Galois representations and modular forms

Takeshi Saito

July 17-22, 2006 at IHES

Introduction

A goal in number theory is to understand

- the finite extensions of \mathbb{Q}, or equivalently,
- the absolute Galois group $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, or further equivalently,
- representations of $G_{\mathbb{Q}}$.

Representations are classified by the degree. Representations of degree 1 are called characters. By the theorem of Kronecker-Weber, a continuous character $G_{\mathbb{Q}} \rightarrow \mathbb{C}^{\times}$is a Dirichlet character

$$
G_{\mathbb{Q}} \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}
$$

for some $N \geq 1$. Thus, there are too few continuous characters $G_{\mathbb{Q}} \rightarrow \mathbb{C}^{\times}$. It is more natural to consider ℓ-adic characters for a prime ℓ. ℓ-adic cyclotomic character.

$$
\begin{aligned}
& G_{\mathbb{Q}} \rightarrow \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}, n \in \mathbb{N}\right) / \mathbb{Q}\right)=\lim _{n} \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{\ell^{n}}\right) / \mathbb{Q}\right) \rightarrow{\underset{\lim }{n}}^{\rightleftarrows_{n}}\left(\ell^{n} \mathbb{Z}\right)^{\times}=\mathbb{Z}_{\ell}^{\times} \subset \mathbb{Q}_{\ell}^{\times} \\
&\left\{\ell \text {-adic character of } G_{\mathbb{Q}} \text { potentially cristalline at } \ell\right\} \\
&=\left\{\text { "geometric" } \ell \text {-adic character of } G_{\mathbb{Q}}\right\} \\
&=\langle\text { Dirichlet characters, } \ell \text {-adic cyclotomic characters }\rangle .
\end{aligned}
$$

In the case where degree is 2 , we expect to have (cf. [7])
\{odd ℓ-adic representation of $G_{\mathbb{Q}}$ of degree 2 potentially semi-stable at ℓ \}
$=\left\{\right.$ odd "geometric" ℓ-adic representation of $G_{\mathbb{Q}}$ of degree 2$\}$
$=\{\ell$-adic representation associated to modular form $\}$.
In this course, we discuss on one direction \supset established by Shimura and Deligne ([14], [5]). The other direction \subset partly established by Wiles and others, which will not be discussed here, has significant consequences including Fermat's last theorem, the modularity of elliptic curves, etc. ([2],[3]).

Contents

1 Galois representations and modular forms 2
1.1 Modular forms 2
1.2 Examples 4
1.3 Hecke operators 5
1.4 Galois representations 5
2 Modular curves and modular forms 7
2.1 Elliptic curves 7
2.2 Elliptic curves over \mathbb{C} 8
2.3 Modular curves over \mathbb{C} 9
2.4 Modular curves and modular forms 11
2.5 Modular curves over $\mathbb{Z}\left[\frac{1}{N}\right]$ 12
2.6 Hecke operators 14
3 Construction of Galois representations: the case $k=2$ 15
3.1 Galois representations and finite étale group schemes 15
3.2 Jacobian of a curve and its Tate module 15
3.3 Construction of Galois representations 18
3.4 Congruence relation 19
4 Construction of Galois representations: the case $k>2$ 20
4.1 Etale cohomology 21
4.2 Construction of Galois representations 22
References 22

1 Galois representations and modular forms

1.1 Modular forms

([14]) Let $N \geq 1$ and $k \geq 2$ be integers and $\varepsilon:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a character. We will define \mathbb{C}-vector space $S_{k}(N, \varepsilon) \subset M_{k}(N, \varepsilon)$ of cusp forms and of modular forms of level N, weight k and of character ε. We will see later that they are of finite dimension. For $\varepsilon=1$, we write $S_{k}(N) \subset M_{k}(N)$ for $S_{k}(N, 1) \subset M_{k}(N, 1)$.

A subgroup $\Gamma \subset S L_{2}(\mathbb{Z})$ is called a congruence subgroup if there exists an integer $N \geq 1$ such that $\Gamma \supset \Gamma(N)=\operatorname{Ker}\left(S L_{2}(\mathbb{Z}) \rightarrow S L_{2}(\mathbb{Z} / N \mathbb{Z})\right)$. In the following, we mainly consider

$$
\begin{aligned}
\Gamma_{1}(N) & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, a \equiv 1, c \equiv 0 \bmod N\right\} \\
\subset \quad \Gamma_{0}(N) & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0 \bmod N\right\}
\end{aligned}
$$

for $N \geq 1$. We identify the quotient $\Gamma_{0}(N) / \Gamma_{1}(N)$ with $(\mathbb{Z} / N \mathbb{Z})^{\times}$by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto$ $d \bmod N$. The indices are given by

$$
\begin{aligned}
& {\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=\prod_{p \mid N}(p+1) p^{\operatorname{ord}_{p}(N)-1}=N \prod_{p \mid N}\left(1+\frac{1}{p}\right)} \\
& {\left[S L_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]=\prod_{p \mid N}\left(p^{2}-1\right) p^{2\left(\operatorname{ord}_{p}(N)-1\right)}=N^{2} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right) .}
\end{aligned}
$$

The action of $S L_{2}(\mathbb{Z})$ on the Poincaré upper half plane $H=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}$. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and $\tau \in H$, we put $\gamma(\tau)=\frac{a \tau+b}{c \tau+d}$. For a holomorphic function f on H, we define $\gamma_{k}^{*} f$ by

$$
\gamma_{k}^{*} f(\tau)=\frac{1}{(c \tau+d)^{k}} f(\gamma \tau)
$$

If $k=2$, we have $\gamma^{*}(f d \tau)=\gamma_{2}^{*}(f) d \tau$.
Definition 1.1 Let $\Gamma \supset \Gamma(N)$ be a congruence subgroup and $k \geq 2$ be an integer. We say that a holomorphic function $f: H \rightarrow \mathbb{C}$ is a modular form (resp. a cusp form) of weight k with respect to Γ, if the following conditions (1) and (2) are satisfied.
(1) $\gamma_{k}^{*} f=f$ for all $\gamma \in \Gamma$.
(2) For each $\gamma \in S L_{2}(\mathbb{Z}), \gamma_{k}^{*} f$ satisfies $\gamma_{k}^{*} f(\tau+N)=\gamma_{k}^{*} f(\tau)$ and hence we have a Fourier expansion $\gamma_{k}^{*} f(\tau)=\sum_{n=-\infty}^{\infty} a_{\frac{n}{N}}\left(\gamma_{k}^{*} f\right) q_{N}^{n}$ where $q_{N}=\exp \left(2 \pi i \frac{\tau}{N}\right)$. Here, we impose $a_{\frac{n}{N}}\left(\gamma_{k}^{*} f\right)=0$ for $n<0$ (resp. $n \leq 0$) for every $\gamma \in S L_{2}(\mathbb{Z})$.

We put

$$
\begin{aligned}
& S_{k}(\Gamma)_{\mathbb{C}}=\{f \mid f \text { is a cusp form of weight } k \text { w.r.t. } \Gamma\} \\
\subset & M_{k}(\Gamma)_{\mathbb{C}}=\{f \mid f \text { is a modular form of weight } k \text { w.r.t. } \Gamma\}
\end{aligned}
$$

and define $S_{k}(N)=S_{k}\left(\Gamma_{0}(N)\right)$. The group $\Gamma_{0}(N)$ has a natural action on $S_{k}\left(\Gamma_{1}(N)\right)$ and the subgroup $\Gamma_{1}(N)$ acts trivially on it. Hence, the space $S_{k}\left(\Gamma_{1}(N)\right)$ has an action of the quotient $\Gamma_{0}(N) / \Gamma_{1}(N)=(\mathbb{Z} / N \mathbb{Z})^{\times}$. The action of $d \in(\mathbb{Z} / N \mathbb{Z})^{\times}$on $S_{k}\left(\Gamma_{1}(N)\right)$ is denoted by $\langle d\rangle$ and is called the diamond operator. The space is decomposed by the characters

$$
S_{k}\left(\Gamma_{1}(N)\right)=\bigoplus_{\varepsilon: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{C}^{\times}} S_{k}(N, \varepsilon)
$$

where $S_{k}(N, \varepsilon)=\left\{f \in S_{k}\left(\Gamma_{1}(N)\right) \mid\langle d\rangle f=\varepsilon(d) f\right.$ for all $\left.d \in(\mathbb{Z} / N \mathbb{Z})^{\times}\right\}$. The fixed part $S_{k}\left(\Gamma_{1}(N)\right)^{\Gamma_{0}(N)}=S_{k}(N, 1)$ is equal to $S_{k}(N)=S_{k}\left(\Gamma_{0}(N)\right)$.

1.2 Examples

([12]) Eisenstein series. $k \geq 4$ even.

$$
G_{k}(\tau)=\sum_{m, n \in \mathbb{Z}}{ }^{\prime} \frac{1}{(m \tau+n)^{k}}
$$

is a modular form of weight k.
q-expansion. By differentiating the logarithms of $\sin \pi \tau=\pi \tau \prod_{n=1}^{\infty}\left(1-\frac{\tau^{2}}{n^{2}}\right)$, one obtains

$$
-2 \pi i\left(\frac{1}{2}+\sum_{n=1}^{\infty} q^{n}\right)=\frac{1}{\tau}+\sum_{n=1}^{\infty}\left(\frac{1}{\tau+n}+\frac{1}{\tau-n}\right)
$$

Applying $q \frac{d}{d q}=\frac{1}{2 \pi i} \frac{d}{d \tau} k$-1-times, one gets

$$
\sum_{n=1}^{\infty} n^{k-1} q^{n}=\frac{(-1)^{k}(k-1)!}{(2 \pi i)^{k}} \sum_{n \in \mathbb{Z}} \frac{1}{(\tau+n)^{k}}
$$

For $k \geq 4$ even, by putting $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$ and

$$
E_{k}(q)=1+\frac{2}{\zeta(1-k)} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \in \mathbb{Q}[[q]]
$$

we obtain

$$
\begin{aligned}
\frac{(k-1)!}{(2 \pi i)^{k}} G_{k}(\tau) & =\frac{(k-1)!}{(2 \pi i)^{k}}\left(2 \zeta(k)+\left(G_{k}(\tau)-2 \zeta(k)\right)\right) \\
& =\zeta(1-k)+2 \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}=\zeta(1-k) E_{k}(q)
\end{aligned}
$$

Recall that

$$
\begin{aligned}
\zeta(-1)=-\frac{1}{12}, \zeta(-3)=\frac{1}{120}, \zeta(-5)=-\frac{1}{252}, \ldots \in \mathbb{Q} \\
\bigoplus_{k=0}^{\infty} M_{k}(1)_{\mathbb{C}}=\mathbb{C}\left[E_{4}, E_{6}\right]
\end{aligned}
$$

$$
\Delta(q)=\frac{1}{12^{3}}\left(E_{4}^{3}-E_{6}^{2}\right)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

is a cusp form of weight 12 , level $1 . \bigoplus_{k=0}^{\infty} S_{k}(1)_{\mathbb{C}}=\mathbb{C}\left[E_{4}, E_{6}\right] \cdot \Delta$.

$$
f_{11}(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}
$$

is a basis of $S_{2}(11)_{\mathbb{C}}$.

