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Introduction

A goal in number theory is to understand

— the finite extensions of QQ, or equivalently,
— the absolute Galois group G = Gal(Q/Q), or further equivalently,

— representations of Gy.

Representations are classified by the degree. Representations of degree 1 are called
characters. By the theorem of Kronecker-Weber, a continuous character Gg — C* is
a Dirichlet character

Go — Gal(Q((x)/Q) — (Z/NZ)* — C*

for some N > 1. Thus, there are too few continuous characters Gg — C*. It is more
natural to consider ¢-adic characters for a prime ¢. f-adic cyclotomic character.

Gg — Gal(Q(Cer,n € N)/Q) = lim ,Gal(Q((en)/Q) — lim o (Z/0"Z)% = Z¥ C Q.

{¢-adic character of G potentially cristalline at ¢}
= {“geometric” f-adic character of G}

= (Dirichlet characters, ¢-adic cyclotomic characters).
In the case where degree is 2, we expect to have (cf. [7])

{odd f-adic representation of Gg of degree 2 potentially semi-stable at ¢}
= {odd “geometric” f-adic representation of Gg of degree 2}

= { (-adic representation associated to modular form}.

In this course, we discuss on one direction D established by Shimura and Deligne
([14], [5]). The other direction C partly established by Wiles and others, which will
not be discussed here, has significant consequences including Fermat’s last theorem,
the modularity of elliptic curves, etc. ([2],[3]).
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1 Galois representations and modular forms

1.1 Modular forms

([14]) Let N > 1 and k > 2 be integers and ¢ : (Z/NZ)* — C* be a character. We will
define C-vector space Si(N,e) C My(N,¢) of cusp forms and of modular forms of level
N, weight k and of character . We will see later that they are of finite dimension. For
e =1, we write Sp(N) C My(N) for S(N,1) C Mi(N,1).

A subgroup I' C SLy(Z) is called a congruence subgroup if there exists an integer
N > 1 such that I' D I'(N) = Ker(SLy(Z) — SL(Z/NZ)). In the following, we
mainly consider

Ty (N) = { (Z Z) € SL(Z)

c FO(N):{( b

d) € SLy(7Z)

azl,czOmodN}

o

CEOmOdN}
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for N > 1. We identify the quotient I'o(N)/I'y(N) with (Z/NZ)* by (CCL Z) s

d mod N. The indices are given by

SLo(Z) : To(V)] = [[(p + D1 = N (1 ¥ ;) |

p|N p|N

1SLa(Z) : Ty (V)] = [0 = Dp2e® ™0 = N2 (1 _ %) |

p
p|N p|N

The action of SLy(Z) on the Poincaré upper half plane H = {7 € C|Im 7 > 0}. For

b
v = a b € SLy(Z) and T € H, we put (1) = o . For a holomorphic function
c d cT +d

f on H, we define 7} f by

() = ——%
If k = 2, we have v*(fdr) =3 (f)dr.

Definition 1.1 Let T' D T'(N) be a congruence subgroup and k > 2 be an integer. We
say that a holomorphic function f: H — C is a modular form (resp. a cusp form) of
weight k with respect to I, if the following conditions (1) and (2) are satisfied.

(1) vif =f forallyeT.

(2) For each v € SLo(Z), vif satisfies vif(T + N) = 5 f(7) and hence we have
a Fourier expansion v f(7) = Y 77 an(vif)ak where qv = exp(2mis;). Here, we
impose ax (vif) =0 forn <0 (resp. n <0) for every v € SLy(Z).

We put

Sk(D)e = {f|f is a cusp form of weight k w.r.t. I'}
C My(T)c ={f|f is a modular form of weight k w.r.t. I'}

and define Sg(N) = Sk(I'o(IV)). The group I'o(N) has a natural action on Si(I'1(N))
and the subgroup I'; (V) acts trivially on it. Hence, the space Si(I'1(/V)) has an action
of the quotient I'o(N)/T'1(N) = (Z/NZ)*. The action of d € (Z/NZ)* on Sp(T'1(N))
is denoted by (d) and is called the diamond operator. The space is decomposed by the

characters
SN = B Sk(N,e)
e:Z /NZ—Cx

where Si(N,e) = {f € Sp(I'1(N))|(d)f = e(d)f for all d € (Z/NZ)*}. The fixed part
Sp(D(N)oN) = S (N, 1) is equal to Si(N) = Si(To(N)).



1.2 Examples

([12]) Eisenstein series. k > 4 even.

is a modular form of weight k.

00 2
-

g-expansion. By differentiating the logarithms of sinmr = 7TT| | (1 — —2) one
n

n=1
obtains

I — ) — 1 1
—omi | = n) == .
m<2—|—;q> T+;(T+n+7—n)

Applying qdiq = ;=L | — 1-times, one gets

S~ peia (CDF(E—1) 1
;”k T =T om) ;(TjLn)k“

For k > 4 even, by putting o;_1(n) = de 41 and

Bu@) = 1+ gy 2 o € Qlal,
we obtain
(Z;Q%%“)ZZ(éiyw%ﬁﬂ+«%@j—2qm»
- )+ 22% ()" = (1= k) Ex(q).
Recall that
—1)= - C(—?’):L ((=5) = L €Q
ol 12° 120’ 252’ '
@;0:0 My.(1)c = C[Ey, Eg).
A = 35tf - B =T - = Yo
is a cusp form of weight 12, level 1. @k o Sk(1)c = C[Ey, Eg) - A.

fu(g —QH 1—¢")?(1—¢'")?

is a basis of Sy(11)c.



1.3 Hecke operators

([14]) The Hecke operator T,, is defined as an endomorphism of Si(I';(N)). Here we
only consider the case n = p is a prime. The general case is discussed later.

