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1982: Galois theory. undergraduate, seminar.
1985-6: Intersection theory. First time to study it.

Report on application of intersection theory to etale cohomology.
Plan:

0. Outline.
1. Swan class and Grothendieck-Ogg-Shafarevich formula. (with Kato)
2. Characteristic class and its relation with the Swan class. (with Abbes)

Notation: F field of characteritic p > 0.
Λ = Z/�nZ, Z�, Q� etc. (� �= p)
X variety over F .
F Λ-sheaf on X, or more generally, an object in a suitable derived category.

0.1. X variety, U ⊂ X dense open smooth over F .
F smooth on U .
The Swan class Sw(F) is defined in CH0(X \ U)� . If X is proper,

χc(UF̄ ,F)

(
=

2d∑
q=0

(−1)q dim Hq
c (UF̄ ,F)

)
= rankF · χc(UF̄ )− degSw(F).

0.2. The characteristic class C(F) ∈ H0(X, KX) is defined by Abbes. Implicitly in
SGA5. In complex geometry, it is defined by Kashiwara-Schapira.

KX = Ra!Λ, a : X → Spec F . If X is smooth of dimension d, C(F) is defined in
H2d(X, Λ(d)) If X is proper,

Tr C(F) = χ(XF̄ ,F)

(
=

2d∑
q=0

(−1)q dim Hq(XF̄ ,F)

)
.

Let j : U → X be the open immersion. Then, the relation

C(j!F) = rankF · C(j!Λ)− cl Sw(F)

in H0(X, KX) is verified in many cases. cl : CH0(X)→ H0(X, KX) cycle class map.
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1. U ⊂ X: smooth over F , F on U smooth.
For simplicity, assume F is trivialized by a finite Galois covering V → U of Galois

group G. M : representation of G corresponding to F .
Further assume there is a commutative diagram

Y
⊃←−−− V

f

� �
X

⊃←−−− U

where f : Y → X is proper, Y is smooth and V is the complement of a divisor with
simple normal crossings. (In general, we consider F mod � and use the Brauer trace
and also consider alteration.)

σ ∈ G = Gal(U/V ), σ �= 1.
Figure 1.
Γσ : graph of σ.
(Y × Y )′ → Y × Y : Blow up at D1 ×D1, . . . , Dm ×Dm where D1, . . . , Dm are the

irreducible components of D.
∆Y : Y → (Y × Y )′: the log diagonal map.
Figure 2.
Γσ: closure of Γσ ⊂ V ×U V in (Y × Y )′.
tame ramification : no intersection.
wild ramification : non-empty intersection.
Define

sV/U(σ) = −(Γσ, ∆Y )(Y ×Y )′ ∈ CH0(Y − V ),

sV/U(1) = −∑σ �=1 sV/U(σ) and

Sw(F) =
1

|G|
∑
σ∈G

f∗sV/U(σ)Tr(σ : M) ∈ CH0(X − U)⊗Q.(1)

In fact, Sw(F) is defined as an element of CH0(E)� where E ⊂ X − U is the wild
ramification locus.
Problem: Compute the Swan class in terms of Abbes-Saito filtration. (Partial answer
in the rank 1 case.)

We have a generalization of the Grothendieck-Ogg-Shafarevich formula.

Theorem 1 If X is proper,

χc(U,F) = χc(U) · rank F − deg Sw(F).

Main ingredient of proof. Lefschetz trace formula for an open variety, proved using
a method of Pink-Faltings.
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Variant: We may also define Sw(F) in a mixed characteristic situation. We have a
relative version of Theorem 1 that gives a conductor formula with a coefficient sheaf.

2. More generally, the characteristic class is defined for a cohomological correspon-
dence.

X variety over F . c : C → X × X closed immersion, pi : C → X (i = 1, 2)
compositions with the projections.
F on X, u : p∗2F → p!

1F a cohomological correspondence (direction is the inverse
of that in SGA 5).

We put H = RHom(pr∗2F , pr!
1F). Then, u defines a map ΛC → c!H and hence

u ∈ H0
C(X ×X,H).