1.3 Hecke operators

([14]) The Hecke operator T_{n} is defined as an endomorphism of $S_{k}\left(\Gamma_{1}(N)\right)$. Here we only consider the case $n=p$ is a prime. The general case is discussed later.

$$
T_{p} f(\tau)=\frac{1}{p} \sum_{i=0}^{p-1} f\left(\frac{\tau+i}{p}\right)+ \begin{cases}p^{k-1}\langle p\rangle f(\tau) & \text { if } p \nmid N \\ 0 & \text { if } p \mid N\end{cases}
$$

If $f(\tau)=\sum_{n} a_{n}(f) q^{n}$, we have

$$
T_{p} f(\tau)=\sum_{p \mid n} a_{n}(f) q^{n / p}+ \begin{cases}p^{k-1} \sum_{n} a_{n}(\langle p\rangle f) q^{p n} & \text { if } p \nmid N \\ 0 & \text { if } p \mid N\end{cases}
$$

The Hecke operators on $S_{k}\left(\Gamma_{1}(N)\right)$ are commutative to each other and formally satisfy the relation

$$
\sum_{n=1}^{\infty} T_{n} n^{-s}=\prod_{p \nmid N}\left(1-T_{p} p^{-s}+\langle p\rangle p^{k-1} p^{-2 s}\right)^{-1} \times \prod_{p \mid N}\left(1-T_{p} p^{-s}\right)^{-1}
$$

$f \in S_{k}(N, \varepsilon)$ is called a normalized eigenform if $T_{n} f=\lambda_{n} f$ for all $n \geq 1$ and $a_{1}=1$. Since $a_{1}\left(T_{n} f\right)=a_{n}(f)$, if $f \in S_{k}(N, \varepsilon)$ is a normalized eigenform, we have $\lambda_{n}=a_{n}$. For a normalized eigenform $f=\sum_{n} a_{n} q^{n}$, the subfield $\mathbb{Q}(f)=\mathbb{Q}\left(a_{n}, n \in \mathbb{N}\right) \subset \mathbb{C}$ is a finite extension of \mathbb{Q}, as we will see later.

Since $S_{12}(1)=\mathbb{C} \Delta, S_{2}(11)=\mathbb{C} f_{11}$, the cusp forms Δ and f_{11} are normalized eigenforms.

For $f=\sum_{n} a_{n} q^{n} \in S_{k}(N)$, the L-series is defined as a Dirichlet series

$$
L(f, s)=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

It converges absolutely on $\operatorname{Re} s>\frac{k+1}{2}$. If $f=\sum_{n} a_{n} q^{n} \in S_{k}(N, \varepsilon)$ is a normalized eigen form, we have an Euler product

$$
L(f, s)=\prod_{p \nmid N}\left(1-a_{p} p^{-s}+\varepsilon(p) p^{k-1} p^{-2 s}\right)^{-1} \times \prod_{p \mid N}\left(1-a_{p} p^{-s}\right)^{-1} .
$$

1.4 Galois representations

$([13]) p$ prime. A choice of an embedding $\overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}_{p}}$ defines an embedding $G_{\mathbb{Q}_{p}}=$ $\operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}\right) \rightarrow G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. The Galois group $G_{\mathbb{Q}_{p}}$ thus regarded as a subgroup of $G_{\mathbb{Q}}$ is called the decomposition group. It is well-defined upto conjugacy.
$\mathbb{Q}_{p} \subset \mathbb{Q}_{p}^{\text {ur }} \subset \overline{\mathbb{Q}_{p}}$ defines a normal subgroup $I_{p}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}^{\text {ur }}\right) \subset G_{\mathbb{Q}_{p}}$ called the inertia subgroup. The quotient $G_{\mathbb{Q}_{p}} / I_{p}=\operatorname{Gal}\left(\mathbb{Q}_{p}^{\text {ur }} / \mathbb{Q}_{p}\right)$ is canonically identified with
$G_{\mathbb{F}_{p}}=\operatorname{Gal}\left(\overline{\mathbb{F}_{p}} / \mathbb{F}_{p}\right)$. The map $\widehat{\mathbb{Z}}=\underline{\lim }_{n} \mathbb{Z} / n \mathbb{Z} \rightarrow G_{\mathbb{F}_{p}}$ defined by sending 1 to the Frobenius substitution $\varphi_{p} ; \varphi(a)=a^{p}$ for all $a \in \overline{\mathbb{F}_{p}}$ is an isomorphism.
$V \ell$-adic representation of $G_{\mathbb{Q}} . E_{\lambda}$ a finite extension of $\mathbb{Q}_{\ell} . \ell$ is a prime. $V E_{\lambda}$ vector space of finite dimension. $G_{\mathbb{Q}} \rightarrow G L_{E_{\lambda}} V$ continuous representation.

There exists an integer $N \geq 1$ such that V is unramified at $p \nmid N \ell$.
Unramified: restriction to I_{p} is trivial.
For $p \nmid N \ell, \operatorname{det}\left(1-\varphi_{p} t: V\right) \in E_{\lambda}[t]$ is well-defined.
Definition 1.2 A 2-dimensional ℓ-adic representation V is said to be associated to a normalized eigen cusp form $f=\sum_{n} a_{n} q^{n} \in S_{k}(N, \varepsilon)$ if, for every $p \nmid N \ell, V$ is unramified at p and

$$
\operatorname{Tr}\left(\varphi_{p}: V\right)=a_{p}(f)
$$

for an embedding $\mathbb{Q}(f) \rightarrow E_{\lambda}$.
We may replace the condition by

$$
\operatorname{det}\left(1-\varphi_{p} t: V\right)=1-a_{p}(f) t+\varepsilon(p) p^{k-1} t^{2}
$$

The goal of this course is to explain the geometric proof of the following theorem.
Theorem 1.3 Let $N \geq 1, k \geq 2$ be integers and $\varepsilon:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a character. Let $f \in S_{k}(N, \varepsilon)$ be a normalized eigenform and $\lambda \mid \ell$ be place of $\mathbb{Q}(f)$. Then, there exists an ℓ-adic representation $V_{f, \lambda}$ associated to f.

A consequence of the geometric construction and the Weil conjecture.

Corollary 1.4 (Ramanujan's conjecture)

$$
\tau(p) \leq p^{\frac{11}{2}}
$$

Why Frobenius's are so important.
Theorem 1.5 (Cebotarev's density theorem) Let L be a finite Galois extension of \mathbb{Q} and $C \subset \operatorname{Gal}(L / \mathbb{Q})$ be a conjugacy class. Then there exist infinitely many prime p such that L is unramifed at p and that C is the class of φ_{p}.

A generalization of Dirichlet's Theorem on Primes in Arithmetic Progressions.
Consequence: $V_{1}, V_{2} \ell$-adic representations. If there exists an integer $N \geq 1$ such that

$$
\operatorname{Tr}\left(\varphi_{p}: V_{1}\right)=\operatorname{Tr}\left(\varphi_{p}: V_{2}\right)
$$

for every prime $p \nmid N \ell$, the semi-simplifications $V_{1}^{\text {ss }}$ and $V_{2}^{\text {ss }}$ are isomorphic to each other. In particular, the ℓ-adic representation associated to f is unique upto isomorphism, since it is irreducible by a theorem of Ribet.

2 Modular curves and modular forms

2.1 Elliptic curves

([15]) k field of characteristic $\neq 2,3$. An elliptic curve over k is the smooth compactification of an affine smooth curve defined by

$$
y^{2}=x^{3}+a x+b
$$

where $a, b \in k$ satisfying $4 a^{3}+27 b^{2} \neq 0$. Or equivalently,

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

where $g_{2}, g_{3} \in k$ satisfying $g_{2}^{3}-27 g_{3}^{2} \neq 0$. More precisely, E is the curve in \mathbf{P}_{k}^{2} defined by the homogeneous equation $Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}$. The point $O=(0: 1: 0) \in E(k)$ is called the 0 -section. Precisely speaking, an elliptic curve is a pair (E, O) of a projective smooth curve E of genus 1 and a k-rational point O. The embedding $E \rightarrow \mathbf{P}_{k}^{2}$ is defined by the basis $(x, y, 1)$ of $\Gamma\left(E, \mathcal{O}_{E}(3 O)\right)$. For an elliptic curve E defined by $y^{2}=4 x^{3}-g_{2} x-g_{3}$, the j-invariant is defined by

$$
j(E)=12^{3} \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}
$$

S arbitrary base scheme. an elliptic curve over S is a pair (E, O) of a proper smooth curve $f: E \rightarrow S$ of genus 1 and a section $O: S \rightarrow E . f_{*} \mathcal{O}_{E}=\mathcal{O}_{S}$ and $f_{*} \Omega_{E / S}^{1}=O^{*} \Omega_{E / S}^{1}=\omega_{E}$ is an invertible \mathcal{O}_{S}-module.

Addition. For a scheme X, the $\operatorname{Picard} \operatorname{group} \operatorname{Pic}(X)$ is the isomorphism class group of invertible \mathcal{O}_{X}-modules. If X is a smooth proper curve over a field k, the Picard group $\operatorname{Pic}(X)$ is equal to the divisor class group

$$
\operatorname{Coker}\left(\operatorname{div}: k(X)^{\times} \rightarrow \bigoplus_{x: \text { closed points of } X} \mathbb{Z}\right)
$$

where for a non-zero rational function $f \in k(X)^{\times}$its divisor $\operatorname{div} f$ is $\left(\operatorname{ord}_{x} f\right)_{x}$. The degree map deg : $\operatorname{Pic}(X) \rightarrow \mathbb{Z}$ is induced by the degree map $\bigoplus_{x: \text { closed points of } X} \mathbb{Z} \rightarrow \mathbb{Z}$, whose x-component is the multiplication by $[\kappa(x): k]$.

Let E be an elliptic curve over a scheme S. For a scheme T over S, the degree map deg : $\operatorname{Pic}\left(E \times_{S} T\right) \rightarrow \mathbb{Z}(T)$ has a section $\mathbb{Z}(T) \rightarrow \operatorname{Pic}\left(E \times_{S} T\right)$ defined by $1 \mapsto[\mathcal{O}(O)]$. For an invertible $\mathcal{O}_{E \times{ }_{S} T}$-module \mathcal{L}, its degree $\operatorname{deg} \mathcal{L}: T \rightarrow \mathbb{Z}$ is the locally constant function defined by $\operatorname{deg} \mathcal{L}(t)=\operatorname{deg}\left(\left.\mathcal{L}\right|_{E \times_{T} t}\right)$. The pull-back $0^{*}: \operatorname{Pic}\left(E \times_{S} T\right) \rightarrow \operatorname{Pic}(T)$ also has a section $f^{*}: \operatorname{Pic}(T) \rightarrow \operatorname{Pic}\left(E \times_{S} T\right)$. Thus, we have a decomposition

$$
\operatorname{Pic}\left(E \times_{S} T\right)=\mathbb{Z}(T) \oplus \operatorname{Pic}(T) \oplus \operatorname{Pic}_{E / S}^{0}(T)
$$

and a functor $\operatorname{Pic}_{E / S}^{0}:($ Schemes $/ S) \rightarrow$ (Abelian groups) is defined. We define a morphism of functors $E \rightarrow \mathrm{Pic}_{E / S}^{0}$ by sending $P \in E(T)$ to the projection of the class $\left[\mathcal{O}_{E_{T}}(P)\right]$.

