
The characteristic class and micro local analysis on
of an �-adic étale sheaf (with Ahmed Abbes)

August 15, 2005

Plan:
1. Characteristic class.
2. Localization.
3. Rank 1 case.
4. Analogy with Microlocal analysis.

Notation: k field of characteritic p > 0.
X separated of finite type over F .
Λ = Z/�nZ,Z�,Q� etc. (� �= p)
F Λ-sheaf on X, or more generally, an object in a suitable derived category.

1 Characteristic class.

Let F be a perfect field of characteristic p > 0. Let X be a separated scheme of finite
type over F and F be an �-adic sheaf on X. Then the characteristic class

C(F) ∈ H0(X,KX )

is defined as follows. Here and in the following KX = a!Λ where a : X → F . Hence if
X is smooth of dimension d, the characteristic class C(F) is defined in H2d(X,Λ(d)).

We consider

1 ∈ Hom(F ,F) = H0
X(X ×X,RHom(p∗2F , p!

1F))

= H0
X(X ×X,RHom(p∗1F , p!

2F)).

By the natural pairing, RHom(p∗2F , p!
1F) ⊗ RHom(p∗1F , p!

2F) → KX×X , their pairing
is defined and gives the characteristic class as

C(F) = 〈1, 1〉 = H0
X(X ×X,KX×X) = H0(X,KX ).

If X is smooth of dimension d and F is smooth of rank r, we have C(F) = r ·
(−1)dcd(Ω

1
X/F ).
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If X is proper, the Lefschetz trace formula in SGA 5 gives

TrC(F) = χ(XF̄ ,F).

The characteristic class C(F) ∈ H0(X,KX ) may be also regarded as the class of
the composition

δ∗ΛX → Hom(pr∗2F , pr!1F) → δ∗KX .

The first map is the adjoint of ΛX → δ!Hom(pr∗2F , pr!1F) = Hom(F ,F) and the
second map is the adjoint of δ∗Hom(pr∗2F , pr!1F) = F ⊗Hom(F , KX ) → KX .

2 Localization of the characteristic class.

We consider the following case. Assume X is smooth and let S ⊂ X be a closed
subscheme. Let U = X \S be the complement and j : U → X be the open immersion.
We assume F = j!FU is the zero-extension of a smooth sheaf FU on U . Then, we expect
that the difference C(j!F)− rankF ·C(j!Λ) may be computed by the ramification of F
along S. Here, we construct a natural lifting of C(j!F)− rankF ·C(Λ) in H0

S(X,KX ).
Let X be the formal completion ofX×X with respect to the diagonal δ : X → X×X

and Xrig be the associated rigid space. Let ψ : Xrig → X×X \X be the canonical map
and ρ : Xrig → X be the specialization. Then, we have a non-commutative diagram

Xrig ψ−−−→ X ×X \X
ρ



�



�g

X
δ−−−→ X ×X

of associated étale topoi where g denotes the open imersion. The nearby cycle functor
Ψ : D(X) → D(Xrig) is defined by ΨF = ψ∗g∗F is defined on Xrig. The vanishing cycle
functor Φ fits in the distinguished triangle

→ ρ∗δ∗F → ΨF → ΦF →

on Xrig. If F = δ∗G, we have ΨF = 0 and an isomorphism ΦF → ρ∗G[1]. Fujiwara’s
theorem gives us a canonical isomorphism δ∗g∗F → ρ∗ψ∗F .

Applying the functor Φ to the composition δ∗ΛX → Hom(pr∗2j!F , pr!1j!F) → δ∗KX ,
we obtain a map Φ(δ∗ΛX) → Φ(δ∗KX). By the isomorphism Φδ∗G = ρ∗G[1], it is
equivalent to the map ρ∗Λ → ρ∗KX and by the adjunction further to Λ → ρ∗ρ∗KX . By
the assumption that F is smooth on U , the complex Hom(pr∗2j!F , pr!1j!F) is smooth
on U × U . Thus, the restriction of ΦHom(pr∗2j!F , pr!1j!F) on U is 0. Hence, the map
Λ → ρ∗ρ∗KX factors through ΛS and gives an element in H0

S(X, ρ∗ρ
∗KX).

By the isomorphism δ∗g∗ → ρ∗ψ∗, the target ρ∗ρ∗KX is identified with δ∗g∗Λ�⊗KX .
Thus, if X is smooth of dimension d, we have a distinguished triangle → ΛX →
KX → ρ∗ρ∗KX → where the class of the first map ΛX → KX is the canonical class

2



cX = (−1)dcd(Ω
1
X) ∈ H0(X,KX ). From the distinguished triangle → ΛX → KX →

ρ∗ρ∗KX →, we deduce an isomorphism H0
S(X,KX) → H0

S(X, ρ∗ρ∗KX). Thus we have
obtained a localized class

CS(j!F) ∈ H0
S(X,KX).

We call it the localized characteristic class.

Theorem 1 The image of CS(j!F) ∈ H0
S(X,KX) in H0(X,KX ) is equal to C(j!F)−

rankF · C(Λ).

