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Abstract. These are the notes for a series of lectures given by T. Saito
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Singular support due to A. Beilinson, Characteristic cycle due to T. Saito.

1. Lecture 1

1.1. Introduction.

• k a field of characteristic p > 0. Mostly perfect or even algebraically
closed.
• X a smooth k-scheme, n = dimX. Let Λ be a finite extension of F`,
` 6= p.
• F a constructible complex of Λ-modules.
• We can take cohomology sheaves Hq(F); they are constructible and

= 0 except for finitely many q.
• T ∗X the cotangent bundle of X associated to Ω1

X , which is a vector
bundle of rank n. Thus T ∗X has dimension 2n.
• C ⊆ T ∗X a closed conical subset, where conical means: stable under

the action of Gm, which naturally acts by multiplication on the vector
bundle T ∗X.
• T ∗X = SpecS•(Ω1

X)∨ and C is defined by some ideal of S•(Ω1
X)∨.

From this perspective conical means that C is defined by a graded
ideal.
• The Singular support of F is denoted SS(F) = C ⊆ T ∗X. It is a

closed conical subset of T ∗X. Moreover, we can write it as union of
irreducible components

C =
⋃
Ca

where Ca is an irreducible component of dimCa = dimX1.
• Today we explain SS(F). Later the characteristic cycle Char(F).
• Char(F) =

∑
ama[Ca] with ma ∈ Z[1/p], but it is expected that

ma ∈ Z.
• The expectation is that the properties of F are well understood by

using SS(F) and Char(F). Slogan: To understand F on X, we study
SS(F) and Char(F) on T ∗X. This is analogous to microlocal analysis
of DX -modules on complex manifolds X, due to Sato, Kashiwara,
etc.

1SS(F) is an invariant of the complex F , and SS(F) ⊆
⋃
q SS(Hq(F)).

1



CHARACTERISTIC CYCLE AND SINGULAR SUPPORT 2

Example 1.1. X a curve, i.e., n = 1. Let D be a divisor on X and
j : U := X \D ↪→ X the associated open immersion. Let F := j!G, where
G 6= 0 is a locally constant sheaf on U . In this case the irreducible components
are:

T ∗X ⊇ SS(F) = T ∗XX︸ ︷︷ ︸
0−section

∪
⋃
x∈D

T ∗xX︸︷︷︸
fiber

In fact any conical closed subset of T ∗X has this shape.
In this example,

Char(F) = (−1)

(
rankG · [T ∗XX] +

∑
x∈D

dimtotxF · [T ∗xX]

)
where dimtotx = dim + Swx, with Swx ∈ Z the Swan conductor at x, which
is a measure of wild ramification.

On the other hand, if F = j∗G, then replace dimtotx by Artin conductor
of G. If F = Rj∗G, then Char(j!G) = Char(Rj∗G).

• If X projective and k algebraically closed, then

χ(X,F) = (Char(F)︸ ︷︷ ︸
dimn

. T ∗XX︸ ︷︷ ︸
dimn

)T ∗X︸︷︷︸
dim 2n

intersection number. Have this formula in general, but in the 1-
dimensional example from above, this is a reformulation of Grothendieck-
Ogg-Shafarevich’s formula.
• Why is there a sign (−1)? If F is a perverse sheaf (complex), then

the coefficients of Char(F) are ≥ 02. In the example above, F [1] is
perverse. In general, Char(F [n]) = (−1)n Char(F).

1.2. Singular Support (after Beilinson). Want to formulate relations
between C ⊆ T ∗X and F on X, where C is a conical subset and F a
constructible complex on the smooth scheme X of dimension n.

1.2.1. C-transversality. Want two definitions of C-transversality: One for
morphisms h : W → X into X and one for morphisms f : X → Y from X.
Here W,Y are both smooth k-schemes, of arbitrary dimension.

Definition 1.2. We say f : X → Y is C-transversal if df−1(C) ⊆ X ×Y T ∗Y Y︸ ︷︷ ︸
0-section

.