I (T PN f(r) i pt N
N p;f( ) {0 if p|NV.
If f(1) =2, an(f)q", we have

e+ P an((p) fg™ i pt N
=2_anlf) {0 if p|V.

p|n

The Hecke operators on Si(I'1(N)) are commutative to each other and formally satisfy
the relation

ZT n=® = H (1—Tp 5+ (p)p"p )" x H(l —T,p~*)~ L.
ptN

p|N

f € Sk(N,e) is called a normalized eigenform if T,,f = A\, f for alln > 1 and a; = 1.
Since a1(T,f) = an(f), if f € Sp(N,e) is a normalized eigenform, we have A\, = a,.
For a normalized eigenform f =" a,q¢", the subfield Q(f) = Q(a,,n € N) C Cis a
finite extension of QQ, as we will see later.

Since S12(1) = CA, S3(11) = Cfyq, the cusp forms A and fi; are normalized eigen-
forms.

For f =" a,q"™ € Sk(N), the L-series is defined as a Dirichlet series

[o¢]
= E a,n”®.
n=1

k+1
It converges absolutely on Re s > % If f=>5 a,g" € Sk(N,¢) is a normalized

eigen form, we have an Euler product

L(f,s) = [J(0 = ap™ +epp*p>) " x [J(1 = app~) 7

ptN p|N

1.4 Galois representations

([13]) p prime. A choice of an embedding Q — Q, defines an embedding Gg, =
Gal(Q,/Q,) — Gg = Gal(Q/Q). The Galois group Gg, thus regarded as a subgroup
of Gg is called the decomposition group. It is well-defined upto conjugacy.

Q, C Q) C Q, defines a normal subgroup I, = Gal(Q,/Q%) C Gg, called the
inertia subgroup. The quotient Gq, /I, = Gal(Q)"/Q,) is canonically identified with
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Gr, = Gal(F,/F,). The map Z = lim,Z/nZ — Gg, defined by sending 1 to the
Frobenius substitution ¢,; ¢(a) = a? for all a € F, is an isomorphism.

V' l-adic representation of Gg. FE) a finite extension of (Q,. ¢ is a prime. V' E)
vector space of finite dimension. Gg — GLg, V' continuous representation.

There exists an integer N > 1 such that V' is unramified at p { N¢.

Unramified: restriction to I, is trivial.
For p{ N, det(1 — p,t : V) € E,\[t] is well-defined.

Definition 1.2 A 2-dimensional {-adic representation V' is said to be associated to
a normalized eigen cusp form f = Y a,q" € Sk(N,e) if, for every p { NC, V is
unramified at p and

Tr(p, 0 V) = a,(f)
for an embedding Q(f) — E\.

We may replace the condition by
det(1 — @t : V) =1 — a,(f)t + e(p)p* 2.
The goal of this course is to explain the geometric proof of the following theorem.

Theorem 1.3 Let N > 1,k > 2 be integers and € : (Z/NZ)* — C* be a character.
Let f € Sk(N,e) be a normalized eigenform and A€ be place of Q(f). Then, there
exists an (-adic representation Vyy associated to f.

A consequence of the geometric construction and the Weil conjecture.

Corollary 1.4 (Ramanujan’s conjecture)
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T(p) <pz.
Why Frobenius’s are so important.

Theorem 1.5 (Cebotarev’s density theorem) Let L be a finite Galois extension
of Q and C C Gal(L/Q) be a conjugacy class. Then there exist infinitely many prime
p such that L is unramifed at p and that C' is the class of p,.

A generalization of Dirichlet’s Theorem on Primes in Arithmetic Progressions.
Consequence: Vi, Vs f-adic representations. If there exists an integer N > 1 such
that
Tr(pp : V1) = Tr(pp : V2)

for every prime p 1 N/, the semi-simplifications V7 and VJ® are isomorphic to each
other. In particular, the f-adic representation associated to f is unique upto isomor-
phism, since it is irreducible by a theorem of Ribet.



2 Modular curves and modular forms

2.1 Elliptic curves

([15]) k field of characteristic # 2,3. An elliptic curve over k is the smooth compacti-
fication of an affine smooth curve defined by

V=23 4+ar+b
where a, b € k satisfying 4a® 4+ 27b* # 0. Or equivalently,
y2 = 4a° — g2 — g3

where ¢s, g3 € k satisfying g5 —27g3 # 0. More precisely, E is the curve in P defined by
the homogeneous equation Y27 = X3+aX Z?4+bZ3. Thepoint O = (0:1:0) € E(k) is
called the 0-section. Precisely speaking, an elliptic curve is a pair (£, O) of a projective
smooth curve E of genus 1 and a k-rational point O. The embedding £ — P% is
defined by the basis (z,y,1) of I'(E,Og(30)). For an elliptic curve E defined by
y? = 423 — gox — g3, the j-invariant is defined by

g5

(B) =128 92
J(E) 95 — 27g3

S arbitrary base scheme. an elliptic curve over S is a pair (F,O) of a proper
smooth curve f : F — S of genus 1 and a section O : S — E. f,Op = Og and
f*QlE/S = O*Q}E/s = wg is an invertible Og-module.

Addition. For a scheme X, the Picard group Pic(X) is the isomorphism class group
of invertible O x-modules. If X is a smooth proper curve over a field k, the Picard group
Pic(X) is equal to the divisor class group

Coker (div : k(X)* — &b A

x:closed points of X

where for a non-zero rational function f € k(X)* its divisor divf is (ord,f),. The
degree map deg : Pic(X) — Z is induced by the degree map € 7 — 7,
whose z-component is the multiplication by [r(z) : k.

Let E be an elliptic curve over a scheme S. For a scheme T over S, the degree map
deg : Pic(E x5 T) — Z(T) has a section Z(T) — Pic(E xg T) defined by 1 — [O(O)].
For an invertible Oy jr-module L, its degree deg L : T" — Z is the locally constant
function defined by deg £(t) = deg(L|gx,¢). The pull-back 0* : Pic(E xgT') — Pic(T)
also has a section f* : Pic(T") — Pic(E xg T'). Thus, we have a decomposition

x:closed points of X

Pic(E x5 T) = Z(T) & Pic(T) @ Picy, ¢(T)

and a functor PicY, /s ¢ (Schemes/S) — (Abelian groups) is defined. We define a
morphism of functors £ — Pic}, /s by sending P € E(T) to the projection of the class

[Op, (P)].



