The chearacteristic class and the Swan class of an ℓ-adic sheaf (with Abbes and with Kato)

December 20, 2004

1982: Galois theory. undergraduate, seminar.
1985-6: Intersection theory. First time to study it.
Report on application of intersection theory to etale cohomology.
Plan:
0 . Outline.

1. Swan class and Grothendieck-Ogg-Shafarevich formula. (with Kato)
2. Characteristic class and its relation with the Swan class. (with Abbes)

Notation: F field of characteritic $p>0$.
$\Lambda=\mathbb{Z} / \ell^{n} \mathbb{Z}, \mathbb{Z}_{\ell}, \mathbb{Q}_{\ell}$ etc. $(\ell \neq p)$
X variety over F.
$\mathcal{F} \Lambda$-sheaf on X, or more generally, an object in a suitable derived category.
0.1. X variety, $U \subset X$ dense open smooth over F.
\mathcal{F} smooth on U.
The Swan class $\operatorname{Sw}(\mathcal{F})$ is defined in $C H_{0}(X \backslash U)_{\mathbb{Q}}$. If X is proper,

$$
\chi_{c}\left(U_{\bar{F}}, \mathcal{F}\right)\left(=\sum_{q=0}^{2 d}(-1)^{q} \operatorname{dim} H_{c}^{q}\left(U_{\bar{F}}, \mathcal{F}\right)\right)=\operatorname{rank} \mathcal{F} \cdot \chi_{c}\left(U_{\bar{F}}\right)-\operatorname{degSw}(\mathcal{F})
$$

0.2. The characteristic class $C(\mathcal{F}) \in H^{0}\left(X, K_{X}\right)$ is defined by Abbes. Implicitly in SGA5. In complex geometry, it is defined by Kashiwara-Schapira.
$K_{X}=R a^{!} \Lambda, a: X \rightarrow$ Spec F. If X is smooth of dimension $d, C(\mathcal{F})$ is defined in $H^{2 d}(X, \Lambda(d))$ If X is proper,

$$
\operatorname{Tr} C(\mathcal{F})=\chi\left(X_{\bar{F}}, \mathcal{F}\right)\left(=\sum_{q=0}^{2 d}(-1)^{q} \operatorname{dim} H^{q}\left(X_{\bar{F}}, \mathcal{F}\right)\right)
$$

Let $j: U \rightarrow X$ be the open immersion. Then, the relation

$$
C(j!\mathcal{F})=\operatorname{rank} \mathcal{F} \cdot C(j!\Lambda)-\operatorname{cl} \operatorname{Sw}(\mathcal{F})
$$

in $H^{0}\left(X, K_{X}\right)$ is verified in many cases. cl : $C H_{0}(X) \rightarrow H^{0}\left(X, K_{X}\right)$ cycle class map.

1. $U \subset X$: smooth over F, \mathcal{F} on U smooth.

For simplicity, assume \mathcal{F} is trivialized by a finite Galois covering $V \rightarrow U$ of Galois group G. M : representation of G corresponding to \mathcal{F}.

Further assume there is a commutative diagram

where $f: Y \rightarrow X$ is proper, Y is smooth and V is the complement of a divisor with simple normal crossings. (In general, we consider $\mathcal{F} \bmod \ell$ and use the Brauer trace and also consider alteration.)
$\sigma \in G=\operatorname{Gal}(U / V), \sigma \neq 1$.
Figure 1.
$\Gamma_{\sigma}:$ graph of σ.
$(Y \times Y)^{\prime} \rightarrow Y \times Y:$ Blow up at $D_{1} \times D_{1}, \ldots, D_{m} \times D_{m}$ where D_{1}, \ldots, D_{m} are the irreducible components of D.
$\Delta_{Y}: Y \rightarrow(Y \times Y)^{\prime}:$ the \log diagonal map.
Figure 2.
$\overline{\Gamma_{\sigma}}$: closure of $\Gamma_{\sigma} \subset V \times_{U} V$ in $(Y \times Y)^{\prime}$.
tame ramification : no intersection.
wild ramification : non-empty intersection.
Define

$$
s_{V / U}(\sigma)=-\left(\overline{\Gamma_{\sigma}}, \Delta_{Y}\right)_{(Y \times Y)^{\prime}} \in C H_{0}(Y-V),
$$

