Wild ramification and the cotangent bundle in mixed characteristic

Takeshi SAITO

Eighth Pacific Rim Conference, August 7, 2020 slides available at
https://www.ms.u-tokyo.ac.jp/~t-saito/talk/PRim.pdf

Analogy

3 Settings (chlonoligical order).

- Analytic: (Sato, Kashiwara, ...)
\mathcal{D}-modules on complex manifolds.
- Algebraic: (Beilinson, S., ...)
ℓ-adic sheaves on smooth varieties over perfect fields, e.g. \mathbf{F}_{p}.
- Arithmetic: (S. partial results)
ℓ-adic sheaves on regular schemes of finite type over $\mathbf{Z}, \mathbf{Z}_{p}, \ldots$

Analogy: 1. Analytic. 2. Algebraic. 3. Arithmetic.

1. Micro local analysis. To study \mathcal{D}-modules on X, one need to work on the cotangent bundle $T^{*} X$.

Analogy:
Irregular singularities in $1 . \leftrightarrow$ Wild ramification in 2 and 3.
Mysterious relation: wild ramification and differential forms e.g. explicit reciprocity law.

Contents

0. Analogy
1. Algebraic case
2. Arithmetic case
2.1 Notation
2.2 Cotangent bundle
2.3 Micro support
2.4 Example
(7 pages)
(13 pages)
(2 pages)
(4 pages)
(5 pages)
(2 pages)

Algebraic case: Notation

- k : perfect field of characteristic $p \geqq 0$.
- X : smooth variety over k.
- Λ : finite field of characteristic $\ell \neq p$.
- \mathcal{F} : constructible complex of Λ-modules on $X_{\text {et }}$. (ℓ-adic sheaf modulo ℓ)

Notation: Cotangent bundle

- $T^{*} X$: cotangent bundle $=$ vector bundle associated to the locally free \mathcal{O}_{X}-module Ω_{X}^{1} of rank $n=\operatorname{dim} X$. $\operatorname{dim} T^{*} X=n+n=2 n$.
- C : closed conical subset of $T^{*} X$. conical $=$ stable under multiplication on vector bundle $=$ action of the multiplicative group \mathbf{G}_{m}.

Singular support and Characteristic cycle

$$
k, X, \wedge, \mathcal{F}, T^{*} X
$$

- $C=S S \mathcal{F} \subset T^{*} X:$ Singular support of \mathcal{F} (Beilinson) Closed conical (stable under G_{m}) subset.
$C=\bigcup_{a} C_{a}$ irreducible components. $\operatorname{dim} C_{a}=n=\operatorname{dim} X$.
- CCF $=\sum_{a} m_{a} C_{a}$: Characteristic cycle of \mathcal{F} Z-linear combination of irreducible components of SSF.

Characteristic cycle: Example 1

- \mathcal{F} locally constant on $X, n=\operatorname{dim} X$:

$$
C C \mathcal{F}=(-1)^{n} \operatorname{rank} \mathcal{F} \cdot T_{X}^{*} X
$$

$T_{X}^{*} X=X: 0$-section of $T^{*} X$.
Generalization to tamely ramified case.

Characteristic cycle: Example 2

- $\operatorname{dim} X=1$. $\left.\mathcal{F}\right|_{U}$ locally constant $U=X-D$:

$$
C C \mathcal{F}=(-1)\left(\left.\operatorname{rank} \mathcal{F}\right|_{U} \cdot T_{x}^{*} X+\sum_{x \in D} a_{x} \mathcal{F} \cdot T_{x}^{*} X\right) .
$$

$T_{X}^{*} X=X: 0$-section of $T^{*} X$.
$a_{x} \mathcal{F}=\left.\operatorname{rank} \mathcal{F}\right|_{U}-\operatorname{rank} \mathcal{F}_{\bar{x}}+S w_{x} \mathcal{F}$: Artin conductor. $S w_{x} \mathcal{F}$: Swan conductor, measure of wild ramification. $T_{x}^{*} X$: fiber at $x \in D \subset X$.

