1 Singular support

1.1 Closed conical subsets and the transversality

Definition 1.1.1. Let C be a closed conical subset of the cotangent bundle T^*X and let $h: W \to X$ be a morphism of smooth schemes over k.

We say that h is C-transversal if the intersection of the subsets $h^*C = W \times_X C$ and $\operatorname{Ker}(W \times_X T^*X \to T^*W)$ of $W \times_X T^*X$ is a subset of the 0-section.

The intersection $C \cap T_X^*X$ with the 0-section $X = T_X^*X$ is called the base of C.

If h is smooth, then h is C-transversal for any C.

If C is a subset of the 0-section, any h is C-transversal.

If $C \subset C'$, the C'-transversality implies the C-transversality.

The transversality is an open condition.

Lemma 1.1.2. Assume that $h: W \to X$ is C-transversal. Then, $W \times_X T^*X \to T^*W$ is finite on h^*C .

Lemma 1.1.3. dim $h^*C \ge \dim C + \dim W - \dim X$.

Lemma 1.1.4. Assume that $h: W \to X$ is C-transversal. For a morphism $g: V \to W$ of smooth schemes over k, the following conditions are equivalent:

(1) g is $h^{\circ}C$ -transversal.

(2) $h \circ g$ is C-transversal.

Definition 1.1.5. Let C be a closed conical subset of the cotangent bundle T^*X and C' be a closed conical subset of the cotangent bundle T^*Y . Let $h: W \to X$ and $f: W \to Y$ be morphisms of smooth schemes over k.

1. We say that (h, f) is (C, C')-transversal if $(h, f): W \to X \times Y$ is $C \times C'$ -transversal.

2. If $h = 1_X$ and $C' = T^*Y$, we say that f is C-transversal if $(1_X, f)$ is (C, T^*Y) -transversal.

Lemma 1.1.6. 1. The following conditions are equivalent:

(1) $h: W \to X$ is C-transversal.

(2) $(h, 1_W)$ is (C, T_W^*W) -transversal.

1. The following conditions are equivalent:

(1) $f: X \to Y$ is C-transversal.

(2) The inverse image of C by $X \times_Y T^*Y \to T^*X$ is a subset of the 0-section.

2. The following conditions are equivalent:

(1) (h, f) is (C, T^*Y) -transversal.

(2) $h: W \to X$ is C-transversal and $f: W \to X$ is $h^{\circ}C$ -transversal.

 $f: X \to Y$ is T_X^*X -transversal if and only if f is smooth.

If $f: X \to Y$ is C-transversal, then f is smooth on a neighborhood of the base of C.

Definition 1.1.7. Let $C \subset T^*X$ be a closed conical subset and $f: X \to Y$ be a morphism of smooth schemes over k. Assume that f is proper on the base of C. Then, we define a closed conical subset $f_{\circ}C \subset T^*Y$ by the algebraic correspondence $T^*X \leftarrow X \times_Y T^*Y \to T^*Y$. **Proposition 1.1.8.** Let $g: X' \to X$ be a morphism of smooth schemes over k and let $C \subset T^*X'$ be a closed conical subset. Assume that g is proper on the basis B' of C' and define $C = g_{\circ}C' \subset T^*X$.

1. Let $h: W \to X$ be a morphism of smooth schemes over k and

$$\begin{array}{cccc} X' & \xleftarrow{h'} & W' \\ g & & \downarrow g' \\ X & \xleftarrow{h} & W \end{array}$$

be a cartesian diagram. Assume that h is C-transversal. Then, there exists an open neighborhood U' of the inverse image $B'_{W'} = h'^{-1}(B') \subset W'$ smooth over W.

2. For a morphism $f: W \to Y$ of smooth schemes over k, the following conditions are equivalent:

(1) (h, f) is C-transversal.

(2) $(h'|_{U'}, f \circ g'|_{U'})$ is C'-transversal.

1.2 Legendre transform

Let \mathbf{P} be a projective space, \mathbf{P}^{\vee} be the dual projective space and $Q \subset \mathbf{P} \times \mathbf{P}^{\vee}$ be the universal hyperplane. The kernel $\operatorname{Ker}((T^*\mathbf{P} \times T^*\mathbf{P}^{\vee}) \times_{\mathbf{P} \times \mathbf{P}^{\vee}} Q \to T^*Q$ equals the conormal bundle $T^*_{\mathcal{O}}(\mathbf{P} \times \mathbf{P}^{\vee})$.

