Normal and core reduction numbers ${ }^{1}$

Tomohiro Okuma (Yamagata University) Kei-ichi Watanabe (Nihon University)
Ken-ichi Yoshida (Nihon University)

Throughout this note, let (A, \mathfrak{m}) be a two-dimensional excellent normal local domain containing an algebraically closed residue field $k=\bar{k} \cong A / \mathfrak{m}$ unless otherwise specified. Then there exists a resolution of singularity $Y \rightarrow \operatorname{Spec} A$. Then $p_{g}(A)=\ell_{A}\left(H^{1}\left(Y, \mathcal{O}_{Y}\right)\right)$ is called the geometric genus of A, which is independent on the choice of resolution of singularities. This invariant plays a key role in our argument.

1. GEOMETRIC GENUS AND NORMAL REDUCTION NUMBER

Throughout this section, let (A, \mathfrak{m}) be a two-dimensional excellent normal local domain with algebraically closed residue field k, and let $I \subset A$ be an \mathfrak{m}-primary integrally closed ideal. Then there exists a resolution of singularity $X \rightarrow \operatorname{Spec} A$ and an anti-nef cycle Z on X so that $I \mathcal{O}_{X}=\mathcal{O}_{X}(-Z)$ and $I=H^{0}\left(\mathcal{O}_{X}(-Z)\right)$. The ideal I is represented by Z on X which is denoted by $I=I_{Z}$. Then $\overline{I^{n}}=I_{n Z}$.

We recall the definition of normal reduction numbers. In what follows, we always assume that $I=I_{Z}$.

Definition 1.1 (Normal reduction number). Let Q be a minimal reduction of I, that is, $Q \subset I$ is a parameter ideal and there exists a positive integer n such that $I^{n+1}=Q I^{n}$. Then

$$
\operatorname{nr}(I)=\inf \left\{n \in \mathbb{Z} \mid \overline{I^{n+1}}=Q \overline{I^{n}}\right\}
$$

is independent on the choice of Q by Huneke [6, Theorem 4.5] and so we call it the normal reduction number of I. Moreover, we can define

$$
\operatorname{nr}(A)=\max \{\operatorname{nr}(I) \mid I \text { is a m-primary integrally closed ideal of } A\}
$$

which is called the normal reduction number of A.
Remark 1.2. Put $\bar{r}(I)=\inf \left\{n \in \mathbb{Z} \mid \overline{I^{N+1}}=Q \overline{I^{N}}(\forall N \geq n)\right\}$. In general, Lemma 2.1 and Lemma 2.3 imply $\operatorname{nr}(I)=\bar{r}(I)$ in our case. But we do not know whether equality holds true for higher-dimensional case.

The notion of "core" was introduced by Rees and Sally [18], and their properties have been studied by Corso-Ulrich, Huneke-Swanson, Huneke-Trung, Hyry-Smith, PoliniUlrich and so on; e.g. $[1,2,7,8,9]$. The core of I is defined as follows:

$$
\operatorname{core}(I)=\bigcap_{Q: \text { a reduction of } I} Q
$$

In general, it is not so easy to calculate core (I), but in the case of stable ideals, it is easy to compute.

[^0]Lemma $1.3([2,8,9])$. If $I^{2}=Q I$ holds true for some minimal reduction Q of I, then $\operatorname{core}(I)=(Q: I) I$.