On the other hand, the canonical isomorphism F � DF → H and the evaluation
map F ⊗DF → KX induce a map e : δ∗H → KX .

We define a class C(F , C, u) ∈ H0
C∩X(X, KX) as e ◦ δ∗u.

Proposition 2 If X is proper over F ,

Tr(u∗ : H∗(XF̄ ,F)) = Tr C(F , C, u).

C(F , C, u) is the pairing 〈id, u〉 in the notation of SGA5. A reformulation of the
Lefschetz trace formula in SGA5. A special case of the compatibility of the construction
of the characteristic class with proper push-forward.

C(j!F) ∈ H0(X, KX)
cycle map←−−−−− CH0(X − U)�
 Sw(F)

↓ Tr

� deg

�
χc(UF̄ ,F) ∈ Q� ⊃ Q

Conjecture 3 U ⊂ X: smooth over F , F smooth Q�-sheaf on U . Then, we have

C(j!F) = rank F · C(j!Λ)− SwF(2)

in H0(X, KX).

Theorem 4 Conjecture 3 is true if there exists a finite etale Galois covering V → U
satisfying one of the following conditions.

(Res) There exist a proper smooth scheme Y over F , a divisor D ⊂ Y with simple
normal crossings, an isomorphism V → Y \D and an action of G on Y extending
that on V . The pull-back FV of F on V is tamely ramified along D.

(Triv) The pull-back FV is constant.

Proof is similar to that of Theorem 1.
Assume X is smooth and D = X − U has simple normal crossings. If F is tamely

ramified, we have

C(j!F) = rank F · (−1)dcd(Ω
1
X/F (log D))(3)

in H2d(X, Λ(d)). In particular,

C(j!Λ) = (−1)dcd(Ω
1
X/F (log D)).
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If dim U = 1 and rankF = 1, we can prove Theorem 4 integrally.

Theorem 5 Let X be a smooth curve and U ⊂ X be a dense open. Let F be a smooth
Λ-sheaf of rank 1. Then, we have

C(j!F) = C(j!Λ)− SwF(4)

in H2(X, Λ(1)).

Sketch of Proof. Assume for simplicity U = X − {x}. Put n = SwxF ≥ 0.
(X×X)(0) → X×X the blow-up at the image of x by the diagonal map X → X×X.
The diagonal map X → X×X is extended to the log diagonal map X → (X×X)(0).
We define blow-up (X ×X)(i) → (X ×X)(i−1) for i = 1, 2, . . . , n inductively.
δ(n) : X → (X ×X)(n): immersion induced by the diagonal
Ei: exceptional divisor.
(U × U)(n): complement in (X × X)(n) of the union of the proper transforms of

X × x, x×X, and the exceptional divisors Ei for i = 0, 1 . . . , n− 1.
In the commutative diagram

(X ×X)(n) j(n)←−−− (U × U)(n)

f(n)

� �k(n)

X ×X
j←−−− U × U,

the left vertical arrow is the composition of blow-ups and the others are open immer-
sions.

Proposition 6 We put H = Hom(pr∗2F , pr∗1F). Then, we have the following.

1. The Λ-sheaf H(n) = k
(n)
∗ H is a smooth Λ-sheaf of rank 1 on (U × U)(n).

2. The restriction H(n)|En is an Artin-Schreier sheaf.

3. If F is ramified at x, the canonical map j
(n)
! H(n) → Rj

(n)
∗ H(n) is an isomorphism.

Proof of Proposition. Identify H1(Kx, Z/pmZ) = Wm(Kx)/F − 1 and consider the
filtration of Brylinski inducing the filtration by ramification.

Proof of Theorem. The characteristic class C(j!F) is defined by the composi-

tion δ
(n)
! ΛX → H ⊗ pr∗1KX → δ

(n)
∗ KX and hence equal to the intersection product

(X, X)(X×X)(n) .
Application of Theorem. Proof of the GOS formula without using the Weil formula.

(Brauer induction).
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