
1 Closed conical subsets

1.1 Transversality

Definition 1.1.1. Let X be a scheme and E be a vector bundle on X. We say that a
closed subset C of X is conical if it is stable under the action of the multiplicative group
Gm. The intersection of a closed conical subset C with the 0-section is called the base of
C.

Let k be a field and X be a smooth scheme over k. The covariant vector bundle
T ∗X associated to the locally free OX-module is called the cotangent bundle of X. For
a smooth subscheme Z of X, the conormal bundle T ∗

ZX is a sub vector bundle of the
restriction T ∗

X ×X Z associated to the conormal sheaf NZ/X . In particular for Z = X, the
0-section of T ∗X is denoted by T ∗

XX.

Definition 1.1.2. Let h : W → X be a morphism of smooth schemes over a field k and
C be a closed conical subset of the cotangent bundle T ∗X.

1. Let w be a point of W . We say that h is C-transversal at w, if the intersection of
the pull-back C ×X w with the kernel Ker(T ∗X ×X w → T ∗W ×W w) inside T ∗X ×X Tx
is a subset {0}.

2. We say that h is C-transversal if h is C-transversal at every point of W .

The condition that h is C-transversal means that the intersection of the pull-back
h∗C = W ×X C with the kernel Ker(W ×X T ∗X → T ∗W ) inside W ×X T ∗X is a subset
of the 0-section.

Lemma 1.1.3. Let h : W → X be a morphism of smooth schemes over a field k and C be
a closed conical subset of the cotangent bundle T ∗X.

1. h is smooth if and only if h is T ∗X-transversal.
2. If C is a subset of the 0-section, then h is C-transversal.
3. If C ′ is a closed conical subset of T ∗X containing C as a subset and if h is C ′-

transversal, then h is C-transversal. Consequently, if h is smooth, then h is C-transversal.
4. The subset {w ∈ W | h is C-transversal at w} is an open subset of W .

Proof. 1. h is smooth if and only if W ×X T ∗X → T ∗W is an injection.
2. and 3. Clear from the definition and 1.
4. The subset is the complement of the image of P(W×XC∩Ker) by the projection.

Lemma 1.1.4. Assume that h : W → X is C-transversal. Then, W ×X T ∗X → T ∗W is
finite on h∗C.

Lemma 1.1.5. dim h∗C ≧ dimC + dimW − dimX.

Lemma 1.1.6. Assume that h : W → X is C-transversal. For a morphism g : V → W of
smooth schemes over k, the following conditions are equivalent:

(1) g is h◦C-transversal.
(2) h ◦ g is C-transversal.
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1.2 Acyclicity

Definition 1.2.1. Let h : W → X and f : W → Y be morphisms of smooth schemes over
k and let C be a closed conical subset of the cotangent bundle T ∗X. We identify T ∗(X×Y )
with T ∗X × T ∗Y and regard C × T ∗Y as a closed conical subset of T ∗(X × Y ).

We say that (h, f) is C-acyclic if (h, f) : W → X×Y is C×T ∗Y -transversal. Further
if h = 1X and (1X , f) is C-acyclic, we say that f is C-acyclic.

Lemma 1.2.2. Let f : X → Y be a morphism of smooth schemes over k and C be a closed
conical subset of T ∗X.

1. The following conditions are equivalent:
(1) f : X → Y is C-acyclic.
(2) The inverse image of C by X ×Y T ∗Y → T ∗X is a subset of the 0-section.
2. If f : X → Y is C-acyclic, then f is smooth on a neighborhood of the base of C.
3. If C equals the 0-section T ∗

XX, then f : X → Y is C-acyclic if and only if f is
smooth.

Lemma 1.2.3. Let h : W → X and f : X → Y be morphisms of smooth schemes over k
and C be a closed conical subset of T ∗X.

1. The following conditions are equivalent:
(1) (h, f) is C-acyclic.
(2) h : W → X is C-transversal and f : W → Y is h◦C-acyclic.
2. The following conditions are equivalent:
(1) (h, f) is T ∗

XX-acyclic.
(2) f : W → Y is smooth.
3. The following conditions are equivalent:
(1) (h, f) is T ∗X-acyclic.
(2) (h, f) : W → X × Y is smooth.

Proof. 1.
2. The condition (1) is equivalent to the condition that f : W → Y is T ∗

WW -acyclic
by 1, Lemma 1.1.3.2 and h◦T ∗

XX = T ∗
WW . Further by Lemma 1.2.2.3, this means that

f : W → Y is smooth.
3. This follows from Lemma 1.1.3.1.

Lemma 1.2.4. Let g : X ′ → X a smooth morphism of smooth schemes over k and C ′ ⊂
T ∗X ′ be a closed conical subset. Assume that g is C-acyclic.

(1) Let

X ′ h′
←−−− W ′

g

y yg′

X
h←−−− W

be a cartesian diagram of morphisms of smooth schemes over k. Then, g′ is h′◦C ′-acyclic.
(2) Let f : X → Y be a smooth morphism of smooth schemes over k. Then, f ◦ g is

C ′-acyclic.