Theorem 2.1 (Abel's theorem) The morphism $E \rightarrow \operatorname{Pic}_{E / S}^{0}$ of functors is an isomorphism.

The inverse $\operatorname{Pic}_{E / S}^{0} \rightarrow E$ is defined as follows. For $[\mathcal{L}] \in \operatorname{Pic}_{E / S}^{0}(T)$, the support of the cokernel of the natural map $f_{T}^{*} f_{T *}(\mathcal{L}(O)) \rightarrow \mathcal{L}(O)$ defines a section $T \rightarrow E \times{ }_{S} T$.

Since $\mathrm{Pic}_{E / S}^{0}$ is a sheaf of abelian groups, the isomorphism $E \rightarrow \mathrm{Pic}_{E / S}^{0}$ defines a group structure on the scheme E over S. For a morphism $f: E \rightarrow E^{\prime}$, the pull-back $\operatorname{map} f^{*}: \operatorname{Pic}_{E^{\prime} / S}^{0} \rightarrow \operatorname{Pic}_{E / S}^{0}$ defines the dual $f^{*}: E^{\prime} \rightarrow E$. we have $f^{*} \circ f=[\operatorname{deg} f]_{E}$ and $f \circ f^{*}=[\operatorname{deg} f]_{E^{\prime}}$.

For an elliptic curve E over a field k, the addition on $E(k)$ is described as follows. Let $P, Q \in E(k)$. The line $P Q$ meets E at the third point R^{\prime}. The divisor $[P]+[Q]+\left[R^{\prime}\right]$ is linearly equivalent to the divisor $[O]+[R]+\left[R^{\prime}\right]$, where R is the opposite of R with respect to the x-axis. Thus, we have $[P]+[Q]+\left[R^{\prime}\right]=[O]+[R]+\left[R^{\prime}\right]$ in $\operatorname{Pic}(E)$ and $([P]-[O])+([Q]-[O])=[R]-[O]$ in $\operatorname{Pic}^{0}(E)$. Hence we have $P+Q=R$ in $E(k)$.

2.2 Elliptic curves over \mathbb{C}

([15]) To give an elliptic curve over \mathbb{C} is equivalent to give a complex torus of dimension 1, as follows.

Let E be an elliptic curve over \mathbb{C}. Then, $E(\mathbb{C})$ is a connected compact abelian complex Lie group of dimension 1. Let Lie E be the tangent space of $E(\mathbb{C})$ at the origin. It is a \mathbb{C}-vector space of dimension 1 . The exponential map exp : Lie $E \rightarrow E(\mathbb{C})$ is surjective and the kernel is a lattice of $E(\mathbb{C})$ and is identified with the singular homology $H_{1}(E(\mathbb{C}), \mathbb{Z})$. A lattice L of a complex vector space V of finite dimension is a free abelian subgroup generated by an \mathbb{R}-basis.

Conversely, let L be a lattice of \mathbb{C}. The \wp-function is defined by

$$
x=\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in L}^{\prime}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

Since

$$
y=\frac{d \wp(z)}{d z}=-2 \sum_{\omega \in L} \frac{1}{(z-\omega)^{3}},
$$

it satisfies the Weierstrass equation

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

where $g_{2}=60 \sum_{\omega \in L}{ }^{\prime} \frac{1}{\omega^{4}}$ and $g_{3}=140 \sum_{\omega \in L}{ }^{\prime} \frac{1}{\omega^{6}}$. If $L=\mathbb{Z}+\mathbb{Z} \tau$ for $\tau \in H$, we have

$$
\begin{aligned}
& g_{2}=60 G_{4}(\tau)=60 \cdot \frac{(2 \pi i)^{4}}{3!} \frac{1}{120} E_{4}=\frac{(2 \pi i)^{4}}{12} E_{4} \\
& g_{3}=140 G_{6}(\tau)=140 \cdot \frac{(2 \pi i)^{6}}{5!}\left(-\frac{1}{252}\right) E_{6}=-\frac{(2 \pi i)^{6}}{6^{3}} E_{6}
\end{aligned}
$$

and hence

$$
g_{2}^{3}-27 g_{3}^{2}=(2 \pi i)^{12} \frac{1}{12^{3}}\left(E_{4}^{3}-E_{6}^{2}\right)=(2 \pi i)^{12} \Delta \neq 0
$$

Thus the equation $y^{2}=4 x^{3}-g_{2} x-g_{3}$ defines an elliptic curve E over \mathbb{C}. The map $\mathbb{C} / L \rightarrow E(\mathbb{C})$ defined by $z \mapsto\left(\wp(z), \wp^{\prime}(z)\right)$ is an isomorphism of compact Riemann surfaces.

2.3 Modular curves over \mathbb{C}

([14]) We put

$$
\mathcal{R}=\{\text { lattices in } \mathbb{C}\}, \quad \widetilde{\mathcal{R}}=\left\{\left(\omega_{1}, \omega_{2}\right) \in \mathbb{C}^{\times 2} \left\lvert\, \operatorname{Im} \frac{\omega_{1}}{\omega_{2}}>0\right.\right\}
$$

The multiplication defines an action of \mathbb{C}^{\times}on \mathcal{R} and on $\widetilde{\mathcal{R}}$. The map $H \rightarrow \widetilde{\mathcal{R}}: \tau \rightarrow$ $(\tau, 1)$ induces a bijection $H \rightarrow \mathbb{C}^{\times} \backslash \widetilde{\mathcal{R}}$. We consider the map $\widetilde{\mathcal{R}} \rightarrow \mathcal{R}$ sending $\left(\omega_{1}, \omega_{2}\right)$ to $\left\langle\omega_{1}, \omega_{2}\right\rangle$ and an action of $S L_{2}(\mathbb{Z})$ on $\widetilde{\mathcal{R}}$ defined by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{\omega_{1}}{\omega_{2}}=\binom{a \omega_{1}+b \omega_{2}}{c \omega_{1}+d \omega_{2}}$. It induces a bijection

$$
S L_{2}(\mathbb{Z}) \backslash \widetilde{\mathcal{R}} \rightarrow \mathcal{R}
$$

The map sending a lattice L to the isomorphism class of the elliptic curve \mathbb{C} / L defines bijections

$$
\begin{aligned}
S L_{2}(\mathbb{Z}) \backslash H & \rightarrow\left(S L_{2}(\mathbb{Z}) \times \mathbb{C}^{\times}\right) \backslash \widetilde{\mathcal{R}} \rightarrow \mathbb{C}^{\times} \backslash \mathcal{R} \\
& \rightarrow\{\text { isomorphism classes of elliptic curves over } \mathbb{C}\}
\end{aligned}
$$

The quotient $Y(1)(\mathbb{C})=S L_{2}(\mathbb{Z}) \backslash H$ is called the modular curve of level 1. The map

$$
j: S L_{2}(\mathbb{Z}) \backslash H \rightarrow \mathbb{C}
$$

defined by the j-invariant

$$
j(\tau)=1728 \frac{g_{2}(\tau)^{3}}{g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}}=\frac{E_{4}^{3}}{\Delta}
$$

is an isomorphism of Riemann surfaces.
For an integer $N \geq 1$, similarly the map sending $\left(\omega_{1}, \omega_{2}\right) \in \widetilde{\mathcal{R}}$ to the pair $(E, P)=$ $\left(\mathbb{C} /\left\langle\omega_{1}, \omega_{2}\right\rangle, \frac{\omega_{2}}{N}\right)$ defines a bijection

$$
\begin{aligned}
\Gamma_{1}(N) \backslash H & \rightarrow\left(\Gamma_{1}(N) \times \mathbb{C}^{\times}\right) \backslash \widetilde{\mathcal{R}} \\
& \rightarrow\left\{\begin{array}{c}
\text { isom. classes of pairs }(E, P) \text { of an elliptic curve } \\
E \text { over } \mathbb{C} \text { and a point } P \in E(\mathbb{C}) \text { of order } N
\end{array}\right\}
\end{aligned}
$$

Note that $\frac{c \omega_{1}+d \omega_{2}}{N} \equiv \frac{\omega_{2}}{N} \bmod \left\langle\omega_{1}, \omega_{2}\right\rangle$ since $c \equiv 0, d \equiv 1 \bmod N$. The quotient $\Gamma_{1}(N) \backslash H$ is denoted by $Y_{1}(N)(\mathbb{C})$ and is called the modular curve of level $\Gamma_{1}(N)$.

The diamond operators act on $Y_{1}(N)(\mathbb{C})$. For $d \in(\mathbb{Z} / N \mathbb{Z})^{\times}$, the action of $\langle d\rangle$ is given by $\langle d\rangle(E, P)=(E, d P)$. The quotient $\Gamma_{0}(N) \backslash H=(\mathbb{Z} / N \mathbb{Z})^{\times} \backslash Y_{1}(N)(\mathbb{C})$ is denoted by $Y_{0}(N)(\mathbb{C})$ and is called the modular curve of level $\Gamma_{0}(N)$. We have a natural bijection

$$
\Gamma_{0}(N) \backslash H \rightarrow\left\{\begin{array}{c}
\text { isom. class of a pair }(E, C) \text { of an elliptic curve } E \\
\text { over } \mathbb{C} \text { and a cyclic subgroup } C \subset E(\mathbb{C}) \text { of order } N
\end{array}\right\} .
$$

We have finite flat maps $Y_{1}(N) \rightarrow Y_{0}(N) \rightarrow Y(1)=\mathbf{A}^{1}$ of open Riemann surfaces. The degree of the maps are given by

$$
\left[Y_{1}(N): Y_{0}(N)\right]=\sharp(\mathbb{Z} / N \mathbb{Z})^{\times} /\{ \pm 1\}= \begin{cases}\varphi(N) / 2 & \text { if } N \geq 3 \\ 1 & \text { if } N \leq 2,\end{cases}
$$

and $\left[Y_{0}(N): Y(1)\right]=\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]$.
Let $X_{1}(N)$ and $X_{0}(N)$ be the compactifications of $Y_{1}(N)$ and $Y_{0}(N)$. The maps $Y_{1}(N) \rightarrow Y_{0}(N) \rightarrow Y(1)=\mathbf{A}^{1}$ are uniquely extended to finite flat maps $X_{1}(N) \rightarrow$ $X_{0}(N) \rightarrow X(1)=\mathbf{P}^{1}$ of compact Riemann surfaces or equivalently of projective smooth curves over \mathbb{C}.

