The characteristic class and the Swan class of an ℓ -adic sheaf (with Abbes and with Kato)

March 16, 2005

Plan:

- 0. Outline.
- 1. Swan class and Grothendieck-Ogg-Shafarevich formula. (with Kato)
- 2. Characteristic class and its relation with the Swan class. (with Abbes) Notation: F field of characteristic p > 0.

$$\Lambda = \mathbb{Z}/\ell^n\mathbb{Z}, \mathbb{Z}_\ell, \mathbb{Q}_\ell \text{ etc. } (\ell \neq p)$$

X variety over F.

 \mathcal{F} Λ -sheaf on X, or more generally, an object in a suitable derived category.

0.1. X variety, $U \subset X$ dense open smooth over F.

 \mathcal{F} smooth on U.

The Swan class $Sw(\mathcal{F})$ is defined in $CH_0(X \setminus U)_{\mathbb{Q}}$. If X is proper,

$$\chi_c(U_{\bar{F}}, \mathcal{F}) \left(= \sum_{q=0}^{2d} (-1)^q \dim H_c^q(U_{\bar{F}}, \mathcal{F}) \right) = \operatorname{rank} \mathcal{F} \cdot \chi_c(U_{\bar{F}}) - \operatorname{degSw}(\mathcal{F}).$$

0.2. The characteristic class $C(\mathcal{F}) \in H^0(X, K_X)$ is implicitly defined in SGA5. In complex geometry, it is defined by Kashiwara-Schapira without mentioning SGA5 explicitly.

 $K_X = Ra^! \Lambda, a: X \to \operatorname{Spec} F$. If X is smooth of dimension $d, C(\mathcal{F})$ is defined in $H^{2d}(X, \Lambda(d))$. If X is proper,

Tr
$$C(\mathcal{F}) = \chi(X_{\bar{F}}, \mathcal{F}) \left(= \sum_{q=0}^{2d} (-1)^q \dim H^q(X_{\bar{F}}, \mathcal{F}) \right)$$

(Lefschetz-Verdier trace formula).

Let $j:U\to X$ be the open immersion. Then, the relation

$$C(j_!\mathcal{F}) = \operatorname{rank}\mathcal{F} \cdot C(j_!\Lambda) - \operatorname{cl} \operatorname{Sw}(\mathcal{F})$$

in $H^0(X, K_X)$ is verified in many cases. cl : $CH_0(X) \to H^0(X, K_X)$ cycle class map. 1. $U \subset X$: smooth over F, \mathcal{F} on U smooth. For simplicity, assume \mathcal{F} is trivialized by a finite Galois covering $V \to U$ of Galois group G. M: representation of G corresponding to \mathcal{F} .

Further assume there is a commutative diagram

$$\begin{array}{ccc}
Y & \stackrel{\supset}{\longleftarrow} & V \\
f \downarrow & & \downarrow \\
X & \stackrel{\supset}{\longleftarrow} & U
\end{array}$$

where $f: Y \to X$ is proper, Y is smooth and V is the complement of a divisor with simple normal crossings. (In general, we consider $\mathcal{F} \mod \ell$ and use the Brauer trace and also consider alteration.)

$$\sigma \in G = \operatorname{Gal}(U/V), \sigma \neq 1.$$

Figure 1.

 Γ_{σ} : graph of σ .

 $(Y \times Y)' \to Y \times Y$: Blow up at $D_1 \times D_1, \ldots, D_m \times D_m$ where D_1, \ldots, D_m are the irreducible components of D.

 $\Delta_Y: Y \to (Y \times Y)'$: the log diagonal map.

Figure 2.

 $\overline{\Gamma_{\sigma}}$: closure of $\Gamma_{\sigma} \subset V \times_{U} V$ in $(Y \times Y)'$.

tame ramification: no intersection.

wild ramification: non-empty intersection.

