p-adic gauge theory in number theory

K. Fujiwara (Nagoya) Tokyo, September 2007

Dirichlet's theorem

F: totally real field, O_F : the integer ring, $[F:\mathbb{Q}] = d$. p: a prime number.

Dirichlet's unit theorem:

$$O_F^{ imes} \simeq \{\pm 1\} imes \mathbb{Z}^{d-1}$$

Moreover, for a basis $\langle \epsilon_1 \dots, \epsilon_{d-1} \rangle$ of the free part, he showed

$$\operatorname{rank}(\log |\iota(\epsilon_j)|)_{1 \le j \le d-1, \ \iota: F \hookrightarrow \mathbb{R}} = d-1$$

 \Leftrightarrow non-vanishing of the regulator

 $(= \det (d-1) \times (d-1)$ -minor)

Leopoldt's conjecture
$$\operatorname{rank}(\log_p \iota(\epsilon_j))_{1 \le j \le d-1, \ \iota: F \hookrightarrow \widehat{\mathbb{Q}}_p} = d-1$$

 \Leftrightarrow non-vanishing of the *p*-adic regulator R_p
 $\Leftrightarrow \delta = 0$

Here

$$\delta = \delta_{F,p} = \mathrm{rank}_{\mathbb{Z}_p} \ker(O_F^{ imes} \otimes_{\mathbb{Z}} \mathbb{Z}_p o \prod_{v \mid p} (o_{F_v}^{ imes})_p)$$

is the Leopoldt defect.

By the classical class field theory, $\operatorname{rank}_{\mathbb{Z}_p} \mathcal{X}_p = 1 + \delta_{F,p}$. Here $\mathcal{X}_p = (G_{\{v|p\}}^{\operatorname{ab}})_p$.

Leopoldt's conjecture

 \Leftrightarrow Any \mathbb{Z}_p -extension is cyclotomic

P. Colmez:

Leopoldt's conjecture

 $\Leftrightarrow p$ -adic zeta function of F has a pole at s = 1

The conjecture \in Iwasawa theory for GL(1)

Known results

- $\delta_{F,p} = 0$ if F is abelian over \mathbb{Q} (Brumer, 1967).
- $\delta_{F,p} \leq \left[\frac{d}{2}\right]$ (Waldschmidt, 1984).

These results \Leftarrow Transcendental number theory:

In Brumer's case, p-adic regulator R_p is a product of $\overline{\mathbb{Q}}$ -linear forms of p-adic log of units. Then apply a p-adic version of Baker's theorem.

Question

Based on works of Serre, Ribet,

Mazur-Wiles: GL(2)-class field theory

 \Rightarrow Iwasawa's main conjecture for GL(1)

Question: Is GL(2)-class field theory effective to understand Leopoldt's conjecture?

Digression: meaning of the title

Theorem 0.1. (Donaldson) M: closed, oriented, simply connected smooth 4-manifold If the intersection form \langle , \rangle on $H^2(M, \mathbb{Z})$ is positive definite $\Rightarrow \langle , \rangle$ is standard.

Use the moduli of ASD-SU(2) connections to understand the topology of M.

Remark 0.2. $C = \operatorname{Spec} O_F \setminus \Sigma$ should be considered as an analogue of hyperbolic 3-manifold N, so Thurston's theory of the moduli of flat bundles on N is the right geometric analogy.

Leopoldt's conjecture $\Leftrightarrow \dim_{\mathbb{Q}} H^1(N, \mathbb{Q}) = 1.$

Partial answer

Theorem 0.3. F: totally real field.

$$p>>0\Rightarrow\delta_{F,p}=0,$$

i.e., Leopoldt's conjecture is true for (F, p).

Remark 0.4. Theorem is proved under $p \geq 3$, and Assumption $A_{(F, p)}$ explained later (instead of p >> 0).