Let us introduce the following notion.
Definition 1.4 (Normal core reduction number). Let I be an \mathfrak{m}-primary ideal of A. Then the core reduction number (resp. the normal core reduction number) is defined by

$$
\begin{aligned}
\operatorname{cr}(I) & =\min \left\{n \in \mathbb{Z} \mid I^{n+1} \subset \operatorname{core}(Q)\right\}, \\
\operatorname{ncr}(I) & =\min \left\{n \in \mathbb{Z} \mid \overline{I^{n+1}} \subset \operatorname{core}(Q)\right\},
\end{aligned}
$$

respectively. Moreover, we define

$$
\operatorname{ncr}(A)=\sup \{\operatorname{ncr}(I) \mid I \text { is an } \mathfrak{m} \text {-primary ideal with } \bar{I}=I\}
$$

which is called the normal core reduction number of A.
The main aim of this talk is to evaluate $\operatorname{nr}(A), \operatorname{ncr}(A)$ in terms of geometric invariants.
Example 1.5. Let A be as above. Then
(1) $\operatorname{nr}(A)=0$ if and only if A is regular (see [3]).
(2) $\operatorname{nr}(A)=1$ if and only if A is a rational singularity which is not regular (see [10]).
(3) If A is an elliptic singularity, then $\operatorname{nr}(A)=2$. How about the converse? (see Okuma [11])
The following theorem is motivated by the previous example.
Theorem 1.6. For any \mathfrak{m}-primary integrally closed ideal $I \subset A$ with $r=\operatorname{nr}(I)$, we have

$$
p_{g}(A) \geq\binom{ r}{2}+\ell_{A}\left(H^{1}\left(X, \mathcal{O}_{X}(-r Z)\right)\right)
$$

In particular, $p_{g}(A) \geq\binom{\operatorname{nr}(A)}{2} \geq\binom{\operatorname{ncr}(A)}{2}$.
In the next section, we give a proof of this theorem.

2. Proof of Main theorem

Throughout this section, let $I=I_{Z}$ be an \mathfrak{m}-primary integrally closed ideal in a a two-dimensional excellent normal local domain (A, \mathfrak{m}) with algebraically closed residue field k. For a given ideal I, we define a function $q: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ as follows:

$$
q(k):=q(k I):=\ell_{A}\left(H^{1}\left(X, \mathcal{O}_{X}(-k Z)\right) .\right.
$$

By definition, we put $q(0)=p_{g}(A)$ and $q(I)=q(1 I)$. Note that $q(n I)=q\left(\overline{I^{n}}\right)$ for every integer $n \geq 1$.

Let us recall the following fundamental properties of $q(k I)$.
Lemma 2.1 ($[12,13])$. The following statements hold.
(1) $0 \leq q(I) \leq p_{g}(A)$. If $q(I)=p_{g}(A)$ holds true, then I is said to be a p_{g}-ideal.
(2) The function $q(\cdot I)$ is decreasing: $q(k I) \geq q((k+1) I)$ for every integer $k \geq 1$.
(3) The function $q(\cdot I)$ stabilize: there exists an integer $n_{0}=n_{0}(I)\left(0 \leq n_{0} \leq p_{g}(A)\right)$ such that $q(n I)=q\left(n_{0} I\right)$ for $n \geq n_{0}$.

The \mathfrak{m}-primary ideal I is called good (in the sense of Goto-Iai-Watanabe [4]) if $I^{2}=Q I$ and $I=Q: I$ for some (every) minimal reduction Q of I.

Example 2.2 ($[12,14])$. Any two-dimensional excellent normal local domain over $k=$ $A / \mathfrak{m}=\bar{k}$ admits a p_{g}-ideal. If, in addition, A is not regular, then A admits a good p_{g}-ideal.

In order to prove Theorem 1.6, we need the following lemma.
Lemma 2.3. For any integer $n \geq 1$, we have

$$
2 \cdot q(n I)+\ell_{A}\left(\overline{I^{n+1}} / Q \overline{I^{n}}\right)=q((n+1) I)+q((n-1) I) .
$$

Proof. It follows from the following exact sequence:
$0 \rightarrow \overline{I^{n+1}} / Q \overline{I^{n}} \rightarrow H^{1}\left(\mathcal{O}_{X}(-(n-1) Z)\right) \rightarrow H^{1}\left(\mathcal{O}_{X}(-n Z)\right)^{\oplus 2} \rightarrow H^{1}\left(\mathcal{O}_{X}(-(n+1) Z)\right) \rightarrow 0$.

