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Dirichlet’s theorem

F': totally real field, Op: the integer ring, [F' : Q] = d.
p: a prime number.

Dirichlet’s unit theorem:

Oy ~ {£1} x 7471

Moreover, for a basis (€1 ...,€4_1) of the free part, he
showed

rank(log|c(€j)|)1<j<d—1, uror =d — 1

< non-vanishing of the regulator

(=det (d — 1) X (d — 1)-minor)




Leopoldt’s conjecture

rank(log,t(€;)) =d—1

1<5<d—1, L:F%@p
< non-vanishing of the p-adic regulator R,
S o0=0

Here

0 = 0pp = ranky, ker(Op Rz Zp — H(O;‘(‘v)p)

v|p

is the Leopoldt defect.




By the classical class field theory, rank; X, =1+ 0pp.
Here X, = (G?Blp})p.

Leopoldt’s conjecture

< Any Zp-extension is cyclotomic

P. Colmez:

Leopoldt’s conjecture

& p-adic zeta function of F' has a pole at s =1

The conjecture € Iwasawa theory for GL(1)




Known results

e 6r, = 0 if F is abelian over Q (Brumer, 1967).

o dpp < [2] (Waldschmidt, 1984).

These results <= Transcendental number theory:

In Brumer’s case, p-adic regulator R, is a product of
Q-linear forms of p-adic log of units. Then apply a

p-adic version of Baker’s theorem.




Question

Based on works of Serre, Ribet,
Mazur-Wiles: GL(2)-class field theory

= Iwasawa’s main conjecture for GL(1)

Question: Is GL(2)-class field theory effective to

understand Leopoldt’s conjecture?




Digression: meaning of the title

Theorem 0.1. (Donaldson)

M : closed, oriented, simply connected smooth 4-manifold
If the intersection form { , ) on H?*(M,Z) is positive
definite = ( , ) is standard.

Use the moduli of ASD-SU (2) connections to
understand the topology of M.

Remark 0.2. C = Spec OF \ ¥ should be considered
as an analogue of hyperbolic 3-manifold N, so Thurston’s
theory of the moduli of flat bundles on IN 1s the right
geometric analogy.

Leopoldt’s conjecture < dimg H'(N, Q) = 1.




Partial answer

Theorem 0.3. F': totally real field.
p>>O:>5F,p:O,

i.e., Leopoldt’s conjecture is true for (F, p).

Remark 0.4. Theorem s proved under p > 3, and
Assumption A(r, py explained later (instead of p >> 0).




Strategy

The proot of the theorem is divided into:
e Part I : Existence of nice characters of F

e Part II: Modularity of some 2-dimensional reducible

residual representations
e Part III: Main argument

Based on recent (= last thirteen years after Wiles)
development in GL(2)-class field theory. Also, Hida’s
theory of nearly ordinary Hecke algebras for GL(2) plays

an essential role.




Proof Plan

e Find a nice 2-dimensional reducible p.

e Define a deformation ring R from p. Let I be the
defining ideal of the reducible locus (Eisenstein
ideal). Determine the Krull dimension of R/I.

Larger than the expected value if 0p, > 0.

Determine the number of the generators of I.
Smaller than the expected value if 0, > O.

Look at the tangent space of R, and the local
distributions of tangent vectors coming from 1.
Conclude 0, = 0 by showing the surjectivity of
global to local restriction map.




Part 1

FE»: a p-adic field, oy: the ring of the integers.

X : Gr — 05: a character of finite order is nice if
e \ 1S totally odd, of order prime to p.
e X is unramified at Vv|p, x(Fr,) # 1.

o H(F, Yt!) = 0 (< the relative class number of
F, /F is prime to p if x is quadratic).

Here ¥ = x mod .




Existence of nice quadratic characters

Assumption A, p): there is at least one nice character
X-
A (F, p) 1s satisfied with some quadratic x in the following

cases:
e p = 3 (Davenport-Heilbronn, ...).
e p 1 the numerator of (r(—1) (P. Hartung, H. Naito).

e (Hopefully) ¢, € F, for any v|p, and
[F'(Cp) : F| > 2 (F.)

