, b : M1(N)�p → M1,0(N)�p induce closed immersions a, b : X1(N)�p →
X1,0(N)�p .

Proposition 3.11 Let N ≥ 1 be an integer and p � N be a prime number. Then
s, t : X1,0(N, p)→ X1(N) is finite flat of degree p + 1.

The map
a� b : X1(N)�p �X1(N)�p → X1,0(N, p)�p

is an isomorphism on a dense open subscheme.
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Proof. Since the maps a, b : X1(N)�p → X1,0(N, p)�p are sections of projections
X1,0(N, p)�p → X1(N)�p , they are closed immersions. Since both (1, F ) : X1(N)�p �
X1(N)�p → X1(N)�p and X1,0(N, p)�p → X1(N)�p are finite flat of degree p, the
assertion follows.

Corollary 3.12

Pic0(X1(N))(Q)[�n]
Tp−−−→ Pic0(X1(N))(Q)[�n]� �

Pic0(X1(N))(Fp)[�
n]

F∗+〈p〉F ∗
−−−−−→ Pic0(X1(N))(Fp)[�

n]

is commutative.

By Proposition, we have a commutative diagram

Pic(X1(N)�unr
p

)
Tp=s∗t∗−−−−→ Pic(X1(N)�unr

p
)� �

Pic(X1(N)�p
)

(t◦a)∗(s◦a)∗+(t◦b)∗(s◦b)∗−−−−−−−−−−−−−−→ Pic(X1(N)�p
)

By (4), the bottom arrow is F∗ + 〈p〉F ∗.
Proof of Theorem. By Corollary, we have

(1− F∗t)(1− 〈p〉F ∗t) = (1− Tpt + 〈p〉pt2).

Taking the determinant, we get

det(1− F∗t) det(1− 〈p〉F ∗t) = (1− Tpt + 〈p〉pt2)2.

By Lemma 3.10, we get

det(1− F∗t) = 1− Tpt + 〈p〉pt2.

4 Construction of Galois representations: the case

k > 2

To cover the case k > 2, one needs a construction generalizing the torsion part of the
Jacobian.
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4.1 Etale cohomology

For a scheme X, an étale sheaf on the small étale site is a contravariant functor F :
(Etale schemes/X)→ (Sets) such that the map

F(U)→
{

(si) ∈
∏
i∈I

F(Ui)

∣∣∣∣∣ pr∗1(si) = pr∗2(sj) in F(Ui ×U Uj) for i, j ∈ I

}

is a bijection for every family of étale morphisms (Ui → U)i∈I satisfying U =
⋃

i∈I Image
(Ui → U). An étale sheaf on X represented by a finite étale scheme over X is called
locally constant.

The abelian étale sheaves form an abelian category. The étale cohomology Hq(X, )
is defined as the derived functor of the global section functor Γ(X, ). For a morphism
f : X → Y of schemes, the higher direct image Rqf∗ is defined as the derived functor of
f∗. We write Hq(X, Q�) = Q�⊗lim←− nHq(X, Z/�nZ) and Rqf∗Q� = Q�⊗lim←− nRqf∗Z/�nZ.

Let f : X → S be a proper smooth morphism of relative dimention d and let F
be a locally constant sheaf on X. Then the higher direct image Rqf∗F is also locally
constant and 0 unless 0 ≤ q ≤ 2d and its formation commutes with base change. More
generally, assume f : X → S is proper smooth, U ⊂ X is the complement of a relative
divisor D with normal crossings and F is a locally constant sheaf on U tamely ramified
along D. Let j : U → X be the open immersion. Then, the higher direct image
Rqf∗j∗F is also locally constant and its formation commutes with base change.

If f : X → S is a proper smooth curve and if N is invertible on S, we have a
canonical isomorphism Hom(JacX/S [N ], Z/NZ)→ R1f∗Z/NZ.

If S = Spec k for a field k, the category of étale sheaves on S is equivalent to that
of discrete set with continuous Gk-action by the functor sending F to lim−→ L⊂k̄F(L).
For a scheme X over k, the higher direct image Rqf∗F is the étale cohomology group
Hq(Xk̄,F) with the canonical Gk-action. If k = C, we have a canonical isomorphism
Hq(X, Z)⊗�Z/NZ→ Hq(X, Z/NZ).

Let X be a proper smooth variety over a field k and f : X → X is an endomorphism.
Then, for a prime number � invertible in k, the Lefschetz trace formula gives us

(Γf , ∆X)X×kX =
2 dim X∑

q=0

(−1)qTr(f ∗ : Hq(Xk̄, Q�)).

Assume k = Fp and apply the Lefschetz trace formula to the iterates of the Frobe-
nius endmorphism F : X → X. Then we obtain

Z(X, t) =
2 dim X∏

q=0

det(1− F ∗t : Hq(Xk̄, Q�))
(−1)q+1

.

Theorem 4.1 (the Weil conjecture proved by Deligne) Let α be an eigenvalue
of F ∗ on Hq(Xk̄, Q�). Then, α is an algebraic integer and its conjugates have complex
absolute values p

q
2 .
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4.2 Construction of Galois representations

Let N ≥ 5 and k ≥ 2. Proposition 3.5 is generalized as follows. Let f : E1(N)→ Y1(N)
be the universal elliptic curve and j : Y1(N)→ X1(N) be the open immersion.

Proposition 4.2 There exists a canonical isomorphism

H1(X1(N), j∗Sk−2R1f∗Q)⊗� R→ Sk(Γ1(N))�

of Tk(Γ1(N))�-modules.

Corollary 4.3 H1(X1(N)� , j∗Sk−2R1f∗Q�) is a free Tk(Γ1(N))��
-module of rank 2.

For a place λ|� of Q(f), we put

Vf,λ = V�(J1(N))⊗Tk(Γ1(N))��
Q(f)λ.

Vf,λ is a 2-dimensional �-adic representation unramified at p � N�.

Theorem 4.4 Vf,λ is associated to f . Namely, for p � N�, we have

det(1− ϕpt : Vf,λ) = 1− ap(f)t + εf(p)pk−1t2.

Corollary 4.5 If we put 1 − ap(f)t + εf(p)pk−1t2 = (1 − αt)(1 − βt), the complex

absolute values of α and β are p
k−1
2 .
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