Strategy

The proof of the theorem is divided into:

- Part I : Existence of nice characters of ${\boldsymbol{F}}$
- Part II: Modularity of some 2-dimensional reducible residual representations
- Part III: Main argument

Based on recent (= last thirteen years after Wiles) development in GL(2)-class field theory. Also, Hida's theory of nearly ordinary Hecke algebras for GL(2) plays an essential role.

Proof Plan

- Find a nice 2-dimensional reducible $\bar{\rho}$.
- Define a deformation ring R from $\bar{\rho}$. Let I be the defining ideal of the reducible locus (Eisenstein ideal). Determine the Krull dimension of R/I. Larger than the expected value if $\delta_{F,p} > 0$.
- Determine the number of the generators of I. Smaller than the expected value if $\delta_{F,p} > 0$.
- Look at the tangent space of \mathbf{R} , and the local distributions of tangent vectors coming from \mathbf{I} . Conclude $\delta_{F,p} = \mathbf{0}$ by showing the surjectivity of global to local restriction map.

Part I

 E_{λ} : a *p*-adic field, o_{λ} : the ring of the integers.

 $\chi: G_F \to o_{\lambda}^{\times}$: a character of finite order is *nice if*

- $\boldsymbol{\chi}$ is totally odd, of order prime to \boldsymbol{p} .
- χ is unramified at $\forall v | p, \chi(\mathbf{Fr}_v) \neq 1$.
- $H_f^1(F, \bar{\chi}^{\pm 1}) = 0$ (\Leftrightarrow the relative class number of F_{χ}/F is prime to p if χ is quadratic).

Here $\bar{\chi} = \chi \mod \lambda$.

Existence of nice quadratic characters

Assumption $A_{(F, p)}$: there is at least one nice character χ .

 $A_{(F, p)}$ is satisfied with some quadratic χ in the following cases:

- p = 3 (Davenport-Heilbronn, ...).
- $p \nmid$ the numerator of $\zeta_F(-1)$ (P. Hartung, H. Naito).
- (Hopefully) $\zeta_p \not\in F_v$ for any v|p, and $[F(\zeta_p):F] > 2$ (F.)

Some trace formula argument (Selberg or Lefschetz) is used.

Part II

Assume $A_{(F, p)}$, fix a nice character χ . Construct an indecomposable reducible $\bar{\rho}: G_F \to \operatorname{GL}_2(k_{\lambda})$ by the following conditions:

• $\bar{\rho}$ takes a form

$$0
ightarrow 1
ightarrow ar{
ho}
ightarrow ar{\chi}
ightarrow 0.$$

• $\bar{\rho}|_{I_v}$ is split except one finite place y s.t. $\chi(\operatorname{Fr}_y)^{-1} \equiv q_y \not\equiv 1 \mod p.$

 $\Sigma = \{v|p\} \cup \{\text{ramification set of } \bar{\rho}\}.$

Theorem 0.5. Assume d > 1, and q_y : sufficiently large. Then $\bar{\rho}$ is (minimally) modular in the following sense:

- $\exists \pi : cuspidal rep. of \operatorname{GL}_2(\mathbb{A}_F), unramified outside$ $\Sigma \cup \{v | \infty\}$ and of parallel weight 2,
- $\boldsymbol{\pi}$ is nearly ordinary at $\forall \boldsymbol{v} | \boldsymbol{p}$,
- $\bar{
 ho} \simeq \bar{
 ho}_{\pi,\lambda}$.

Proof: Rather complicated (congruences between Eisenstein series, level lowering argument, ...).
Related talk: Arithmetic Geometry Kyoto 09/2006.
E. Urban has a simpler construction.