Proof of Theorem 1.6. Suppose $\operatorname{nr}(I)=r$. Then since $\ell_{A}\left(\overline{I^{k+1}} / Q \overline{I^{k}}\right) \geq 1$ for every $k=$ $1,2, \ldots, r-1$ and $\ell\left(\overline{I^{r+1}} / Q \overline{I^{r}}\right)=0$, we have

$$
\begin{aligned}
q((r-1) I)-q(r I) & =q(r I)-q((r+1) I), \\
q((r-2) I)-q((r-1) I) & \geq q((r-1) I)-q(r I)+1, \\
q((r-3) I)-q((r-2) I) & \geq q((r-2) I)-q((r-1) I)+1, \\
& \vdots \\
q(0 I)-q(1 I) & \geq q(1 I)-q(2 I)+1 .
\end{aligned}
$$

Thus if we put $a_{k}=q((r-k) I)$ for $k=1, \ldots, r$, then we get

$$
\begin{aligned}
a_{k}-a_{k-1} & \geq a_{k-1}-a_{k-2}+1 \\
& \geq a_{k-2}-a_{k-3}+2 \\
& \geq \cdots \\
& \geq\left\{a_{1}-a_{0}\right\}+(k-1) \geq k-1 .
\end{aligned}
$$

Hence

$$
p_{g}(A)=a_{r}=\sum_{k=1}^{r}\left(a_{k}-a_{k-1}\right)+a_{0} \geq \sum_{k=1}^{r}(k-1)+a_{0}=\frac{r(r-1)}{2}+q(r I),
$$

as required. In particular, we have $p_{g}(A) \geq\binom{ r}{2}$.
On the other hand, for any minimal reduction Q of I, we get $\overline{I^{r+1}}=Q \overline{I^{r}} \subset Q$, which shows $\overline{I^{r+1}} \subset$ core (I). Hence $r \geq \operatorname{ncr}(I)$. This yields that $\operatorname{nr}(I) \geq \operatorname{ncr}(I)$. Hence $\operatorname{nr}(A) \geq \operatorname{ncr}(A)$. Hence $p_{g}(A) \geq\binom{\operatorname{nr}(A)}{2} \geq\binom{\operatorname{ncr}(A)}{2}$.

The above theorem gives a best possible bound. In fact, we have the following example. See the next subsection for more details.

Example 2.4. Let $r \geq 1$ be an integer. Let $A=\mathbb{C}[[x, y, z]] /\left(x^{2}+y^{2 r}+z^{2 r}\right)$. Then $\operatorname{nr}(A)=\operatorname{nr}(\mathfrak{m})=r$ and

$$
p_{g}(A)=\binom{r}{2}=\binom{\operatorname{nr}(A)}{2}=\binom{\operatorname{ncr}(A)}{2} .
$$

In particular, we consider the case of $r=2$. Let $I \subset A$ be an \mathfrak{m}-primary integrally closed ideal. Then $0 \leq q(I) \leq p_{g}(A)=1$ implies $q(I)=0$ or $q(I)=1$.

If $q(I)=0$, then $q(2 I)=q(3 I)=\cdots=0$ by Lemma 2.1. Then by Lemma 2.3 we get

$$
\begin{aligned}
\ell_{A}\left(\overline{I^{2}} / Q I\right) & =2 \cdot q(I)+\ell_{A}\left(\overline{I^{2}} / Q I\right)=q(2 I)+p_{g}(A)=1, \\
\ell_{A}\left(\overline{I^{k+1}} / Q \overline{I^{k}}\right) & =2 \cdot q(k I)+\ell_{A}\left(\overline{I^{k+1}} / Q \overline{I^{k}}\right)=q((k+1) I)+q((k-1) I)=0 \quad \text { for } k \geq 2 .
\end{aligned}
$$

Hence $\operatorname{nr}(I)=\bar{r}(I)=2$.
On the other hand, if $q(I)=1$, then I is a p_{g}-ideal and hence $\overline{I^{k+1}}=Q \overline{I^{k}}$ for every $k \geq 1$ and $q(I)=q(2 I)=\cdots=p_{g}(A)=1$. That is, $\operatorname{nr}(I)=\bar{r}(I)=1$.