We identify Q as the projective space bundle $\mathbf{P}(T^*\mathbf{P})$ associated to the vector bundle $T^*\mathbf{P}$. Symmetrically, Q is identified with $\mathbf{P}(T^*\mathbf{P}^{\vee})$.

Definition 1.2.1. Let C be a closed conical subset $C \subset T^*\mathbf{P}$. We consider the projectivization $E = \mathbf{P}(C) \subset \mathbf{P}(T^*\mathbf{P}) = Q$ as a closed subset of Q. Define the Legendre transform $C^{\vee} = LC$ by $C^{\vee} = p_{\circ}^{\vee}p^{\circ}C$.

Lemma 1.2.2. The intersection of $C \times T^* \mathbf{P}^{\vee}$ with $\operatorname{Ker}((T^* \mathbf{P} \times T^* \mathbf{P}^{\vee}) \times_{\mathbf{P} \times \mathbf{P}^{\vee}} Q \to T^* Q = T_Q^*(\mathbf{P} \times \mathbf{P}^{\vee})$ equals the union of $T_Q^*(\mathbf{P} \times \mathbf{P}^{\vee}) \times_Q E$ with the 0-section on $p^{-1}B$.

Proof. Since the image of the conormal bundle $T_Q^*(\mathbf{P} \times \mathbf{P}^{\vee}) \subset (T^*\mathbf{P} \times T^*\mathbf{P}^{\vee}) \times_{\mathbf{P} \times \mathbf{P}^{\vee}} Q$ in $T^*\mathbf{P} \times_{\mathbf{P}} Q$ by the first projection is the tautological line bundle, the assertion follows.

Proposition 1.2.3. 1. The complement Q - E is the largest open subset where (p, p^{\vee}) is *C*-transversal.

2. *C* is equal to the image of the intersection of $(C \times T^* \mathbf{P}^{\vee}) \cap T^*_Q(\mathbf{P} \times \mathbf{P}^{\vee})$ by the composition $(T^* \mathbf{P} \times T^* \mathbf{P}^{\vee}) \times_{\mathbf{P} \times \mathbf{P}^{\vee}} Q \to T^* \mathbf{P} \times_{\mathbf{P}} Q \to T^* \mathbf{P}$.

Proof. 1. Clear from Lemma. 2.

Corollary 1.2.4. $P(C) = P(C^{\vee})$.

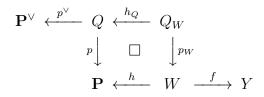
Proof. Since C^{\vee} is equal to the image of the intersection of $(C \times T^* \mathbf{P}^{\vee}) \cap T^*_Q(\mathbf{P} \times \mathbf{P}^{\vee})$ by the composition $(T^* \mathbf{P} \times T^* \mathbf{P}^{\vee}) \times_{\mathbf{P} \times \mathbf{P}^{\vee}} Q \to T^* \mathbf{P}^{\vee} \times_{\mathbf{P}^{\vee}} Q \to T^* \mathbf{P}^{\vee}$, it follows from Lemma and Proposition.

Proposition 1.2.5. Let $C^+ = C \subset T^*_{\mathbf{P}}\mathbf{P}$ be the union with the 0-section. Then, we have

$$C^+ = p_{\circ}(p^{\vee \circ}T^*\mathbf{P}^{\vee} \times_Q E) \cup T^*_{\mathbf{P}}\mathbf{P}.$$

Proof. By Lemma and Proposition, we have $C \subset p_{\circ}(p^{\vee \circ}T^*\mathbf{P}^{\vee} \times_Q E) \cup T^*_{\mathbf{P}}\mathbf{P} \subset C^+$.

Corollary 1.2.6. We consider a cartesian diagram



of smooth schemes over k. For a closed conical subset $C \subset T^*\mathbf{P}$ and its Legendre transform $C^{\vee} \subset T^*\mathbf{P}^{\vee}$ and the union $C^+ = C \cup T^*_{\mathbf{P}}\mathbf{P}$ with the 0-section, the following conditions are equivalent:

(1) (h, f) is C^+ -transversal.