We have $S_{2}(N)=\Gamma\left(X_{0}(N), \Omega^{1}\right)$. Applying the Riemann-Hurwitz formula to the map $j: X_{0}(N) \rightarrow X(1)=\mathbf{P}^{1}$, we obtain the genus formula

$$
g\left(X_{0}(N)\right)=g_{0}(N)=1+\frac{1}{12}\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]-\frac{1}{2} \varphi_{\infty}(N)-\frac{1}{3} \varphi_{6}(N)-\frac{1}{4} \varphi_{4}(N)
$$

where

$$
\begin{aligned}
& \varphi_{6}(N)= \begin{cases}0 & \text { if } 9 \mid N \text { or if } \exists p \mid N, p \equiv-1 \bmod 3 \\
2^{\sharp\{p \mid N: p \equiv 1 \bmod 3\}} & \text { if otherwise, }\end{cases} \\
& \varphi_{4}(N)= \begin{cases}0 & \text { if } 4 \mid N \text { or if } \exists p \mid N, p \equiv-1 \bmod 4 \\
2^{\sharp\{p \mid N: p \equiv 1 \bmod 4\}} & \text { if otherwise. }\end{cases}
\end{aligned}
$$

and $\varphi_{\infty}(N M)=\varphi_{\infty}(N) \varphi_{\infty}(M)$ if $(N, M)=1$ and, for a prime p and $e>0$,

$$
\varphi_{\infty}\left(p^{e}\right)= \begin{cases}2 p^{(e-1) / 2} & \text { if } e \text { odd } \\ (p+1) p^{e / 2-1} & \text { if } e \text { even }\end{cases}
$$

$g_{0}(11)=1$ and hence $X_{0}(11)$ is an elliptic curve, defined by the equation $y^{2}=4 x^{3}-$ $\frac{124}{3} x-\frac{2501}{27}$, where $\Delta=\left(\frac{124}{3}\right)-27\left(\frac{2501}{27}\right)^{2}=-11^{5}$. We have $S_{2}(11)=\Gamma\left(X_{0}(11), \Omega^{1}\right)=$ $\stackrel{d}{d x}$.

Universal elliptic curve. We consider the semi-direct product $\Gamma_{1}(N) \ltimes \mathbb{Z}^{2}$ with respect to the left action by ${ }^{t} \gamma^{-1}$. We define an action of $\mathbb{C}^{\times} \times \Gamma_{1}(N) \ltimes \mathbb{Z}^{2}$ on $\widetilde{\mathcal{R}} \times \mathbb{C}$
by

$$
\begin{aligned}
c\left(\left(\omega_{1}, \omega_{2}\right), z\right) & =\left(\left(c \omega_{1}, c \omega_{2}\right), c z\right) \\
\gamma\left(\left(\omega_{1}, \omega_{2}\right), z\right) & =\left(\left(a \omega_{1}+b \omega_{2}, c \omega_{1}+d \omega_{2}\right), z\right) \\
(m, n)\left(\left(\omega_{1}, \omega_{2}\right), z\right) & =\left(\left(\omega_{1}, \omega_{2}\right), z+m \omega_{1}+n \omega_{2}\right) .
\end{aligned}
$$

for $c \in \mathbb{C}^{\times}, \gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}(N)$ and $(m, n) \in \mathbb{Z}^{2}$. The projection $\widetilde{\mathcal{R}} \times \mathbb{C} \rightarrow \widetilde{\mathcal{R}}$ is compatible with $\mathbb{C}^{\times} \times \Gamma_{1}(N) \ltimes \mathbb{Z}^{2} \rightarrow \mathbb{C}^{\times} \times \Gamma_{1}(N)$.

Assume $N \geq 4$. By taking the quotient, we obtain

$$
E_{1}(N)=\left(\Gamma_{1}(N) \ltimes \mathbb{Z}^{2}\right) \backslash(H \times \mathbb{C}) \rightarrow Y_{1}(N)=\Gamma_{1}(N) \backslash H .
$$

The fiber at $\tau \in H$ is the elliptic curve $\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau$. It has the following modular interpretation. For a holomorphic family $E \rightarrow S$ of elliptic curve together with a section $P: S \rightarrow E$ of order N, there exists a unique morphism $S \rightarrow Y_{1}(N)$ such that (E, P) is isomorphic to the pull-back of the universal elliptic curve $E_{1}(N)$ and the section defined by $z=\frac{\omega_{2}}{N}$.

2.4 Modular curves and modular forms

Let $N \geq 4$. Let $\omega_{Y_{1}(N)}$ be the invertible sheaf $0^{*} \Omega_{E_{1}(N) / Y_{1}(N)}$ where $0: Y_{1}(N) \rightarrow E_{1}(N)$ is the 0 -section of the universal elliptic curve. Then, we have
$\{f: H \rightarrow \mathbb{C} \mid f$ holomorphic and satisfies (1) in Definition 1.1 $\}=\Gamma\left(Y_{1}(N), \omega^{\otimes k}\right)$.
By the isomorphism $\omega^{\otimes 2} \rightarrow \Omega_{Y_{1}(N)}: d z^{\otimes 2} \mapsto d \tau$, the left hand side is identified with $\Gamma\left(Y_{1}(N), \omega^{\otimes k-2} \otimes \Omega_{Y_{1}(N)}\right)$.

Assume $N \geq 5$. Then the universal elliptic curve $E_{1}(N) \rightarrow Y_{1}(N)$ is uniquely extended to a smooth group scheme $\bar{E}_{1}(N) \rightarrow X_{1}(N)$ whose fibers at cusps are \mathbf{G}_{m}. Let $\omega_{X_{1}(N)}=O^{*} \Omega_{\bar{E}_{1}(N) / X_{1}(N)}$. Then we have $\omega^{\otimes 2}=\Omega(\log (\operatorname{cusps}))$ and

$$
M_{k}\left(\Gamma_{1}(N)\right)=\Gamma\left(X_{1}(N), \omega^{\otimes k}\right) \supset S_{k}\left(\Gamma_{1}(N)\right)=\Gamma\left(X_{1}(N), \omega^{\otimes k-2} \otimes \Omega_{X_{1}(N)}\right)
$$

For $N \geq 5$, there exists a constant C satisfying $\operatorname{deg} \omega=C \cdot\left[S L_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]$. The isomorphism $\omega^{\otimes 2} \rightarrow \Omega_{X_{1}(N)}^{1}(\log$ cusps) implies

$$
2 g_{1}(N)-2+\frac{1}{2} \sum_{d \mid N} \varphi\left(\frac{N}{d}\right) \varphi(d)=2 C \cdot\left[S L_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]
$$

In particular, for $p \geq 5$, we have

$$
2 g_{1}(p)-2+p-1=2 C \cdot\left(p^{2}-1\right) .
$$

Since $g_{1}(5)=0$, we have $C=\frac{1}{24}$ and

$$
\operatorname{dim} S_{2}\left(\Gamma_{1}(N)\right)=g_{1}(N)= \begin{cases}1+\frac{1}{24}\left[S L_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]-\frac{1}{4} \sum_{d \mid N} \varphi\left(\frac{N}{d}\right) \varphi(d) & \text { if } N \geq 5 \\ 0 & \text { if } N \leq 4\end{cases}
$$

By Riemann-Roch, we have

$$
\begin{aligned}
\operatorname{dim} S_{k}\left(\Gamma_{1}(N)\right) & =\operatorname{deg}\left(\omega^{\otimes(k-2)} \otimes \Omega^{1}\right)+\chi\left(X_{1}(N), \mathcal{O}\right)=(k-2) \operatorname{deg} \omega+g_{1}(N)-1 \\
& =\frac{k-1}{24}\left[S L_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]-\frac{1}{4} \sum_{d \mid N} \varphi\left(\frac{N}{d}\right) \varphi(d)
\end{aligned}
$$

for $k \geq 3, N \geq 5$.

2.5 Modular curves over $\mathbb{Z}\left[\frac{1}{N}\right]$

Let $N \geq 1$ be an integer. We say a section $P: T \rightarrow E$ of an elliptic curve $E \rightarrow T$ is exactly of order N, if $N P=0$ and if $P_{t} \in E_{t}(t)$ is of order N for every point $t \in T$. We define a functor $\mathcal{M}_{1}(N):\left(\right.$ Scheme $\left./ \mathbb{Z}\left[\frac{1}{N}\right]\right) \rightarrow($ Sets $)$ by

$$
\mathcal{M}_{1}(N)(T)=\left\{\begin{array}{c}
\text { isomorphism classes of pairs }(E, P) \text { of an elliptic curve } \\
E \rightarrow T \text { and a section } P \in E(T) \text { exactly of order } N
\end{array}\right\}
$$

Theorem 2.2 For an integer $N \geq 4$, the functor $\mathcal{M}_{1}(N)$ is representable by a smooth affine curve over $\mathbb{Z}\left[\frac{1}{N}\right]$.

Namely, there exist a smooth affine curve $Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ over $\mathbb{Z}\left[\frac{1}{N}\right]$ and a pair (E, P) of elliptic curves $E \rightarrow Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ and a section $P: Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]} \rightarrow E$ exactly of order N such that the map

$$
\operatorname{Hom}_{\text {Scheme } / \mathbb{Z}\left[\frac{1}{N}\right]}\left(T, Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}\right) \rightarrow \mathcal{M}_{1}(N)(T)
$$

sending $f: T \rightarrow Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ to the class of $\left(f^{*} E, f^{*} P\right)$ is a bijection for every scheme T over $\mathbb{Z}\left[\frac{1}{N}\right]$.

If $N \leq 3$, the functor $\mathcal{M}_{1}(N)$ is not representable because there exists a pair $(E, P) \in \mathcal{M}_{1}(N)(T)$ with a non-trivial automorphism. More precisely, by étale descent, there exist 2 distinct elements $(E, P),\left(E^{\prime}, P^{\prime}\right) \in \mathcal{M}_{1}(N)(T)$ whose pull-backs are equal for some étale covering $T^{\prime} \rightarrow T$.

Proof of Theorem for $N=4$. Let $E \rightarrow T$ be an elliptic curve over a scheme T over $\mathbb{Z}\left[\frac{1}{2}\right]$ and P be a section of exact order 4 . We take a coordinate so that $2 P=$ $(0,0), P=(1,1), 3 P=(1,-1)$ and let $d y^{2}=x^{3}+a x^{2}+b x+c$ be the equation defining E. Then the line $y=x$ meets E at $2 P$ and is tangent to E at P. Thus we have $x^{3}+(a-d) x^{2}+b x+c=x(x-1)^{2}$. Namely, E is defined by $d y^{2}=x^{3}+(d-2) x^{2}+x$. $Y_{1}(4)_{\mathbb{Z}\left[\frac{1}{4}\right]}$ is given by $\operatorname{Spec} \mathbb{Z}\left[\frac{1}{4}\right]\left[d, \frac{1}{d(d-4)}\right]$.

To prove the general case, we consider the following variant. For an elliptic curve E and an integer $r \geq 1$, let $E[r]=\operatorname{Ker}([r]: E \rightarrow E)$ denote the kernel of the multiplication by r. We define a functor $\mathcal{M}(r):\left(\right.$ Scheme $\left./ \mathbb{Z}\left[\frac{1}{r}\right]\right) \rightarrow($ Sets $)$ by

$$
\mathcal{M}(r)(T)=\left\{\begin{array}{l}
\text { isom. classes of pairs }(E,(P, Q)) \text { of an elliptic curve } E \rightarrow T \\
\text { and } P, Q \in E(T) \text { defining an isomorphism }(\mathbb{Z} / r \mathbb{Z})^{2} \rightarrow E[r]
\end{array}\right\} .
$$

Theorem 2.3 For an integer $r \geq 3$, the functor $\mathcal{M}(r)$ is representable by a smooth affine curve $Y(r)_{\mathbb{Z}\left[\frac{1}{r}\right]}$ over $\mathbb{Z}\left[\frac{1}{r}\right]$.