X ×Y T ∗Y T ∗X

df−1(C) C

df

Example 1.3. (a) C = T ∗XX the zero-section. Then C-transversal
means that df is injective, i.e., that f is smooth.

(b) Y = Spec k is a point. Then f : Y → Spec k is C-transversal for any
C.

2This relies on a deep theorem of Gabber: If X → S, S a trait F perverse sheaf on X
then ΦF [−1] is perverse.
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Definition 1.4. We say h : W → X is C-transversal if

h∗C ∩ dh−1(T ∗WW ) ⊆W ×X T ∗XX︸ ︷︷ ︸
0-section

where we use the diagram

h∗C = W ×X C T ∗WW

W ×X T ∗X T ∗Wdh

Moreover, define h0C = dh(h∗C) ⊆ T ∗W . Then C-transversality implies
that h0C is closed, and

h∗C h0C

W ×X T ∗X T ∗W

finite

dh

The terminology used to be non-characteristic (Kashiwara-Schapira).

Example 1.5. (a) If h is smooth, then h is C-transversal for any C,
because then dh is injective and h∗C = h0C.

Remark 1.6. Being C-transversal is an open condition on the source of the
morphism f : X → Y .

Need one more definition.

Definition 1.7. Given f : W → Y and h : W → X, we say that the
pair (h, f) is C-transversal if h is C-transversal and f : W → Y is h0C
transversal.

Exercise 1.8. (a) Given f : W → Y and h : W → X, then (h, f) is
C-transversal if and only if

(h∗C ×W (W ×Y T ∗Y )) ∩ (inv. image of T ∗WW ) ⊆ 0-section

where we use the diagram

h∗C ×W (W ×Y T ∗Y ) T ∗WW

(W ×X T ∗X)×W (W ×Y T ∗Y ) T ∗W

(b) If f : W → Y is smooth,

h∗C W ×Y T ∗Y

W ×X T ∗X T ∗W

injective because of smoothness

Then (f, h) is C-transversal iff

h∗C ∩ (inv. image of W ×Y T ∗Y ) ⊆ 0-section
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1.3. Local acyclicity. Given f : X → Y we have the notion of the Milnor
fiber. Let x be a geometric point of X and y := f(x), a geometric point of
Y . Let Yy be the strict localization of Y at y, so Yy = SpecOshY,y. Let z be a
geometric point of Yy. Notation: x 7→ y ← z. The Milnor fiber is Xx ×Yy z.
This is not interesting if z maps to y, but, e.g., if z maps to the generic point
of Yy.

Definition 1.9. Let F on X be as in the beginning. We say f : X → Y is
locally acyclic relatively to F if for all situations x 7→ y ← z as above the
canonical restriction morphism

Fx = RΓ(Xx,F)→ RΓ(Xx ×Yy z,F)

is an isomorphism.

Example 1.10. Let Y be a curve, and y a geometric point over a closed
point. Then Yy only has two points; let z be a geometric point above the
generic point of Yy. In this situation we have a distinguised triangle

→ Fx → RΓ(Xx ×Yy z,F)→ vanishing cycles.

So local acyclicity in this situation means that there are no nonzero vanishing
cycles.

Definition 1.11. We say that f : X → Y is universally locally acyclic
relatively to F if for every g : Y ′ → Y , X ×Y Y ′ → Y ′ is locally acyclic
relatively to the pullback of F .

Enough to just take every smooth g : Y ′ → Y .

2. Lecture 2

Here are some facts about local acyclicity.

Facts. (a) (local acyclicity of smooth morphisms, SGA 4) If f : X → Y
is smooth and F on X locally constant (i.e. Hq(F) is locally constant
for all q), then f is locally acyclic relatively to F .

(b) (generic local acyclicity, SGA 41/2) Let F be arbitrary and f : X → Y .
There exists a dense open subset V ⊆ Y , such that fV : X×Y V → V
is universally locally acyclic relatively to F|X×Y V .