Definition 1.2.5. Let C ⊂ T ∗X be a closed conical subset and f : X → Y be a morphism
of smooth schemes over k. Assume that f is proper on the base of C. Then, we define a
closed conical subset f◦C ⊂ T ∗Y by the algebraic correspondence T ∗X ← X ×Y T ∗Y →
T ∗Y .
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Proposition 1.2.6. Let g : X ′ → X be a morphism of smooth schemes over k and let
C ′ ⊂ T ∗X ′ be a closed conical subset. Assume that g is proper on the basis B′ of C ′ and
define C = g◦C

′ ⊂ T ∗X. Let h : W → X be a morphism of smooth schemes over k and

X ′ h′
←−−− W ′

g

y yg′

X
h←−−− W

be a cartesian diagram and assume that h is C-transversal.
1. There exists an open neighborhood U ′ of the inverse image B′

W ′ = h′−1(B′) ⊂ W ′

smooth over W .
2. Let f : W → Y be a morphism of smooth schemes over k and U ′ ⊂ W ′ be an open

subscheme as in 1. Then, the following conditions are equivalent:
(1) (h, f) is C-acyclic.
(2) (h′|U ′ , f ◦ g′|U ′) is C ′-acyclic.

Lemma 1.2.7. Let h : W → X and f : W → Y be smooth morphisms of smooth schemes
over k. Assume that (h, f) : W → X × Y is an immersion of codimension 1 and that
f : W → Y is proper. Let C ⊂ T ∗X be a closed conical subset such that h is C-transversal.

Define C ′ ⊂ T ∗
W (X × Y ) to be the inverse image of C by the composition T ∗

W (X × Y )
→ (T ∗X × T ∗Y ) ×X×Y W → T ∗X and let E ⊂ W be the projectivization P(C ′) ⊂
P(T ∗

W (X × Y )) = W . Then, we have f◦h
◦C ∪ T ∗

Y Y = f◦(h
◦T ∗X ×W E) ∪ T ∗

Y Y.

Proof. The pull-back h◦C ⊂ T ∗W is the image of (C × T ∗
Y Y ) ×X×Y W by the surjection

(T ∗X×T ∗Y )×X×Y W → T ∗W . Since the kernel of the surjection (T ∗X×T ∗Y )×X×Y W →
T ∗W is the line bundle T ∗

W (X×Y ), the inverse image of h◦C ⊂ T ∗W by T ∗Y ×Y W → T ∗W
equals the image of C ′ by the composition T ∗

W (X × Y ) → (T ∗X × T ∗Y ) ×X×Y W →
T ∗Y ×Y W . Since C ′ equals T ∗

W (X × Y ) ×W E outside of the 0-section, the assertion
follows.

1.3 Legendre transform

Let P be a projective space. The dual projective space P∨ parametrizes hyperplanes in P
and the universal hyperplane Q ⊂ P×P∨ may be considered as {(x,H) ∈ P×P∨ | x ∈ H}.
Let p : Q → P and p∨ : Q → P∨ denote the projections. The canonical injection of the
conormal bundle T ∗

Q(P×P∨)→ (T ∗P× T ∗P∨)×P×P∨ Q induces an isomorphism

T ∗
Q(P×P∨)→ Ker((T ∗P× T ∗P∨)×P×P∨ Q→ T ∗Q).

Since a hyperplane of P containing a point of P defines a line of the fiber of T ∗P at
the point and vice versa, the universal hyperplane Q is identified with the projective space
bundle P(T ∗P) associated to the vector bundle T ∗P. The image of the conormal bundle
T ∗
Q(P × P∨) ⊂ (T ∗P × T ∗P∨) ×P×P∨ Q to the first factor T ∗P ×P Q is the tautological

line bundle. Symmetrically, Q is identified with P(T ∗P∨).

Definition 1.3.1. Let C ⊂ T ∗P be a closed conical subset. Define the Legendre transform
C∨ = LC by

C∨ = p∨◦ p
◦C.
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We consider the projectivization

E = P(C) ⊂ P(T ∗P) = Q

as a closed subset of Q.

Proposition 1.3.2. Let C ⊂ T ∗P be a closed conical subset and B ⊂ P be the base
of C. Let C ′ ⊂ T ∗

Q(P × P∨) be the inverse image of C × T ∗P∨ by the injection with
T ∗
Q(P×P∨)→ (T ∗P× T ∗P∨)×P×P∨ Q and C∨ ⊂ T ∗P∨ be the Legendre transform.
1. C ′ equals the union of the restriction T ∗

Q(P×P∨)×Q E on E = P(C) ⊂ Q with the
0-section on p−1B.

2. C is equal to the image of C ′ by the composition (T ∗P × T ∗P∨) ×P×P∨ Q →
T ∗P×P Q→ T ∗P.

3. As a subset of Q = P(T ∗P) = P(T ∗P∨), we have E = P(C) = P(C∨).

Proof. 1. Since T ∗
Q(P × P∨) is a line bundle over Q, the fiber of C ′ at a point of Q

is either a line, a point or empty. The base of C ′ equals p−1B. Since the image of
T ∗
Q(P × P∨) ⊂ (T ∗P × T ∗P∨) ×P×P∨ Q in T ∗P ×P Q is the tautological line bundle, the

fiber is a line if and only if the point is contained in E = P(C) ⊂ Q.
2. Since C ⊂ T ∗P is a conical subset, it is the union of the intersections with lines

in fibers. Since Q parametrizes the lines in fibers and the image of T ∗
Q(P × P∨) is the

tautological line in T ∗P×P Q, the assertion follows.
3. The subset E = P(C) ⊂ Q = P(T ∗P) consists of the pairs of points of P and the

lines in the fibers of T ∗P at the points contained in C.
The Legendre transform C∨ = p∨◦ p

◦C is defined as the image of the intersection of (C×
T ∗P∨)∩T ∗

Q(P×P∨) by the composition (T ∗P×T ∗P∨)×P×P∨ Q→ T ∗P∨×P∨ Q→ T ∗P∨.
Hence P(C∨) ⊂ Q consists of the points of Q such that the fiber of T ∗

Q(P×P∨) is contained
in C×T ∗P∨. Since the image of the conormal bundle T ∗

Q(P×P∨) ⊂ (T ∗P×T ∗P∨)×P×P∨Q
in T ∗P×P Q by the first projection is the tautological line bundle, the subset P(C∨) ⊂ Q
equals P(C).