Some trace formula argument (Selberg or Lefschetz) is

used.




Part 11

Assume A(F, p), fix a nice character x. Construct an
indecomposable reducible p : Gr — GL2(k»x) by the

following conditions:

e p takes a form

O—1—p—x—0.

e plz, is split except one finite place y s.t.
x(Fr,)™ ' =gq, Z1 mod p.

3. = {v|p} U {ramification set of p}.




Theorem 0.5. Assume d > 1, and q,: sufficiently large.

Then p is (minimally) modular in the following sense:

o dm: cuspidal rep. of GLa(AFg), unramified outside
3 U {v|oo} and of parallel weight 2,

e 7 is nearly ordinary at Yv|p,
¢ ﬁ = ﬁﬂ'7A

Proof: Rather complicated (congruences between

Eisenstein series, level lowering argument, .. .).
Related talk: Arithmetic Geometry Kyoto 09/2006.

E. Urban has a simpler construction.




Part 11I: Preliminaries

S: an auxiliary set of finite places

e XNS=04S <d.

e X(Fr,)=qg,=—1 modp Vv eES.
dXp=2XUS.

D = Dg: minimal deformation data for p




Deformation conditions

p:Gs, — GL3(A): a deformation of p
Local conditions:

e At v|p, p is nearly ordinary:

X1,v *
p|GF,,, ~ ’

~

X2

X

1
)
0 x

X1, lifts X|ay, (converse to p ~




e At v € S, p is special:

Xl,'v *

plGF'v ~ ~
0 Xi(—1)

X1, lifts X|ay, (converse to p).

e At other places in ¥p: finite deformation (special at
Y, in other cases the restriction to the inertia is the

“same as p’ .

Global condition: detp is fixed (to x - xc_ylcle,p).




Nearly ordinary Hecke algebra

Rp = universal deformation ring of p

T = nearly ordinary cuspidal Hecke algebra (exists by
Part II and a lifting argument of Diamond-Taylor (need
to find a lift which is special at S).

Since 'y is nice, d universal modular representation

p%odular : GZJD _ . GLz (TD)

(existence of free lattice), and we have a surjective map

R'D — TfD.




R = T and the consequence

Proposition 0.6. Under the conditions, Rp ~ Tp, and

Rp is a complete intersection of Krull dimension d + 1.

Prootf: Standard application of Taylor-Wiles system.

Using the proposition, one can calculate the reducible
(=Eisenstein) locus:

Proposition 0.7. Ip := Eisenstein ideal of Tp
Tp/Ip = Rp/Ip is ox-flat, complete intersection of

Krull dimension = 1 4+ 0 — §S under a mild assumption

on S.




Eisenstein locus

The Eisenstein locus is isomorphic to

OA[[Ap]]/ (Ly, X" (Fry) — 1 (v € 9)),
where L, is (Euler factor at y of) a p-adic L-function.
(Recall X, = (G?Blp})p, rank; Xp, =149

If Fr, and Fr, for v € S are linearly independent in X,

= the Krull dimension is as in the proposition.




TW-system

A TW system is a family (Rqg, Mg)gex which satisfies
e (Q: a finite set of finite places of F'.
e Q=0= (Rp, Mp) = (R, M).

e Rg: complete noeth. local oy|Ag]-algebra, (Ag:
finite abelian p-group).

e Mg: non-zero Rg-module, finite free over ox[Ag].




Complete intersection-freeness theorem

Under certain assumptions, R is a complete intersection,

and M is R-free (= R is equal to
T = image(R — End,, M)). In particular, M is a
faithtul R-module, and R can not be quite large.




TW-system with local variables

Our choice to prove R = T

QC{v:q,=1 mod p, x(Fr,) # 1}
e Rp,: the universal deformation ring with

unrestricted conditions at Q)

e Aqg = |l,eq0k(v)) (< split maximal torus of
SL(2))

e Mg: obtained from the middle dimensional
cohomology of compact modular varieties of complex
dimension < 1




Part I111: Control of Eisenstein ideals

Speculation: Ip may be generated by
dim Rp — dim Rp/Ip

—d+1—(1+6—4S)=d+4S—6

elements (the argument is correct if Rp were smooth).