Proof for $r=3 . Y(3)=\operatorname{Spec} \mathbb{Z}\left[\frac{1}{3}\right]\left[\mu, \frac{1}{\mu^{3}-1}\right] . E \subset \mathbf{P}^{2}$ is defined by $X^{3}+Y^{3}+Z^{3}-$ $3 \mu X Y Z$ and $O=(0,1,-1), P=\left(0,1,-\omega^{2}\right), Q=(1,0,-1)$.
$r=4$. Let E be the universal elliptic curve over $Y_{1}(4)$. Then, $Y(4)$ is the open and closed subscheme of $E[4]$ defined by the condition that (P, Q) defines an isomorphism $(\mathbb{Z} / 4 \mathbb{Z})^{2} \rightarrow E[4]$.

If r is divisible by $s=3$ or 4 , one can construct $Y(r)_{\mathbb{Z}\left[\frac{1}{r}\right]}$ as a finite étale scheme over $Y(s)_{\mathbb{Z}\left[\frac{1}{r}\right]}$. In general, $Y(r)_{\mathbb{Z}\left[\frac{1}{r}\right]}$ is obtained by patching the quotient $Y(r)_{\mathbb{Z}\left[\frac{1}{s r}\right]}=$ $Y(s r)_{\mathbb{Z}\left[\frac{1}{s r}\right]} / \operatorname{Ker}\left(G L_{2}(\mathbb{Z} / r s \mathbb{Z}) \rightarrow G L_{2}(\mathbb{Z} / r \mathbb{Z})\right)$ for $s=3,4$.
$Y(r)_{\mathbb{Z}\left[\frac{1}{r}\right]}$ for $r=1,2$ are also defined as the quotients. The j-invariant defines an isomorphism $Y(1) \rightarrow \mathbb{A}_{\mathbb{Z}}^{1}$. The Legendre curve $y^{2}=x(x-1)(x-\lambda)$ defines an isomorphism $\operatorname{Spec} \mathbb{Z}\left[\frac{1}{2}\right]\left[\lambda, \frac{1}{\lambda(\lambda-1)}\right] \rightarrow Y(2)_{\mathbb{Z}\left[\frac{1}{2}\right]}$.

By the Weil pairing recalled below, the scheme $Y(r)_{\mathbb{Z}\left[\frac{1}{r}\right]}$ is naturally a scheme over $\mathbb{Z}\left[\frac{1}{r}, \zeta_{r}\right]$. For $P, Q \in E[r](S)$ and \mathcal{L} be an invertible $\mathcal{O}_{E^{-}}$-module corresponding to P. Since $[r]^{*} \mathcal{L}=0$, a canonical isomorphism $Q^{*}[r]^{*} \mathcal{L}=O^{*}[r]^{*} \mathcal{L}$ is defined. Since $[r](Q)=0$, we have another canonical isomorphism $Q^{*}[r]^{*} \mathcal{L}=0^{*} \mathcal{L}=O^{*}[r]^{*} \mathcal{L}$. By comparing them, we obtain an invertible function $(P, Q)_{N}$ on S. Its N-th power is 1 and hence $(P, Q)_{N} \in \mu_{N}$.
$Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ is constructed as the quotient

$$
Y(N)_{\mathbb{Z}\left[\frac{1}{N}\right]} /\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(\mathbb{Z} / N \mathbb{Z}) \right\rvert\, a=1, c=0\right\}
$$

$Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ for $N \leq 3$ are also defined as the quotients.
The Atkin-Lehner involution $w_{N}: Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}, \zeta_{N}\right]} \rightarrow Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}, \zeta_{N}\right]}$ is defined by sending (E, P) to $(E /\langle P\rangle$, Image of $Q)$ such that $(P, Q)_{N}=\zeta_{N}$.

The \mathbb{Q}-vector space $S_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{Q}}=\Gamma\left(X_{1}(N)_{\mathbb{Q}}, \omega^{\otimes k-2} \otimes \Omega^{1}\right)$ gives a \mathbb{Q}-structure of the \mathbb{C}-vector space $S_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{C}}=\Gamma\left(X_{1}(N)_{\mathbb{C}}, \omega^{\otimes k-2} \otimes \Omega^{1}\right)$.

2.6 Hecke operators

For integers $N, n \geq 1$, we define a functor $\mathcal{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]}:\left(\right.$ Schemes $\left./ \mathbb{Z}\left[\frac{1}{N}\right]\right) \rightarrow($ Sets $)$ by

$$
\begin{aligned}
& \mathcal{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]}(T) \\
= & \left\{\begin{array}{c}
\text { isom. class of a triple }(E, P, C) \text { of an elliptic curve } E \text { over } T, \text { a } \\
\text { section } P: T \rightarrow E \text { exactly of order } N \text { and a subgroup scheme } \\
C \subset E \text { finite flat of degree } n \text { over } T \text { such that }\langle P\rangle \cap C=O
\end{array}\right\}
\end{aligned}
$$

and a morphism $s: \mathcal{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]} \rightarrow \mathcal{M}_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ of functors sending (E, P, C) to (E, P). The functor $\mathcal{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ is representable by a finite flat scheme $T_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ over $Y_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$, if $N \geq 4$. It is uniquely extended to a finite flat map of proper normal curves $s: \bar{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]} \rightarrow X_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$.

For an elliptic curve $E \rightarrow T$ and a subgroup scheme $C \subset E$ finite flat of degree n, the quotient $E^{\prime}=E / C$ is defined and the induced map $E \rightarrow E^{\prime}$ is finite flat of degree n. The structure sheaf $\mathcal{O}_{E^{\prime}}$ is the kernel of $p r_{1}^{*}-\mu^{*}: \mathcal{O}_{E} \rightarrow \mathcal{O}_{E \times_{T} C}$ where $\mathrm{pr}_{1}, \mu: E \times_{T} C \rightarrow E$ denote the projection and the addition respectively. By this construction, we may identify the set $\mathcal{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]}(T)$ with

$$
\left\{\begin{array}{c}
\text { isom. class of a pair }\left(E \rightarrow E^{\prime}, P\right) \text { of finite flat morphism } \\
E \rightarrow E^{\prime} \text { of elliptic curves over } T \text { of degree } n \text { and a section } \\
P: T \rightarrow E \text { exactly of order } N \text { such that }\langle P\rangle \cap \operatorname{Ker}\left(E \rightarrow E^{\prime}\right)=O
\end{array}\right\} .
$$

We define a morphism $t: \mathcal{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]} \rightarrow \mathcal{M}_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ of functors sending $\left(E \rightarrow E^{\prime}, P\right)$ to $\left(E^{\prime}\right.$, Image of $\left.P\right)$, It also induces a finite flat map of proper curves $t: \bar{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]} \rightarrow$ $X_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$.

For an integer $n \geq 1$, we define the Hecke operator $T_{n}: S_{k}\left(\Gamma_{1}(N)\right) \rightarrow S_{k}\left(\Gamma_{1}(N)\right)$ as $s_{*} \circ t^{*}$ where $s, t: \bar{T}_{1}(N, n)_{\mathbb{Z}\left[\frac{1}{N}\right]} \rightarrow X_{1}(N)_{\mathbb{Z}\left[\frac{1}{N}\right]}$ are the maps defined above. The push-forward map s_{*} is induced by the trace map. The group $(\mathbb{Z} / N \mathbb{Z})^{\times}$has a natural action on the functor $\mathcal{M}_{1}(N)$. Hence it acts on $S_{k}\left(\Gamma_{1}(N)\right)$. For $d \in(\mathbb{Z} / N \mathbb{Z})^{\times}$, the action is denoted by $\langle d\rangle$ and called the diamond operator.

We define the Hecke algebra by

$$
T_{k}\left(\Gamma_{1}(N)\right)=\mathbb{Q}\left[T_{n}, n \in \mathbb{N},\langle d\rangle, d \in(\mathbb{Z} / N \mathbb{Z})^{\times}\right] \subset \operatorname{End} S_{k}\left(\Gamma_{1}(N)\right) .
$$

Proposition 2.4 The map

$$
\begin{equation*}
S_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{C}} \rightarrow \operatorname{Hom}_{\mathbb{Q}}\left(T_{k}\left(\Gamma_{1}(N)\right), \mathbb{C}\right) \tag{1}
\end{equation*}
$$

sending a cusp form f to the linear form $T \mapsto a_{1}(T f)$ is an isomorphism.
Proof. Suffices to show that the pairing $(T, f) \mapsto a_{1}(T f)$ is non-degenerate. If $f \in S_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{C}}$ is in the kernel, $a_{n}(f)=a_{1}\left(T_{n} f\right)=0$ for all n and $f=\sum_{n} a_{n}(f) q^{n}=0$. If $T \in T_{k}\left(\Gamma_{1}(N)\right)$ is in the kernel, $T f$ is in the kernel for all $f \in S_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{C}}$ since $a_{1}\left(T^{\prime} T f\right)=a_{1}\left(T T^{\prime} f\right)=0$ for all $T^{\prime} \in T_{k}\left(\Gamma_{1}(N)\right)$. Hence $T f=0$ and $T=0$.

Corollary 2.5 The isomorphism (1) induces a bijection of finite sets

$$
\begin{equation*}
\left\{f \in S_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{C}} \mid \text { normalized eigenform }\right\} \rightarrow \operatorname{Hom}_{\mathbb{Q} \text {-algebra }}\left(T_{k}\left(\Gamma_{1}(N)\right), \mathbb{C}\right) \tag{2}
\end{equation*}
$$

Proof. Let φ be the linear form corresponding to $f . \quad \varphi(1)=1$ is equivalent to $a_{1}(f)=1$. If φ is a ring hom, we have $a_{n}(T f)=a_{1}\left(T_{n} T f\right)=\varphi\left(T_{n} T\right)=$ $\varphi(T) \varphi\left(T_{n}\right)=\varphi(T) a_{1}\left(T_{n} f\right)=\varphi(T) a_{n}(f)$ for every $n \geq 1$ and $T \in T_{k}\left(\Gamma_{1}(N)\right)$. Thus, $T f=\sum_{n} a_{n}(T f) q^{n}=\sum_{n} \varphi(T) a_{n}(f) q^{n}=\varphi(T) f$ and f is a normalized eigenform. Conversely, if f is a normalized eigenform and $T f=\lambda_{T} f$ for each $T \in T_{k}\left(\Gamma_{1}(N)\right)$, we have $\varphi(T)=a_{1}(T f)=a_{1}\left(\lambda_{T} f\right)=\lambda_{T} a_{1}(f)=\lambda_{T}$. Thus φ is a ring homomorphism.

For a normalized eigenform $f \in S_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{C}}$, the subfield $\mathbb{Q}(f) \subset \mathbb{C}$ is the image of the corresponding \mathbb{Q}-algebra homomorphism $T_{k}\left(\Gamma_{1}(N)\right) \rightarrow \mathbb{C}$ and hence is a finite extension of \mathbb{Q}.