$s_{V / U}(1)=-\sum_{\sigma \neq 1} s_{V / U}(\sigma)$ and

$$
\begin{equation*}
\operatorname{Sw}(\mathcal{F})=\frac{1}{|G|} \sum_{\sigma \in G} f_{*} s_{V / U}(\sigma) \operatorname{Tr}(\sigma: M) \in C H_{0}(X-U) \otimes \mathbb{Q} \tag{1}
\end{equation*}
$$

In fact, $\operatorname{Sw}(\mathcal{F})$ is defined as an element of $C H_{0}(E)_{\mathbb{Q}}$ where $E \subset X-U$ is the wild ramification locus.
Problem: Compute the Swan class in terms of Abbes-Saito filtration. (Partial answer in the rank 1 case.)

We have a generalization of the Grothendieck-Ogg-Shafarevich formula.
Theorem 1 If X is proper,

$$
\chi_{c}(U, \mathcal{F})=\chi_{c}(U) \cdot \operatorname{rank} \mathcal{F}-\operatorname{deg} \operatorname{Sw}(\mathcal{F})
$$

Main ingredient of proof. Lefschetz trace formula for an open variety, proved using a method of Pink-Faltings.

Variant: We may also define $\operatorname{Sw}(\mathcal{F})$ in a mixed characteristic situation. We have a relative version of Theorem 1 that gives a conductor formula with a coefficient sheaf.
2. More generally, the characteristic class is defined for a cohomological correspondence.
X variety over $F . c: C \rightarrow X \times X$ closed immersion, $p_{i}: C \rightarrow X(i=1,2)$ compositions with the projections.
\mathcal{F} on $X, u: p_{2}^{*} \mathcal{F} \rightarrow p_{1}^{!} \mathcal{F}$ a cohomological correspondence (direction is the inverse of that in SGA 5).

We put $\mathcal{H}=R \mathcal{H}$ om $\left(p r_{2}^{*} \mathcal{F}, p r_{1}^{!} \mathcal{F}\right)$. Then, u defines a map $\Lambda_{C} \rightarrow c^{!} \mathcal{H}$ and hence $u \in H_{C}^{0}(X \times X, \mathcal{H})$.

On the other hand, the canonical isomorphism $\mathcal{F} \boxtimes D \mathcal{F} \rightarrow \mathcal{H}$ and the evaluation map $\mathcal{F} \otimes D \mathcal{F} \rightarrow K_{X}$ induce a map $e: \delta^{*} \mathcal{H} \rightarrow K_{X}$.

We define a class $C(\mathcal{F}, C, u) \in H_{C \cap X}^{0}\left(X, K_{X}\right)$ as $e \circ \delta^{*} u$.
Proposition 2 If X is proper over F,

$$
\operatorname{Tr}\left(u^{*}: H^{*}\left(X_{\bar{F}}, \mathcal{F}\right)\right)=\operatorname{Tr} C(\mathcal{F}, C, u)
$$

$C(\mathcal{F}, C, u)$ is the pairing $\langle\mathrm{id}, u\rangle$ in the notation of SGA5. A reformulation of the Lefschetz trace formula in SGA5. A special case of the compatibility of the construction of the characteristic class with proper push-forward.

Conjecture $3 U \subset X$: smooth over F, \mathcal{F} smooth \mathbb{Q}_{ℓ}-sheaf on U. Then, we have

$$
\begin{equation*}
C(j!\mathcal{F})=\operatorname{rank} \mathcal{F} \cdot C(j!\Lambda)-\operatorname{Sw} \mathcal{F} \tag{2}
\end{equation*}
$$