Corollary 1.3.3. Let C be a closed conical subset of T ∗P and let E = P(C) ⊂ Q =
P(T ∗P) be the projectivization. Then, the complement Q E is the largest open subset of
Q where p∨ is p◦C-acyclic.

Proof. The pair (p, p∨) is C-acyclic precisely outside the projectivization E = P(C ′) ⊂
Q = P(T ∗

Q(P×P∨)). Since p is smooth, the condition that (p, p∨) is C-acyclic is equivalent
to the condition that p∨ is p◦C-acyclic.

Proposition 1.3.4. We consider a cartesian diagram

P∨ p∨←−−− Q
h′
←−−− QW

p

y □
yp′

P
h←−−− W

f−−−→ Y

of smooth schemes over k. For a closed conical subset C ⊂ T ∗P, its Legendre transform
C∨ ⊂ T ∗P∨ and the union C+ = C ∪ T ∗

PP with the 0-section, the following conditions are
equivalent:

(1) (h, f) is C+-acyclic.
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(2) f : W → Y is smooth and (p∨ ◦ h′, f ◦ p′) : QW → P∨ × Y is T ∗P∨-acyclic on a
neighborhood of the inverse image EW = E ×Q QW .

These equivalent conditions imply that (p∨ ◦ h′, f ◦ p′) : QW → P∨ × Y is C∨-acyclic
outside EW = E ×Q QW .

The second condition in (2) means that (p∨ ◦ h′, f ◦ p′) : QW → P∨ × Y is smooth on
a neighborhood of the inverse image EW = E ×Q QW .

Proof. Since P(C∨) = P(C) ⊂ Q by Proposition 1.3.2.3, this equals the subset E in
Lemma 1.2.7. Hence C+ = p◦p

∨◦C∨ ∪ T ∗
PP equals p◦(p

∨◦T ∗P∨ ×Q E) ∪ T ∗
PP by Lemma

1.2.7. Thus the condition (1) is equivalent to the combination of the following conditions:
(1′) (h, f) is T ∗

PP-acyclic.
(1′′) (h, f) is p◦(p

∨◦T ∗P∨ ×Q E)-acyclic.
By Lemma 1.2.3.2, the condition (1′) means that f : W → Y is smooth.
Since p is proper and smooth, by Proposition 1.2.6.2, the condition (1′′) is equivalent

to the condition that (h′, f ◦ p′) is p∨◦T ∗P∨ ×Q E-acyclic. Since the transversality is an
open condition by Lemma 1.1.3.4, this is equivalent to that (h′, f ◦ p′) is p∨◦T ∗P∨-acyclic
on a neighborhood U of EW ⊂ QW . By Lemma 1.1.6, this is further equivalent to that
(p∨ ◦ h′, f ◦ p′) is T ∗P∨-acyclic on U . By Lemma 1.1.3.3, this means that U → P∨ × Y is
smooth.

Since p : Q → P is p∨◦C-acyclic outside E by Corollary 1.3.3, p′ : QW → W is (p∨ ◦
h′)◦C-acyclic outside EW by Lemma 1.2.4.1. Since f : W → Y is smooth, the composition
fp′ : QW → W → Y is also (p∨ ◦ h′)◦C-acyclic outside EW by Lemma 1.2.4.2.

Let h : W → P be an immersion and f : W → Y be a smooth morphism. Define sub
vector bundles CW ⊂ Cf ⊂ T ∗P ×P W by CW = T ∗

WP and Cf as the inverse image of
W ×Y T ∗Y ⊂ T ∗W by the surjection T ∗P×P W → T ∗W .

Lemma 1.3.5. Let C∨ ⊂ T ∗P∨ be a closed conical subset and let C = L∨C∨ ⊂ T ∗P be
the inverse Legendre transform.

1. The following conditions are equivalent:
(1) h is C-transversal.
(2) The intersection of P(C) ⊂ P(T ∗P) = Q and P(CW ) ⊂ P(T ∗P×PW ) = Q×PW ⊂

Q is empty.
2. Assume that h : W → P is C-transversal. Then Q ×P W → P∨ is C∨-transversal.

The complement Q×P W P(C ∩Cf ) equals the largest open subset U ⊂ Q×P W where
(p∨ : Q ×P W → P∨, fp : Q ×P W → W → Y ) is C∨-acyclic. Further P(C ∩ Cf ) is
a subset of the inverse image of the complement of the largest open subset where f is
h◦C-transversal.