3 Construction of Galois representations: the case $k=2$

3.1 Galois representations and finite étale group schemes

For a field K, we have an equivalence of categories
(finite étale commutative group schemes over $K) \rightarrow$ (finite G_{K}-modules)
defined by $A \mapsto A(\bar{K})$. The inverse is given by $M \mapsto \operatorname{Spec}\left(\operatorname{Hom}_{G_{K}}(M, \bar{K})\right.$.
In the case $K=\mathbb{Q}$, it induces an equivalence
(finite étale commutative group schemes over $\left.\mathbb{Z}\left[\frac{1}{N}\right]\right) \rightarrow\binom{$ finite $G_{\mathbb{Q}^{-m o d u l e s}}}{$ unramified at $p \nmid N}$
for $N \geq 1$.
Lemma 3.1 Let $p \nmid N$. The action of φ_{p} on $A(\overline{\mathbb{Q}})=A\left(\overline{\mathbb{F}_{p}}\right)$ is the same as that defined by the geometric Frobenius endomorphism $\mathrm{Fr}: A_{\mathbb{F}_{p}} \rightarrow A_{\mathbb{F}_{p}}$.

To define an ℓ-adic representation of $G_{\mathbb{Q}}$ unramified at $p \nmid N \ell$, it suffices to construct an inverse system of finite étale commutative group schemes over $\mathbb{Z}\left[\frac{1}{N}\right]$ of $\mathbb{Z} / \ell^{n} \mathbb{Z}$ modules.

3.2 Jacobian of a curve and its Tate module

Consider the case $g_{0}(N)=1$, e.g. $N=11$. Then, $E=X_{0}(N)$ is an elliptic curve and the Tate module $V_{\ell} E=\mathbb{Q}_{\ell} \otimes \varliminf_{n} E\left[\ell^{n}\right](\overline{\mathbb{Q}})$ defines a 2-dimensional ℓ-adic representation. To construct the Galois representation in the general case, we need to introduce the Jacobian.

Let $X \rightarrow S$ be a proper smooth curve with geometrically connected fibers of genus g. For simplicity, we assume $X \rightarrow S$ has a section $s: S \rightarrow X$. Similarly as in Section 1.2 , we have a decomposition

$$
\operatorname{Pic}\left(X \times_{S} T\right)=\mathbb{Z}(T) \oplus \operatorname{Pic}(T) \oplus \operatorname{Pic}_{X / S}^{0}(T)
$$

and a functor $\mathrm{Pic}_{X / S}^{0}:($ Schemes $/ S) \rightarrow($ Abelian groups) is defined.
Theorem 3.2 The functor $\mathrm{Pic}_{X / S}^{0}$ is representable by a proper smooth scheme $J=$ $\mathrm{Jac}_{X / S}$ with geometrically connected fibers of dimension g.

The proper group scheme (=abelian scheme) $\mathrm{Jac}_{X / S}$ is called the Jacobian of X. If $g=1$, Abel's theorem says that the canonical map $E \rightarrow \mathrm{Jac}_{E / S}$ is an isomorphism.

Let $f: X \rightarrow Y$ be a finite flat morphism of proper smooth curves. The pullback of invertible sheaves defines the pull-back map $f^{*}: \mathrm{Jac}_{Y / S} \rightarrow \mathrm{Jac}_{X / S}$. We also have a push-forward map defined as follows. The norm map $f_{*}: f_{*} \mathbf{G}_{m, X} \rightarrow \mathbf{G}_{m, Y}$ defines a push-forward of \mathbf{G}_{m}-torsors and a map $\operatorname{Pic}(X) \rightarrow \operatorname{Pic}(Y)$, for a finite flat $\operatorname{map} f: X \rightarrow Y$ of schemes. They define a map of functors and hence a morphism $f_{*}: \mathrm{Jac}_{X / S} \rightarrow \mathrm{Jac}_{Y / S}$. The composition $f_{*} \circ f^{*}$ is the multiplication by $\operatorname{deg} f$.

If $f: X \rightarrow Y$ is a finite flat map of proper smooth curves over a field, then the isomorphism $\operatorname{Coker}\left(\operatorname{div}: k(X)^{\times} \rightarrow \bigoplus_{x} \mathbb{Z}\right) \rightarrow \operatorname{Pic}(X)$ has the following compatibility. The pull-back $f^{*}: \operatorname{Pic}(Y) \rightarrow \operatorname{Pic}(X)$ is compatible with the inclusion $f^{*}: k(Y)^{\times} \rightarrow$ $k(X)^{\times}$and the map $\bigoplus_{y} \mathbb{Z} \rightarrow \bigoplus_{x} \mathbb{Z}$ sending the basis e_{y} to $\sum_{x \mapsto y} e(x / y) \cdot e_{x}$. The pushforward $f_{*}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(Y)$ is compatible with the norm map $f_{*}: k(X)^{\times} \rightarrow k(Y)^{\times}$ and the map $\bigoplus_{x} \mathbb{Z} \rightarrow \bigoplus_{y} \mathbb{Z}$ sending the basis e_{x} to $[\kappa(x): \kappa(y)] e_{y}$ for $y=f(x)$.

Weil pairing. Let $N \geq 1$ be an integer invertible on S. Then, a non-degenerate pairing $J_{X / S}[N] \times J_{X / S}[N] \rightarrow \mu_{N}$ of finite étale groups schemes is defined as follows. First, we recall that, for invertible \mathcal{O}_{X}-modules \mathcal{L} and \mathcal{M}, the pairing $\langle\mathcal{L}, \mathcal{M}\rangle$ is defined as an invertible \mathcal{O}_{S}-module. It is characterized by the bilinearity and by $\langle\mathcal{L}, \mathcal{M}\rangle=$ $\left.f_{D *} \mathcal{L}\right|_{D}$ if $\mathcal{M}=\mathcal{O}_{X}(D)$ for a divisor $D \subset X$ finite flat over S. If $\mathcal{L}=f^{*} \mathcal{L}_{0}$, we have $\langle\mathcal{L}, \mathcal{M}\rangle=\mathcal{L}_{0}^{\otimes \operatorname{deg} \mathcal{M}}$.

If $N[\mathcal{L}]=0 \in \operatorname{Pic}^{0}(X / S)$, we have $\mathcal{L}^{\otimes N}=f^{*} \mathcal{L}_{0}$ for some $\mathcal{L}_{0} \in \operatorname{Pic}(S)$. Hence, for $\mathcal{M} \in \operatorname{Pic}(X)$ of degree 0 , we have a trivialization $\langle\mathcal{L}, \mathcal{M}\rangle^{\otimes N}=\left\langle\mathcal{L}^{\otimes N}, \mathcal{M}\right\rangle=$ $\left\langle f^{*} \mathcal{L}_{0}, \mathcal{M}\right\rangle=f^{*} \mathcal{L}_{0}^{\otimes \operatorname{deg} \mathcal{M}}=\mathcal{O}_{S}$. If $N[\mathcal{M}]=0 \in \operatorname{Pic}^{0}(X / S)$, we have another trivialization $\langle\mathcal{L}, \mathcal{M}\rangle^{\otimes N}=\mathcal{O}_{S}$. By comparing them, we obtain an invertible function $\langle\mathcal{L}, \mathcal{M}\rangle_{N}$ on S, whose N-th power turns out to be 1 . Thus the Weil pairing $\langle\mathcal{L}, \mathcal{M}\rangle_{N} \in \Gamma\left(S, \mu_{N}\right)$ is defined. In the case $X=E$ is an elliptic curve, this is the same as the Weil pairing defined before.

Jacobian over \mathbb{C}. Let X be a smooth proper curve over \mathbb{C}, or equivalently a compact Riemann surface. The canonical map

$$
H_{1}(X, \mathbb{Z}) \rightarrow \operatorname{Hom}(\Gamma(X, \Omega), \mathbb{C})
$$

is defined by sending γ to the linear form $\omega \mapsto \int_{\gamma} \omega$. It is injective and the image is a lattice. A canonical map

$$
\begin{equation*}
\operatorname{Pic}^{0}(X)=J_{X}(\mathbb{C}) \rightarrow \operatorname{Hom}(\Gamma(X, \Omega), \mathbb{C}) / \text { Image } H_{1}(X, \mathbb{Z}) \tag{3}
\end{equation*}
$$

is defined by sending $[P]-[Q]$ to the class of the linear form $\omega \mapsto \int_{Q}^{P} \omega$. This is an isomorphism of compact complex tori. Thus, in this case, the N-torsion part $\mathrm{Jac}_{X / \mathbb{C}}[N]$ of the Jacobian is canonically identified with $H_{1}(X, \mathbb{Z}) \otimes \mathbb{Z} / N \mathbb{Z}$.

For a finite flat map $f: X \rightarrow Y$ of curves, the isomorphism (3) has the following functoriality. The pull-back $f^{*}: \operatorname{Pic}^{0}(Y) \rightarrow \operatorname{Pic}^{0}(X)$ is compatible with the dual of the push-forward map $f_{*}: \Gamma(X, \Omega) \rightarrow \Gamma(Y, \Omega)$ and the pull-back map $H_{1}(Y, \mathbb{Z}) \rightarrow$ $H_{1}(X, \mathbb{Z})$. The push-forward $f_{*}: \operatorname{Pic}^{0}(X) \rightarrow \operatorname{Pic}^{0}(Y)$ is compatible with the dual of the pull-back map $f^{*}: \Gamma(Y, \Omega) \rightarrow \Gamma(X, \Omega)$ and the push-forward map $H_{1}(X, \mathbb{Z}) \rightarrow$ $H_{1}(Y, \mathbb{Z})$.

The isomorphism $\operatorname{Jac}_{X / \mathbb{C}}[N] \rightarrow H_{1}(X, \mathbb{Z}) \otimes \mathbb{Z} / N \mathbb{Z}$ is compatible with the pull-back and the push-forward for a finite flat morphism. By the isomorphism $\operatorname{Jac}_{X / \mathbb{C}}[N] \rightarrow$ $H_{1}(X, \mathbb{Z}) \otimes \mathbb{Z} / N \mathbb{Z}$, the Weil pairing $\operatorname{Jac}_{X / \mathbb{C}}[N] \times \operatorname{Jac}_{X / \mathbb{C}}[N] \rightarrow \mu_{N}$ is identified with the pairing induced by the cap-product $H_{1}(X, \mathbb{Z}) \times H_{1}(X, \mathbb{Z}) \rightarrow \mathbb{Z}$.

The Tate module of Jacobian. Let X be a proper smooth curve over a field k with geometrically connected fiber of genus g and ℓ be a prime number invertible in k. We put

$$
V_{\ell} \mathrm{Jac}_{X / k}=\mathbb{Q}_{\ell} \otimes \varliminf_{\rightleftarrows} \operatorname{Jac}_{X / k}\left[\ell^{n}\right](\bar{k})=\mathbb{Q}_{\ell} \otimes \lim _{n} \operatorname{Pic}\left(X_{\bar{k}}\right)\left[\ell^{n}\right] .
$$

Corollary 3.3 Let $N \geq 1$ be an integer and X be a proper smooth curve over $\mathbb{Z}\left[\frac{1}{N}\right]$ with geometrically connected fibers of genus g. Then, $V_{\ell} \operatorname{Jac}_{X_{\mathbb{Q}} / \mathbb{Q}}$ is an ℓ-adic representation of $G_{\mathbb{Q}}$ of degree $2 g$ unramified at $p \nmid N \ell$.