Theorem 0.8. For a suitably chosen S, Ip is generated

by d + S — o0-elements.

Proof: Use virtual smoothing argument using

“T'W-system with global variables”.




TW-system with global variables

Esstimate of Ip is done by using a modified system:

Xo = the maximal quotient of (G?B| pyug)p Which is
split at S U {y}.

Ag = the image of Ag in Xg.

RDQ = Rp, Qoy[ag] OA[AQ], etc. = Modified TW
system (RDQ, My).

Looks more like Fuler systems.




Conditions on S

There 1s a subspace in the dual cohomology group
L, C H'(F,p’(1)) C H'(F,ad” p(1))
(the Leopoldt part). dim £; < 4, and S should satisfy

e Ir, and Fr, for v € S are linearly independent in
Xop.

o All classes in L5 are unramified at S,

L~ || Hy(F., p¥(1)).
seS

Consequence: HL, (F,ad® p(1)) N L, = {0}.




Proof plan of Theorem 0.8

Choose a nice S by the Chebotarev density theorem.
Then the Leopoldt part in HL, (F,ad’ p(1)) is zero,

and there are no obstructions to make (RDQ . RDQ / IDQ)
larger = Theorem 0.8.

Proposition 0.9. Q: general, I~DQ : the Eisenstein ideal
Of RDQ .
Then ffDQ is generated by d + #S — d-elements.

Prootf: Reduction to the minimal case using the flatness

of RDQ and RDQ /I~DQ over ox[Ag].




Part III: Control of Tangent spaces

The tangent space Vg of RDQ IS

ker(H"(F,ad’ p) — || H"(F,,ad’ p)/L,)
vZQ

for the local tangent spaces {L,}.
General Principle (Vague form):

Assume (Rg, Mg)gex satisfies the assumption of the

complete intersection-freeness criterion.

For a finite set P of finite places, the union of
I'eSQ

image(Vg — |],cp Lv) for Q € X spans [[,cp Lo.




The principle = Leopoldt

Use TW-system (RDQ, M) with global variables.

There 1s a commutative diagram

resQ

Vg

Here P = {v|p} U S, L’ = H(F,,x) « L.
dimy, (Ip, ® k»)V = d + S — 4,

dimg, [[,cp L, = d +#S.

3Q, resqg: surjective = 3Q), fo: surjective = 0 = 0.




Example of the Principle

Assume p and ad® p: abs. irred (with large monodromy).

P: a finite set of finite places, D: minimal

resQ

= there is some @ s.t. Hlle (Fyad’ p) — [l,ep Lo is

surjective.

Sketch: Take a subspace W C [],cp Lo s.t. the image
of resg is in W for any Q.

HZ, (F, ad® p(1))): the dual cohomology group, the
condition at P is the annihilator of W (modified from

[l,ep Lw to W).




Using the Chebotarev density theorem, a Taylor-Wiles
system (Rqg, Mg)gex is constructed with

r = dim HL(F, ad® p),

r’ = §Q = dim HX_ (F,ad’ p(1))).

r'—r = dim(H L,/W)

veP
holds by Euler characteristic formula. » = 7’ by a ring
theoretic consideration = W =[] .p Lo.

Remark 0.10. This method depends heavily on the

Chebotarev density argument.




Proof Plan revisited

e Find a nice 2-dimensional reducible p.

e Define a deformation ring R from p. Let I be the
defining ideal of the reducible locus (Eisenstein
ideal). Determine the Krull dimension of R/I.

Larger than the expected value if 0p, > 0.

Determine the number of the generators of I.
Smaller than the expected value if 0, > 0.

Look at the tangent space of R, and the local
distributions of tangent vectors coming from 1.
Conclude 0r, = 0 by showing the surjectivity of
global to local restriction map.