3. Further if dimY = 1, the closed subset P(C ∩ Cf ) ⊂ Q×P W is finite over W .

Proof. 1. (1) means C ∩CW is a closed subset of the zero-section and is equivalent to (2).
2. By Proposition 1.2.6, the C-transversality of h : W → P implies the C∨-transversality

of Q×P W → Q. Since p∨ : Q→ P∨ is smooth, the first assertion follows.
The largest open subset U ⊂ Q ×P W is the same as that where (p∨, p) is C∨ × Cf -

transversal. Hence, it equals the complement of P(C∨) ∩ P(Cf ) = P(C) ∩ P(Cf ) =
P(C ∩ Cf ).

If f is h◦C-acyclic, then (p∨, fp) is C∨-acyclic and the last assertion follows.
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3. Since dim Y = 1, the subvector bundle CW ⊂ Cf is of codimension 1 and the
complement P(Cf ) P(CW ) is a vector bundle over W . Since P(C ∩ CW ) is empty by
1, the intersection P(C ∩ Cf ) is a closed subset of P(Cf CW ). Hence its closed subset
P(C ∩ Cf ) proper over W is finite over W .

2 Singular support

2.1 Local acyclicity

Let f : X → S be a morphism of schemes. Let x→ X and t→ S be geometric points and
let S(s) be the strict localization at the image s = f(x) → S of x. Then a specialization
x← t is a lifting of t→ S to t→ S(s).

Definition 2.1.1. Let f : X → S be a morphism of schemes and F be a complex of torsion
sheaves on X. We say that f is locally acyclic relatively to F or F-acyclic for short if
for each geometric points x→ X and t→ S and each specialization x← t, the canonical
morphism Fx → R(X(x) ×S(s)

t,F) is an isomorphism.
We say that f is universally locally acyclic relatively to F , if for every morphism

S ′ → S, the base change of f is locally acyclic relatively to the pull-back of F .

For geometric points s, t of S and a specialization t→ S(s), let i : Xs → X ×S S(s) and
j : Xt → X ×S S(s) denote the canonical morphisms. Then, the local acyclity is equivalent
to that the canonical morphism i∗F → i∗Rj∗F is an isomorphism for each s, t and s← t.

If F is a constructible sheaf on X, F is locally constant if and only if 1X is locally
acyclic relatively to F .

The local acyclicity is preserved by quasi-finite base change S ′ → S. Hence for con-
structible F , the universal local acyclicity is reduced to smooth base change.

Lemma 2.1.2. 1. The following conditions are equivalent:
(1) The identity 1X : X → X is F-acyclic.
(2) F is locally constant.
2. The following conditions are equivalent:
(1) The constant morphism 0: X → A1 is F-acyclic.
(2) F = 0.

Theorem 2.1.3. 1. (local acyclicity of smooth morphism) Assume that f : X → S is
smooth and that F is locally constant killed by an integer invertible on S. Then f is ula
relatively to F .

2. (generic local acyclicity) Assume that f : X → S is of finite type and that F is
constructible. Then, there exists a dense open subscheme U ⊂ S such that the base change
of f to U is ula relatively to the restriction of F .

Corollary 2.1.4. Assume that g : Y → S is smooth, that f : X → Y is la relatively to F
and F is killed by an integer invertible on S. Then, gf is locally acyclic relatively to F .

Lemma 2.1.5. Let f : X → Y be a proper morphism of schemes over S and assume that
X → S is locally acyclic relatively to F . Then Y → S is locally acyclic relatively to Rf∗F .

Proof. Proper base change theorem.
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2.2 Micro support

Definition 2.2.1. Let F be a constructible complex on X and C ⊂ T ∗X be a closed
conical subset. We say that F is micro supported on C, if for every C-acyclic pair (h, f)
of morphisms h : W → X and f : W → Y of smooth schemes over k, the morphism f is
(universally) locally acyclic relatively to h∗F .

If F is micro supported on C ⊂ C ′, then F is micro supported on C ′.

Lemma 2.2.2. 1. The following conditions are equivalent:
(1) F is micro supported on ∅.
(2) F = 0.
2. The following conditions are equivalent:
(1) F is micro supported on the 0-section T ∗

XX.
(2) F is locally constant.

Proof. 1. Any pair (h, f) is ∅-acyclic.
(1)⇒(2): Since the pair (1X , 0) of the identity 1X : X → X and the constant morphism

0: X → A1 is ∅-acyclic, the condition (1) implies that the morphism 0: X → A1 is F -
acyclic. This means F = 0.

(2)⇒(1): Any morphism f : W → Y is h∗0-acyclic.
2. By Lemma 1.2.3.2, (h, f) is T ∗

XX-acyclic if and only if f is smooth.
(1)⇒(2): Since the pair (1X , 1X) is T ∗

XX-acyclic, the condition (1) implies that the
identity 1X is F -acyclic. By Lemma 2.1.2, this means that F is locally constant.

(2)⇒(1): If f is smooth and F is locally constant, then f is h∗F -acyclic by the local
acyclicity.

Lemma 2.2.3. Any constructible F is micro supported on T ∗X.

Proof. Suppose (h, f) is T ∗X-acyclic. Then W → X × Y is smooth by Lemma 1.2.3.3.
Locally, W → Y is the composition of an étale morphism W → X × An × Y with the
projection X×An×Y → Y . By the generic local acyclicity, the projection X×An×Y →
An×Y is pr∗1F -acyclic. Since W → X ×An×Y is étale and the projection An×Y → Y
is smooth, f is h∗F -acyclic by Corollary 2.1.4.