(c) f : X → Y , g : Y → Z and F on X. Suppose that f is (universally)
locally acyclic relative to F and g smooth. Then the composition
gf is (universally) locally acyclic with respect to F . (This is a
consequence of (a)).

(d) f, g,F as in (c). Suppose that gf is (universally) locally acyclic
relative to F and that f is proper. Then g is (universally) locally
acyclic with respect to Rf∗F . (This follows from the proper base
change theorem).

(e) F is locally constant if and only if idX : X → X is locally acyclic
relatively to F . In fact, idX is locally acyclic with respect to F iff

for every specialization x← y, Fx
∼=−→ Fy iff (exercise!) F is locally

constant.
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2.1. Micro support. We combine the notions introduced above. Let C ⊆
T ∗X be a closed conical subset and F a constructible complex of Λ-modules
on X.

Definition 2.1. (a) We say F is micro supported on C if for every
C-transversal pair

X
h←−W f−→ Y,

the map f : W → Y is universally locally acyclic relative to h∗F .
(b) We say that F is weakly micro supported on C if the above holds

true for pairs

X
h←−W f−→ Y

where h is an open immersion and Y is a curve (= A1
k).

Example 2.2. F is locally constant⇔ F is micro supported on the 0-section
C = T ∗XX.
⇒ is Fact (a).
⇐ is Fact (e): idX is transversal to C = T ∗XX.

What’s the difference between micro supported and weakly micro sup-
ported?

Lemma 2.3. Suppose F is weakly micro supported on C and C ′. Then F
is weakly micro supported on C ∩ C ′.

Remark 2.4. (a) Suppose F is (weakly) micro supported on C and let
C ′ be conical closed, such that C ⊆ C ′. Then F is (weakly) micro
supported on C ′. The question is: How small can we make C?

(b) The statement of the lemma also holds true for micro supported
instead of weakly micro supported, but to see this we first have to
prove the main theorem.

(c) If C is a minimal (with respect to ⊆) among the conical closed subsets
of T ∗X on which F is micro supported, then we say that F is tightly
supported on C (a priori there could be many minimal C).

(d) On the other hand, for the notion of weakly micro suppoted, the
lemma shows that there is a unique minimal C on which F is weakly
micro supported.

Definition 2.5. The smallest conical closed C ⊆ T ∗X on which F is weakly
micro supported is called the singular support of F and denoted SS(F).

Theorem 2.6 (Beilinson). Every irreducible component of SS(F) is of
dimension dimX and F is micro supported on SS(F).

This follows from two intermediate theorems.

Theorem A (Beilinson, Thm. 1.2). There exists C ⊆ T ∗X such that F is
micro supported on C and dimC ≤ n = dimX.

Theorem B (Beilinson, Thm. 1.3). Assume that k is perfect and that F is
tightly micro supported on C. Then every irreducible component of C is of
dimension n = dimX and C = SS(F).

• Theorem 2.6 follows from Theorem A and Theorem B.
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• To prove Theorems A and B we reduce to X = Pn. To do this one
roughly proceeds like this: For Theorem A, take X → Pn étale. For

Theorem B, take X
i−→ U

j−→ Pn, i =closed, j =open.
• From now on we assume X = Pn. Here an important tool will be the

Radon Transform.

2.2. Radon Transform. Standard reference is Brylinski (Asterisque), and
SGA7, Exp. XVII. Let V be an (n + 1)-dimensional k-vector space and
denote by

P := P(V ) = {lines in V }

the associated projective space. The dual projective space is

P∨ = P(V ∨) = {hyperplanes in V } = {hyperplanes in P}.

Let Q ⊆ P× P∨ be the universal family of hyperplanes, i.e.,

Q = {(x, x∨) ∈ P× P∨|x ∈ x∨}.

We have two projections:

Q P∨

P

p∨

p

Definition 2.7. • For F on P, the Radon transform of F is

R(F) := Rp∨∗ p
∗F [n− 1].

• Given G on P∨, we get the inverse (dual) Radon transform

R∨(G) := Rp∗p
∨,∗G[n− 1]

These two constructions are almost inverse to each other (i.e., up to
a geometrically constant object, but we will not make this precise).