Theorem 2.1 (Abel’s theorem) The morphism E — Pic%/s of functors is an iso-
morphism.

The inverse PicY, )5 — E is defined as follows. For [£] € Picy5(T), the support of
the cokernel of the natural map f7fr.(L£(O)) — L(O) defines a section T — E xg T.

Since PicY, /s 1s a sheaf of abelian groups, the isomorphism E — Pic%. /s defines a
group structure on the scheme E over S. For a morphism f : E — FE’, the pull-back
map f* : Pic%,/s — Pic%/s defines the dual f*: E/ — E. we have f*o f = [deg f|g
and f o f* = [dog ]

For an elliptic curve E over a field k, the addition on E(k) is described as follows.
Let P,@Q € E(k). The line PQ) meets E at the third point R’. The divisor [P]+[Q]+[R]
is linearly equivalent to the divisor [O] + [R] 4 [R’], where R is the opposite of R with
respect to the x-axis. Thus, we have [P] 4 [Q] + [R'] = [O] + [R] + [R'] in Pic(F) and
([P] — [O) + ([Q] — [0]) = [R] — [O] in Pic’(E). Hence we have P+ Q = R in E(k).

2.2 Elliptic curves over C

([15]) To give an elliptic curve over C is equivalent to give a complex torus of dimension
1, as follows.

Let E be an elliptic curve over C. Then, E(C) is a connected compact abelian
complex Lie group of dimension 1. Let Lie E be the tangent space of E(C) at the
origin. It is a C-vector space of dimension 1. The exponential map exp : Lie £ — E(C)
is surjective and the kernel is a lattice of F(C) and is identified with the singular
homology H,(E(C),Z). A lattice L of a complex vector space V' of finite dimension is
a free abelian subgroup generated by an R-basis.

Conversely, let L be a lattice of C. The p-function is defined by

welL

Since

dp(z 1
v= Zi) :_22(,2'—<,u)37

it satisfies the Weierstrass equation
92 = 4a® — g2% — g3
where go = 60)" ;' and g5 = 140> ;' 5. If L =Z + Z7 for 7 € H, we have

(2mi)t 1 B — (2mi)?
3120

N6 N6
g3 = 140G4(1) = 140 - (2%1) (_L> Eg — _(27TZ) o)

g2 = 60G4(r) =60-




and hence

12 L .
9o — 27935 = (27”)12@(5% — Eg) = (2mi)"*A # 0.

Thus the equation y? = 423 — gox — g3 defines an elliptic curve E over C. The map
C/L — E(C) defined by z +— (p(2),¢'(2)) is an isomorphism of compact Riemann
surfaces.

2.3 Modular curves over C

([14]) We put

R = {lattices in C}, R = {(wy,w;) € (CXQ\Imﬂ > 0}.
Wa

The multiplication defines an action of C* on R and on R. The map H — R:T —
(7,1) induces a bijection H — C*\'R. We consider the map R — R sending (w1, ws)

to (wi,ws) and an action of SLy(Z) on R defined by (CCL Z) (Zjl) = (2511252) :
2 1 2

It induces a bijection

SLy(Z)\R — R.

The map sending a lattice L to the isomorphism class of the elliptic curve C/L
defines bijections

SLy(Z)\H — (SLy(Z) x C*)\R — C*\R

— {isomorphism classes of elliptic curves over C}.
The quotient Y (1)(C) = SLy(Z)\H is called the modular curve of level 1. The map
j:SLy(Z)\H — C
defined by the j-invariant

. 92(7)3 Eff
7) = 1728 = =
i) 32(T)? — 27g3(1)2 A

is an isomorphism of Riemann surfaces. B
For an integer N > 1, similarly the map sending (w;,ws) € R to the pair (E, P) =

<(C/(w1, wa), %) defines a bijection

Iy(N\H — (I1(N) x C)\R
. isom. classes of pairs (F, P) of an elliptic curve
E over C and a point P € F(C) of order N
cwy +dwy wy ) .
Note that —— = ~ mod (wy,wsy) since ¢ = 0,d = 1 mod N. The quotient
'y (N)\H is denoted by Y1(N)(C) and is called the modular curve of level I'; (N).
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The diamond operators act on Y1(N)(C). For d € (Z/NZ)*, the action of (d)
is given by (d)(E,P) = (E,dP). The quotient I'o(N)\H = (Z/NZ)*\Y1(N)(C) is
denoted by Yy(N)(C) and is called the modular curve of level I'o(N). We have a
natural bijection

isom. class of a pair (E, C) of an elliptic curve E
Fo(N\H — {over C and a cyclic subgroup C' C E(C) of order N

We have finite flat maps Y;(N) — Yo(&N) — Y(1) = A! of open Riemann surfaces.
The degree of the maps are given by

— ey [ N =3
VA(N) : Yo(N)] = HZ/NZ)* /{1 = {1 i,
and [Yo(N) : Y (1)] = [SLs(Z) s To(N)].

Let X;1(N) and Xo(N) be the compactifications of Y;(N) and Yy(N). The maps
Yi(N) — Yo(N) — Y(1) = A! are uniquely extended to finite flat maps X;(N) —
Xo(N) — X (1) = P! of compact Riemann surfaces or equivalently of projective smooth
curves over C.