For instance, $\mathfrak{m}=(x, y, z)$ satisfies $q(\mathfrak{m})=0$ and $I=\left(x^{2}, y, z\right)$ satisfies $q(I)=1$.

3. Normal reduction numbers of hypersurfaces of Fermat type

In what follows, let $R=\mathbb{C}[x, y, z] /\left(z^{2}+x^{a}+y^{b}\right)$ be a hypersurface with $2 \leq a \leq b$. Put $\mathfrak{m}=(x, y, z) A$ and $r=\left\lfloor\frac{a}{2}\right\rfloor$. Then the \mathfrak{m}-adic completion $A=\widehat{R_{\mathfrak{m}}}$ is a two-dimensional excellent normal local domain. Put $Q=(x, y)$. This gives a minimal reduction of \mathfrak{m}. Also we put $F_{k}=\overline{\mathfrak{m}^{k}}$ for every integer $k \geq 1$. First we calculate $\ell_{A}\left(F_{k+1} / Q F_{k}\right)$ for all $k \geq 0$. In order to do that we determine the normalization of the extended Rees algebra $\mathcal{R}^{\prime}(\mathfrak{m})=A\left[\mathfrak{m} t, t^{-1}\right]$

Lemma 3.1. The normalization of $\mathcal{R}^{\prime}=\mathcal{R}^{\prime}(\mathfrak{m})=A\left[x t, y t, z t, t^{-1}\right]$ is given by

$$
\overline{\mathcal{R}^{\prime}}=\mathcal{R}^{\prime}\left[z t^{2}, \ldots, z t^{r}\right] \cong \begin{cases}\mathbb{C}[X, Y, Z, U] /\left(Z^{2}+X^{2 r}+Y^{b} U^{b-2 r}\right) & \text { if } a=2 r, \\ \mathbb{C}[X, Y, Z, U] /\left(Z^{2}+X^{2 r+1} U+Y^{b} U^{b-2 r}\right) & \text { if } a=2 r+1\end{cases}
$$

Proof. Put $X=x t, Y=y t, Z=z t^{r}, U=t^{-1} \in Q\left(\mathcal{R}^{\prime}\right)$. Then $S=\mathbb{C}\left[x t, y t, z t, t^{-1}, z t^{2}, \ldots, z t^{r}\right]$ is generated by X, Y, Z and U as \mathbb{C}-algebra because $z t^{i}=Z U^{r-i}$ for each $i=0,1, \ldots, r-$ 1. Note that $a=2 r$ or $a=2 r+1$ by definition.

- The case of $a=2 r$

Then we have

$$
Z^{2}=\left(z t^{r}\right)^{2}=z^{2} t^{2 r}=-x^{2 r} t^{2 r}-y^{b} t^{2 r}=-X^{2 r}-Y^{b} U^{b-2 r},
$$

that is, $F:=Z^{2}+X^{2 r}+Y^{b} U^{b-2 r}=0$ in S. Clearly, $Z^{2}+X^{2 r}+Y^{b} U^{b-2 r}$ is a prime element of $\mathbb{C}[X, Y, Z, U]$ and thus $\operatorname{dim} \mathbb{C}[X, Y, Z, U] /(F)=3$. On the other hand, since $\operatorname{dim} \overline{\mathcal{R}^{\prime}}=\operatorname{dim} \mathcal{R}^{\prime}=3$ and S is a homomorphic image of $\mathbb{C}[X, Y, Z, U] /(F)$, we can prove that $S \cong \mathbb{C}[X, Y, Z, U] /(F)$.