We recall the Legendre transform on C. We have the identification

Q = P(T ∗P) = (T ∗P− T ∗PP)/Gm.

This identification works as follows: From

0 Ω1
P V ∨ ⊗OP(−1) OP 0

we obtain

P(T ∗P) ⊆ P(V ∨ ⊗OP(−1)) = P(V ∨)× P = P∨ × P.

Similarly, we also have an identification Q = P(T ∗P∨). Let C ⊆ P(T ∗P) be
a conical closed subset and consider its projectivization P(C). We get the
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diagram

P(C) P(T ∗P)

Q

P(C∨) P(T ∗P∨)

and C∨ ⊆ T ∗P∨ is closed and conical and called the Legendre transform of
C.

2.3. Reformulation of Theorems A and B.

Definition 2.8. Let f : X → Y be a morphism and F a constructible
complex on X. Define Ef (F) ⊆ X to be the closed subset such that its
complement U is the largest open subscheme where fU : U → Y is universally
locally acyclic relative to F|U (U = ∅ possible).

Theorem A’ (Thm. 1.4, equivalent to Theorem A). For G on P, Ep∨(p∗G)
is of dimension ≤ n− 1.

Theorem A’ is equivalent to Theorem A. For ⇐, one uses that if G
is micro supported on C with dimC ≤ n, then Ep∨(p∗G) ⊆ P(C), with
dimP(C) ≤ n− 1.

Let d ≥ 1 and let

id : P→ P̃ = P(Γ(P,O(d))∨)

be the d-th Veronese embedding. We get a diagram

Q̃

P P̃ P̃∨

p̃p̃∨

id

Theorem B’ (Thm. 1.6, implies Theorem B). Fix G on P. Assume d ≥ 3

and let D ⊆ P̃∨ be the complement of the largest open subset U ⊆ P̃ where

R̃(id,∗G) is locally constant. (Here R̃ is the Radon transform on P̃.)

(a) D is a divisor, i.e., purely of codimension 1.
(b) For each irreducible component Da of D, there is a unique irreducible

closed conical subset Ca ⊆ T ∗P such that Da = p̃∨(P(i0Ca)) and
dimCa = dimX. For the definition of i0Ca, see below. The surjection

p̃∨ : P(i0Ca)→ Da

is generically radicial, i.e., the associated extension of function fields
is purely inseparable.

(c) C =
⋃
Ca ⊆ T ∗P is SS(G).
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How to define i0C? If i : X ↪→ Y is a closed immersion with X,Y smooth,
and C ⊆ T ∗X, then i0C ⊆ T ∗Y is defined using the following diagram:

C

T ∗X X ×Y T ∗Y T ∗Y

Then i0C is defined to be the image in T ∗Y of the pullback of C along
X ×Y T ∗Y → T ∗X. Thus in the situation of Theorem B’, (b), P(i0Ca) ⊆
P(T ∗P̃) = Q̃.

Remark 2.9. The fact that p̃∨ : P(i0Ca)→ Da is generically purely insepa-
rable gives rise to the problem that the coefficients of Char(F) can (at the
moment) only be shown to lie in Z[1/p] (although they are expected to be
integers).

3. Lecture 3

3.1. The Characteristic Cycle.

• k is a field of characteristic p > 0, perfect or even algebraically closed.
• X/k is smooth, n = dimX.
• F a constructible complex on X.
• Last time we defined C = SS(F) ⊆ T ∗X, a closed conical subset,
C =

⋃
aCa, the Ca the irreducible components, dimCa = n.

• Recall that F is micro supported on C if for every pair of maps

X
h←− W

f−→ Y , where h is C-transversal and f is h0C-transversal,
f : W → Y is universally locally acyclic relative to h∗F .
• The characteritic cycle will have the form Char(F) =

∑
ama[Ca],

ma ∈ Z[1/p].