We have Sy(NV)

= ['(Xo(N), Q). Applying the Riemann-Hurwitz formula to the
map j : Xo(N) — X(1) =

P!, we obtain the genus formula

9(Xo(N)) = go(N) = 1+ 75 [S1a(2)  To(N)] = 56l N) = 36(N) = 724(N)
where

) 0 if 9|N or if Ip|N,p = —1 mod 3
Y6 = N :p=1mod
Qﬂ{m b mod 3} if otherwise,
0 if 4|N or if Ip|N,p = —1 mod 4
Pa(N) = 21:t{p|N :p =1 mod 4}

if otherwise.

and Yoo (NM) = 0o (N)poo (M) if (N, M) =1 and, for a prime p and e > 0,

) = 2ple=1/2 if e odd
roel )= (p+ 1)p?~1  if e even.

go(11) = 1 and hence X(11) is an elliptic curve, defined by the equation y? = 43 —
124 201 where A = (12) — 27 (382)% = —11°. We have S(11) = ['(X,(11), Q') =
Cce.
v
Universal elliptic curve. We consider the semi-direct product I';(N) x Z* with
respect to the left action by ‘y~!. We define an action of C* x I';(N) x Z*> on R x C
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c((wr,w2),2) = ((awr, cws), c2)
Y((w1,w2),2) = ((awy + bwa, cwy + dws), 2)
(m,n)((w1,ws),2) = ((w1,ws), 2z + mw; + nwy).
for c € C*, v = ((z 2) € I'(N) and (m,n) € Z2. The projection R x C — R is

compatible with C* x I';(N) x Z? — C* x T'y(N).
Assume N > 4. By taking the quotient, we obtain

Ei(N) = (T1(N) x Z)\(H x C) — Yi(N) = T (N)\H.

The fiber at 7 € H is the elliptic curve C/Z + Z7. It has the following modular
interpretation. For a holomorphic family £ — S of elliptic curve together with a
section P : S — F of order N, there exists a unique morphism S — Y;(NV) such that

(E, P) is isomorphic to the pull-back of the universal elliptic curve E;(N) and the

section defined by z = %

2.4 Modular curves and modular forms

Let N > 4. Let wy, () be the invertible sheaf 0*Qp, (ny/v; (v) Where 0 : Y1 (N) — Ey(N)
is the 0-section of the universal elliptic curve. Then, we have

{f : H — C|f holomorphic and satisfies (1) in Definition 1.1} = T'(Y1(N), w®").

By the isomorphism w®? — Qy,(n) : dz®? — dr, the left hand side is identified with
L(Yi(N),w® 72 @ Qy;w))-

Assume N > 5. Then the universal elliptic curve Ej(N) — Yi(N) is uniquely
extended to a smooth group scheme E;(N) — X{(N) whose fibers at cusps are G,,.
Let wx,(v) = O*Qg, (vy/x,(x)- Then we have w®? = Q(log(cusps)) and

M(Ty(N)) = T(Xy(N), ™) D ST (V) = DX (V), w72 @ Qxy(v)-
For N > 5, there exists a constant C' satisfying degw = C' - [SLy(Z) : T'1(N)]. The

isomorphism w®* — Q} (v)(log cusps) implies

201(N) = 24 3 3 (5 )p(d) =2 [SLy(Z) Ty (V)]
dN

In particular, for p > 5, we have

201(p) =2+p—1=2C-(p* - 1).

11



Since ¢;(5) = 0, we have C' = 5; and

1 1 N
J— S 2 . 1 — — _ d 1f > 5,
dim Sy(Ty (V) = g1 (N) = L+ 57 [5L2(2) : T (V)] 4d|ZN<p(d)so( ) N5

0 it N <4.
By Riemann-Roch, we have

dim Sp(T1(N)) = degw®* 2 @ Q') + x(X1(N),0) = (k — 2) degw + g1(N) — 1

_ %[SLQ(Z) Ty (N)] - i 3 cp(%)so(d)

dIN

for k > 3, N > 5.

2.5 Modular curves over Z[+]
Let N > 1 be an integer. We say a section P : T' — E of an elliptic curve £ — T'is
exactly of order N, if NP = 0 and if P, € Ey(t) is of order N for every point ¢t € T.

We define a functor M;(N) : (Scheme/Z[+]) — (Sets) by

M(N)(T) = isomorphism classes of pairs (E, P) of an elliptic curve
' B E — T and a section P € E(T) exactly of order N

Theorem 2.2 For an integer N > 4, the functor My(N) is representable by a smooth
affine curve over Z[~).

Namely, there exist a smooth affine curve Y1 ()1 over Z[%] and a pair (E, P)
of elliptic curves £ — Y1(N)y 1y and a section P : Y1(N)y,
such that the map

— F exactly of order N

~

Homggeme/z21(T: Y1(N)g 1)) = My(N)(T)

sending f : T — YI(N)Z[%] to the class of (f*E, f*P) is a bijection for every scheme T
over Z[+].

If N < 3, the functor M;(N) is not representable because there exists a pair
(E, P) € My(N)(T) with a non-trivial automorphism. More precisely, by étale descent,
there exist 2 distinct elements (F, P), (E', P') € M;(N)(T) whose pull-backs are equal
for some étale covering T" — T.

Proof of Theorem for N = 4. Let £ — T be an elliptic curve over a scheme T'
over Z[3] and P be a section of exact order 4. We take a coordinate so that 2P =
(0,0), P =(1,1),3P = (1,—1) and let dy* = 2> + ax* 4+ bz + ¢ be the equation defining
E. Then the line y = x meets F at 2P and is tangent to £ at P. Thus we have
P+ (a—d)z* +br+c=z(z—1)2 1Namely, E is defined by dy? = 2® + (d — 2)2* + .

L 1
Y1(4)Z[Zl] is given by SpecZ[Z][d, m]

12



To prove the general case, we consider the following variant. For an elliptic curve
E and an integer r > 1, let E[r] = Ker([r] : E — FE) denote the kernel of the
multiplication by . We define a functor M(r) : (Scheme/Z[1]) — (Sets) by

M@)(T) = isom. classes of pairs (F, (P, Q)) of an elliptic curve £ — T
" ~ | and P,Q € E(T) defining an isomorphism (Z/rZ)*> — E[r] |

Theorem 2.3 For an integer r > 3, the functor M(r) is representable by a smooth
affine curve Y (r) 1y over Z[1].