Characteristic cycle: Index formula

$$
k, X, \wedge, \mathcal{F}, S S \mathcal{F}=\bigcup_{a} C_{a} \subset T^{*} X, C C \mathcal{F}=\sum_{a} m_{a} C_{a}
$$

Theorem: Index formula

If X is projective (and smooth),

$$
\chi\left(X_{\bar{k}}, \mathcal{F}\right)=\left(C C \mathcal{F}, T_{X}^{*} X\right)_{T^{*} X} .
$$

Euler number: $\chi\left(X_{\bar{k}}, \mathcal{F}\right)=\sum_{q}(-1)^{q} \operatorname{dim} H^{q}\left(X_{\bar{k}}, \mathcal{F}\right)$. Intersection number: $\left(C C \mathcal{F}, T_{X}^{*} X\right)_{T^{*} X}$.
$T_{X}^{*} X=X: 0$-section of $T^{*} X$.
If $\operatorname{dim} X=1$, recover the Grothendieck-Ogg-Shafarevich formula.

Characteristic cycle: Index formula and a variant

$$
k, X, \wedge, \mathcal{F}, S S \mathcal{F}=\bigcup_{a} C_{a} \subset T^{*} X, C C \mathcal{F}=\sum_{a} m_{a} C_{a}
$$

Theorem: Index formula
If X is projective (and smooth),

$$
\chi\left(X_{\bar{k}}, \mathcal{F}\right)=\left(C C \mathcal{F}, T_{X}^{*} X\right)_{T^{*} X} .
$$

Arithmetic refinement (Daichi Takeuchi)

k : finite, \mathcal{F} : $\overline{\mathbf{Q}}_{\ell}$-sheaf.

$$
\operatorname{det}\left(\operatorname{Frob}, H^{*}\left(X_{\bar{k}}, \mathcal{F}\right)\right)=\left(\mathcal{E} \mathcal{F}, T_{X}^{*} X\right)_{T^{*} X}
$$

in $\overline{\mathbf{Q}}_{\ell}^{\times} \otimes \mathbf{Q}$.

Arithmetic case: Notation

- K : complete discrete valuation field of characteristic 0 with perfect residue field k of characteristic $p>0$.
E.g. \mathbf{Q}_{p} or its finite extension. (cf. k : perfect field of characteristic $p \geqq 0$. e.g. $k=\mathbf{F}_{p}$.)
- X : regular flat scheme of finite type over \mathcal{O}_{K}. (cf. smooth over k.)
- Λ : finite field of characteristic $\ell \neq p$.
- \mathcal{F} : constructible complex of Λ-modules on $X_{\text {et }}$.

Notation (Algebraic case)

$$
k, X, \wedge, \mathcal{F},
$$

- $T^{*} X$: cotangent bundle $=$ vector bundle associated to the locally free \mathcal{O}_{X}-module Ω_{X}^{1} of rank $n=\operatorname{dim} X$. $\operatorname{dim} T^{*} X=n+n=2 n$.
- C : closed conical subset of $T^{*} X$.
conical $=$ stable under multiplication on vector bundle $=$ action of the multiplicative group \mathbf{G}_{m}.

Cotangent bundle in arithmetic case?

X / \mathcal{O}_{K} regular flat of finite type.

Problem: Cotangent bundle $T^{*} X$?

$\Omega_{X / O_{K}}^{1}$ is not a locally free sheaf of rank $n=\operatorname{dim} X$.
Solution: Modify $\Omega_{X / O_{K}}^{1}$ so that " $d p " \neq 0$.

Cotangent bundle $T^{*} X$?

Definition: Frobenius-Witt derivation

cf. total p-derivation by Dupuy, Katz, Rabinoff, Zureick-Brown
p : prime number. A : ring flat over $\mathbf{Z}_{(p)}$.

- A mapping $w: A \rightarrow M$ to an A-module is an FW-derivation if

$$
w(a+b)=w(a)+w(b)+\frac{a^{p}+b^{p}-(a+b)^{p}}{p} \cdot w(p)
$$

$$
w(a b)=b^{p} \cdot w(a)+a^{p} \cdot w(b) . \quad \text { (modified Leibniz' rule) }
$$

- $\left(F \Omega_{A}^{1}, w: A \rightarrow F \Omega_{A}^{1}\right)$: universal pair of A-module and FW-derivation.
cf. δ-structure by Bhatt, Scholze $=p$-derivation by Buium

Cotangent bundle $T^{*} X$?