in $H^{0}\left(X, K_{X}\right)$.
Theorem 4 Conjecture 3 is true if there exists a finite etale Galois covering $V \rightarrow U$ satisfying one of the following conditions.
(Res) There exist a proper smooth scheme Y over F, a divisor $D \subset Y$ with simple normal crossings, an isomorphism $V \rightarrow Y \backslash D$ and an action of G on Y extending that on V. The pull-back \mathcal{F}_{V} of \mathcal{F} on V is tamely ramified along D.
(Triv) The pull-back \mathcal{F}_{V} is constant.
Proof is similar to that of Theorem 1.
Assume X is smooth and $D=X-U$ has simple normal crossings. If \mathcal{F} is tamely ramified, we have

$$
\begin{equation*}
C(j!\mathcal{F})=\operatorname{rank} \mathcal{F} \cdot(-1)^{d} c_{d}\left(\Omega_{X / F}^{1}(\log D)\right) \tag{3}
\end{equation*}
$$

in $H^{2 d}(X, \Lambda(d))$. In particular,

$$
C(j!\Lambda)=(-1)^{d} c_{d}\left(\Omega_{X / F}^{1}(\log D)\right) .
$$

If $\operatorname{dim} U=1$ and $\operatorname{rank} \mathcal{F}=1$, we can prove Theorem 4 integrally.
Theorem 5 Let X be a smooth curve and $U \subset X$ be a dense open. Let \mathcal{F} be a smooth Λ-sheaf of rank 1. Then, we have

$$
\begin{equation*}
C\left(j_{!} \mathcal{F}\right)=C\left(j_{!} \Lambda\right)-\mathrm{Sw} \mathcal{F} \tag{4}
\end{equation*}
$$

in $H^{2}(X, \Lambda(1))$.
Sketch of Proof. Assume for simplicity $U=X-\{x\}$. Put $n=\operatorname{Sw}_{x} \mathcal{F} \geq 0$.
$(X \times X)^{(0)} \rightarrow X \times X$ the blow-up at the image of x by the diagonal map $X \rightarrow X \times X$. The diagonal map $X \rightarrow X \times X$ is extended to the log diagonal map $X \rightarrow(X \times X)^{(0)}$. We define blow-up $(X \times X)^{(i)} \rightarrow(X \times X)^{(i-1)}$ for $i=1,2, \ldots, n$ inductively.
$\delta^{(n)}: X \rightarrow(X \times X)^{(n)}$: immersion induced by the diagonal
E_{i} : exceptional divisor.
$(U \times U)^{(n)}$: complement in $(X \times X)^{(n)}$ of the union of the proper transforms of $X \times x, x \times X$, and the exceptional divisors E_{i} for $i=0,1 \ldots, n-1$.

In the commutative diagram

the left vertical arrow is the composition of blow-ups and the others are open immersions.

Proposition 6 We put $\mathcal{H}=\mathcal{H o m}\left(p r_{2}^{*} \mathcal{F}, p r_{1}^{*} \mathcal{F}\right)$. Then, we have the following.

1. The Λ-sheaf $\mathcal{H}^{(n)}=k_{*}^{(n)} \mathcal{H}$ is a smooth Λ-sheaf of rank 1 on $(U \times U)^{(n)}$.
2. The restriction $\left.\mathcal{H}^{(n)}\right|_{E_{n}}$ is an Artin-Schreier sheaf.
3. If \mathcal{F} is ramified at x, the canonical map $j^{(n)} \mathcal{H}^{(n)} \rightarrow R j_{*}^{(n)} \mathcal{H}^{(n)}$ is an isomorphism.

Proof of Proposition. Identify $H^{1}\left(K_{x}, \mathbb{Z} / p^{m} \mathbb{Z}\right)=W_{m}\left(K_{x}\right) / F-1$ and consider the filtration of Brylinski inducing the filtration by ramification.

Proof of Theorem. The characteristic class $C(j!\mathcal{F})$ is defined by the composition $\delta_{!}^{(n)} \Lambda_{X} \rightarrow \mathcal{H} \otimes p r_{1}^{*} K_{X} \rightarrow \delta_{*}^{(n)} K_{X}$ and hence equal to the intersection product $(X, X)_{(X \times X)^{(n)}}$.

Application of Theorem. Proof of the GOS formula without using the Weil formula. (Brauer induction).