(2) $f: W \to Y$ is smooth and $Q_W \to \mathbf{P}^{\vee} \times Y$ is smooth of the inverse image $E_W = E \times_Q Q_W$.

Proof. Since $C^+ = p_{\circ}(p^{\vee \circ}T^*\mathbf{P}^{\vee} \times_Q E) \cup T^*_{\mathbf{P}}\mathbf{P}$ by Lemma, the condition (1) is equivalent to the combination of the following conditions.

(1') (h, f) is $T^*_{\mathbf{P}}\mathbf{P}$ -transversal.

(1") (h, f) is $p_{\circ}(p^{\vee \circ}T^*\mathbf{P}^{\vee} \times_Q E)$ -transversal.

The condition (1') is equivalent to that $f: W \to Y$ is smooth. Since p is proper and smooth, by Lemma, the condition (1'') is equivalent to $(h_Q, f \circ p_W)$ is $p^{\vee \circ}T^*\mathbf{P}^{\vee} \times_Q E$ -transversal. Since the transversality is an open condition, this is equivalent to that $(h_Q, f \circ p_W)$ is $p^{\vee \circ}T^*\mathbf{P}^{\vee}$ -transversal on a neighborhood of E_W . By Lemma, this is further equivalent to that $(p \vee \circ h_Q, f \circ p_W)$ is $T^*\mathbf{P}^{\vee}$ -transversal on a neighborhood of E_W . This means that $Q_W \to \mathbf{P}^{\vee} \times Y$ is smooth of the inverse image $E_W = E \times_Q Q_W$.

Let $h: W \to \mathbf{P}$ be an immersion and $f: W \to Y$ be a smooth morphism. Define sub vector bundles $C_W \subset C_f \subset T^*\mathbf{P} \times_{\mathbf{P}} W$ by $C_W = T^*_W \mathbf{P}$ and C_f as the inverse image of $W \times_Y T^*Y \subset T^*W$ by the surjection $T^*\mathbf{P} \times_{\mathbf{P}} W \to T^*W$.

Lemma 1.2.7. Let $C^{\vee} \subset T^* \mathbf{P}^{\vee}$ be a closed conical subset and let $C = L^{\vee} C^{\vee} \subset T^* \mathbf{P}$ be the inverse Legendre transform.

1. The following conditions are equivalent:

(1) h is C-transversal.

(2) The intersection of $\mathbf{P}(C) \subset \mathbf{P}(T^*\mathbf{P}) = Q$ and $\mathbf{P}(C_W) \subset \mathbf{P}(T^*\mathbf{P}\times_{\mathbf{P}}W) = Q\times_{\mathbf{P}}W \subset Q$ is empty.

2. Assume that $h: W \to \mathbf{P}$ is *C*-transversal. Then $Q \times_{\mathbf{P}} W \to \mathbf{P}^{\vee}$ is C^{\vee} -transversal. The complement $Q \times_{\mathbf{P}} W - \mathbf{P}(C \cap C_f)$ equals the largest open subset $U \subset Q \times_{\mathbf{P}} W$ where $(p^{\vee}: Q \times_{\mathbf{P}} W \to \mathbf{P}^{\vee}, fp: Q \times_{\mathbf{P}} W \to W \to Y)$ is C^{\vee} -transversal. Further $\mathbf{P}(C \cap C_f)$ is a subset of the inverse image of the complement of the largest open subset where f is $h^{\circ}C$ -transversal.

3. Further if dim Y = 1, the closed subset $\mathbf{P}(C \cap C_f) \subset Q \times_{\mathbf{P}} W$ is finite over W.

Proof. 1. (1) means $C \cap C_W$ is a closed subset of the zero-section and is equivalent to (2).

2. By Proposition 1.1.8, the C-transversality of $h: W \to \mathbf{P}$ implies the C^{\vee}-transversality of $Q \times_{\mathbf{P}} W \to Q$. Since $p^{\vee}: Q \to \mathbf{P}^{\vee}$ is smooth, the first assertion follows.