Lemma 2.2.4. Assume that F is micro supported on C. Let U ⊂ X be an open subscheme
and A be the complement. If the resticition F|U is micro supported on C ′

U , then F is
micro supported on the union of C|A = C ×X A and the closure C ′ of C ′

U . In particular,
if F|U = 0, then F is micro supported on C|A.

Lemma 2.2.5. 1. Let X =
⋃

i Ui be an open covering. For a closed conical subset C, the
following conditions are equivalent:

(1) F is micro supported on C.
(2) F|Ui

is micro supported on CUi
for every i.

2. Let → F ′ → F → F ′′ → be a distinguished triangle and suppose that F ′ and F ′′ are
micro supported on C ′ and on C ′′ respectively. Then F is micro supported on C = C ′∪C ′′.

Lemma 2.2.6. Assume that F is micro supported on C.
1. If h : W → X is C-transversal, then h∗F is micro supported on h◦C.
2. The support of F is a subset of the base B of C.
3. If f : X → Y is proper on the base of C, then Rf∗F is micro supported on f◦C.
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Proof. 1. Suppose g : V → W, f : V → Y is h◦C-transversal. Then, (hg, f) is C-
transversal and f is locally acyclic relatively to (hg)∗F .

2. Let j : U = X B → X be the open immersion. Then, since j is C-transversal
and j◦C = ∅, the restriction F|U is micro supported on ∅. Hence we have F|U = 0 by
Lemma 2.2.2.1.

3. Suppose h : W → Y, g : W → Z is f◦C-transversal. Then, hX : W ×Y X → X, g ◦
fW : W ×Y X → W → Z is C-transversal and h∗

XF is locally acyclic relatively to g ◦ fW .
Hence h∗Rf∗F = RfW∗h

∗
XF is locally acyclic relatively to g.

2.3 Singular support

Definition 2.3.1. We say that C ⊂ T ∗X is the singular support of F if for C ′ ⊂ T ∗X,
the inclusion C ⊂ C ′ is equivalent to the condition that F is micro supported on C.

Lemma 2.3.2. Let F be a constructible sheaf on X.
1. Let U ⊂ X be an open subscheme. Assume that C ⊂ T ∗X is the singular support

of F . Then, C|U is the singular support of F|U .
2. Let (Ui) be an open covering of X and Ci be the singular support of F|Ui

. Then,
C =

⋃
i Ci is the singular support of F .

Proof. 1.
2. By 1, for every i, j, the restrictions Ci|Ui∩Uj

and Cj|Ui∩Uj
are the singular support of

F|Ui∩Uj
and are the same. Hence the union C =

⋃
i Ci is a closed conical subset of T ∗X.

By Lemma 2.2.5.1, F is micro supported on C. We show that C is the smallest. Let C ′

be a closed conical subset of T ∗X on which F is micro supported. Then, for each i, we
have Ci ⊂ C ′|Ui

. Hence we have C ⊂ C ′.

Lemma 2.3.3. Let i : X → P be a closed immersion. and let F be a sheaf on X.
1. Assume that F is micro supported on C. Then, i∗F is micro supported on i◦C.
2. Let s : T ∗X → T ∗P |X be a section of the surjection T ∗P |X → T ∗X. Assume

that i∗F is micro supported on CP and let B ⊂ X be the support of F . Then, we have
T ∗
XP |B ⊂ CP and F is micro supported on C = s−1(CP |X).

Proof. 1. Lemma 2.2.6.3.
2. Let h : W → X be a C-transversal morphism. By replacing P by a smooth scheme

over P and X by the inverse image, we may assume that h is an immersion. We extend the
immersion h : W → X to an immersion V → P transversal with the immersion X → P
such that T ∗

V P is a sub vector bundle of the image of the section T ∗X → T ∗P . Since
T ∗
V P → T ∗

WX is an isomorphism, the C-transversality of h : W → X implies the CP -
transversality of V → P . Since i∗F is micro supported on CP , this implies that V → P
is i∗F -transversal. Since the intersection W = V ∩ X is transversal, this implies that
h : W → X is F -transversal. Hence F is micro supported on C.

Proposition 2.3.4. Let i : X → P be a closed immersion. Assume that CP ⊂ T ∗P is the
singular support of i∗F .

1. CP is a subset of T ∗P |X .
2. Let C ⊂ T ∗X be its image of CP by the surjection T ∗P |X → T ∗X. Then, we have

CP = i◦C.
3. C in 2. is the singular support of F .
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Proof. 1. Since F is micro supported on CP |X = CP ∩ T ∗P |X ⊂ CP by Lemma 2.2.4, the
inclusion is an equality CP |X = CP .

2. Since the assertion is local on X, we may assume that there exists a section
s : T ∗X → T ∗P |X . Then, by Lemma 2.3.3.2, F is micro supported on Cs = s−1(CP ).
Further by Lemma 2.3.3.1, i∗F is micro supported on i◦Cs. Hence we have CP ⊂ i◦Cs.
For any other section s′, this implies Cs′ ⊂ Cs and hence Cs′ = Cs. This means that
Cs = C and CP = i◦C.

3. Assume that F is micro supported on C ′. Then, since i∗F is micro supported on
i◦C

′ by Lemma 2.3.3.1, we have CP = i◦C ⊂ i◦C
′. This implies C ⊂ C ′. Since F is micro

supported on C = Cs, we have C = SSF .

Theorem 2.3.5. (Beilinson) SSF exists.

Proof will be given at the end of next section.