Proof for r = 3. Y(3) = SpecZ[3][u, ﬁ] E C P? is defined by X3+ Y3 + 73 —
3uXYZ and O = (0,1, -1), P = (0,1, —w?),Q = (1,0, —1).

r =4. Let E be the universal elliptic curve over Y;(4). Then, Y'(4) is the open and
closed subscheme of E[4] defined by the condition that (P, Q) defines an isomorphism
(Z/AZ)? — E4].

If r is divisible by s = 3 or 4, one can construct Y(T)Z[;l} as a finite étale scheme
over Y(s)zpy. In general, Y(T)ZH is obtained by patching the quotient Y(T)Z[s_lr] =
Y(sr)z[ﬁ/Ker(GLQ(Z/rsZ) — GLy(Z)rZ)) for s = 3,4.

Y(T)Z[%] for » = 1,2 are also defined as the quotients. The j-invariant defines
an isomorphism Y (1) — A}. The Legendre curve y*> = z(x — 1)(x — \) defines an
isomorphism SpecZ(3][A, 55551 — Y(2)z2-

By the Weil pairing recalled below, the scheme Y(T)Z[;l] is naturally a scheme over
Z[%,¢). For P,Q € E[r](S) and £ be an invertible Og-module corresponding to
P. Since [r]*£ = 0, a canonical isomorphism Q*[r]*L = O*[r]*L is defined. Since
[r](Q) = 0, we have another canonical isomorphism Q*[r]*L = 0*L = O*[r|*L. By
comparing them, we obtain an invertible function (P, Q)y on S. Its N-th power is 1

and hence (P,Q)n € pn.

Yi(N)g, 1) Is constructed as the quotient

a=1,c= 0} .

Yi(N)g, 1) for N < 3 are also defined as the quotients.

The Atkin-Lehner involution wy : YI(N)Z[#M — Y1(N)z ¢, is defined by send-
ing (E, P) to (E/{P),Image of @) such that (P,Q)y = (y-.

The Q-vector space Si(I'1(N))g = (X1 (N)g, w2 ® Q) gives a Q-structure of
the C-vector space Si(I'1(N))c = (X1 (N)c,w® 2 @ Q).

Y(N)yp, /{ (Cé Z) € GLy(Z/NZ)

13



2.6 Hecke operators

For integers N,n > 1, we define a functor 77 (N, n)zi) (Schemes/Z[+]) — (Sets) by

1
N
Ti(N,n)z11(T)

isom. class of a triple (E, P,C) of an elliptic curve E over T', a
= section P :T' — E exactly of order N and a subgroup scheme
C C E finite flat of degree n over T such that (P) N C = O

and a morphism s : Ty (N, n)z1) — Mi(N)z1) of functors sending (E, P, C') to (E, P).
The functor 7i(N,n)y 1) s representable by a finite flat scheme Ti(N,n)y 1) over
Yi(N)z, 1, if N > 4. It is uniquely extended to a finite flat map of proper normal
curves s : T (N, n)zix) = X1(N)z-

For an elliptic curve £ — T and a subgroup scheme C' C FE finite flat of degree
n, the quotient £’ = E/C is defined and the induced map E — E’ is finite flat of
degree n. The structure sheaf Op is the kernel of pri — p* : Op — Ogx,c where
pry, i : E xp C — FE denote the projection and the addition respectively. By this
construction, we may identify the set 71 (N, 1)y 1 1(T) with

isom. class of a pair (F — E’, P) of finite flat morphism
E — FE’ of elliptic curves over T of degree n and a section
P :T — F exactly of order N such that (P) NKer(E — E') = 0O

We define a morphism ¢ : Ty(N, 1)1y — Mi(N)y) of functors sending (£ — E', P)
to (E', Image of P), It also induces a finite flat map of proper curves ¢ : T (N, n)Z[%} —
Xi(N)z -

For an integer n > 1, we define the Hecke operator T, : Sp(I'1(N)) — Sp(I'1(N))
as S, o t* where s,t : T1(N, n)Z%] — Xl(N)Z%] are the maps defined above. The
push-forward map s, is induced by the trace map. The group (Z/NZ)* has a natural
action on the functor M;(N). Hence it acts on Sg(I';(N)). For d € (Z/NZ)*, the
action is denoted by (d) and called the diamond operator.

We define the Hecke algebra by

T (I (N)) =Q[T,,n € N,(d),d € (Z/NZ)*] C EndS(I'1(N)).
Proposition 2.4 The map
Sk(I'1(N))e — Homg(T3(I'1(N)), C) (1)
sending a cusp form f to the linear form T w— a1(Tf) is an isomorphism.

Proof. Suffices to show that the pairing (7, f) — a1(Tf) is non-degenerate. If
f € Sk(T'1(N))c isin the kernel, a,,(f) = a1(T,,f) = 0forallnand f = Y a,(f)¢" = 0.
If T"e T(I'y(N)) is in the kernel, T'f is in the kernel for all f € Sg(I';(IN))c since
a1 (T'"Tf) = a1 (TT'f) =0 for all 7" € T(I'y(N)). Hence T'f =0 and T' = 0.

14



Corollary 2.5 The isomorphism (1) induces a bijection of finite sets
{f € Sk(I'1(N))c|normalized eigenform} — Homg aigebra (13 (I'1(V)), C) (2)

Proof. Let ¢ be the linear form corresponding to f. ¢(1) = 1 is equivalent
to ai(f) = 1. If ¢ is a ring hom, we have a,(Tf) = (T, Tf) = ¢(1,T) =
o(TIP(T,) = G(T)ar(Tof) = @(T)an(f) for every n > 1 and T € Ty(Ty(N)). Thus,
Tf=>,a(Tf)g" = >, ¢T)a,(f)g" = ¢(T)f and f is a normalized eigenform.
Conversely, if f is a normalized eigenform and 7'f = Arf for each T' € Tp(I'1(NV)), we
have p(T') = a1 (Tf) = a1(Arf) = Arai(f) = Ar. Thus ¢ is a ring homomorphism.