Part III: Preliminaries

 \boldsymbol{S} : an auxiliary set of finite places

• $\Sigma \cap S = \emptyset, \ \sharp S \leq \delta.$

• $\chi(\operatorname{Fr}_v) \equiv q_v \equiv -1 \mod p \quad \forall v \in S.$

 $\Sigma_{\mathcal{D}} = \Sigma \cup S.$

 $\mathcal{D} = \mathcal{D}_{S}$: minimal deformation data for $\bar{\rho}$

Deformation conditions

 $\rho: G_{\Sigma_{\mathcal{D}}} \to \operatorname{GL}_2(A)$: a deformation of $\overline{\rho}$ Local conditions:

• At $\boldsymbol{v}|\boldsymbol{p}, \boldsymbol{\rho}$ is nearly ordinary:

$$ho|_{G_{F_v}} \sim \begin{pmatrix} \tilde{\chi}_{1,v} & * \\ 0 & \tilde{\chi}_2 \end{pmatrix},$$

 $\tilde{\chi}_{1,v} ext{ lifts } \bar{\chi}|_{G_{F_v}} ext{ (converse to } ar{
ho} \sim \begin{pmatrix} 1 & * \\ 0 & ar{\chi} \end{pmatrix})$

• At $v \in S$, ρ is special:

$$ho|_{G_{F_v}}\simegin{pmatrix} ilde\chi_{1,v}&*\0& ilde\chi_{1,v}(-1)\end{pmatrix},$$

 $\tilde{\chi}_{1,v}$ lifts $\bar{\chi}|_{G_{F_v}}$ (converse to $\bar{\rho}$).

Global condition: $\det \rho$ is fixed (to $\chi \cdot \chi_{\text{cycle}, \rho}^{-1}$).

Nearly ordinary Hecke algebra

$R_{\mathcal{D}} =$ universal deformation ring of $ar{ ho}$

 $T_{\mathcal{D}}$ = nearly ordinary cuspidal Hecke algebra (exists by Part II and a lifting argument of Diamond-Taylor (need to find a lift which is special at S).

Since $\boldsymbol{\chi}$ is nice, \exists universal modular representation

$$\rho_{\mathcal{D}}^{\mathrm{modular}}: G_{\Sigma_{\mathcal{D}}} \to \mathrm{GL}_2(T_{\mathcal{D}})$$

(existence of free lattice), and we have a surjective map

$$R_\mathcal{D} woheadrightarrow T_\mathcal{D}.$$

R = T and the consequence

Proposition 0.6. Under the conditions, $R_{\mathcal{D}} \simeq T_{\mathcal{D}}$, and $R_{\mathcal{D}}$ is a complete intersection of Krull dimension d+1. Proof: Standard application of Taylor-Wiles system. Using the proposition, one can calculate the reducible (=Eisenstein) locus: **Proposition 0.7.** $I_{\mathcal{D}} := Eisenstein ideal of T_{\mathcal{D}}$ $T_{\mathcal{D}}/I_{\mathcal{D}} = R_{\mathcal{D}}/I_{\mathcal{D}}$ is o_{λ} -flat, complete intersection of Krull dimension = $1 + \delta - \sharp S$ under a mild assumption on \boldsymbol{S} .

Eisenstein locus

The Eisenstein locus is isomorphic to

 $o_\lambda[[\mathcal{X}_p]]/(L_y,\chi^{ ext{univ}}(\mathrm{Fr}_v)-1 \quad (v\in S)),$

where L_y is (Euler factor at y of) a p-adic L-function. (Recall $\mathcal{X}_p = (G_{\{v|p\}}^{ab})_p$, $\operatorname{rank}_{\mathbb{Z}_p} \mathcal{X}_p = 1 + \delta$.) If Fr_y and Fr_v for $v \in S$ are linearly independent in \mathcal{X}_p \Rightarrow the Krull dimension is as in the proposition.

TW-system

A TW system is a family $(R_Q, M_Q)_{Q \in X}$ which satisfies

• Q: a finite set of finite places of F.

•
$$Q = \emptyset \Rightarrow (R_{\emptyset}, M_{\emptyset}) = (R, M).$$

- R_Q : complete noeth. local $o_{\lambda}[\Delta_Q]$ -algebra, $(\Delta_Q$: finite abelian p-group).
- M_Q : non-zero R_Q -module, finite free over $o_{\lambda}[\Delta_Q]$.

