Euler-Poincaré characteristic of an ℓ-adic sheaf (with Kazuya Kato)

October 20, 2004

Notation:
F algebraically closed field of characteritic $p>0$.
U smooth varity over $F, d \operatorname{dim} U$.
\mathcal{F} smooth ℓ-adic sheaf (or \mathbb{F}_{ℓ}-sheaf) on $U, \ell \neq p$
$\chi_{c}(U, \mathcal{F})=\sum_{q=0}^{2 d} \operatorname{dim} H_{c}^{q}(U, \mathcal{F})$
Aim: Define a 0 -cycle class $\operatorname{Sw} \mathcal{F} \in C H_{0}(X-U) \otimes \mathbb{Q}$ and prove

$$
\chi_{c}(U, \mathcal{F})=\chi_{c}(U) \operatorname{rank} \mathcal{F}-\operatorname{deg} \operatorname{Sw} \mathcal{F}
$$

where X is a compactification of U.
Note: There is another way to compute $\chi_{c}(U, \mathcal{F})$ using the zeta function. This approach is more geometric and relies on the ramification along the boundary, while the zeta function has nothing to do with the boundary.

Plan:

1. Classical case.
2. Definition.
3. Results.
4. Lefschetz trace formula for open varieties.
5.

U : a smooth curve
$X \supset U$: smooth compactification.
$C H_{0}(X-U)=\bigoplus_{x \in X-U} \mathbb{Z}$.
For simplicity, assume \mathcal{F} is trivialized by a finite Galois covering $V \rightarrow U$. In general, we consider $\mathcal{F} \bmod \ell$ and use the Brauer trace.
Y : the normalization of X in V.

$\sigma \in G=\operatorname{Gal}(U / V), \sigma \neq 1$.

Figure 1.
$\Gamma_{\sigma}:$ graph of σ.
$(Y \times Y)^{\prime} \rightarrow Y \times Y$: Blow up at (y, y) for each $y \in Y \backslash V$.
Figure 2.
$\overline{\Gamma_{\sigma}}$: closure of $\Gamma_{\sigma} \subset V \times_{U} V$ in $(Y \times Y)^{\prime}$.
tame ramification : no intersection.
wild ramification : non-empty intersection.
Define

$$
s_{V / U}(\sigma)=-\left(\overline{\Gamma_{\sigma}}, \Delta_{Y}\right)_{(Y \times Y)^{\prime}} \in C H_{0}(Y-V)=\bigoplus_{y \in Y-V} \mathbb{Z}
$$

$s_{V / U}(1)=-\sum_{\sigma \neq 1} s_{V / U}(\sigma)$ and

$$
\begin{equation*}
\operatorname{Sw}(\mathcal{F})=\frac{1}{|G|} \sum_{\sigma \in G} f_{*} s_{V / U}(\sigma) \operatorname{Tr}(\sigma: M) \in C H_{0}(X-U) \otimes \mathbb{Q} . \tag{1}
\end{equation*}
$$

M : representation of G corresponding to \mathcal{F}.
Theorem 1 (Hasse-Arf)

$$
\begin{equation*}
\operatorname{Sw}(\mathcal{F}) \in C H_{0}(X-U) \tag{2}
\end{equation*}
$$

Theorem 2 (Grothendieck-Ogg-Shafarevich)

$$
\chi_{c}(U, \mathcal{F})=\chi_{c}(U) \cdot \operatorname{rank} \mathcal{F}-\operatorname{deg} \operatorname{Sw}(\mathcal{F})
$$

2.

We do not know if we have a smooth compactification. However, we may use an alteration.

X, Y : compactifications.
Z proper smooth, W complement of a divisor with simple normal crossings.
$g: Z \rightarrow Y:$ alteration=proper, surjective and generically finite.
$(Z \times Z)^{\prime}$: Blow-up of $Z \times Z$ at $D_{1} \times D_{1}, \ldots, D_{m} \times D_{m}$ where D_{1}, \ldots, D_{m} are the irreducible components of D.
$\Delta_{Z}: Z \rightarrow(Z \times Z)^{\prime}:$ the \log diagonal map.
$(Z \times Z)^{\prime}$ is smooth and the immersion $Z \rightarrow(Z \times Z)^{\prime}$ a regular immersion of codimension d.