The largest open subset $U \subset Q \times_{\mathbf{P}} W$ is the same as that where (p^{\vee}, p) is $C^{\vee} \times C_f$ transversal. Hence, it equals the complement of $\mathbf{P}(C^{\vee}) \cap \mathbf{P}(C_f) = \mathbf{P}(C) \cap \mathbf{P}(C_f) = \mathbf{P}(C \cap C_f)$. If f is $h^{\circ}C$ -transversal, then (p^{\vee}, fp) is C^{\vee} -transversal and the last assertion follows.

3. Since dim Y = 1, the subvector bundle $C_W \subset C_f$ is of codimension 1 and the complement $\mathbf{P}(C_f) - \mathbf{P}(C_W)$ is a vector bundle over W. Since $\mathbf{P}(C \cap C_W)$ is empty by 1, the intersection $\mathbf{P}(C \cap C_f)$ is a closed subset of $\mathbf{P}(C_f - C_W)$. Hence its closed subset $\mathbf{P}(C \cap C_f)$ proper over W is finite over W.

1.3 Local acyclicity

Let $f: X \to S$ be a morphism of schemes. Let $x \to X$ and $t \to S$ be geometric points and let $S_{(s)}$ be the strict localization at the image $s = f(x) \to S$ of x. Then a specialization $x \leftarrow t$ is a lifting of $t \to S$ to $t \to S_{(s)}$.

Definition 1.3.1. Let $f: X \to S$ be a morphism of schemes and \mathcal{F} be a complex of torsion sheaves on X. We say that f is locally acyclic relatively to \mathcal{F} if for each geometric points $x \to X$ and $t \to S$ and each specialization $x \leftarrow t$, the canonical morphism $\mathcal{F}_x \to R(X_{(x)} \times_{S_{(x)}} t, \mathcal{F})$ is an isomorphism.

We say that f is universally locally acyclic relatively to \mathcal{F} , if for every morphism $S' \to S$, the base change of f is locally acyclic relatively to the pull-back of \mathcal{F} .

For geometric points s, t of S and a specialization $t \to S_{(s)}$, let $i: X_s \to X \times_S S_{(s)}$ and $j: X_t \to X \times_S S_{(s)}$ denote the canonical morphisms. Then, the local acyclity is equivalent to that the canonical morphism $i^*\mathcal{F} \to i^*Rj_*\mathcal{F}$ is an isomorphism for each s, t and $s \leftarrow t$.

If \mathcal{F} is a constructible sheaf on X, \mathcal{F} is locally constant if and only if 1_X is locally acyclic relatively to \mathcal{F} .

The local acyclicity is preserved by quasi-finite base change $S' \to S$. Hence for constructible \mathcal{F} , the universal local acyclicity is reduced to smooth base change.

Theorem 1.3.2. 1. (local acyclicity of smooth morphism) Assume that $f: X \to S$ is smooth and that \mathcal{F} is locally constant killed by an integer invertible on S. Then f is ula relatively to \mathcal{F} .

2. (generic local acyclicity) Assume that $f: X \to S$ is of finite type and that \mathcal{F} is constructible. Then, there exists a dense open subscheme $U \subset S$ such that the base change of f to U is ula relatively to the restriction of \mathcal{F} .

Corollary 1.3.3. Assume that $g: Y \to S$ is smooth, that $f: X \to Y$ is la relatively to \mathcal{F} and \mathcal{F} is killed by an integer invertible on S. Then, gf is locally acyclic relatively to \mathcal{F} .

Lemma 1.3.4. Let $f: X \to Y$ be a proper morphism of schemes over S and assume that $X \to S$ is locally acyclic relatively to \mathcal{F} . Then $Y \to S$ is locally acyclic relatively to $Rf_*\mathcal{F}$.

Proof. Proper base change theorem.

1.4 Micro support

Definition 1.4.1. Let \mathcal{F} be a constructible complex on X and $C \subset T^*X$ be a closed conical subset. We say that \mathcal{F} is micro supported on C, if for every C-transversal pair (h, f) of $h: W \to X$ and $f: W \to Y$, f is (universally) locally acyclic relatively to $h^*\mathcal{F}$.

If \mathcal{F} is micro supported on $C \subset C'$, then \mathcal{F} is micro supported on C'.

Lemma 1.4.2. If \mathcal{F} is micro supported on C, then the support of \mathcal{F} is a subset of the base B of C.