Complete intersection-freeness theorem

Under certain assumptions, R is a complete intersection, and M is R-free ($\Rightarrow R$ is equal to $T = \text{image}(R \rightarrow \text{End}_{o_{\lambda}}M)$). In particular, M is a faithful R-module, and R can not be quite large.

TW-system with local variables

Our choice to prove R = T:

- $Q \in X \Leftrightarrow Q \cap \Sigma_{\mathcal{D}} = \emptyset$, $Q \subset \{v : q_v \equiv 1 \mod p, \ \chi(\operatorname{Fr}_v) \neq 1\}$
- $R_{\mathcal{D}_Q}$: the universal deformation ring with unrestricted conditions at Q
- $\Delta_Q = \prod_{v \in Q} k(v)_p^{\times}$ (\Leftrightarrow split maximal torus of SL(2))
- M_Q : obtained from the middle dimensional cohomology of compact modular varieties of complex dimension ≤ 1

Part III: Control of Eisenstein ideals

Speculation: $I_{\mathcal{D}}$ may be generated by

 $\dim R_{\mathcal{D}} - \dim R_{\mathcal{D}}/I_{\mathcal{D}}$

 $= d + 1 - (1 + \delta - \sharp S) = d + \sharp S - \delta$

elements (the argument is correct if $R_{\mathcal{D}}$ were smooth). **Theorem 0.8.** For a suitably chosen S, $I_{\mathcal{D}}$ is generated by $d + \sharp S - \delta$ -elements.

Proof: Use virtual smoothing argument using "TW-system with global variables".

TW-system with global variables

Estimate of $I_{\mathcal{D}}$ is done by using a modified system:

 $\mathcal{X}_Q = \text{the maximal quotient of } (G^{ab}_{\{v|p\}\cup Q})_p \text{ which is split at } S \cup \{y\}.$ $\tilde{\Delta}_Q = \text{the image of } \Delta_Q \text{ in } \mathcal{X}_Q.$

 $\tilde{R}_{\mathcal{D}_Q} = R_{\mathcal{D}_Q} \otimes_{o_{\lambda}[\Delta_Q]} o_{\lambda}[\tilde{\Delta}_Q], \text{ etc.} \Rightarrow \text{Modified TW}$ system $(\tilde{R}_{\mathcal{D}_Q}, \tilde{M}_Q).$

Looks more like Euler systems.

Conditions on S

There is a subspace in the dual cohomology group

 $\mathcal{L}_{ar{
ho}} \subset H^1(F, ar{
ho}^{ee}(1)) \subset H^1(F, \mathrm{ad}^0 \, ar{
ho}(1))$

(the Leopoldt part). dim $\mathcal{L}_{\bar{\rho}} \leq \delta$, and S should satisfy

- Fr_{y} and Fr_{v} for $v \in S$ are linearly independent in \mathcal{X}_{p} .
- All classes in $\mathcal{L}_{\bar{\rho}}$ are unramified at S,

$$\mathcal{L}_{ar{
ho}}\simeq\prod_{s\in S}H^1_f(F_s,ar{
ho}^ee(1)).$$

Consequence: $H^1_{\mathcal{D}^*}(F, \mathrm{ad}^0 \bar{\rho}(1)) \cap \mathcal{L}_{\bar{\rho}} = \{0\}.$

Proof plan of Theorem 0.8

Choose a nice S by the Chebotarev density theorem. Then the Leopoldt part in $H^1_{\mathcal{D}^*}(F, \mathrm{ad}^0 \bar{\rho}(1))$ is zero, and there are no obstructions to make $(\tilde{R}_{\mathcal{D}_Q}, \tilde{R}_{\mathcal{D}_Q}/\tilde{I}_{\mathcal{D}_Q})$ larger \Rightarrow Theorem 0.8.

Proposition 0.9. Q: general, $\tilde{I}_{\mathcal{D}_Q}$: the Eisenstein ideal of $\tilde{R}_{\mathcal{D}_Q}$.

Then $\tilde{I}_{\mathcal{D}_Q}$ is generated by $d + \sharp S - \delta$ -elements.