Proof. The multiplication $\left[\ell^{n}\right]: \mathrm{Jac}_{X / \mathbb{Z}\left[\frac{1}{N \ell}\right]} \rightarrow \mathrm{Jac}_{X / \mathbb{Z}\left[\frac{1}{N \ell}\right]}$ is finite étale. Hence $\operatorname{Jac}_{X / \mathbb{Q}}\left[\ell^{n}\right](\overline{\mathbb{Q}})=\operatorname{Jac}_{X / \mathbb{Q}}\left[\ell^{n}\right](\mathbb{C})=H_{1}(X, \mathbb{Z}) \otimes \mathbb{Z} / \ell^{n} \mathbb{Z}$ is isomorphic to $\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{2 g}$ as a $\mathbb{Z} / \ell^{n} \mathbb{Z}$-module and $V_{\ell} \mathrm{Jac}_{X_{\mathbb{Q}} / \mathbb{Q}}$ is isomorphic to $H_{1}(X, \mathbb{Z}) \otimes \mathbb{Q}_{\ell} \simeq \mathbb{Q}_{\ell}^{2 g}$ as a \mathbb{Q}_{ℓ}-vector space. Since $\operatorname{Jac}_{X / \mathbb{Z}\left[\frac{1}{N \ell}\right]}\left[\ell^{n}\right]$ is a finite étale scheme over $\mathbb{Z}\left[\frac{1}{N \ell}\right]$, the ℓ-adic representation $V_{\ell} \mathrm{Jac}_{X_{\mathbb{Q}} / \mathbb{Q}}$ is unramified at $p \nmid N \ell$.

Let $f: X \rightarrow X$ be an endomorphism of a proper smooth curve over a field k. Let $\Gamma_{f}, \Delta \subset X \times X$ be the graphs of f and of the identity and let $\left(\Gamma_{f}, \Delta_{X}\right)_{X \times_{k} X}$ be the intersection product. Then, for a prime number ℓ invertible in k, the Lefschetz trace formula gives us

$$
\left(\Gamma_{f}, \Delta_{X}\right)_{X \times_{k} X}=1-\operatorname{Tr}\left(f_{*}: T_{\ell} J_{X}\right)+\operatorname{deg} f
$$

Assume $k=\mathbb{F}_{p}$ and apply the Lefschetz trace formula to the iterates of the Frobenius endmorphism $F: X \rightarrow X$. Then we obtain

$$
\operatorname{Card} X\left(\mathbb{F}_{p^{n}}\right)=1-\operatorname{Tr}\left(F_{*}^{n}: T_{\ell} J_{X}\right)+p^{n}
$$

and

$$
Z(X, t)=\exp \sum_{n=1}^{\infty} \frac{\operatorname{Card} X\left(\mathbb{F}_{p^{n}}\right)}{n} t^{n}=\frac{\operatorname{det}\left(1-F_{*} t: T_{\ell} J_{X}\right)}{(1-t)(1-p t)} .
$$

Thus, for a proper smooth curve X over $\mathbb{Z}\left[\frac{1}{N}\right]$ and a prime $p \nmid N \ell$, we have

$$
\operatorname{det}\left(1-\varphi_{p} t: T_{\ell} J_{X}\right)=Z\left(X \otimes_{\mathbb{Z}\left[\frac{1}{N}\right]} \mathbb{F}_{p}, t\right)(1-t)(1-p t)
$$

Theorem 3.4 (Weil) Let α be an eigenvalue of φ_{p} on $T_{\ell} J_{X}$. Then, α is an algebraic integer and its conjugates have complex absolute values \sqrt{p}.

3.3 Construction of Galois representations

Eichler-Shimura isomorphism
Proposition 3.5 The canonical map

$$
H_{1}\left(X_{1}(N), \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow \operatorname{Hom}\left(S_{2}\left(\Gamma_{1}(N)\right), \mathbb{C}\right)=\operatorname{Hom}\left(\Gamma\left(X_{1}(N), \Omega\right), \mathbb{C}\right)
$$

is an isomorphism of $T_{2}\left(\Gamma_{1}(N)\right)_{\mathbb{R}}$-modules.
Proof. The $T_{2}\left(\Gamma_{1}(N)\right.$-module structure is defined by T^{*} on $S_{2}\left(\Gamma_{1}(N)\right)$ and is defined by T_{*} on $H_{1}\left(X_{1}(N), \mathbb{Q}\right)$ for $T \in T_{2}\left(\Gamma_{1}(N)\right)$. Thus, it follows from the equality $\int_{f_{*} \gamma} \omega=\int_{\gamma} f^{*} \omega$.

It follows from Proposition that the Fourier coefficients $a_{n}(f)$ are integers in the number field $\mathbb{Q}(f)$ for a normalized eigenform f.

Corollary 3.6 $V_{\ell}\left(J_{1}(N)\right)$ is a free $T_{2}\left(\Gamma_{1}(N)\right)_{\mathbb{Q}_{\ell}}$-module of rank 2 .
Proof. By Propositions 2.4 and 3.5 and by fpqc descent, $H_{1}\left(X_{1}(N), \mathbb{Q}\right)$ is a free $T_{2}\left(\Gamma_{1}(N)\right)$-module of rank 2. Hence $V_{\ell}\left(J_{1}(N)\right)=H_{1}\left(X_{1}(N), \mathbb{Q}\right) \otimes \mathbb{Q}_{\ell}$ is also free of rank 2.

For a place $\lambda \mid \ell$ of $\mathbb{Q}(f)$, we put

$$
V_{f, \lambda}=V_{\ell}\left(J_{1}(N)\right) \otimes_{T_{2}\left(\Gamma_{1}(N)\right)_{Q_{\ell}}} \mathbb{Q}(f)_{\lambda} .
$$

$V_{f, \lambda}$ is a 2-dimensional ℓ-adic representation unramified at $p \nmid N \ell$.
Theorem 3.7 $V_{f, \lambda}$ is associated to f. Namely, for $p \nmid N \ell$, we have

$$
\operatorname{det}\left(1-\varphi_{p} t: V_{f, \lambda}\right)=1-a_{p}(f) t+\varepsilon_{f}(p) p t^{2}
$$

Corollary 3.8 If we put $1-a_{p}(f) t+\varepsilon_{f}(p) p t^{2}=(1-\alpha t)(1-\beta t)$, the complex absolute values of α and β are \sqrt{p}.

By Lemma 3.1, the left hand side $\operatorname{det}\left(1-\varphi_{p} t: V_{f, \lambda}\right)$ is equal to $\operatorname{det}\left(1-F r_{p} t\right.$: $\left.V_{\ell}\left(J_{1}(N)_{\mathbb{F}_{p}}\right) \otimes \mathbb{Q}(f)_{\lambda}\right)$.

Lemma 3.9 The map $H_{1}\left(X_{1}(N), \mathbb{Q}\right) \rightarrow \operatorname{Hom}\left(H_{1}\left(X_{1}(N), \mathbb{Q}\right), \mathbb{Q}\right)$ sending α to the linear form $\beta \mapsto \operatorname{Tr}\left(\alpha \cap w_{N} \beta\right)$ is an isomorphism of $T_{2}\left(\Gamma_{1}(N)\right)$-modules.

Proof. It suffices to show $T_{*} \circ w=w \circ T^{*}$. We define $\tilde{w}: T_{1}(N, n) \rightarrow T_{1}(N, n)$ by sending $(E, P, C) \rightarrow\left(E^{\prime}, Q^{\prime}, C^{\prime}\right)$ where $E^{\prime}=E /(\langle P\rangle+C), Q^{\prime}$ is the image of $Q \in E / C[N]$ such that (Image of $P, Q)=\zeta_{N}$ and C^{\prime} is the kernel of the dual of $E /\langle P\rangle \rightarrow E^{\prime}$. Then, we have $s \circ \tilde{w}=w \circ t, t \circ \tilde{w}=w \circ s$ and hence $T_{*} \circ w=w \circ T^{*}$.

3.4 Congruence relation

Let S be a scheme over \mathbb{F}_{p} and E be an elliptic curve over S. The commutative diagram

defines a map $F: E \rightarrow E^{(p)}=E \times_{S \swarrow F r_{S}} S$ called the Frobenius. The dual $V=F^{*}$: $E^{(p)} \rightarrow E$ is called the Verschiebung. We have $V \circ F=[p]_{E}, F \circ V=[p]_{E^{(p)}}$.

Lemma 3.10

$$
\operatorname{det}\left(1-F r_{p} t: V_{\ell}\left(J_{1}(N)_{\mathbb{F}_{p}}\right)\right)=\operatorname{det}\left(1-\langle p\rangle F r_{p}^{*} t: V_{\ell}\left(J_{1}(N)_{\mathbb{F}_{p}}\right)\right)
$$

Proof. First, we show $\operatorname{Fr} \circ w=\langle p\rangle \circ w \circ F r$. We have

$$
\begin{gathered}
\operatorname{Fr} \circ w(E, P)=\operatorname{Fr}(E /\langle P\rangle, Q)=\left(E^{(p)} /\left\langle P^{(p)}\right\rangle, Q^{(p)}\right), \\
\langle p\rangle \circ w \circ \operatorname{Fr}(E, P)=\langle p\rangle \circ w\left(E^{(p)}, P^{(p)}\right)=\left(E^{(p)} /\left\langle P^{(p)}\right\rangle, p Q^{\prime}\right)
\end{gathered}
$$

where $\left(P^{(p)}, Q^{\prime}\right)_{N}=(P, Q)_{N}$. Since $\left(P^{(p)}, Q^{(p)}\right)_{N}=(P, Q)_{N}^{p}=\left(P^{(p)}, p Q^{\prime}\right)_{N}$, we have $F r \circ w=\langle p\rangle \circ w \circ F r$. Hence, we have $w \circ F r=F r \circ\langle p\rangle^{-1} \circ w$.

Thus, for $\alpha, \beta \in J_{1}(N)_{\mathbb{F}_{p}}\left[\ell^{n}\right]$, we have

$$
\begin{aligned}
\left\langle F_{*} \alpha, w \beta\right\rangle & =\left\langle w \circ F_{*} \alpha, \beta\right\rangle=\left\langle(w \circ F)_{*} \alpha, \beta\right\rangle \\
& =\left\langle\left(F r \circ\langle p\rangle^{-1} \circ w\right)_{*} \alpha, \beta\right\rangle=\left\langle\alpha, w\langle p\rangle_{*} F^{*} \beta\right\rangle
\end{aligned}
$$

and the assertion follows.
Let $N \geq 1$ be an integer and $p \nmid N$ be a prime number. We define two maps

$$
a, b: \mathcal{M}_{1}(N)_{\mathbb{F}_{p}} \rightarrow \mathcal{M}_{1,0}(N)_{\mathbb{F}_{p}}
$$

by sending (E, P) to $\left(E, P, F: E \rightarrow E^{(p)}\right)$ and to $\left(E^{(p)}, P^{(p)}, V: E^{(p)} \rightarrow E\right)$ respectively. The compositions are given by

$$
\left(\begin{array}{cc}
s \circ a & s \circ b \tag{4}\\
t \circ a & t \circ b
\end{array}\right)=\left(\begin{array}{cc}
\text { id } & F \\
F & \langle p\rangle
\end{array}\right) .
$$

The maps $a, b: \mathcal{M}_{1}(N)_{\mathbb{F}_{p}} \rightarrow \mathcal{M}_{1,0}(N)_{\mathbb{F}_{p}}$ induce closed immersions $a, b: X_{1}(N)_{\mathbb{F}_{p}} \rightarrow$ $X_{1,0}(N)_{\mathbb{F}_{p}}$.