3 Computation of the characteristic class in rank 1

case.

As a model, we compute the characteristic class of a smooth sheaf of rank 1. Let X
be a smooth scheme over a perfect field F and U ⊂ X be the complement of a divisor
D with simple normal crossings. We consider a smooth sheaf F of rank 1 on U .

First, we recall the Swan divisor DF and the refined Swan character defined by
Kato. Let D =

⋃
iDi be the irreducible components and Ki = Frac ÔX,ξi be the

local field at the generic point ξi of Di. Let Fi = κ(ξi) be the residue field of Ki.
The Fi-vector space ΩFi/F (log) = Ω1

X/F (logD)ξi ⊗ Fi is of dimension d and fits in an

exact sequece 0 → ΩFi/F → ΩFi(log) → Fi → 0 For each Di, the stalk of F defines a
continuous character χi : Gab

Ki
→ Λ×. If its p-part χ′

i has order at most pm+1, it defines
an element H1(Ki,Z/p

m+1Z).
By the Artin-Schreier-Witt theory, we have a natural surjection Wm+1(Ki) →

H1(Ki,Z/p
m+1Z). Brylinski defined an increasing filtration

FrWm+1(Ki) = {(x0, . . . , xm)|pm−iordxi ≥ −r for i = 0, . . . , m}.
Theorem 2 1. On H1(Ki,Z/p

m+1Z) = Hom(Gab
Ki
,Z/pm+1Z) the following three fil-

trations are equal:
a. The image of F•.
b. The dual of the filtration defined by Kato.
c. The dual of the logarithmic upper numbering filtration defined by Abbes-Saito.
More precisely, for an integer r ≥ 1, we have Gab,j

K,log = Gab,r
K,log for j ∈ (r − 1, r] and

FrH
1(K,Z/pm+1Z) = Hom(Gab

K,log/G
ab,r
K,log ,Z/p

m+1Z).

2. Further the map

Rr : GrFr Wm+1(K) → Hom(mr
K/m

r+1
K ,ΩF (log))

defined by
Rr(x0, . . . , xm) = xp

m

0 d log x0 + · · · + xmd log xm

is well defined. It induces an injection

rswr : GrFr H
1(K,Z/pm+1Z) → Hom(mr

K/m
r+1
K ,ΩF (log)).
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The Swan divisorDF =
∑

i riDi is defined by Kato by putting ri to be the minimum
integer r ≥ 0 satisfying χi ∈ FrH

1(K,Z/pm+1Z). Furthermore, he shows there exists
a global map rswF : O(−DF )|Dw → Ω1

X(logD)|Dw whose stalks are rswχi at each i.

Theorem 3 If rswF : O(−DF ) → Ω1
X(logD) is locally an isomorphism onto a direct

summand, we have

C(j!F) − C(j!Λ) = (−1)d−1cd−1(Coker(rswF))

= (Image rswF , 0-section)T ∗X(log).

Basic fact in the proof of Theorems 2 and 3 is the following. Let (X×X)′ → X×X
be the blow-up at every Di×Di. Then the diagonal map X → X×X is uniquely lifted
to the log diagonal map X → (X ×X)′. Let (X ×X)′′ → (X ×X)′ be the blow-up at
DF ⊂ X in the log diagonal. Then, the exceptional divisor of (X × X)′′ → (X ×X)′

is a compactification of an Ad-bundle E = Spec S•(Ω1
X/F (logD)(DF )|Dw) over Dw.

Further the smooth sheaf Hom(pr∗2F , pr∗1F) on U ×U ⊂ (X×X)′′ is unramified along
E and the restriction on E of the smooth extension is the Artin-Schreier sheaf defined
by the linear form rswF on E.

4 Analogy with Microlocal analysis.

Over C, the Riemann-Hilbert correspondence gives an equivalence of categories.

(regular holonomic DX -modules) → (perverse sheaves of CX -modules).

Let a DX -module M be corresponding to F . Then, on the DX -module side, the
characteristic cycle Char(M) is defined as a cycle on the cotangent bundle T ∗X as the
class of gr•(M) regarded as an OT ∗X = gr•(DX) The cohomology class [Char(M)] ∈
H2d(T ∗X,Z(d)) = H2d(X,Z(d)) gives the characteristic class C(F). Kashiwara-Scha-
pira define the microsupport SS(F) that is the same as Char(M) directly without
resorting the Riemann-Hilbert correspondence, in the following way. They start with
H = RHom(pr∗2F , pr!1F) on X×X. Then by deforming X → X×X to X → TX and
applying the nearby cycle functor to H, they define νhom(F ,F). Further applying the
Fourier-Sato transform, they obtain µhom(F ,F) on T ∗X.

Verdier has studied a similar construction in a �-adic setting. However, one can not
capture wild ramification in this way.

In rank 1 case, we obtain H|E on the twisted tangent bundle. By applying the
Fourier-Deligne transform, one gets a section rswF of a twisted cotangent bundle, that
defines a cycle on the cotangent bundle.
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