 Construction

 Construction}X regular flat scheme of finite type over \mathcal{O}_{K}. $\left(F \Omega_{X}^{1}, w\right)$: sheafification of universal FW-differentials.

$$
w(a+b)=w(a)+w(b)+\frac{a^{p}+b^{p}-(a+b)^{p}}{p} \cdot w(p),
$$

$$
w(a b)=b^{p} \cdot w(a)+a^{p} \cdot w(b) . \quad \text { (modified Leibniz' rule) }
$$

Theorem

X : regular, $X_{\mathbf{F}_{p}}=X \times \operatorname{Spec} \mathbf{Z} \operatorname{Spec} \mathbf{F}_{p}$.

- $F \Omega_{X}^{1}$ is a locally free $\mathcal{O}_{X_{F_{p}}}$-module of rank $\operatorname{dim} X$.

Cotangent bundle $T^{*} X$?

Definition of $\left.F T^{*} X\right|_{x_{k}}$

($F \Omega_{X}^{1}, w$): sheafification of universal FW-derivation.
$F \Omega_{X}^{1}$ is a locally free $\mathcal{O}_{X_{F_{p}}}$-module of rank $\operatorname{dim} X$.
Definition: $\left.F T^{*} X\right|_{X_{k}}$
X : regular:

- $\left.F T^{*} X\right|_{X_{k}}$: vector bundle on X_{k} associated to $F \Omega_{X}^{1} \otimes_{\mathcal{O}_{X_{F_{p}}}} \mathcal{O}_{X_{k}}$.
E.g. X is smooth over \mathcal{O}_{K} and $F: X_{k} \rightarrow X_{k}$ Frobenius:

$$
\left.0 \rightarrow F^{*} T_{X_{k}}^{*} X \rightarrow F T^{*} X\right|_{X_{k}} \rightarrow F^{*} T^{*} X_{k} \rightarrow 0 \quad \text { exact }
$$

Micro support: support and singular support

$$
X / \mathcal{O}_{K}, \Lambda, \mathcal{F},\left.F T^{*} X\right|_{X_{k}} .
$$

How to define SSF as a closed conical subset C of $\left.F T^{*} X\right|_{X_{k}}$?
Support of \mathcal{F}
$A \subset X$ closed subset. \mathcal{F} is supported on $\left.A \Leftrightarrow \mathcal{F}\right|_{X-A}=0$.
Supp \mathcal{F} : Smallest A such that \mathcal{F} is supported on A.
Singular support SSF MOST involved part of the talk! Smallest closed conical subset C of $\left.F T^{*} X\right|_{X_{k}}$ such that \mathcal{F} is micro-supported on C.

Micro support: Definition

$$
X / \mathcal{O}_{K}, \Lambda, \mathcal{F},\left.F T^{*} X\right|_{X_{k}} .
$$

Definition: micro support

1. \mathcal{F} is micro-supported on a closed conical subset $\left.C \subset F T^{*} X\right|_{X_{k}}$ if
(1) For any morphism $h: W \rightarrow X$ of regular schemes of $\mathrm{f} . \mathrm{t} . / \mathcal{O}_{K}$, C-transversality implies \mathcal{F}-transversality.
(2) $\left.C \cap F T_{X}^{*} X\right|_{X_{k}} \supset \operatorname{supp} \mathcal{F} \cap X_{k}$.
2. SSF: smallest C on which \mathcal{F} is micro-supported.

Transversality: Definition

$$
X / \mathcal{O}_{K}, \Lambda, \mathcal{F},\left.C \subset F T^{*} X\right|_{X_{k}} .
$$

Definition: transversality

1. $h: W \rightarrow X$ morphism of regular schemes of finite type over \mathcal{O}_{K}.

- h is C-transversal if the intersection

$$
\left(C \times x_{k} W_{k}\right) \cap \operatorname{Ker}\left(h^{*}:\left.F T^{*} X\right|_{x_{k}} \times\left._{X_{k}} W_{k} \rightarrow F T^{*} W\right|_{W_{k}}\right)
$$

is a subset of the 0 -section.