So it is enough to show that S is normal. The Jacobian ideals of S is

$$
\begin{aligned}
J(F) & =\left(\frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}, \frac{\partial F}{\partial Z}, \frac{\partial F}{\partial U}\right) \\
& =\left(2 r X^{2 r-1}, b Y^{b-1} U^{b-2 r}, 2 Z,(b-2 r) Y^{b} U^{b-2 r-1}\right) \\
& = \begin{cases}\left(Z, X^{2 r-1}, Y^{b-1} U^{b-2 r}, Y^{b} U^{b-2 r-1}\right) & \text { if } b \geq 2 r+1, \\
\left(Z, X^{2 r-1}, Y^{2 r-1}\right), & \text { if } b=2 r .\end{cases}
\end{aligned}
$$

Since S is Cohen-Macaulay and height $J(F)=2, S$ is normal.

- The case of $a=2 r+1$

Then we have

$$
Z^{2}=\left(z t^{r}\right)^{2}=-x^{2 r+1} t^{2 r}-z^{b} t^{2 r}=-X^{2 r+1} U-Y^{b} U^{b-2 r},
$$

that is, $F_{o}:=Z^{2}+X^{2 r+1} U+Y^{b} U^{b-2 r}=0$ in S. Similar argument implies that $S \cong$ $\mathbb{C}[X, Y, Z, U] /\left(F_{o}\right)$.

So it is enough to show that S is normal. The Jacobian ideals of S is

$$
\begin{aligned}
J\left(F_{o}\right) & =\left(\frac{\partial F_{o}}{\partial X}, \frac{\partial F_{o}}{\partial Y}, \frac{\partial F_{o}}{\partial Z}, \frac{\partial F_{o}}{\partial U}\right) \\
& =\left(2 Z,(2 r+1) X^{2 r} U, b Y^{b-1} U^{b-2 r}, \quad X^{2 r+1}+(b-2 r) Y^{b} U^{b-2 r-1}\right) \\
& = \begin{cases}\left(Z, X^{2 r} U, Y^{b-1} U^{b-2 r}, X^{2 r+1}+(b-2 r) Y^{b} U^{b-2 r-1}\right) & \text { if } b \geq 2 r+2, \\
\left(Z, X^{2 r} U, Y^{2 r} U, X^{2 r+1}+Y^{2 r+1}\right) & \text { if } b=2 r+1 .\end{cases}
\end{aligned}
$$

Suppose $b \geq 2 r+2$ and $P \in \operatorname{Spec} K[X, Y, Z, U]$ such that

$$
P \supset\left(Z, X^{2 r} U, Y^{b-1} U^{b-2 r}, X^{2 r+1}+(b-2 r) Y^{b} U^{b-2 r-1}\right)
$$

If $U \notin P$, then $(X, Y, Z) \subset P$. Otherwise, $(X, Z, U) \subset P$. Hence height $J\left(F_{o}\right) \geq 2$.
Next suppose $b=2 r+1$ and $P \in \operatorname{Spec} K[X, Y, Z, U]$ such that

$$
P \supset\left(Z, X^{2 r} U, Y^{2 r} U, X^{2 r+1}+Y^{2 r+1}\right) .
$$

If $U \notin P$, then $(X, Y, Z) \subset P$. Otherwise, $(Z, U) \subset P$ and $X^{2 r+1}+Y^{2 r+1} \in P$. Take ω as one of $(2 r+1)$-th primitive roots of unity. Hence $\left(Z, U, X+\omega^{i} Y\right) \subset P$. Therefore height $J\left(F_{o}\right) \geq 2$ and S is normal.