Proposition 3.11 Let $N \geq 1$ be an integer and $p \nmid N$ be a prime number. Then $s, t: X_{1,0}(N, p) \rightarrow X_{1}(N)$ is finite flat of degree $p+1$.

The map

$$
a \amalg b: X_{1}(N)_{\mathbb{F}_{p}} \amalg X_{1}(N)_{\mathbb{F}_{p}} \rightarrow X_{1,0}(N, p)_{\mathbb{F}_{p}}
$$

is an isomorphism on a dense open subscheme.

Proof. Since the maps $a, b: X_{1}(N)_{\mathbb{F}_{p}} \rightarrow X_{1,0}(N, p)_{\mathbb{F}_{p}}$ are sections of projections $X_{1,0}(N, p)_{\mathbb{F}_{p}} \rightarrow X_{1}(N)_{\mathbb{F}_{p}}$, they are closed immersions. Since both $(1, F): X_{1}(N)_{\mathbb{F}_{p}} \amalg$ $X_{1}(N)_{\mathbb{F}_{p}} \rightarrow X_{1}(N)_{\mathbb{F}_{p}}$ and $X_{1,0}(N, p)_{\mathbb{F}_{p}} \rightarrow X_{1}(N)_{\mathbb{F}_{p}}$ are finite flat of degree p, the assertion follows.

Corollary 3.12

is commutative.
By Proposition, we have a commutative diagram

By (4), the bottom arrow is $F_{*}+\langle p\rangle F^{*}$.
Proof of Theorem. By Corollary, we have

$$
\left(1-F_{*} t\right)\left(1-\langle p\rangle F^{*} t\right)=\left(1-T_{p} t+\langle p\rangle p t^{2}\right) .
$$

Taking the determinant, we get

$$
\operatorname{det}\left(1-F_{*} t\right) \operatorname{det}\left(1-\langle p\rangle F^{*} t\right)=\left(1-T_{p} t+\langle p\rangle p t^{2}\right)^{2}
$$

By Lemma 3.10, we get

$$
\operatorname{det}\left(1-F_{*} t\right)=1-T_{p} t+\langle p\rangle p t^{2}
$$

4 Construction of Galois representations: the case $k>2$

To cover the case $k>2$, one needs a construction generalizing the torsion part of the Jacobian.

4.1 Etale cohomology

For a scheme X, an étale sheaf on the small étale site is a contravariant functor \mathcal{F} : (Etale schemes $/ X) \rightarrow$ (Sets) such that the map

$$
\mathcal{F}(U) \rightarrow\left\{\left(s_{i}\right) \in \prod_{i \in I} \mathcal{F}\left(U_{i}\right) \mid \operatorname{pr}_{1}^{*}\left(s_{i}\right)=\operatorname{pr}_{2}^{*}\left(s_{j}\right) \text { in } \mathcal{F}\left(U_{i} \times_{U} U_{j}\right) \text { for } i, j \in I\right\}
$$

is a bijection for every family of étale morphisms $\left(U_{i} \rightarrow U\right)_{i \in I}$ satisfying $U=\bigcup_{i \in I}$ Image $\left(U_{i} \rightarrow U\right)$. An étale sheaf on X represented by a finite étale scheme over X is called locally constant.

The abelian étale sheaves form an abelian category. The étale cohomology $H^{q}(X$, is defined as the derived functor of the global section functor $\Gamma(X$,$) . For a morphism$ $f: X \rightarrow Y$ of schemes, the higher direct image $R^{q} f_{*}$ is defined as the derived functor of f_{*}. We write $H^{q}\left(X, \mathbb{Q}_{\ell}\right)=\mathbb{Q}_{\ell} \otimes \lim _{n} H^{q}\left(X, \mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ and $R^{q} f_{*} \mathbb{Q}_{\ell}=\mathbb{Q}_{\ell} \otimes \varliminf_{n} R^{q} f_{*} \mathbb{Z} / \ell^{n} \mathbb{Z}$.

Let $f: X \rightarrow S$ be a proper smooth morphism of relative dimention d and let \mathcal{F} be a locally constant sheaf on X. Then the higher direct image $R^{q} f_{*} \mathcal{F}$ is also locally constant and 0 unless $0 \leq q \leq 2 d$ and its formation commutes with base change. More generally, assume $f: X \rightarrow S$ is proper smooth, $U \subset X$ is the complement of a relative divisor D with normal crossings and \mathcal{F} is a locally constant sheaf on U tamely ramified along D. Let $j: U \rightarrow X$ be the open immersion. Then, the higher direct image $R^{q} f_{*} j_{*} \mathcal{F}$ is also locally constant and its formation commutes with base change.

If $f: X \rightarrow S$ is a proper smooth curve and if N is invertible on S, we have a canonical isomorphism $\operatorname{Hom}\left(\operatorname{Jac}_{X / S}[N], \mathbb{Z} / N \mathbb{Z}\right) \rightarrow R^{1} f_{*} \mathbb{Z} / N \mathbb{Z}$.

If $S=\operatorname{Spec} k$ for a field k, the category of étale sheaves on S is equivalent to that of discrete set with continuous G_{k}-action by the functor sending \mathcal{F} to $\lim _{L \subset \bar{k}} \mathcal{F}(L)$. For a scheme X over k, the higher direct image $R^{q} f_{*} \mathcal{F}$ is the étale cohomology group $H^{q}\left(X_{\bar{k}}, \mathcal{F}\right)$ with the canonical G_{k}-action. If $k=\mathbb{C}$, we have a canonical isomorphism $H^{q}(X, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z} / N \mathbb{Z} \rightarrow H^{q}(X, \mathbb{Z} / N \mathbb{Z})$.

Let X be a proper smooth variety over a field k and $f: X \rightarrow X$ is an endomorphism. Then, for a prime number ℓ invertible in k, the Lefschetz trace formula gives us

$$
\left(\Gamma_{f}, \Delta_{X}\right)_{X \times_{k} X}=\sum_{q=0}^{2 \operatorname{dim} X}(-1)^{q} \operatorname{Tr}\left(f^{*}: H^{q}\left(X_{\bar{k}}, \mathbb{Q}_{\ell}\right)\right)
$$

Assume $k=\mathbb{F}_{p}$ and apply the Lefschetz trace formula to the iterates of the Frobenius endmorphism $F: X \rightarrow X$. Then we obtain

$$
Z(X, t)=\prod_{q=0}^{2 \operatorname{dim} X} \operatorname{det}\left(1-F^{*} t: H^{q}\left(X_{\bar{k}}, \mathbb{Q}_{\ell}\right)\right)^{(-1)^{q+1}}
$$

Theorem 4.1 (the Weil conjecture proved by Deligne) Let α be an eigenvalue of F^{*} on $H^{q}\left(X_{\bar{k}}, \mathbb{Q}_{\ell}\right)$. Then, α is an algebraic integer and its conjugates have complex absolute values $p^{\frac{q}{2}}$.

4.2 Construction of Galois representations

Let $N \geq 5$ and $k \geq 2$. Proposition 3.5 is generalized as follows. Let $f: E_{1}(N) \rightarrow Y_{1}(N)$ be the universal elliptic curve and $j: Y_{1}(N) \rightarrow X_{1}(N)$ be the open immersion.

Proposition 4.2 There exists a canonical isomorphism

$$
H^{1}\left(X_{1}(N), j_{*} S^{k-2} R^{1} f_{*} \mathbb{Q}\right) \otimes_{\mathbb{Q}} \mathbb{R} \rightarrow S_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{C}}
$$

of $T_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{R}}$-modules.
Corollary 4.3 $H^{1}\left(X_{1}(N)_{\overline{\mathbb{Q}}}, j_{*} S^{k-2} R^{1} f_{*} \mathbb{Q}_{\ell}\right)$ is a free $T_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{Q}_{\ell}}$-module of rank 2.
For a place $\lambda \mid \ell$ of $\mathbb{Q}(f)$, we put

$$
V_{f, \lambda}=V_{\ell}\left(J_{1}(N)\right) \otimes_{T_{k}\left(\Gamma_{1}(N)\right)_{\mathbb{Q}_{\ell}}} \mathbb{Q}(f)_{\lambda} .
$$

$V_{f, \lambda}$ is a 2-dimensional ℓ-adic representation unramified at $p \nmid N \ell$.
Theorem 4.4 $V_{f, \lambda}$ is associated to f. Namely, for $p \nmid N \ell$, we have

$$
\operatorname{det}\left(1-\varphi_{p} t: V_{f, \lambda}\right)=1-a_{p}(f) t+\varepsilon_{f}(p) p^{k-1} t^{2}
$$

Corollary 4.5 If we put $1-a_{p}(f) t+\varepsilon_{f}(p) p^{k-1} t^{2}=(1-\alpha t)(1-\beta t)$, the complex absolute values of α and β are $p^{\frac{k-1}{2}}$.

References

[1] G. Cornell, J. Silverman (eds.), Arithmetic Geometry, Springer, 1986.
[2] G. Cornell, J. Silverman, G. Stevens (eds.), Modular Forms and Fermat's Last Theorem, Springer, 1997.
[3] H. Darmon, F. Diamond, R. Taylor, Fermat's Last Theorem, in J. Coates and S. T. Yau (eds.), Elliptic Curves, Modular Forms and Fermat's Last Theorem, 2nd ed. International Press, 1997, 2-140.
[4] P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques, in W. Kuyk, P. Deligne (eds.), Modular Functions of One Variable II, Lecture Notes in Math., Springer, 349, 1973, 143-316.
[5] P. Deligne, Formes modulaires et représentations ℓ-adiques, in Lecture Notes in Math., Springer, 179, 1971, 139-172.
[6] F. Diamond, J. Shurman, A First course in Modular forms, Springer GTM 228 (2005).
[7] J.-M. Fontaine, B. Mazur, Geometric Galois representations, in J. Coates and S. T. Yau (eds.), Elliptic Curves, Modular Forms and Fermat's Last Theorem, 2nd ed. International Press, 1997, 41-78.
[8] H. Hida, Modular forms and Galois cohomology, Cambridge studies in advanced math., 69, Cambridge Univ. Press, 2000.
[9] H. Hida, Geometric modular forms and elliptic curves, World Scientific (2000).
[10] N. Katz, B. Mazur, Arithmetic Moduli of Elliptic Curves, Annals of Math. Studies, Princeton Univ. Press, 151, 1994.
[11] T. Saito, Fermat's last theorem (in Japanese), Iwanami, 1 (2000), 2 (to be published).
[12] J-P. Serre, A course in arithmetic, Springer GTM 7 (1973).
[13] J.-P. Serre, Abelian ℓ-adic representations and Elliptic curves, Benjamin, 1968.
[14] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
[15] J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math., Springer, 106, 1986.
[16] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Math., Springer, 151, 1994.

