The chearacteristic class and the Swan class of an ℓ -adic sheaf (with Abbes and with Kato)

December 20, 2004

1982: Galois theory. undergraduate, seminar.

1985-6: Intersection theory. First time to study it.

Report on application of intersection theory to etale cohomology.

Plan:

0. Outline.

1. Swan class and Grothendieck-Ogg-Shafarevich formula. (with Kato)

2. Characteristic class and its relation with the Swan class. (with Abbes)

Notation: F field of characteritic p > 0.

 $\Lambda = \mathbb{Z}/\ell^n \mathbb{Z}, \mathbb{Z}_\ell, \mathbb{Q}_\ell \text{ etc. } (\ell \neq p)$

X variety over F.

 \mathcal{F} A-sheaf on X, or more generally, an object in a suitable derived category.

0.1. X variety, $U \subset X$ dense open smooth over F.

 \mathcal{F} smooth on U.

The Swan class $Sw(\mathcal{F})$ is defined in $CH_0(X \setminus U)_{\mathbb{Q}}$. If X is proper,

$$\chi_c(U_{\bar{F}},\mathcal{F})\left(=\sum_{q=0}^{2d}(-1)^q \dim H^q_c(U_{\bar{F}},\mathcal{F})\right) = \operatorname{rank}\mathcal{F}\cdot\chi_c(U_{\bar{F}}) - \operatorname{degSw}(\mathcal{F}).$$

0.2. The characteristic class $C(\mathcal{F}) \in H^0(X, K_X)$ is defined by Abbes. Implicitly in SGA5. In complex geometry, it is defined by Kashiwara-Schapira.

 $K_X = Ra^! \Lambda, a : X \to \text{Spec } F.$ If X is smooth of dimension $d, C(\mathcal{F})$ is defined in $H^{2d}(X, \Lambda(d))$ If X is proper,

Tr
$$C(\mathcal{F}) = \chi(X_{\bar{F}}, \mathcal{F}) \left(= \sum_{q=0}^{2d} (-1)^q \dim H^q(X_{\bar{F}}, \mathcal{F}) \right).$$

Let $j: U \to X$ be the open immersion. Then, the relation

$$C(j_!\mathcal{F}) = \operatorname{rank}\mathcal{F} \cdot C(j_!\Lambda) - \operatorname{cl} \operatorname{Sw}(\mathcal{F})$$

in $H^0(X, K_X)$ is verified in many cases. cl : $CH_0(X) \to H^0(X, K_X)$ cycle class map.

1. $U \subset X$: smooth over F, \mathcal{F} on U smooth.

For simplicity, assume \mathcal{F} is trivialized by a finite Galois covering $V \to U$ of Galois group G. M: representation of G corresponding to \mathcal{F} .

Further assume there is a commutative diagram

$$\begin{array}{ccc} Y & \xleftarrow{\supset} & V \\ f & & \downarrow \\ X & \xleftarrow{\supset} & U \end{array}$$

where $f: Y \to X$ is proper, Y is smooth and V is the complement of a divisor with simple normal crossings. (In general, we consider $\mathcal{F} \mod \ell$ and use the Brauer trace and also consider alteration.)

 $\sigma \in G = \operatorname{Gal}(U/V), \sigma \neq 1.$ Figure 1.

 Γ_{σ} : graph of σ .

 $(Y \times Y)' \to Y \times Y$: Blow up at $D_1 \times D_1, \ldots, D_m \times D_m$ where D_1, \ldots, D_m are the irreducible components of D.

 $\Delta_Y : Y \to (Y \times Y)'$: the log diagonal map. Figure 2. $\overline{\Gamma_{\sigma}}$: closure of $\Gamma_{\sigma} \subset V \times_U V$ in $(Y \times Y)'$.

tame ramification : no intersection.

wild ramification : non-empty intersection. Define

Denne

$$s_{V/U}(\sigma) = -(\overline{\Gamma_{\sigma}}, \Delta_Y)_{(Y \times Y)'} \in CH_0(Y - V),$$

$$s_{V/U}(1) = -\sum_{\sigma \neq 1} s_{V/U}(\sigma)$$
 and

(1)
$$\operatorname{Sw}(\mathcal{F}) = \frac{1}{|G|} \sum_{\sigma \in G} f_* s_{V/U}(\sigma) \operatorname{Tr}(\sigma : M) \in CH_0(X - U) \otimes \mathbb{Q}.$$

In fact, $Sw(\mathcal{F})$ is defined as an element of $CH_0(E)_{\mathbb{Q}}$ where $E \subset X - U$ is the wild ramification locus.

Problem: Compute the Swan class in terms of Abbes-Saito filtration. (Partial answer in the rank 1 case.)

We have a generalization of the Grothendieck-Ogg-Shafarevich formula.

Theorem 1 If X is proper,

$$\chi_c(U, \mathcal{F}) = \chi_c(U) \cdot \operatorname{rank} \mathcal{F} - \operatorname{deg} \operatorname{Sw}(\mathcal{F}).$$

Main ingredient of proof. Lefschetz trace formula for an open variety, proved using a method of Pink-Faltings.

Variant: We may also define $Sw(\mathcal{F})$ in a mixed characteristic situation. We have a relative version of Theorem 1 that gives a conductor formula with a coefficient sheaf.

2. More generally, the characteristic class is defined for a cohomological correspondence.

X variety over F. $c: C \to X \times X$ closed immersion, $p_i: C \to X$ (i = 1, 2) compositions with the projections.

 \mathcal{F} on $X, u: p_2^* \mathcal{F} \to p_1^! \mathcal{F}$ a cohomological correspondence (direction is the inverse of that in SGA 5).