Lemma 3.2. We have $F_{k}=z \mathfrak{m}^{k-r}+\mathfrak{m}^{k}$ for every $k \geq 1$ and $\operatorname{nr}(\mathfrak{m})=\bar{r}(\mathfrak{m})=r$. Furthermore, we get

$$
\left\{\begin{array}{l}
\ell_{A}\left(F_{2} / Q F_{1}\right)=\ell_{A}\left(F_{3} / Q F_{2}\right)=\cdots=\ell_{A}\left(F_{r} / Q F_{r-1}\right)=1, \\
\ell_{A}\left(F_{r+1} / Q F_{r}\right)=\ell_{A}\left(F_{r+2} / Q F_{r+1}\right)=\cdots=0 .
\end{array}\right.
$$

Proof. By the previous lemma, $A[\mathfrak{m} t]\left[z t^{2}, \ldots, z t^{r}\right]=A\left[x t, y t, z t, \ldots, z t^{r}, t^{-1}\right] \cap A[t]$ is normal. From this, one can easily see that $F_{k}=z \mathfrak{m}^{k-r}+\mathfrak{m}^{k}$ for every $k \geq 1$, where $\mathfrak{m}^{n}=A$ for each $n \leq 0$.

We will show that $\ell_{A}\left(F_{k+1} / Q F_{k}\right)=1$ for each $k=1,2, \ldots, r-1$. For such an integer k, we have $z^{2} \in \mathfrak{m}^{2 r} \subset \mathfrak{m}^{k+1}$. Thus

$$
z \mathfrak{m}+\mathfrak{m}^{k+1}=z Q+\mathfrak{m}^{k+1}=z Q+Q \mathfrak{m}^{k}=Q\left(z A+\mathfrak{m}^{k}\right)=Q F_{k} .
$$

It follows that $F_{k+1}=z A+Q F_{k}$ and $z \mathfrak{m} \subset Q F_{k}$. Hence $\ell_{A}\left(F_{k+1} / Q F_{k}\right)=1$ because $z \notin Q F_{k}$.

Next we will show that $F_{k+1}=Q F_{k}$ for every $k \geq r$. Since $z^{2} \in \mathfrak{m}^{2 r}$, we get

$$
\begin{aligned}
Q F_{k} & =(x, y)\left(z \mathfrak{m}^{k-r}+\mathfrak{m}^{k}\right) \\
& =z(x, y) \mathfrak{m}^{k-r}+Q \mathfrak{m}^{k} \\
& =\left(z^{2}, x z, y z\right) \mathfrak{m}^{k-r}+\mathfrak{m}^{k+1} \\
& =z \mathfrak{m}^{k+1-r}+\mathfrak{m}^{k+1}=F_{k+1},
\end{aligned}
$$

as required. By definition, we have $\operatorname{nr}(\mathfrak{m})=\bar{r}(\mathfrak{m})=r$.

By virtue of the previous lemma, we can determine $q(i \mathfrak{m})$ completely in our case.
Theorem 3.3. Put $p=p_{g}(A)$. Then we have

$$
q(i \mathfrak{m})= \begin{cases}p-i(r-1)+\binom{i}{2} & 1 \leq i \leq r-1 ; \\ p-\binom{r}{2} & i \geq r .\end{cases}
$$

In particular, $q(\mathfrak{m})=p-(r-1)$. Moreover, for all $n \geq r-1$, we get

$$
\ell_{A}\left(A / \overline{\mathfrak{m}^{n+1}}\right)=2 \cdot\binom{n+2}{2}-r \cdot\binom{n+1}{1}+\binom{r}{2}
$$

In particular, we have

$$
e_{0}(\mathfrak{m})=2, \quad e_{1}(\mathfrak{m})=r, \quad e_{2}(\mathfrak{m})=\binom{r}{2} .
$$