Proof: Reduction to the minimal case using the flatness of $\tilde{R}_{\mathcal{D}_Q}$ and $\tilde{R}_{\mathcal{D}_Q}/\tilde{I}_{\mathcal{D}_Q}$ over $o_{\lambda}[\tilde{\Delta}_Q]$.

Part III: Control of Tangent spaces

The tangent space V_Q of $\tilde{R}_{\mathcal{D}_Q}$ is

$$\ker(H^1(F,\operatorname{ad}^0ar
ho) o \prod_{v
ot\in Q}H^1(F_v,\operatorname{ad}^0ar
ho)/L_v)$$

for the local tangent spaces $\{L_v\}$.

General Principle (Vague form):

Assume $(R_Q, M_Q)_{Q \in X}$ satisfies the assumption of the complete intersection-freeness criterion.

For a finite set P of finite places, the union of image $(V_Q \xrightarrow{\operatorname{res}_Q} \prod_{v \in P} L_v)$ for $Q \in X$ spans $\prod_{v \in P} L_v$.

The principle \Rightarrow Leopoldt

Use TW-system $(\tilde{R}_{\mathcal{D}_Q}, \tilde{M}_Q)$ with global variables.

There is a commutative diagram

Here $P = \{v|p\} \cup S, L'_v = H^1(F_v, \bar{\chi}) \stackrel{\mathrm{pr}_v}{\leftarrow} L_v.$ $\dim_{k_\lambda} (\tilde{I}_{\mathcal{D}_Q} \otimes k_\lambda)^{\vee} = d + \sharp S - \delta,$ $\dim_{k_\lambda} \prod_{v \in P} L'_v = d + \sharp S.$ $\exists Q, \operatorname{res}_Q: \text{ surjective } \Rightarrow \exists Q, f_Q: \text{ surjective } \Rightarrow \delta = 0.$

Example of the Principle

Assume $\bar{\rho}$ and $\mathrm{ad}^0 \bar{\rho}$: abs. irred (with large monodromy).

P: a finite set of finite places, \mathcal{D} : minimal

 \Rightarrow there is some Q s.t. $H^1_{\mathcal{D}_Q}(F, \mathrm{ad}^0 \bar{\rho}) \xrightarrow{\mathrm{res}_Q} \prod_{v \in P} L_v$ is surjective.

Sketch: Take a subspace $W \subset \prod_{v \in P} L_v$ s.t. the image of res_Q is in W for any Q.

 $H^1_{\tilde{\mathcal{D}}^*}(F, \operatorname{ad}^0 \bar{\rho}(1)))$: the dual cohomology group, the condition at P is the annihilator of W (modified from $\prod_{v \in P} L_v$ to W).

Using the Chebotarev density theorem, a Taylor-Wiles system $(R_Q, M_Q)_{Q \in X}$ is constructed with $r = \dim H^1_{\mathcal{D}}(F, \operatorname{ad}^0 \bar{\rho}),$ $r' = \sharp Q = \dim H^1_{\tilde{\mathcal{D}}^*}(F, \operatorname{ad}^0 \bar{\rho}(1))).$

$$r'-r=\dim(\prod_{v\in P}L_v/W)$$

holds by Euler characteristic formula. r = r' by a ring theoretic consideration $\Rightarrow W = \prod_{v \in P} L_v$.

Remark 0.10. This method depends heavily on the Chebotarev density argument.

Proof Plan revisited

- Find a nice 2-dimensional reducible $\bar{\rho}$.
- Define a deformation ring R from $\bar{\rho}$. Let I be the defining ideal of the reducible locus (Eisenstein ideal). Determine the Krull dimension of R/I. Larger than the expected value if $\delta_{F,p} > 0$.
- Determine the number of the generators of I. Smaller than the expected value if $\delta_{F,p} > 0$.
- Look at the tangent space of \mathbf{R} , and the local distributions of tangent vectors coming from \mathbf{I} . Conclude $\delta_{F,p} = \mathbf{0}$ by showing the surjectivity of global to local restriction map.