Proof. Let U = X - B. It suffices to show that $\mathcal{F}|_U = 0$. The pair $U \to X, U \to 0 \subset \mathbf{A}^1$ is *C*-transversal. Hence $U \to \mathbf{A}^1$ is locally acyclic relatively to $\mathcal{F}|_U$ and $\mathcal{F}|_U = 0$.

Lemma 1.4.3. Let $U \subset X$ be an open subscheme and A be the complement. Assume that \mathcal{F} is micro supported on C and assume that $\mathcal{F}|_U$ is micro supported on C'_U . Then \mathcal{F} is micro supported on the union of $C|_A$ and the closure C' of C'_U .

Lemma 1.4.4. Let $\rightarrow \mathcal{F}' \rightarrow \mathcal{F} \rightarrow \mathcal{F}'' \rightarrow be$ a distinguished triangle and suppose that \mathcal{F}' and \mathcal{F}'' are micro supported on C' and on C'' respectively. Then \mathcal{F} is micro supported on $C = C' \cup C''$.

Lemma 1.4.5. The following conditions are equivalent:

(1) \mathcal{F} is locally constant.

(2) \mathcal{F} is micro supported on the 0-section T_X^*X .

Proof. (h, f) is T_X^*X -transversal if and only if f is smooth.

(1) \Rightarrow (2): f is universally locally acyclic relatively to locally constant $h^*\mathcal{F}$.

 $(2) \Rightarrow (1): (1_X, 1_X)$ is T_X^*X -transversal. Hence, 1_X is locally acyclic relatively to \mathcal{F} and \mathcal{F} is locally constant.

Lemma 1.4.6. Any constructible \mathcal{F} is micro supported on T^*X .

Proof. Suppose (h, f) is T^*X -transversal. Then $W \to X \times Y$ is smooth. Locally, $W \to Y$ is the composition of an étale morphism $W \to X \times \mathbf{A}^n \times Y$ with the projection $X \times \mathbf{A}^n \times Y \to Y$. Hence the local acyclicity follows from the generic local acyclicity and Corollary 1.3.3.

Lemma 1.4.7. Assume that \mathcal{F} is micro supported on C.

1. If $h: W \to X$ is C-transversal, then $h^* \mathcal{F}$ is micro supported on $h^\circ C$.

2. If $f: X \to Y$ is proper on the base of C, then $Rf_*\mathcal{F}$ is micro supported on $f_\circ C$.

Proof. 1. Suppose $g: V \to W, f: V \to Y$ is $h^{\circ}C$ -transversal. Then, (hg, f) is C-transversal and f is locally acyclic relatively to $(hg)^*\mathcal{F}$.

2. Suppose $h: W \to Y, g: W \to Z$ is $f_{\circ}C$ -transversal. Then, $h_X: W \times_Y X \to X, g \circ f_W: W \times_Y X \to W \to Z$ is C-transversal and $h_X^* \mathcal{F}$ is locally acyclic relatively to $g \circ f_W$. Hence $h^*Rf_*\mathcal{F} = Rf_{W*}h_X^*\mathcal{F}$ is locally acyclic relatively to g.

1.5 Singular support

Definition 1.5.1. We say that $C \subset T^*X$ is the singular support of \mathcal{F} if for $C' \subset T^*X$, the inclusion $C \subset C'$ is equivalent to the condition that \mathcal{F} is micro supported on C.

Lemma 1.5.2. Let \mathcal{F} be a constructible sheaf on X.

1. Let $U \subset X$ be an open subscheme. Assume that $C \subset T^*X$ is the singular support of \mathcal{F} . Then, $C|_U$ is the singular support of $\mathcal{F}|_U$.

2. Let (U_i) be an open covering of X and C_i be the singular support of $\mathcal{F}|_{U_i}$. Then, $C = \bigcup_i C_i$ is the singular support of \mathcal{F} .

Lemma 1.5.3. Let $i: X \to P$ be a closed immersion. Assume that $C_P \subset T^*P$ is the singular support of $i_*\mathcal{F}$.

1. C_P is a subset of $T^*P|_X$ and its image $C \subset T^*X$ is the singular support of \mathcal{F} .

2. We have $C_P = i_{\circ}C$.

Proof. 1. By Lemma 1.4.3, C_P is a subset of $T^*P|_X$.