Proposition 3 Let $\sigma \in G, \neq 1$. Let $\Gamma^{\prime} \in Z_{d}\left(\overline{W \times_{U} W \backslash W \times_{V} W}\right)$ be an arbitrary extension of $\left[\left.\Gamma^{\prime}\right|_{W \times{ }_{U} W \backslash W \times_{V} W}\right]=(g \times g)!\Gamma_{\sigma}$. Then,

$$
\frac{1}{[W: V]} \bar{g}_{*}\left(\Gamma^{\prime}, \Delta_{Z}\right)_{(Z \times Z)^{\prime}}=:\left(\Gamma_{\sigma}, \Delta_{V}\right)^{\log }
$$

$\in C H_{0}(Y \backslash V) \otimes_{\mathbb{Z}} \mathbb{Q}$ depends only on $U \leftarrow V \subset Y$ and σ.
Definition 4 For $\sigma \in G, \neq 1$, put

$$
\begin{equation*}
s_{V / U}(\sigma)=-\left(\Gamma_{\sigma}, \Delta_{V}\right)^{\log } \tag{3}
\end{equation*}
$$

$s_{V / U}(1)=-\sum_{\sigma \in G, \neq 1} s_{V / U}(\sigma)$.
Define

$$
\operatorname{Sw}(\mathcal{F})=\frac{1}{|G|} \sum_{\sigma \in G} f_{*} s_{V / U}(\sigma) \operatorname{Tr}(\sigma: M) \in C H_{0}(X \backslash U) \otimes \mathbb{Q}_{\ell}
$$

In fact, $\operatorname{Sw}(\mathcal{F})$ is defined as an element of $C H_{0}(E)_{\mathbb{Q}}$ where $E \subset X-U$ is the wild ramification locus.

Variant: We may also define $\operatorname{Sw}(\mathcal{F})$ in a mixed characteristic situation.
3. Results.

Integrality.
Theorem 5 Assume $d=\operatorname{dim} U \leq 2$.

1. $\left(\Gamma_{\sigma}, \Delta_{V}\right)^{\log }$ is defined in $C H_{0}(Y-V)$.
2. $\operatorname{Sw} \mathcal{F}=1$ is defined in $C H_{0}(X-U)$.

Proof. 1. Resolution.
2. By Brauer's induction, it is reduce to the case $\operatorname{rank} \mathcal{F}=1$. May assume X is smooth and U is the complement of a divisor $D=\sum_{i} D_{i}$ with simple normal crossings. Then, one can define a divisor $D_{\mathcal{F}}=\sum_{i} \operatorname{sw}_{i}(\mathcal{F}) D_{i}$. Further after blowing-up, we prove

$$
\mathrm{Sw}_{V / U}(\mathcal{F})=(-1)^{d-1}\left\{c\left(\Omega_{X / F}(\log D)\right) \cap\left(1-D_{\mathcal{F}}\right)^{-1} \cap\left[D_{\mathcal{F}}\right]\right\}_{\operatorname{dim} 0}
$$

Theorem 6

$$
\chi_{c}(U, \mathcal{F})=\chi_{c}(U) \cdot \operatorname{rank} \mathcal{F}-\operatorname{deg} \operatorname{Sw}(\mathcal{F})
$$

Proof. Suffices to show the trace formula

$$
\operatorname{deg} s_{V / U}(\sigma)= \begin{cases}-\operatorname{Tr}\left(\sigma^{*}: H_{c}^{*}\left(V, \mathbb{Q}_{\ell}\right)\right) & \text { if } \sigma \neq 1 \\ \chi_{c}(U)[V: U]-\chi_{c}(V) & \text { if } \sigma=1\end{cases}
$$

for an open variety. $\operatorname{Tr}\left(\sigma^{*}: H_{c}^{*}\left(V, \mathbb{Q}_{\ell}\right)\right)=\sum_{q=0}^{2 d}(-1)^{q} \operatorname{Tr}\left(\sigma^{*}: H_{c}^{q}\left(V, \mathbb{Q}_{\ell}\right)\right)$.