3.1.1. Definition of characteristic cycle — Milnor formula. We slightly gen-
eralize the notion of weakly micro supported : Instead of putting a condition

on all pairs X
j←− U f−→ Y with Y a curve and j open, we just require j to be

étale and Y to be a curve.

Definition 3.1. For a fixed closed conical subset C ⊆ T ∗X, we say that a
closed point u ∈ U is an isolated characteristic point with respect to C, if
X ← U \ {u} → Y is C-transversal.

Example 3.2. Let X
j←− U

f−→ Y be such that Y is a curve and j is étale.
Let C = T ∗XX. Then u is an isolated characteristic point if and only if u is
an isolated singular point of f : U → Y .

Now assume that C = SS(F). Let u be an isolated characteristic point.
We define two invariants. On the “F -side”: f : U → Y is universally locally
acyclic relative to j∗F outside u. If k = k̄ and v = f(u) ∈ Y (closed point),
write Yv = Spec(OshY,v), which is the spectrum of a strictly henselian discrete
valuation ring. Let η̄ denote a generic geometric point of Yv.
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Recall the definition of universally locally acyclic relative to j∗F : There
is a distinguished triangle

Fu → RΓ(Xu ×Yv η̄)→ Φu(j∗F , f)→
and locally acyclic means that the first arrow is an isomorphism. Φu(j∗F , f)
is the stalk of the complex (of Λ-modules) of vanishing cycles. We may
assume without loss of generality that Λ is a finite field extension of F`3. Its
q-th cohomology

Φq
u(j∗F , u)

is a Λ-vector space of finite dimension and which is zero except for finitely
many q. It carries a natural continuous action of Gal(Kv/Kv), where Kv =
Frac(OY,v).

Define

dimtot Φ :=
∑
q

(−1)q dimtot Φq =
∑
q

(−1)q(dim(Φq) + Sw(Φq))

which is an integer by the theorem of Hasse-Arf.
On the “C-side”: j∗C ⊆ T ∗U = U ×X T ∗X. After shrinking Y we obtain

from f : U → Y a map

f : U → Y
étale−−−→ A1

k = Spec k[t].

This defines df := f∗dt, which is a section of the projection T ∗U = U ×X
T ∗X → U . The assumption that u is an isolated characteristic point means
that the intersection of j∗C and df(U) consists of at most one isolated closed
point (which is essentially independent of the choice of t, as C is a conic
subset). We can take the intersection, because dim j∗C = n, dim df(U) = n
and dimT ∗U = 2n. It follows that the intersection number

(j∗
∑
a

ma[Ca], df)T ∗U,u

is defined.

Theorem 3.3 (Milnor Formula). There exists a unique Z[1/p]-linear combi-
nation

Char(F) =
∑
a

maCa

of irreducible components Ca of C = SS(F) =
⋃
aCa such that for every pair

X
j←− U f−→ Y as above, with isolated characteristic point u ∈ U , we have

− dimtot Φu(j∗F , f) = (j∗Char(F), df)T ∗U,u (?)

Example 3.4. (a) F = Λ. Then the right hand side of (?) is length Ωn
U/Y,u

(Deligne, SGA7 Exp. XVI), and Char(Λ) = (−1)nT ∗XX.
(b) X = A2,

j : V = A2 −D ↪→ A2 = Spec k[x, y],

where D the x-axis of A2. Consider the Artin-Schreier equation
tp − t = y

xd
, p 6= 2, p|d. It defines a cyclic covering W → V of degree

3To compute the Swan conductor or coefficients of the characteristic cycle we can work
on the residue field of Λ.
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p. Fix a character Gal(W/V ) ↪→ Λ×, which corresponds to a locally
constant sheaf G of rank 1 on V . Define F = j!G. Then

SS(F) = T ∗XX ∪ 〈dy/D〉 ⊆ T ∗X.

and

Char(F ) = [T ∗XX] + d[〈dy/D〉].