Define

$$s_{V/U}(\sigma)=-(\overline{\Gamma_\sigma},\Delta_Y)_{(Y\times Y)'}\in CH_0(Y-V),$$

$$s_{V/U}(1)=-\sum_{\sigma\neq 1}s_{V/U}(\sigma) \text{ and }$$

(1)
$$\operatorname{Sw}(\mathcal{F}) = \frac{1}{|G|} \sum_{\sigma \in G} f_* s_{V/U}(\sigma) \operatorname{Tr}(\sigma : M) \in CH_0(X - U) \otimes \mathbb{Q}.$$

In fact, $\operatorname{Sw}(\mathcal{F})$ is defined as an element of $CH_0(E)_{\mathbb{Q}}$ where $E \subset X - U$ is the wild ramification locus.

Problem: Compute the Swan class in terms of Abbes-Saito filtration. (Partial answer in the rank 1 case.)

We have a generalization of the Grothendieck-Ogg-Shafarevich formula.

Theorem 1 If X is proper,

$$\chi_c(U, \mathcal{F}) = \chi_c(U) \cdot \text{rank } \mathcal{F} - \text{deg Sw}(\mathcal{F}).$$

Main ingredient of proof. Lefschetz trace formula for an open variety, proved using a log product, cf. Pink-Faltings.

Variant: We may also define $Sw(\mathcal{F})$ in a mixed characteristic situation. We have a relative version of Theorem 1 that gives a conductor formula with a coefficient sheaf.

2. More generally, the characteristic class is defined for a cohomological correspondence.

X variety over F. $c: C \to X \times X$ closed immersion, $p_i: C \to X$ (i=1,2) compositions with the projections.

 \mathcal{F} on X, $u: p_2^*\mathcal{F} \to p_1^!\mathcal{F}$ a cohomological correspondence (direction is the inverse of that in SGA 5).

We put $\mathcal{H} = R\mathcal{H}om(pr_2^*\mathcal{F}, pr_1^!\mathcal{F})$. Then, u defines a map $\Lambda_C \to c^!\mathcal{H}$ and hence $u \in H_C^0(X \times X, \mathcal{H})$.

On the other hand, the identity $\mathcal{F} \to \mathcal{F}$ is a cohomological correspondence on the diagonal. It defines a class $1 \in H^0_\Delta(X \times X, \mathcal{H}^*)$ where $\mathcal{H}^* = R\mathcal{H}om(pr_1^*\mathcal{F}, pr_2^!\mathcal{F})$. The canonical pairing $\mathcal{H} \boxtimes \mathcal{H}^* \to K_{X \times X}$ induces the Verdier pairing $\langle \ , \ \rangle : H^0_C(X \times X, \mathcal{H}) \otimes H^0_\Delta(X \times X, \mathcal{H}^*) \to H^0_{C \cap \Delta}(X \times X, K_X) = H^0(C \cap \Delta, K_{C \cap \Delta})$. The characteristic class $C(\mathcal{F}, C, u) \in H^0_{C \cap X}(X, K_X)$ as $\langle u, 1 \rangle$. If X is proper over F, the Lefschetz-Verdier trace formula gives

$$\operatorname{Tr}(u^*: H^*(X_{\bar{F}}, \mathcal{F})) = \operatorname{Tr} C(\mathcal{F}, C, u).$$

Relations.

$$C(j_{!}\mathcal{F}) \in H^{0}(X, K_{X}) \xleftarrow{\operatorname{cycle map}} CH_{0}(X - U)_{\mathbb{Q}} \ni \operatorname{Sw}(\mathcal{F})$$

$$\downarrow \qquad \operatorname{Tr} \downarrow \qquad \operatorname{deg} \downarrow$$

$$\chi_{c}(U_{\bar{F}}, \mathcal{F}) \in \mathbb{Q}_{\ell} \qquad \supset \qquad \mathbb{Q}$$

Conjecture 2 $U \subset X$: smooth over F, \mathcal{F} smooth \mathbb{Q}_{ℓ} -sheaf on U. Then, we have

(2)
$$C(j_!\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot C(j_!\Lambda) - \operatorname{Sw}\mathcal{F}$$

in $H^0(X, K_X)$.

One can prove this under the following assumption. Let $U \subset X$ be an open subscheme. We say a locally constant sheaf \mathcal{F} on U is of Kummer type, if there exists an integer m invertible on X and a finite family of Cartier divisors D_i , $i \in I$ such that $D_i \cap U = \emptyset$ satisfying the following conditions.