$$
\operatorname{deg}\left(\Gamma^{\prime}, \Delta_{Z}\right)_{(Z \times Z)^{\prime}}=\operatorname{Tr}\left(\Gamma^{\prime}: H_{c}^{*}\left(W, \mathbb{Q}_{\ell}\right)\right)
$$

4.

Changing the notations.
X : proper smooth scheme over F of dimension d.
$U \subset X$: complement of a closed subscheme $D \subset X$.
$\Gamma \subset U \times U$: a closed subscheme of dimension d.
$p_{i}: \Gamma \rightarrow U:$ the composition with the projections $p r_{i}: U \times U \rightarrow U$.
ℓ : a prime number different from the characterstic of F.
$\Gamma^{*}=p r_{1 *} \circ p r_{2}^{*}$ on $H_{c}^{q}\left(U, \mathbb{Q}_{\ell}\right)$ is defined if $p_{2}: \Gamma \rightarrow U$ is proper.
Write $\operatorname{Tr}\left(\Gamma^{*}: H_{c}^{*}\left(U, \mathbb{Q}_{\ell}\right)\right)=\sum_{q=0}^{2 d}(-1)^{q} \operatorname{Tr}\left(\Gamma^{*}: H_{c}^{q}\left(U, \mathbb{Q}_{\ell}\right)\right)$.
Lemma $7 p_{2}$ is proper if and only if

$$
\begin{equation*}
\tilde{\Gamma} \cap(D \times X) \subset \tilde{\Gamma} \cap(X \times D) \tag{4}
\end{equation*}
$$

To have a nice formula, we need more assumption. Assume $D=D_{1} \cup \cdots \cup D_{m}$ is a divisor with simple normal crossings and define
$p:(X \times X)^{\prime} \rightarrow X \times X:$ the blow-up at $D_{1} \times D_{1}, \ldots, D_{m} \times D_{m}$
$\Delta_{X}^{\prime}=X \rightarrow(X \times X)^{\prime}:$ the \log diagonal.
Theorem 8 Let $\tilde{\Gamma}^{\prime}$ be the closure of Γ in $(X \times X)^{\prime}$ and assume

$$
\begin{equation*}
\tilde{\Gamma}^{\prime} \cap(D \times X)^{\prime} \subset \tilde{\Gamma}^{\prime} \cap(X \times D)^{\prime} \tag{5}
\end{equation*}
$$

where $(D \times X)^{\prime}$ and $(X \times D)^{\prime}$ are the proper transforms of $D \times X$ and $X \times D$. Then, $p_{2}: \Gamma \rightarrow U$ is proper and we have

$$
\operatorname{Tr}\left(\Gamma^{*}: H_{c}^{*}\left(U, \mathbb{Q}_{\ell}\right)\right)=\operatorname{deg}\left(\tilde{\Gamma}^{\prime}, \Delta_{X}^{\prime}\right)_{(X \times X)^{\prime}}
$$

The assumption is satisfied in our case: $\overline{W \times_{U} W} \cap(D \times Y)^{\prime}=\overline{W \times_{U} W} \cap(Y \times D)^{\prime}$.
Can not replace (5) $\tilde{\Gamma}^{\prime} \cap D^{(1) \prime} \subset \tilde{\Gamma}^{\prime} \cap D^{(2) \prime}$ by (4) $\tilde{\Gamma} \cap D^{(1)} \subset \tilde{\Gamma} \cap D^{(2)}$.
Example 1. $X=\mathbb{P}^{1}, U=\mathbb{A}^{1}, F: U \rightarrow U$ Frobenius. $\Gamma=\Gamma_{F}$
Then, $\operatorname{Tr}\left(F^{*}: H_{c}^{*}\left(U, \mathbb{Q}_{\ell}\right)\right)=p$ and $(\Gamma, \Delta)_{(X \times X)^{\prime}}=p$. On the other hand, $\operatorname{Tr}\left(F_{*}\right.$: $\left.H_{c}^{*}\left(U, \mathbb{Q}_{\ell}\right)\right)=1$ and $\left(\Gamma^{t}, \Delta\right)_{(X \times X)^{\prime}}=p$.