Theorem 2.3.6. (Beilinson) 1. dimE ≦ dimP− 1.
2. Every irreducible component of E has dimP− 1.

2.4 Radon transform

We define the naive Radon transform RF to be Rp∨∗ p
∗F and the naive inverse Radon

transform R∨G to be Rp∗p
∨∗G.

Proposition 2.4.1. There exists a distinguished triangle

→
n−2⊕
q=0

RΓ(Pk̄,F)(q)[2q]→ R∨RF → F(n− 1)[2(n− 1)]→ .

Proof. By the cartesian diagram

P
p←−−− Q

pr1←−−− Q×P∨ Q

p∨

y ypr2

P∨ p∨←−−− Qyp

P

and the proper base change theorem, we have a canonical isomorphism

R∨RF → Rpr2∗
(
pr∗1F ⊗R(p× p)∗ΛQ×P∨Q

)
for p× p : Q×P∨ Q→ P×P.

We compute R(p × p)∗ΛQ×P∨Q. The closed scheme Q ×P∨ Q ⊂ P × P × P∨ is the
Pn−1-bundle Q on the diagonal P ⊂ P × P. On the complement P × P P, it is a sub
Pn−2-bundle. Hence, we have a distinguished triangle

→ τ≦2(n−2)RΓ(P∨
k̄ ,Λ)⊗ ΛP×P → R(p× p)∗ΛQ×P∨Q → ΛP(n− 1)[2(n− 1)]→ .

9



Proposition 2.4.2. For G on P∨ and C∨ ⊂ T ∗P∨, we have implications (1)⇒(2)⇒(3).
(1) G is micro supported on C∨.
(2) p is universally p∨∗G-acyclic outside E = P(C∨).
(3) R∨G is micro supported on C+.

Proof. (1)⇒(2): By Corollary 1.3.3, the pair (p∨, p) of p∨ : Q→ P∨ and p : Q→ P is C∨-
acyclic outside E = P(C∨). Hence (1) implies that p is universally p∨∗G-acyclic outside
E.

(2)⇒(3): Assume that a pair of morphisms h : W → P, f : W → Y is C+-acyclic. We
consider the cartesian diagram

P∨ p∨←−−− Q
h′
←−−− QW

p

y □
yp′

P
h←−−− W

f−−−→ Y

and set GQW
= h′∗p∨∗G. Since h∗R∨G = Rp′∗GQW

, it suffices to show that (2) implies that
f : W → Y is Rp′∗GQW

-acyclic. Since p′ is proper, by Lemma 2.1.5, further it suffices to
show that (2) implies that fp′ : QW → Y is GQW

-acyclic.
By (2), p′ : QW → W is GQW

-acyclic outside the inverse image EW ⊂ QW of E.
By Propositon 1.3.4, the C+-acyclicity of (h, f) means that f : W → Y is smooth and
QW → P∨ × Y is T ∗P∨-acyclic on a neighborhood U of EW ⊂ QW . Hence by Corollary
2.1.4, fp′ : QW → Y is GQW

-acyclic outside EW . Since G is micro supported on T ∗P∨

by Lemma 2.2.3, the restriction fp′|U : U → Y is GQW
-acyclic. Thus fp′ : QW → Y is

GQW
-acyclic as required.

We prove Theorem 2.3.5 for X = P.

Corollary 2.4.3. Let F on P and G = RF on P∨ be the Radon transform. Let E ⊂
Q be the smallest closed subset such that p : Q → P is universally p∨∗G-acyclic on the
complement P E and define a closed conical subset C ⊂ T ∗P by C = p◦(p

∨◦T ∗P∨×QE).
Then the union of C and the restriction of the 0-section T ∗

PP×PB is the singular support
of F .

Proof. By Proposition 2.4.2 (2)⇒(3), R∨G = R∨RF is micro supported on C+. Hence by
Proposition 2.4.1, Lemma 2.2.5.2 and Lemma 2.2.2.2, F is also micro supported on C+.
By Lemma 2.2.4, F is micro supported on C+|B and we have C+|B = C ∪ (T ∗

PP×P B).
We show that C+|B is the smallest. Suppose F is micro supported on C ′ ⊂ T ∗P. Then

by Proposition 2.4.2 (1)⇒(3), G = RF is micro supported on C ′∨+. Hence by Proposition
2.4.2 (1)⇒(2), p : Q→ P is universally p∨∗G-acyclic outside E ′ = P(C ′∨) = P(C ′). Since
E is the smallest, we have E ⊂ E ′ and hence C ⊂ C ′. By Lemma 2.2.6.2, we have
T ∗
PP×P B ⊂ C ′. Hence we have C+|B = C ∪ (T ∗

PP×P B) ⊂ C ′.

Proof of Theorem 2.3.5. Since the assertion is local by Lemma 2.3.2, it is reduced to the
case where X is affine. By Proposition 2.3.4, it is further reduced to the case where X is
an affine space. Further by Lemma 2.3.2, we may assume that X is a projective space. In
this case, the assertion follows from Corollary 2.4.3.
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3 Characteristic cycles

3.1 Characteristic cycles

Theorem 3.1.1. There exists a unique way to attach a Z-linear combination CCF =∑
a maCa of irreducible components SSF =

⋃
a Ca for each constructible complex F of

Λ-modules on a smooth scheme X over k, satisfying the following axioms:
(1) (normalization) For X = Spec k and F = Λ, we have

(3.1) CCΛ = T ∗
XX.

