The characteristic class and the Swan class of an \(\ell \)-adic sheaf (with Abbes and with Kato)

December 20, 2004

1982: Galois theory. undergraduate, seminar.
1985-6: Intersection theory. First time to study it.

Report on application of intersection theory to etale cohomology.

Plan:
0. Outline.
1. Swan class and Grothendieck-Ogg-Shafarevich formula. (with Kato)
2. Characteristic class and its relation with the Swan class. (with Abbes)

Notation:
\(F \) field of characteritic \(p > 0 \).
\(\Lambda = \mathbb{Z}/\ell^n\mathbb{Z}, \mathbb{Z}_\ell, \mathbb{Q}_\ell \) etc. (\(\ell \neq p \))
\(X \) variety over \(F \).
\(\mathcal{F} \) \(\Lambda \)-sheaf on \(X \), or more generally, an object in a suitable derived category.

0.1. \(X \) variety, \(U \subset X \) dense open smooth over \(F \).
\(\mathcal{F} \) smooth on \(U \).

The Swan class \(\text{Sw}(\mathcal{F}) \) is defined in \(CH_0(X \setminus U)_\mathbb{Q} \). If \(X \) is proper,

\[
\chi_c(U_{\overline{F}}, \mathcal{F}) \left(= \sum_{q=0}^{2d} (-1)^q \dim H^q_c(U\overline{F}, \mathcal{F}) \right) = \text{rank} \mathcal{F} \cdot \chi_c(U\overline{F}) - \text{degSw}(\mathcal{F}).
\]

0.2. The characteristic class \(C(\mathcal{F}) \in H^0(X, K_X) \) is defined by Abbes. Implicitly in SGA5. In complex geometry, it is defined by Kashiwara-Schapira.

\(K_X = Ra\Lambda, a : X \to \text{Spec } F \). If \(X \) is smooth of dimension \(d \), \(C(\mathcal{F}) \) is defined in \(H^{2d}(X, \Lambda(d)) \) If \(X \) is proper,

\[
\text{Tr } C(\mathcal{F}) = \chi(X_{\overline{F}}, \mathcal{F}) \left(= \sum_{q=0}^{2d} (-1)^q \dim H^q(X_{\overline{F}}, \mathcal{F}) \right).
\]

Let \(j : U \to X \) be the open immersion. Then, the relation

\[
C(j, \mathcal{F}) = \text{rank} \mathcal{F} \cdot C(j, \Lambda) - c_l \text{Sw}(\mathcal{F})
\]

in \(H^0(X, K_X) \) is verified in many cases. \(c_l : CH_0(X) \to H^0(X, K_X) \) cycle class map.
1. $U \subset X$: smooth over F, \mathcal{F} on U smooth.
 For simplicity, assume \mathcal{F} is trivialized by a finite Galois covering $V \to U$ of Galois group G. M: representation of G corresponding to \mathcal{F}.
 Further assume there is a commutative diagram
 $$
 \begin{array}{ccc}
 Y & \xleftarrow{\sigma} & V \\
 f \downarrow & & \downarrow \\
 X & \xrightarrow{\gamma} & U
 \end{array}
 $$
 where $f: Y \to X$ is proper, Y is smooth and V is the complement of a divisor with simple normal crossings. (In general, we consider \mathcal{F} mod ℓ and use the Brauer trace and also consider alteration.)
 $\sigma \in G = \text{Gal}(U/V), \sigma \neq 1$.
 Figure 1.
 Γ_σ: graph of σ.
 $(Y \times Y)' \to Y \times Y$: Blow up at $D_1 \times D_1, \ldots, D_m \times D_m$ where D_1, \ldots, D_m are the irreducible components of D.
 $\Delta_Y: Y \to (Y \times Y)'$: the log diagonal map.
 Figure 2.
 $\overline{\Gamma_\sigma}$: closure of $\Gamma_\sigma \subset V \times_U V$ in $(Y \times Y)'$.
 tame ramification: no intersection.
 wild ramification: non-empty intersection.
 Define
 $$
 s_{V/U}(\sigma) = -\langle \overline{\Gamma_\sigma}, \Delta_Y \rangle_{Y \times Y}' \in CH_0(Y - V),
 $$
 $$
 s_{V/U}(1) = -\sum_{\sigma \neq 1} s_{V/U}(\sigma) \text{ and }
 $$
 (1)
 $$
 \text{Sw}(\mathcal{F}) = \frac{1}{|G|} \sum_{\sigma \in G} f_* s_{V/U}(\sigma) \text{Tr}(\sigma : M) \in CH_0(X - U) \otimes \mathbb{Q}.
 $$
 In fact, $\text{Sw}(\mathcal{F})$ is defined as an element of $CH_0(E)_\mathbb{Q}$ where $E \subset X - U$ is the wild ramification locus.
 Problem: Compute the Swan class in terms of Abbes-Saito filtration. (Partial answer in the rank 1 case.)
 We have a generalization of the Grothendieck-Ogg-Shafarevich formula.

 Theorem 1 If X is proper,
 $$
 \chi_c(U, \mathcal{F}) = \chi_c(U) \cdot \text{rank } \mathcal{F} - \text{deg } \text{Sw}(\mathcal{F}).
 $$
 Main ingredient of proof. Lefschetz trace formula for an open variety, proved using a method of Pink-Faltings.
2. More generally, the characteristic class is defined for a cohomological correspondence.