Idea of the proof of Theorem 3.3: Follow Deligne! We use a local version
of the Radon transform, using vanishing cycles over a general base scheme
(Deligne, Laumon, Illusie, Orgogozo). We need to define the multiplicities

ma. In the notations from last lecture, we defined divisors Da ⊆ P̃∨, and
cut with a general pencil L. This directly gives the coefficients ma locally4.
Main point: Show that they are independent of all choices. To this end we
use ‘stability of vanishing cycles’. Given

U

Y Y ′

f g

If g, f are ‘sufficiently close’, continuity of the Swan conductor (Deligne,
Laumon) implies that in this situation dimtot(−, f) = dimtot(−, g),

3.1.2. Functoriality of Char(F) — Index formula. We would like to have
functoriality for maps h : W → X, and f : X → Y .

Definition 3.5. h : W → X is strongly C-transversal if it is C-transversal
and if h∗C := W ×XC ⊆W ×X T ∗X is equidimensional of dimension dimW ,
i.e., every irreducible component of h∗C has dimension dimW .

Write C =
⋃
aCa, and assume that h is strongly C-transversal. Then we

can define

h!

(∑
a

ma[Ca]

)
:= (−1)dimW−dimX

(∑
a

mah
0([Ca])

)
,

because we have the diagram

Ca︸︷︷︸
dimX

h∗Ca h!Ca︸︷︷︸
dimW

T ∗X W ×X T ∗X T ∗W.

finite

Theorem 3.6. If h : W → X is strongly C-transversal for C = SS(F),
then

Char(h∗F) = h!(Char(F)).

4The denominators come from the fact that p(i0Ca)→ Da is purely inseparable, but it
is expected that the denominators always cancel



CHARACTERISTIC CYCLE AND SINGULAR SUPPORT 11

Idea of the proof: We can assume that W ⊆ X is a divisor of X, dimX = 2.
Then use a global argument originally due to Deligne (and resolution of
singularities in dimension 2) and some ramification theory.

Lemma 3.7. If f : X → Y is proper and C-transversal for C = SS(F),
then Rf∗F is locally constant, i.e., every Rqf∗F is locally constant.

Theorem 3.8 (Index formula). Assume that X is projective and k = k̄.
Then

χ(X,F) = (Char(F), T ∗XX)T ∗X

Idea of proof: Induction on dimX. Let X ← X ′
p−→ L be a pencil. We

compute
χ(X,F) = χ(X ′,F ′)− χ(Z,F|Z)

where Z is the center of the blow-up X ′ → X. Use induction hypothesis and
Theorem 3.6 to compute χ(Z,F|Z).

Using Grothendieck-Ogg-Shafarevich formula, we compute

χ(X ′,F ′) = χ(L)︸ ︷︷ ︸
2

rank(Rp∗F ′)−
∑

dimtotx Φ︸ ︷︷ ︸
Milnor formula Theorem 3.3

where rank(Rp∗F ′) = χ(Y,F|Y ) where Y is a generic hyperplane section.
Then use induction hypothesis plus Theorem 3.6.

4. Lecture 4

4.1. Equivalent characterization of singular support. In this section,
we define the notion of F-transversality. The following table shows how it
fits into the story:

quantitive/Char(F) qualitative/SS(F)
F-side Euler number, Milnor formula locally acyclic F-transversal
C-side Intersection number f : X → Y h : W → X

C-transversal

Definition 4.1. h : W → X a morphism of smooth schemes over k, F a
constructible complex on X. We say that h is F-transversal if the canonical
morphism

h∗F ⊗L Rh!Λ︸ ︷︷ ︸
Λ(a)[2a]

→ Rh!F

is an isomorphism. Here a is an integer depending on h.

Example 4.2. (a) If h is smooth, then h is F-transversal for any F
(Poincaré duality).

(b) If F is locally constant, then any h is F-transversal.

Theorem 4.3. Let F be constructible on X, C ⊆ T ∗X conical and closed.
Then the following conditions are equivalent.

(a) F is micro supported on C.
(b) Every C-transversal h : W → X is F-transversal.