For a normalized eigenform f € Si(I'1(IV))c, the subfield Q(f) C C is the image
of the corresponding Q-algebra homomorphism T (I';(N)) — C and hence is a finite
extension of Q.

3 Construction of Galois representations: the case
k=2

3.1 Galois representations and finite étale group schemes

For a field K, we have an equivalence of categories
(finite étale commutative group schemes over K) — (finite Gx-modules)

defined by A +— A(K). The inverse is given by M +— Spec(Homg,, (M, K).
In the case K = Q, it induces an equivalence

o : 1 finite Gg-modules
(finite étale commutative group schemes over Z[N]) — (unramiﬁe dat p/ N)

for N > 1.

Lemma 3.1 Let pt N. The action of ¢, on A(Q) = A(F,) is the same as that defined
by the geometric Frobenius endomorphism Fr : Ay, — Ap,.

To define an (-adic representation of G unramified at p  N¢, it suffices to con-
struct an inverse system of finite étale commutative group schemes over Z[%] of Z/"Z-
modules.

3.2 Jacobian of a curve and its Tate module

Consider the case go(N) = 1, e.g. N = 11. Then, £ = X(N) is an elliptic curve and the
Tate module V;E' = Q; ® lim , E[("](Q) defines a 2-dimensional (-adic representation.
To construct the Galois representation in the general case, we need to introduce the

Jacobian.
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Let X — S be a proper smooth curve with geometrically connected fibers of genus
g. For simplicity, we assume X — S has a section s : S — X. Similarly as in Section
1.2, we have a decomposition

Pic(X xgT) = Z(T) & Pic(T) & Pick (T
and a functor Picg(/s : (Schemes/S) — (Abelian groups) is defined.

Theorem 3.2 The functor Picg(/s 1s representable by a proper smooth scheme J =
Jacx,s with geometrically connected fibers of dimension g.

The proper group scheme (=abelian scheme) Jacx/g is called the Jacobian of X. If
g = 1, Abel’s theorem says that the canonical map F — Jacg,gs is an isomorphism.

Let f : X — Y be a finite flat morphism of proper smooth curves. The pull-
back of invertible sheaves defines the pull-back map f* : Jacy,s — Jacx,s. We also
have a push-forward map defined as follows. The norm map f. : f.Gpx — Gny
defines a push-forward of G,,-torsors and a map Pic(X) — Pic(Y), for a finite flat
map f : X — Y of schemes. They define a map of functors and hence a morphism
[« Jacx;s — Jacy;s. The composition f, o f* is the multiplication by deg f.

If f: X — Y is a finite flat map of proper smooth curves over a field, then the
isomorphism Coker(div : k(X)* — @, Z) — Pic(X) has the following compatibility.
The pull-back f* : Pic(Y) — Pic(X) is compatible with the inclusion f* : k(Y)* —
k(X)* and the map @, Z — €, Z sending the basis e, to ), e(z/y)-e,. The push-
forward f, : Pic(X) — Pic(Y) is compatible with the norm map f. : k(X)* — k(Y)*
and the map P, Z — €@, Z sending the basis e, to [r(z) : £(y)]e, for y = f(x).

WEeil pairing. Let N > 1 be an integer invertible on S. Then, a non-degenerate
pairing Jx/s[N] X Jx/g[N] — py of finite étale groups schemes is defined as follows.
First, we recall that, for invertible Ox-modules £ and M, the pairing (£, M) is defined
as an invertible Og-module. Tt is characterized by the bilinearity and by (£, M) =
fo«L|p if M = Ox(D) for a divisor D C X finite flat over S. If £ = f*L,, we have
(L, M) = L£2=EM,

If N[£] =0 € Pic’(X/S), we have L%V = f*L, for some Ly € Pic(S). Hence,
for M € Pic(X) of degree 0, we have a trivialization (L, M)®N = (LN M) =
(f*Lo, M) = f*LEYEM = Og. If NJM] = 0 € Pic®(X/S), we have another trivializa-
tion (£, M)®N = Og. By comparing them, we obtain an invertible function (£, M)y
on S, whose N-th power turns out to be 1. Thus the Weil pairing (£, M)y € I'(S, un)
is defined. In the case X = F is an elliptic curve, this is the same as the Weil pairing
defined before.

Jacobian over C. Let X be a smooth proper curve over C, or equivalently a compact
Riemann surface. The canonical map

Hy(X,Z) — Hom(I'(X, ), C)

is defined by sending ~ to the linear form w +— f7 w. It is injective and the image is a
lattice. A canonical map

Pic’(X) = Jx(C) — Hom(T'(X,Q),C)/Image H,(X,Z) (3)
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is defined by sending [P] — [Q] to the class of the linear form w — | (5 w. This is an
isomorphism of compact complex tori. Thus, in this case, the N-torsion part Jacxc[/N]
of the Jacobian is canonically identified with H,(X,Z) ® Z/NZ.

For a finite flat map f : X — Y of curves, the isomorphism (3) has the following
functoriality. The pull-back f* : Pic’(Y) — Pic’(X) is compatible with the dual of
the push-forward map f. : T'(X,Q) — I'(Y,Q) and the pull-back map H;(Y,Z) —
H,(X,Z). The push-forward f, : Pic’(X) — Pic’(Y) is compatible with the dual of
the pull-back map f* : I'(Y,Q) — T'(X, ) and the push-forward map H,(X,Z) —
Hy(Y, 2).