We put $\mathcal{H} = R\mathcal{H}om(pr_2^*\mathcal{F}, pr_1^!\mathcal{F})$. Then, u defines a map $\Lambda_C \to c^!\mathcal{H}$ and hence $u \in H^0_C(X \times X, \mathcal{H})$.

On the other hand, the canonical isomorphism $\mathcal{F} \boxtimes D\mathcal{F} \to \mathcal{H}$ and the evaluation map $\mathcal{F} \otimes D\mathcal{F} \to K_X$ induce a map $e : \delta^* \mathcal{H} \to K_X$.

We define a class $C(\mathcal{F}, C, u) \in H^0_{C \cap X}(X, K_X)$ as $e \circ \delta^* u$.

Proposition 2 If X is proper over F,

$$Tr(u^*: H^*(X_{\bar{F}}, \mathcal{F})) = Tr \ C(\mathcal{F}, C, u)$$

 $C(\mathcal{F}, C, u)$ is the pairing $\langle \mathrm{id}, u \rangle$ in the notation of SGA5. A reformulation of the Lefschetz trace formula in SGA5. A special case of the compatibility of the construction of the characteristic class with proper push-forward.

Conjecture 3 $U \subset X$: smooth over F, \mathcal{F} smooth \mathbb{Q}_{ℓ} -sheaf on U. Then, we have

(2) $C(j_!\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot C(j_!\Lambda) - \operatorname{Sw}\mathcal{F}$

in $H^0(X, K_X)$.

Theorem 4 Conjecture 3 is true if there exists a finite etale Galois covering $V \to U$ satisfying one of the following conditions.

(Res) There exist a proper smooth scheme Y over F, a divisor $D \subset Y$ with simple normal crossings, an isomorphism $V \to Y \setminus D$ and an action of G on Y extending that on V. The pull-back \mathcal{F}_V of \mathcal{F} on V is tamely ramified along D.

(Triv) The pull-back \mathcal{F}_V is constant.

Proof is similar to that of Theorem 1.

Assume X is smooth and D = X - U has simple normal crossings. If \mathcal{F} is tamely ramified, we have

(3)
$$C(j_{!}\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot (-1)^{d} c_{d}(\Omega^{1}_{X/F}(\log D))$$

in $H^{2d}(X, \Lambda(d))$. In particular,

$$C(j_!\Lambda) = (-1)^d c_d(\Omega^1_{X/F}(\log D)).$$

If dim U = 1 and rank $\mathcal{F} = 1$, we can prove Theorem 4 integrally.

Theorem 5 Let X be a smooth curve and $U \subset X$ be a dense open. Let \mathcal{F} be a smooth Λ -sheaf of rank 1. Then, we have

(4)
$$C(j_!\mathcal{F}) = C(j_!\Lambda) - \mathrm{Sw}\mathcal{F}$$

in $H^2(X, \Lambda(1))$.

Sketch of Proof. Assume for simplicity $U = X - \{x\}$. Put $n = \operatorname{Sw}_x \mathcal{F} \ge 0$. $(X \times X)^{(0)} \to X \times X$ the blow-up at the image of x by the diagonal map $X \to X \times X$. The diagonal map $X \to X \times X$ is extended to the log diagonal map $X \to (X \times X)^{(0)}$. We define blow-up $(X \times X)^{(i)} \to (X \times X)^{(i-1)}$ for $i = 1, 2, \ldots, n$ inductively. $\delta^{(n)} : X \to (X \times X)^{(n)}$: immersion induced by the diagonal E_i : exceptional divisor. $(U \times U)^{(n)}$: complement in $(X \times X)^{(n)}$ of the union of the proper transforms of

 $X \times x, x \times X$, and the exceptional divisors E_i for $i = 0, 1 \dots, n-1$. In the commutative diagram

In the commutative diagram

$$(X \times X)^{(n)} \xleftarrow{j^{(n)}} (U \times U)^{(n)}$$

$$f^{(n)} \downarrow \qquad \qquad \uparrow k^{(n)}$$

$$X \times X \xleftarrow{j} \qquad U \times U,$$

the left vertical arrow is the composition of blow-ups and the others are open immersions.

Proposition 6 We put $\mathcal{H} = \mathcal{H}om(pr_2^*\mathcal{F}, pr_1^*\mathcal{F})$. Then, we have the following.

- 1. The Λ -sheaf $\mathcal{H}^{(n)} = k_*^{(n)} \mathcal{H}$ is a smooth Λ -sheaf of rank 1 on $(U \times U)^{(n)}$.
- 2. The restriction $\mathcal{H}^{(n)}|_{E_n}$ is an Artin-Schreier sheaf.
- 3. If \mathcal{F} is ramified at x, the canonical map $j_!^{(n)}\mathcal{H}^{(n)} \to Rj_*^{(n)}\mathcal{H}^{(n)}$ is an isomorphism.

Proof of Proposition. Identify $H^1(K_x, \mathbb{Z}/p^m\mathbb{Z}) = W_m(K_x)/F - 1$ and consider the filtration of Brylinski inducing the filtration by ramification.

Proof of Theorem. The characteristic class $C(j_!\mathcal{F})$ is defined by the composition $\delta_!^{(n)}\Lambda_X \to \mathcal{H} \otimes pr_1^*K_X \to \delta_*^{(n)}K_X$ and hence equal to the intersection product $(X, X)_{(X \times X)^{(n)}}$.

Application of Theorem. Proof of the GOS formula without using the Weil formula. (Brauer induction).