(2) (additivity) For distringuished triangle → F ′ → F → F ′′ →, we have

(3.2) CCF = CCF ′ + CCF ′′.

(3) (pull-back) For SSF-transversal morphism h : W → X of smooth schemes over k,
we have

(3.3) CCh∗F = h!CCF .

(4) (closed immersion) For closed immersion i : X → P of smooth schemes over k, we
have

(3.4) CCi∗F = i!CCF .

(5) (Radon transform) For X = Pn and for the Radon transform, we have

(3.5) CCRF = LCCF .

Corollary 3.1.2. (index formula) Assume that X is projective and smooth. Then, we
have

(3.6) χ(Xk̄,F) = (CCF , T ∗
XX).

Proof. By (1), (2) and (3), if F is locally constant, we have

(3.7) CCF = (−1)nrankF · T ∗
XX.

By (4), we may assume that X = Pn and n ≧ 2. Then, we have

(3.8) CCR∨RF = CCF + (n− 1) · χ(Pn
k̄ ,F)[T

∗
PnPn].

By (5) and (2), we have CC(R∨RF) − CCF = L∨LCCF − CCF . Hence, we have
(n− 1)χ(Pn

k̄
,F) = (n− 1)(CCF , T ∗

PnPn) and (3.6).
We will deduce Theorem 3.1.1 from the following variant.

Theorem 3.1.3. There exists a unique way to attach a Q-linear combination CCF =∑
a maCa of irreducible components SSF =

⋃
a Ca for each constructible complex F of

Λ-modules on smooth smooth scheme X over k, satisfying the following axioms:
(1) (Milnor formula) Let f : X → Y be a proper morphism over k to a smooth curve

Y over k and x ∈ X be a closed point such that f is SSF-transversal on the complement
of x. Then, the coefficient of the fiber T ∗

y Y at y = f(x) in f◦CCF is minus the Artin
conductor −axRf∗F .

(3) For étale morphism h : W → X of smooth schemes over k, we have (3.3).
(4) For closed immersion i : X → P of smooth schemes over k, we have (3.4).

11



Outline and key points of proof of theorems.

Proof of Theorem 3.1.3. We show the uniqueness. By (3), we may assume X is affine. By
(4), we may assume X = An. By (3), we may assume X is projective. We may take
a Lefschetz pencil. Since it suffices to determine the coefficient ma for each Ca, we may
assume that f : W → L is Cb-transversal for Cb ̸= Ca and Ca-transversal except at x and
is not Ca-transversal at x. Then, by (1), we have

(3.9) ma(Ca, df)x = −ax

and the uniqueness follows.
To show the existence, first we show that the coefficient ma determined by (3.9) is well-

defined. This follows from the (semi-)continuity of Swan conductor and the formalism
of vanishing cycles over general base. Then CCF characterized by (3.9) satisfies the
conditions (3) and (4) by standard properties of usual vanishing cycles.

Proof of the uniqueness in Theorem 3.1.1. By Corollary 3.1.2, we have the index formula
(3.6) for projective and smooth X. By comparing the index formula (3.6) for proper
smooth curve X and the Grothendieck-Ogg-Shafarevich formula and using (3) for étale
morphism of smooth curves and (3.7), we obtain (1) in Theorem 3.1.3 for f = 1X : X → X.

Similarly as in the proof of Theorem 3.1.3, it is reduced to the case where X is projective
and smooth. Then by taking a Lefschetz pencil, it follows from (5), (3) and (1) in Theorem
3.1.3.

Proof of the existence in Theorem 3.1.1. We deduce the existence from Theorem 3.1.3.
We show that CCF satisfying the conditions in Theorem 3.1.3 also satisfies those in
Theorem 3.1.1. The conditions (1) and (2) in Theorem 3.1.1 follow from (1) in Theorem
3.1.3. The condition (4) in Theorem 3.1.1 is the same as (4) in Theorem 3.1.3. Hence it
remains to show the conditions (3), (5) and the integrality.

The condition (3) for smooth morphism is a consequence of the Thom-Sebastiani for-
mula. The integrality in the case p ̸= 2 or non-exceptional case in p = 2 follows from (1)
in Theorem 3.1.3. In the exceptional case, it is reduced to the non-exceptional case using
the condition (3) for X ×A1 → X.

To show (3) in the case where h is an immersion, we first consider the case where X is
an projective space Pn.

Lemma 3.1.4. Let h : W → P = Pn be an immersion and

W
pW←−−− W ×P Q

p∨W−−−→ P∨

h

y y
P

p←−−− Q

be the cartesian diagram. Let G be a constructible complex on P∨ micro supported on C∨

and assume that h is properly C-transversal for C = L∨C∨. Then, we have

P(CCRpW∗p
∨∗
W G) = P(pW !p

∨!
WCCG).
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Proof. Since the characteristic cycle is characterized by the Milnor formula, it suffices
to show that pW !p

∨!
WCCG satisfies the Milnor formula for RpW∗p

∨∗
W G and for smooth

morphisms f : W → Y to a curve defined locally on W . Since h is C-transversal,
p∨W : Q ×P W → P∨ is C∨-transversal by Lemma 1.3.5.2 and p∗WG is micro supported on
p∨WC∨. Since p∨W : Q×P W → P∨ is smooth outside P(CW ), we have CCp∨∗W G = p∨◦WCCG
outside P(CW ) as (3) is already proved for smooth morphisms.