The isomorphism Jacx,c[N] — H1(X,Z) ® Z/NZ is compatible with the pull-back
and the push-forward for a finite flat morphism. By the isomorphism Jacy,c[N] —
Hy(X,Z)®7Z/NZ, the Weil pairing Jacy,c[N] x Jacx/c[N] — py is identified with the
pairing induced by the cap-product Hy(X,Z) x H{(X,Z) — Z.

The Tate module of Jacobian. Let X be a proper smooth curve over a field k with
geometrically connected fiber of genus g and ¢ be a prime number invertible in k. We
put

V; Jacx, = Q @ lim ,Jacx[0"](k) = Q ® lim , Pic(Xp)[£"].

Corollary 3.3 Let N > 1 be an integer and X be a proper smooth curve over Z[%] with
geometrically connected fibers of genus g. Then, V; Jacx, g ts an {-adic representation
of Gg of degree 2g unramified at p{ NL.

Proof. The multiplication [¢"] : Jacy ;1 — Jacyz 1) is finite étale. Hence
_ Ne NZ
Jacxo["](Q) = Jacx["](C) = Hi(X,Z) ® Z/{"Z is isomorphic to (Z/("Z)* as a
Z/t"Z-module and V; Jacx,,q is isomorphic to H(X,Z) ® Qp ~ Q?g as a Qg-vector
space. Since Jacy 71 [¢] is a finite étale scheme over Z[], the (-adic representation
Vi Jacx, g is unramified at p { N/.

Let f: X — X be an endomorphism of a proper smooth curve over a field k. Let
'y, A C X x X be the graphs of f and of the identity and let (I'y, Ax)xx,x be the
intersection product. Then, for a prime number ¢ invertible in k, the Lefschetz trace
formula gives us

(L, Ax)xxx =1 =Te(fi : TyJx) + deg f.

Assume k = F,, and apply the Lefschetz trace formula to the iterates of the Frobe-
nius endmorphism F : X — X. Then we obtain

Card X(Fpn) =1—Tr(F) : TyJx) +p"

and
— Card X (I, det(1 — Fit : T, J
Z(X,t):expz—ar )y _ det tJx)
— (1 —=0)(1—pt)
Thus, for a proper smooth curve X over Z[+] and a prime p { N/, we have

det(1 —ppt : TpJx) = Z(X ®z1) Fp, t)(1 — ) (1 — pt).

L
N
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Theorem 3.4 (Weil) Let o be an eigenvalue of @, on TyJx. Then, o is an algebraic
integer and its conjugates have compler absolute values \/p.

3.3 Construction of Galois representations
Eichler-Shimura isomorphism

Proposition 3.5 The canonical map
H{(X1(N),Z) @z R — Hom(S3(I'1(V)),C) = Hom(I'(X;(V), ), C)
is an isomorphism of To(I'1(N))r-modules.

Proof. The T5(I'y(N))-module structure is defined by 7% on Sy(I'y(N)) and is
defined by T, on H(X1(N),Q) for T € To(I'y(N)). Thus, it follows from the equality

ffww = f7 frw.
It follows from Proposition that the Fourier coefficients a,(f) are integers in the
number field Q(f) for a normalized eigenform f.

Corollary 3.6 V,(J1(N)) is a free To(I'y(N))q, -module of rank 2.

Proof. By Propositions 2.4 and 3.5 and by fpqc descent, H;(X;(N),Q) is a free
T5(I'1(NV))-module of rank 2. Hence V;(J1(N)) = Hi(X1(N),Q) ® Qy is also free of
rank 2.

For a place A|¢ of Q(f), we put

Via = Vi(Ji(N)) @10, (v))g, Q(f)a-

Vi is a 2-dimensional (-adic representation unramified at p { N¢.
Theorem 3.7 V;, is associated to f. Namely, for pt N¢, we have
det(1 — p,t : Viy) =1 —a,(f)t +c;(p)pt*.

Corollary 3.8 If we put 1 —a,(f)t+e¢(p)pt?* = (1 —at)(1—St), the complex absolute
values of a and (3 are \/p.

By Lemma 3.1, the left hand side det(1 — @,t : V;,) is equal to det(1l — Frpt :
Ve(J1(N)g,) @ Q(f)A)-

Lemma 3.9 The map Hi(X1(N),Q) — Hom(H,(X1(N),Q),Q) sending « to the lin-
ear form [+ Tr(aNwyB) is an isomorphism of To(I'1(IN))-modules.

Proof. Tt suffices to show T, o w = w o T*. We define w : T1(N,n) — Ti(N,n)
by sending (E,P,C) — (E',Q',C") where E' = E/((P) + C), @' is the image of
Q) € E/C|N] such that (Image of P,Q)) = (y and C’ is the kernel of the dual of
E/{(P) — E'. Then, we have sow =wot, tow =wos and hence T, ow = w o T*.
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3.4 Congruence relation

Let S be a scheme over F, and E be an elliptic curve over S. The commutative diagram

Frg

E E
L
s s, g

defines a map F : E — E®) = Xs rrg S called the Frobenius. The dual V = F* :
E®) — F is called the Verschiebung. We have V o F' = [p|g, F o V = [p|pw -

Lemma 3.10
det(1 — Frpt : Vo(J1(N)r,)) = det(1 — (p) Fryt - Vi(J1(N)g,))-
Proof. First, we show Frow = (p) ow o Fr. We have
Frow(E,P)=Fr(E/(P),Q) = (EV /(P"),Q"),

(p) ow o Fr(E, P) = (p) ow(E(p),P(p)) — (E(p)/<p(p)>,pQ/)
where (P®), @)y = (P,Q)n. Since (P®),QW)y = (P,Q)% = (PP, pQ’)y, we have

Frow = (p) ow o Fr. Hence, we have wo Fr = Fro (p)~! ow.