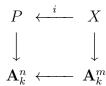
To show C = SSF, it suffices to show the following:

(1) If \mathcal{F} is micro supported on C', we have $C \subset C'$.

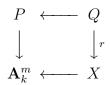
(2) C is closed and \mathcal{F} is micro supported on C.

We show (1). Suppose \mathcal{F} is micro supported on C'. Then by Lemma ??, $i_*\mathcal{F}$ is micro supported on $i_\circ C'$. Since C_P is the smallest, we have $C_P \subset i_\circ C'$ and hence $C \subset C'$.

We show (2). Since the assertion is local, we may assume that there exists a cartesian diagram



such that the vertical arrows are isomorphism. Then, by choosing a projection $\mathbf{A}_k^n \to \mathbf{A}_k^m$ inducing the identity on \mathbf{A}_k^m , we obtain a cartesian diagram



where the horizontal arrows are étale. The immersion $X \to P$ induces a section $i': X \to Q$. Since $h: Q \to P$ is étale, $i'_*\mathcal{F}$ is micro supported on $h^\circ C_P$. By Lemma ??, $\mathcal{F} = r_*j_*\mathcal{F}$ is micro supported on $C_r = r_\circ h^\circ C_P$. Hence by (1), we have $C \subset C_r$. Since $C_r \subset C$, we have $C_r = C$ and C is closed and \mathcal{F} is micro supported on $C = C_r$.

2. By the proof of (2), we have $C = C_{r'}$ for any projection r'. If k is infinite, this implies $C_P = i_{\circ}C$.

Theorem 1.5.4. (Beilinson) SSF exists.

Proof will be given at the end of next section.

Theorem 1.5.5. (Beilinson) 1. dim $E \leq \dim \mathbf{P} - 1$.

2. Every irreducible component of E has dim $\mathbf{P} - 1$.

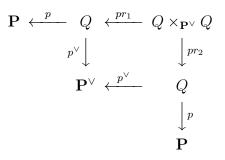
1.6 Radon transform

We define the naive Radon transform $R\mathcal{F}$ to be $Rp_*^{\vee}p^*\mathcal{F}$ and the naive inverse Radon transform $R^{\vee}\mathcal{G}$ to be $Rp_*p^{\vee*}\mathcal{G}$.

Proposition 1.6.1. There exists a distinguished triangle

$$\to \bigoplus_{q=0}^{n-2} R\Gamma(\mathbf{P}_{\bar{k}}, \mathcal{F})(q)[2q] \to R^{\vee}R\mathcal{F} \to \mathcal{F}(n-1)[2(n-1)] \to .$$

Proof. By the cartesian diagram



and the proper base change theorem, we have a canonical isomorphism

$$R^{\vee}R\mathcal{F} \to Rpr_{2*}(pr_1^*\mathcal{F} \otimes R(p \times p)_*\Lambda_{Q \times_{\mathbf{P}^{\vee}}Q})$$

for $p \times p \colon Q \times_{\mathbf{P}^{\vee}} Q \to \mathbf{P} \times \mathbf{P}$.

We compute $R(p \times p)_* \Lambda_{Q \times_{\mathbf{P}^{\vee}} Q}$. The closed scheme $Q \times_{\mathbf{P}^{\vee}} Q \subset \mathbf{P} \times \mathbf{P} \times \mathbf{P}^{\vee}$ is the \mathbf{P}^{n-1} -bundle Q on the diagonal $\mathbf{P} \subset \mathbf{P} \times \mathbf{P}$. On the complement $\mathbf{P} \times \mathbf{P} - \mathbf{P}$, it is a sub \mathbf{P}^{n-2} -bundle. Hence, we have a distinguished triangle

$$\to \tau_{\leq 2(n-2)} R\Gamma(\mathbf{P}_{\bar{k}}^{\vee}, \Lambda) \otimes \Lambda_{\mathbf{P} \times \mathbf{P}} \to R(p \times p)_* \Lambda_{Q \times_{\mathbf{P}^{\vee} Q}} \to \Lambda_{\mathbf{P}}(n-1)[2(n-1)] \to .$$

Proposition 1.6.2. For \mathcal{G} on \mathbf{P}^{\vee} and $C^{\vee} \subset T^*\mathbf{P}^{\vee}$, we have implications $(1) \Rightarrow (2) \Rightarrow (3)$.