Assume that f is smooth and has only isolated characteristic point. Then, by Lemma
1.3.5.2, the composition fpW is p∨C-transversal outside the inverse images of the charac-
teristic points. Further it is p∨C-transversal outside of finitely many closed points in the
inverse images by Lemma 1.3.5.3 and these points are not contained in P(CW ) by Lemma
1.3.5.1. Hence the assertion follows.

Lemma 3.1.4 implies also P(CCh∗F) = P(h!CCF). Since the coefficient of the 0-
section is determined by the generic rank as in (3.7), we deduce (3) in the case X = P.
In the general case, since the assertion is local, we may assume that there exists an open
subscheme U ⊂ P and a cartesian diagram

W
h−−−→ X

j

y □
yi

V
g−−−→ U ⊂ P

where i : X → U and g : V → U are closed immersions of smooth subschemes meeting
transversely. Then, since h is properly C-transversal, g is properly i◦C-transversal. Hence
the case where X = P implies CCg∗i∗F = g!CCi∗F = g!i!CCF . This implies j!CCh∗F =
CCj∗h

∗F = j!h
!CCF and (3.3).

We show (5). The case W = P in Lemma 3.1.4 means the projectivization

(3.10) P(CCRF) = P(LCCF)

of (5). Hence it remains to show that the coefficients of the 0-section in CCRF = LCCF
are the same. Similarly as in the proof of Corollary 3.1.2, this is equivalent to the index
formula (3.6) for X = Pn. To prove this, we introduce the characteristic class.

3.2 Characteristic class

We identify the Chow group of the projective completion P(T ∗X ⊕A1
X) by the canonical

isomorphism

(3.11) CH•(X) =
n⊕

i=0

CHi(X)→ CHn(P(T ∗X ⊕A1
X)).

For a constructible complex F on X with the characteristic cycle CCF =
∑

a maCa, we
define the characteristic class

(3.12) ccX(F) ∈ CH•(X)

to be the class of
∑

a maC̄a ∈ CHn(P(T ∗X ⊕A1
X)).

Let K(X,Λ) denote the Grothendieck group of the category of constructible complexes
of Λ-modules on X. By the additivity, we have a morphism

(3.13) ccX : K(X,Λ)→ CH•(X)
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sending the class F to ccXF . In characteristic 0, we recover the MacPherson Chern class.
The pull-back by the immersion P(T ∗X) → P(T ∗X ⊕A1

X) and the push-forward by
P(T ∗X ⊕A1

X)→ X induce an isomorphism

CHn(P(T ∗X ⊕A1
X))→ CHn−1(P(T ∗X))⊕ CHn(X).

For A =
∑

a maCa, the images of Ā =
∑

a maC̄a is the pair of P(A) =
∑

a maP(Ca) and
the coefficient of the 0-section.

End of Proof of Theorem 3.1.3. Under (3.10), the equality (3.5) is equivalent to the con-
dition that the diagram

(3.14)

K(Pn,Λ)
ccPn−−−→ CH•(P

n)

R

y yL

K(Pn∨,Λ)
ccPn∨−−−→ CH•(P

n∨)

gets commutative after composed with the projection CH•(P
n∨)→ CHn(P

n∨) and also to
the commutativity of the diagram (3.14) itself.

We prove the commutativity of (3.14) (CD n) and the index formula (3.6) for Pn (IF
n) by a simultaneous induction on n along the diagram; (IF n− 1) ⇒ (CD n) ⇒ (IF n).
For n ≦ 1, the commutativity of (3.14) is obvious. For n = 0, the index formula follows
from (3.7). For n = 1, this is nothing but the Grothendieck-Ogg-Shafarevich formula.

We prove (IF n − 1) ⇒ (CD n). Let i : H → Pn be the immersion of a hyperplane.
Then, the right square in

(3.15)

K(Pn,Λ)
ccPn−−−→ CH•(P

n)
i!−−−→ CHn−1(H)

R

y yL

ydeg

K(Pn∨,Λ)
ccPn∨−−−→ CH•(P

n∨) −−−→ CHn(P
n∨) = Z

is commutative. Hence it suffices to show that the long rectangle is commutative. For F
on Pn, the generic rank of RF equals the Euler number χ(Hk̄,F) for a generic H. Hence
the composition via lower left sends the class of F to χ(Hk̄,F). By (3) for the immersion
i : H → Pn and (IF n − 1), we have χ(Hk̄,F) = (CCi∗F , T ∗

HH) = deg i!ccPnF and the
long rectangle is commutative.

We prove (CD n) ⇒ (IF n). Let χ : K(Pn,Λ)→ Z be the morphism sending the class
of F to the Euler number χ(Pn

k̄
,F). We show that there is a commutative diagram

(3.16) K(Pn,Λ)

χ

))SSS
SSS

SSS
SSS

SSS
S

ccPn // CH•(P
n)

��
Z.

Since ccPn is a surjection, it suffices to show that ccPnF = 0 implies χ(Pn
k̄
,F) = 0. By

(3.8), (CD n) and the assumption ccPnF = 0 imply χ(Pn
k̄
,F) = 0 for n − 1 ̸= 0. Thus,

there exists a unique morphism CH•(P
n) → Z making the diagram (3.16) commutative.

We show that the morphism CH•(P
n) → Z equals the degree mapping. This is reduced

to the case where F = ΛPi , i = 0, . . . , n generating CH•(P
n) = Zn+1.
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