Example 2. $X=\mathbb{P}^{1}, U=\mathbb{A}^{1}, \sigma: U \rightarrow U$ defined by $x \mapsto x+1 . \Gamma=\Gamma_{\sigma}$.
Then, $\operatorname{Tr}\left(\sigma^{*}: H_{c}^{*}\left(U, \mathbb{Q}_{\ell}\right)\right)=1$ and $(\Gamma, \Delta)_{(X \times X)^{\prime}}=1$. There is an intersection at ∞. $t=\frac{1}{x} \mapsto \frac{1}{\frac{1}{t}+1}=\frac{t}{1+t} \cdot \frac{s}{1+s}-t=t \cdot \frac{u-(1+u t)}{1+u t}$.

Proof of Theorem 8.
Classical case ($X=U$ is proper).

The isomorphism in the upper line is given by the Poincaré duality and Künneth formula.
$\Delta^{*}[\Gamma]=[(\Delta, \Gamma)]:$ compatibility of the cup-product with the intersection product. $\operatorname{deg}=\operatorname{Tr}$.
Our case.

where $H_{!*}^{2 d}\left(U \times U, \mathbb{Q}_{\ell}(d)\right)=H^{2 d}\left(X \times X, j_{1!} R j_{2 *} \mathbb{Q}_{\ell}(d)\right), j_{2}: U \times U \rightarrow U \times X, j_{1}:$ $U \times X \rightarrow X \times X$.

Need to relate $\Delta^{*}[\Gamma]$ with $\left[(\Delta, \tilde{\Gamma})_{\left.(X \times X)^{\prime}\right]}\right.$. We have a commutative diagram

where $H_{!\emptyset *}^{2 d}\left(U \times U, \mathbb{Q}_{\ell}(d)\right)=H^{2 d}\left((X \times X)^{\prime}, j_{1!} R j_{2 *} \mathbb{Q}_{\ell}(d)\right), k_{2}:(X \times X)^{\prime}-(D \times X)^{\prime} \cup$ $\left.(X \times D)^{\prime}\right) \rightarrow(X \times X)^{\prime}-(D \times X)^{\prime}, k_{1}:(X \times X)^{\prime}-(D \times X)^{\prime} \rightarrow(X \times X)^{\prime}$. The assumption implies that $[\tilde{\Gamma}] \in H_{!!* *}^{2 d}\left(U \times U, \mathbb{Q}_{\ell}(d)\right)$ is defined. The key point is that the upper horizontal map sends $[\Gamma] \rightarrow[\tilde{\Gamma}]$. This follows from the fact that the map is an isomorphism observed by Faltings and Pink.
5.

Conjecture 9 Let A be a regular local ring with perfect residue field and G be a finite group of automorphisms of A. Assume that, for $\sigma \in G, \neq 1, A /(\sigma(a)-a: a \in A)$ is of finite length. Then the function $a_{G}: G \rightarrow \mathbb{Z}$ defined by

$$
a_{G}(\sigma)= \begin{cases}- \text { length } A /(\sigma(a)-a: a \in A) & \text { if } \sigma \neq 1 \\ -\sum_{\tau \in G, \neq 1} a_{G}(\tau) & \text { if } \sigma=1\end{cases}
$$

is a character of G.
Corollary 10 of Theorem 5.2 ([KSS]) Conjecture 9 is true if A is the local ring at a closed point of a smooth surface over a perfect field.