For each $x \in X$, there exists a basis t_i of $O(-D_i)$ on a neighborhood W of x such that $U \times_X W[T_i(i \in I)]/(T_i^m - t_i(i \in I))$ trivializes \mathcal{F} .

If X is regular and U is a complement of a divisor with simple normal crossings, then tamely ramified implies of Kummer type.

We say an ℓ -adic sheaf $\mathcal F$ is potentially of Kummer type if there exists a commutative diagram

$$Y \stackrel{\supset}{\longleftarrow} V$$

$$f \downarrow \qquad \qquad \downarrow$$

$$X \stackrel{\supset}{\longleftarrow} U$$

where $f: Y \to X$ is proper, $V \to U$ is finite etale and $f^*\mathcal{F}$ is of Kummer type. If $\dim X \leq 2$ and U is smooth, any ℓ -adic sheaf is potentially of Kummer type.

Theorem 3 Conjecture 2 is true if \mathcal{F} is potentially of Kummer type.

Proof is similar to that of Theorem 1.

Assume X is smooth and D = X - U has simple normal crossings. If \mathcal{F} is tamely ramified, we have

(3)
$$C(j_!\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot (-1)^d c_d(\Omega^1_{X/F}(\log D))$$

in $H^{2d}(X, \Lambda(d))$. In particular,

$$C(j_!\Lambda) = (-1)^d c_d(\Omega^1_{X/F}(\log D)).$$

If dim U = 1 and rank $\mathcal{F} = 1$, we can prove Theorem 3 integrally.

Theorem 4 Let X be a smooth curve and $U \subset X$ be a dense open. Let \mathcal{F} be a smooth Λ -sheaf of rank 1. Then, we have

(4)
$$C(j_!\mathcal{F}) = C(j_!\Lambda) - \operatorname{Sw}\mathcal{F}$$

in $H^2(X, \Lambda(1))$.

Sketch of Proof. Assume for simplicity $U = X - \{x\}$. Put $n = \operatorname{Sw}_x \mathcal{F} \geq 0$.

 $(X \times X)^{(0)} \to X \times X$ the blow-up at the image of x by the diagonal map $X \to X \times X$.

The diagonal map $X \to X \times X$ is extended to the log diagonal map $X \to (X \times X)^{(0)}$.

We define blow-up $(X \times X)^{(i)} \to (X \times X)^{(i-1)}$ for $i = 1, 2, \dots, n$ inductively.

 $\delta^{(n)}: X \to (X \times X)^{(n)}$: immersion induced by the diagonal

 E_i : exceptional divisor.

 $(U \times U)^{(n)}$: complement in $(X \times X)^{(n)}$ of the union of the proper transforms of $X \times x$, $x \times X$, and the exceptional divisors E_i for $i = 0, 1, \ldots, n-1$.

In the commutative diagram

$$(X \times X)^{(n)} \xleftarrow{j^{(n)}} (U \times U)^{(n)}$$

$$f^{(n)} \downarrow \qquad \qquad \uparrow_{k^{(n)}}$$

$$X \times X \xleftarrow{j} \qquad U \times U.$$

the left vertical arrow is the composition of blow-ups and the others are open immersions. The blow-up $(X \times X)^{(n)} \to X \times X$ killes the ramification of \mathcal{F} as in the following Proposition.

Proposition 5 Put $\mathcal{H} = \mathcal{H}om(pr_2^*\mathcal{F}, pr_1^*\mathcal{F})$. Then, the Λ -sheaf $\mathcal{H}^{(n)} = k_*^{(n)}\mathcal{H}$ is a smooth Λ -sheaf of rank 1 on $(U \times U)^{(n)}$.

Proof of Proposition. Identify $H^1(K_x, \mathbb{Z}/p^m\mathbb{Z}) = W_m(K_x)/F - 1$ and consider the filtration of Brylinski inducing the filtration by ramification.

Proof of Theorem. The characteristic class $C(j_!\mathcal{F})$ is computed by the map $\Lambda_X \to \delta^{(n)!}\mathcal{H}$ and hence is equal to the intersection product $(X,X)_{(X\times X)^{(n)}}$.

Application of Theorem. Proof of the GOS formula without using the Weil formula. (Brauer induction).