Points of the proof: (a)⇒(b): Easier. Uses smooth base change theorem.
(b)⇒(a): Harder. Uses local acyclicity of smooth morphism.
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4.2. Ramification. We can always find a dense open U ⊆ X such that F|U
is locally constant. Then

SS(F)|U ⊆ T ∗UU
(equality if F|U 6= 0) and

Char(F)|U = (−1)n rank(F)[T ∗UU ].

Let D := X \ U and assume that it is an irreducible divisor. Let ξ be the
generic point of D, F = k(ξ) the function field of D and K = Frac(OhX,ξ).
K is a henselian discrete valuation field. Let GK := Gal(K/K). On GK
we have a decreasing filtration GrK , indexed by r ∈ Q>0, the ramification
filtration of GK . The group G1

K is the inertia group. For r ∈ R>0 we define

Gr+K :=
⋃
s>r

GsK ⊆ G
r−
K :=

⋂
s<r

GsK

If r 6∈ Q, then Gr+K = Gr−K . If r ∈ Q then GrK = Gr−K . The group G1+
K is also

denoted P ; it is the unique pro-p-Sylow subgroup and it is called the wild
inertia group.

For r > 1, Grr(GK) := GrK/G
r+
K is abelian and annihilated by p. There is

a canonical injection

HomFp(Grr(GK),Fp)
char−−→ HomF (mr

K
/mr+

K
,Ω1

X,ξ ⊗ F ),

which is called the characteristic form. We define

K ⊇ mr
K = {a ∈ K| ord a ≥ r}

and
K ⊇ mr+

K = {a ∈ K| ord a > r}
where ord is the normalized discrete valuation of K. The characteristic form
links the ramification filtration to the tangent bundle of X.

Let j : U = X \D ↪→ X be the open immersion and define F = j!G, where
G is locally constant on U , hence corresponds to a Λ-representation V of
π1(U). The map GK → π1(U) gives rise to the slope decomposition

V =
⊕

r≥1,r∈Q
V (r)

characterized by

V Gr+K =
⊕
s≤r

V (s).

For example, V (1) is the maximal tame sub-GK-module. In this situation,
we define

dimtotV =
∑
r∈Q≥1

r dimV (r) ∈ N.

This number lies in N: If X is a curve, this is the integrality of the Swan
conductor, which follows from Hasse-Arf. In general, we can reduce to the
curve case by cutting with curves.

For r > 1, and ζp ∈ Λ×, we compute the character of V (r):

V (r) =
⊕

χ:Grr GK→Λ×,χ 6=1

χ⊕m(χ).
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Let Lχ := im(Char(χ)) ⊆ T ∗X ×X ξ̄. This is a line defined over a finite
extension of Fχ over F .

Now assume V 6= 0. The singular support is given by

SS(F)|SpecOX,ξ = T ∗XX ∪ T ∗DX︸ ︷︷ ︸
if V (1) 6=0

∪
⋃
r>1

⋃
m(χ)6=0

Image of Lχ

Similarly, the characteristic cycle is given by

Char(F)|SpecOX,ξ = (−1)d

rank(G)[T ∗XX] + dimV (1) [T ∗DX]︸ ︷︷ ︸
conormal bundle

+
∑

r>1 r
∑

m(χ) 6=0
πχ,∗[Lχ]
[Fχ:F ] ·m(χ)


Here πχ : Lχ → T ∗X ×X F ⊆ T ∗X ×X SpecOX,ξ is the map above

SpecFχ → SpecF :

Lχ T ∗X ×X F

SpecFχ SpecF

πχ

Example 4.4. X = A2, D = y-axis. U = X \D, j : U ↪→ X, G given by
tp − t = y/xd and F = j!G, p|d. Choose a nontrivial character Z/pZ→ Λ×.
The case p = 2, d = 2 is exceptional. Otherwise, we have, r = d, Char(χ) :
xd 7→ dy and get

SS(F) = T ∗X ∪ 〈dy/D〉
and

Char(F) = [T ∗XX] + d 〈dy/D〉 .
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