We put $\mathcal{H} = R\text{Hom}(pr_2^*\mathcal{F}, pr_1^!\mathcal{F})$. Then, u defines a map $\Lambda_C \to c^!\mathcal{H}$ and hence $u \in H^0_C(X \times X, \mathcal{H})$.

On the other hand, the canonical isomorphism $\mathcal{F} \otimes D\mathcal{F} \to \mathcal{H}$ and the evaluation map $\mathcal{F} \otimes D\mathcal{F} \to K_X$ induce a map $e : \delta^*\mathcal{H} \to K_X$.

We define a class $C(F, C, u) \in H^0_C(X, K_X)$ as $e \circ \delta^*u$.

Proposition 2 If X is proper over F, $\text{Tr}(u^* : H^*(X_F, \mathcal{F})) = \text{Tr}(C(F, C, u))$.

$C(F, C, u)$ is the pairing (id, u) in the notation of SGA5. A reformulation of the Lefschetz trace formula in SGA5. A special case of the compatibility of the construction of the characteristic class with proper push-forward.

$$C(j_!\mathcal{F}) \in H^0(X, K_X) \xleftarrow{\text{cycle map}} \text{CH}_0(X - U)_\mathbb{Q} \supset \text{Sw}(\mathcal{F})$$

$$\text{deg} \downarrow$$

$$\chi_c(U_F, \mathcal{F}) \in \mathbb{Q}_\ell \supset \mathbb{Q}$$

Conjecture 3 $U \subset X$: smooth over F, \mathcal{F} smooth \mathbb{Q}_ℓ-sheaf on U. Then, we have

$$C(j_!\mathcal{F}) = \text{rank } \mathcal{F} \cdot C(j_!\Lambda) - \text{Sw}\mathcal{F}$$
in $H^0(X, K_X)$.

Theorem 4 Conjecture 3 is true if there exists a finite etale Galois covering $V \to U$ satisfying one of the following conditions.

(Res) There exist a proper smooth scheme Y over F, a divisor $D \subset Y$ with simple normal crossings, an isomorphism $V \to Y \setminus D$ and an action of G on Y extending that on V. The pull-back \mathcal{F}_V of \mathcal{F} on V is tamely ramified along D.

(Triv) The pull-back \mathcal{F}_V is constant.

Proof is similar to that of Theorem 1.

Assume X is smooth and $D = X - U$ has simple normal crossings. If \mathcal{F} is tamely ramified, we have

$$C(j_!\mathcal{F}) = \text{rank } \mathcal{F} \cdot (-1)^d c_d(\Omega^1_{X/F}(\log D))$$
in $H^{2d}(X, \Lambda(d))$. In particular,

$$C(j_!\Lambda) = (-1)^d c_d(\Omega^1_{X/F}(\log D))$$.
If dim $U = 1$ and rank $F = 1$, we can prove Theorem 4 integrally.

Theorem 5 Let X be a smooth curve and $U \subset X$ be a dense open. Let F be a smooth Λ-sheaf of rank 1. Then, we have

\[(4) \quad C(j_* F) = C(j_* \Lambda) - Sw F\]

in $H^2(X, \Lambda(1))$.

Sketch of Proof. Assume for simplicity $U = X - \{x\}$. Put $n = Sw_x F \geq 0$.

$(X \times X)^{(0)} \to X \times X$ the blow-up at the image of x by the diagonal map $X \to X \times X$. The diagonal map $X \to X \times X$ is extended to the log diagonal map $X \to (X \times X)^{(0)}$.

We define blow-up $(X \times X)^{(i)} \to (X \times X)^{(i-1)}$ for $i = 1, 2, \ldots, n$ inductively. $\delta^{(i)} : X \to (X \times X)^{(i)}$: immersion induced by the diagonal E_i: exceptional divisor.

$(U \times U)^{(n)}$: complement in $(X \times X)^{(n)}$ of the union of the proper transforms of $X \times x, x \times X$, and the exceptional divisors E_i for $i = 0, 1 \ldots, n - 1$.

In the commutative diagram

\[
\begin{align*}
(X \times X)^{(n)} & \xleftarrow{j^{(n)}} (U \times U)^{(n)} \\
\downarrow f^{(n)} & \uparrow k^{(n)} \\
X \times X & \xleftarrow{j} U \times U,
\end{align*}
\]

the left vertical arrow is the composition of blow-ups and the others are open immersions.

Proposition 6 We put $\mathcal{H} = \text{Hom}(pr_2^* F, pr_1^* F)$. Then, we have the following.

1. The Λ-sheaf $\mathcal{H}^{(n)} = k_+^{(n)} \mathcal{H}$ is a smooth Λ-sheaf of rank 1 on $(U \times U)^{(n)}$.
2. The restriction $\mathcal{H}^{(n)}|_{E_n}$ is an Artin-Schreier sheaf.
3. If F is ramified at x, the canonical map $j_1^{(n)} \mathcal{H}^{(n)} \to Rj_1^{(n)} \mathcal{H}^{(n)}$ is an isomorphism.

Proof of Proposition. Identify $H^1(K_x, \mathbb{Z}/p^n \mathbb{Z}) = W_m(K_x)/F - 1$ and consider the filtration of Brylinski inducing the filtration by ramification.

Proof of Theorem. The characteristic class $C(j_! F)$ is defined by the composition $\delta^{(n)}_! \Lambda_X \to \mathcal{H} \otimes pr_1^* K_X \to \delta^{(n)}_* K_X$ and hence equal to the intersection product $(X, X)_{(X \times X)^{(n)}}$.

Application of Theorem. Proof of the GOS formula without using the Weil formula. (Brauer induction).