- (1) \mathcal{G} is micro supported on C^{\vee} .
- (2) p is universally locally acyclic relatively to $p^{\vee *}\mathcal{G}$ outside $E = \mathbf{P}(C^{\vee})$.
- (3) $R^{\vee}\mathcal{G}$ is micro supported on C^+ .

Proof. (1) \Rightarrow (2): Since $p^{\vee}: Q \to \mathbf{P}^{\vee}, p: Q \to \mathbf{P}$ is C^{\vee} -transversal outside $E = \mathbf{P}(C^{\vee}), p$ is universally locally acyclic relatively to $p^{\vee *}\mathcal{G}$ outside E.

(2) \Rightarrow (3): Assume $h: W \to \mathbf{P}, f: W \to Y$ is C^+ -transversal. We consider the cartesian diagram

$$\mathbf{P}^{\vee} \xleftarrow{p^{\vee}} Q \xleftarrow{h'} Q_{W}$$

$$\stackrel{p}{\qquad } \Box \qquad \downarrow^{p'}$$

$$\mathbf{P} \xleftarrow{h} W$$

$$\qquad \qquad \downarrow^{f}$$

$$\mathbf{V}$$

We first show that $fp': Q_W \to Y$ is locally acyclic relatively to $\mathcal{G}_{Q_W} = h'^* p^{\vee *} \mathcal{G}$. By (2), $p': Q_W \to W$ is locally acyclic relatively to \mathcal{G}_{Q_W} outside the inverse image $E_W \subset Q_W$ of E. By Corollary 1.2.6, $f: W \to Y$ is smooth and $Q_W \to \mathbf{P}^{\vee} \times Y$ is smooth on the inverse image E_W .

Hence by Corollary 1.3.3, $fp': Q_W \to Y$ is locally acyclic relatively to \mathcal{G}_{Q_W} outside E_W . Further by the generic local acyclicity and Corollary 1.3.3, $fp': Q_W \to Y$ is locally acyclic relatively to \mathcal{G}_{Q_W} on a neighborhood of E_W . Thus, $fp': Q_W \to Y$ is locally acyclic relatively to \mathcal{G}_{Q_W} . Hence by Lemma, $f: W \to Y$ is locally acyclic relatively to $\mathcal{R}p'_*\mathcal{G}_{Q_W} = h^*R^{\vee}\mathcal{G}$.

Proof of Theorem 1.5.4. It is reduced to the case X is affine, an affine space and then a projective space.

Let $E \subset Q$ be the smallest closed subset such that $p: Q \to \mathbf{P}$ is universally locally acyclic relatively to $p^{\vee *}R\mathcal{F}$ on the complement Q - E. Let $C \subset T^*\mathbf{P}$ be the closed conical subset defined by E. Then, by ??, $R^{\vee}R\mathcal{F}$ is micro supported on C^+ . Hence by ??, \mathcal{F} is also micro supported on C^+ .

Let $U = \mathbf{P} - B$ be the complement of the base of C. Then, since $C^+ \cap T^*U = T_U^*U$, the restriction $\mathcal{F}|_U$ is locally constant. If $\mathcal{F}|_U = 0$, \mathcal{F} is micro supported on C. We show that C is the singular support of \mathcal{F} if $\mathcal{F}|_U = 0$ and that C^+ is the singular support of \mathcal{F} if otherwise.

Suppose \mathcal{F} is micro supported on C'. Then by (1) \Rightarrow (3), $\mathcal{G} = R\mathcal{F}$ is micro supported on $C'^{\vee+}$. Hence by (1) \Rightarrow (2), $p: Q \rightarrow \mathbf{P}$ is universally locally acyclic relatively to $p^{\vee*}\mathcal{G}$ outside $E' = \mathbf{P}(C'^{\vee}) = \mathbf{P}(C')$. Since E is the smallest, we have $E \subset E'$ and hence $C \subset C'$. If $\mathcal{F}|_U \neq 0$, we have supp $\mathcal{F} = \mathbf{P}$ and hence $T^*_{\mathbf{P}}\mathbf{P} \subset C'$ and $C^+ \subset C'$.