- h is \mathcal{F}-transversal if $h^{*} \mathcal{F} \otimes R h^{!} \wedge \rightarrow R h^{!} \mathcal{F}$ is an isomorphism.

2. \mathcal{F} is micro-supported on C :
(1) h C-transversal $\Rightarrow \mathcal{F}$-transversal $+(2)$ a condition on support.
3. SSF: smallest C on which \mathcal{F} is micro-supported.

Transversality: Examples

$$
X\left|\mathcal{O}_{K}, \wedge, F, C \subset F T^{*} X\right|_{x_{k}} .
$$

$h: W \rightarrow X$: morphism of regular schemes of finite type over \mathcal{O}_{K}.

- $Z \subset X$ regular closed subscheme, $C=\left.\left.F^{*} T_{Z}^{*} X\right|_{z_{k}} \subset F T^{*} X\right|_{X_{k}}$ Frobenius pull-back of conormal bundle:
h is C-transversal \Leftrightarrow
h is transversal with $Z \subset X$ on a nbd of W_{k}.
- h smooth $\Rightarrow \mathcal{F}$-transversal for any \mathcal{F}. (Poincaré duality)
- \mathcal{F} locally constant \Rightarrow any h is \mathcal{F}-transversal.

Singular support: Existence?

$X / \mathcal{O}_{K}, \Lambda, \mathcal{F}$.
SSF: smallest closed conical subset $\left.C \subset F T^{*} X\right|_{X_{k}}$ on which \mathcal{F} is micro-supported.

Proposition

Suppose supp $\mathcal{F}=X$.
SSF $=0$-section $\Leftrightarrow \mathcal{F}$ is locally constant on a nbd of X_{k}.

Question

Does $S S \mathcal{F}$ exist?
We don't know yet in general. Example with wild ramification.

Example: Kummer covering

K : finite extension of \mathbf{Q}_{p} containing a primitive p-th root ζ_{p} of 1 .
π : uniformizer of $K . e=e_{K / \mathbf{Q}_{p}}$: ramification index.
$i \geqq 1$ integer.
$X=\operatorname{Spec} \mathcal{O}_{K}\left[T^{ \pm 1},\left(1+\pi^{i} T\right)^{-1}\right]$
$\supset U=X_{K}=\operatorname{Spec} K\left[T^{ \pm 1},\left(1+\pi^{i} T\right)^{-1}\right]$.
$V \rightarrow U$: Kummer covering defined by $t^{p}=1+\pi^{i} T$.
\mathcal{F} : locally constant sheaf of Λ-modules of rank 1 on U defined by a non-trivial character $\mu_{p}=\operatorname{Gal}(V / U) \rightarrow \Lambda^{\times}$.

Example: Kummer covering

K / \mathbf{Q}_{p} : finite, $\zeta_{p} \in K . \pi$: unif. $e=e_{K / \mathbf{Q}_{p}}$. k : residue field. \mathcal{F} : rank 1 on $U=X_{K} \subset X=\operatorname{Spec} \mathcal{O}_{K}\left[T^{ \pm 1},\left(1+\pi^{i} T\right)^{-1}\right]$ defined by $t^{p}=1+\pi^{i} T$.
$X_{k}=X-U=\operatorname{Spec} k\left[T^{ \pm 1}\right]$.
$\left.F T^{*} X\right|_{X_{k}}$: vector bundle of rank 2, basis $w(\pi), w(T)$.
\mathcal{F} : unramified along X_{k} if $i \geqq e p /(p-1)$.

Proposition

Assume $1 \leqq i<e p /(p-1) . j: U \rightarrow X$ open immersion.

- $S S_{j!}^{j} \mathcal{F}$ exists.
- $S_{j!} \mathcal{F}=F^{*} T_{X_{k}}^{*} X=\langle w(\pi)\rangle$ if $p \nmid i$,

$$
\begin{aligned}
& =\langle w(T)\rangle \text { if } p \mid i \text { unless } p=2, i=2(e-1) \\
& =\left\langle w(T)-T \cdot w\left(\frac{2}{\pi^{e-1}}\right)\right\rangle \text { if } p=2, i=2(e-1)
\end{aligned}
$$