Thus, for o, 8 € Ji(N)g, [("'], we have
(Fra,wf) = (wo Fea, ) = {((wo F)., )
= ((Fro(p) " ow)war, B) = (a, w(p).F"P)

and the assertion follows.
Let N > 1 be an integer and pt N be a prime number. We define two maps

a,b: My(N)g, — Mio(N)g,

by sending (E, P) to (E,P,F : E — E®) and to (E® P® V : E®) — E) respec-
tively. The compositions are given by

soa sob\ [id F ()
toa tob) \F (p))’
The maps a,b : M;(N)r, — Mio(N)g, induce closed immersions a,b : X;(N)g, —

X1,0(N)r, -

Proposition 3.11 Let N > 1 be an integer and p { N be a prime number. Then
s,t: X1 0(N,p) — X1(N) is finite flat of degree p + 1.
The map
allb: X;i(N)r, D X1 (N)r, — X10(N, p)r,

1s an 1somorphism on a dense open subscheme.
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Proof. Since the maps a,b : X;(N)r, — Xio(N,p)r, are sections of projections
Xi10(N,p)r, — X1(N)g,, they are closed immersions. Since both (1, F) : X;(N)g, I
Xi(N)g, — Xi(N)r, and Xio(N,p)r, — Xi(N)p, are finite flat of degree p, the
assertion follows.

Corollary 3.12

PI(X (N)@)["]  ——  Pic”(X,(N))(@)[¢"]

! !

Pic® (X, (V) (Fp)[er] —225% Picd (X, (V) () [e7]
18 commutative.

By Proposition, we have a commutative diagram

. Tp=sxt* .
. toa)« (soa)*+4(tob)« (sob)* .
Pic(X(N)g) ~mellot HED-CD, - pie(X, (N)g)

By (4), the bottom arrow is F, + (p) F™.
Proof of Theorem. By Corollary, we have

(1= Ft)(1 = (p)F"t) = (1 = Tpt + (p)pt?).
Taking the determinant, we get
det(1 — F.t)det(1 — (p)F*t) = (1 — Tt + (p)pt*)*.
By Lemma 3.10, we get

det(1 — Fit) =1 — Tyt + (p)pt*.

4 Construction of Galois representations: the case
k> 2

To cover the case k > 2, one needs a construction generalizing the torsion part of the
Jacobian.
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4.1 Etale cohomology

For a scheme X, an étale sheaf on the small étale site is a contravariant functor F :
(Etale schemes/X) — (Sets) such that the map

F(U) e{ si) € [[F W)

el

pri(s;) = pry(s;) in F(U; XUU)forszI}

is a bijection for every family of étale morphisms (U; — U);e; satistying U = | J,.,; Image
(U; — U). An étale sheaf on X represented by a finite étale scheme over X is called
locally constant.

The abelian étale sheaves form an abelian category. The étale cohomology H?(X, )
is defined as the derived functor of the global section functor I'(X, ). For a morphism
f X — Y of schemes, the higher direct image R?f, is defined as the derived functor of
fer We write HY(X, Q) = Q,®lim , H(X,Z/("Z) and R f.Qy = Q®lim ,, R f.Z/ (" L.

Let f: X — S be a proper smooth morphism of relative dimention d and let F
be a locally constant sheaf on X. Then the higher direct image R?f,F is also locally
constant and 0 unless 0 < ¢ < 2d and its formation commutes with base change. More
generally, assume f : X — S is proper smooth, U C X is the complement of a relative
divisor D with normal crossings and F is a locally constant sheaf on U tamely ramified
along D. Let 7 : U — X be the open immersion. Then, the higher direct image
R1f,5.F is also locally constant and its formation commutes with base change.

If f: X — §is a proper smooth curve and if N is invertible on S, we have a
canonical isomorphism Hom(Jacy,s[N],Z/NZ) — R f.Z/NZ.

If S = Spec k for a field k, the category of étale sheaves on S is equivalent to that
of discrete set with continuous Gy-action by the functor sending F to lim ;- F(L).
For a scheme X over k, the higher direct image R?f,F is the étale cohomology group
H9(Xp, F) with the canonical Gi-action. If k£ = C, we have a canonical isomorphism
HYX,Z)®y Z/NZ — HY(X,Z/NZ).

Let X be a proper smooth variety over a field k and f : X — X is an endomorphism.
Then, for a prime number ¢ invertible in k, the Lefschetz trace formula gives us

2dim X

(Tf Ax)xxox = Y (=D Tr(f*: HI(X5, Qo).

q=0

Assume k = [, and apply the Lefschetz trace formula to the iterates of the Frobe-
nius endmorphism F : X — X. Then we obtain

2dim X
Z(X,1) H det(1 — F*t : HY(Xj, Qe))( e

q=0

Theorem 4.1 (the Weil conjecture proved by Deligne) Let a be an eigenvalue
of F* on HY( X}, Qy). Then, « is an algebraic integer and its conjugates have complex
absolute values p3.
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4.2 Construction of Galois representations

Let N > 5and k > 2. Proposition 3.5 is generalized as follows. Let f : Ey(N) — Y1(N)
be the universal elliptic curve and j : Y1 (NN) — X;(N) be the open immersion.

Proposition 4.2 There exists a canonical isomorphism
HY(X1(N), 7.5" R £.Q) ®g R — Si(T1(N))e
of Ti(T'1 (N ))r-modules.
Corollary 4.3 H'(X1(N)g,j.S" >R f.Qy) is a free To(T'1(N))g, -module of rank 2.
For a place A|[¢ of Q(f), we put

Via = Ve(Ji(N)) @1,r1(v)q, QU

Vi is a 2-dimensional (-adic representation unramified at p { N¢.
Theorem 4.4 V;, is associated to f. Namely, for pt N{, we have
det(1 — ppt : Via) =1 —a,(f)t +e5(p)p" 2.

Corollary 4.5 If we put 1 — a,(f)t + e;(p)p"~'t* = (1 — at)(1 — Bt), the complex
absolute values of o and 3 are p%.
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