Proof. Put $k=p-q(\mathfrak{m}) \geq 0$. Then we prove the following claim.
Claim 1: $q(i \mathfrak{m})=p-i k+\binom{i}{2}$ for all $i=1,2, \ldots, r$.
Use an induction on i. It is easy to check the case of $i=1$. Now suppose $2 \leq i+1 \leq r$, and the above equation holds true for $j \leq i$. Then by assumption, we get

$$
\begin{aligned}
q((i+1) \mathfrak{m}) & =2 \cdot q(i \mathfrak{m})-q((i-1) \mathfrak{m})+\ell_{A}\left(F_{i+1} / Q F_{i}\right) \\
& =2\left[p-i k+\binom{i}{2}\right]-\left[p-(i-1) k+\binom{i-1}{2}\right]+1 \\
& =p-(i+1) k+\binom{i+1}{2}
\end{aligned}
$$

Next we show that
Claim 2: $q((r+i) \mathfrak{m})=p-r k+\binom{r}{2}+i(r-1-k)$ for all $i=1,2, \ldots$.

Use an induction on i. When $i=1$, we have

$$
\begin{aligned}
q((r+1) \mathfrak{m}) & =2 \cdot q(r \mathfrak{m})-q((r-1) \mathfrak{m})+\ell_{A}\left(F_{r+1} / Q F_{r}\right) \\
& =2\left[p-r k+\binom{r}{2}\right]-\left[p-(r-1) k+\binom{r-1}{2}\right] \\
& =p-(r+1) k+\binom{r+1}{2}-1 \\
& =p-r k+\binom{r}{2}+(r-1-k)
\end{aligned}
$$

as required. Now suppose $i \geq 2$ and the above equation holds true for any $j \leq i$. Then we have

$$
\begin{aligned}
q((r+i+1) \mathfrak{m})= & 2 \cdot q((r+i) \mathfrak{m})-q((r+i-1) \mathfrak{m})+\ell_{A}\left(F_{r+i+1} / Q F_{r+i}\right) \\
= & 2\left[p-r k+\binom{r}{2}+i(r-1-k)\right] \\
& \quad-\left[p-r k+\binom{r}{2}+(i-1)(r-1-k)\right] \\
= & p-r k+\binom{r}{2}+(i+1)(r-1-k) .
\end{aligned}
$$

Since $q(i \mathfrak{m})$ is stable for sufficiently large i, we obtain that $k=r-1$. Indeed, if $k \leq r-2$, then $q((k+2) \mathfrak{m})>q((k+1) \mathfrak{m})$. On the other hand, if $k \geq r$, then $q(i \mathfrak{m})$ becomes strictly decreasing function on i. This is a contradiction. Hence $k=r-1$. Thus

$$
q(i \mathfrak{m})= \begin{cases}p-i(r-1)+\binom{i}{2} & 1 \leq i \leq r-1 \\ p-\binom{r}{2} & i \geq r .\end{cases}
$$

By [13], we obtain

$$
\bar{e}_{1}(\mathfrak{m})=e_{0}(\mathfrak{m})-\ell_{A}(A / \mathfrak{m})+\left[p_{g}(A)-q(\mathfrak{m})\right]=2-1+[p-(p-(r-1))]=r
$$

and

$$
\bar{e}_{2}(\mathfrak{m})=p-q(r \mathfrak{m})=p-\left[p-\binom{r}{2}\right]=\binom{r}{2} .
$$

On the other hand,

$$
\ell_{A}\left(A / \overline{\mathfrak{m}^{n+1}}\right)=2 \cdot\binom{n+2}{2}-r \cdot\binom{n+1}{1}+p-q((n+1) \mathfrak{m})
$$

Thus $P_{\mathfrak{m}}(n)=H_{\mathfrak{m}}(n)$ if and only if $n \geq r-1$.
In the last of this section, we calculate the geometric genus of A. We regard $R=$ $\mathbb{C}[X, Y, Z] /\left(Z^{2}-X^{a}-Y^{b}\right)$ as a graded ring by $\operatorname{deg} Z=a b=: q_{0}, \operatorname{deg} X=2 b=: q_{1}$,
$\operatorname{deg} Y=2 a:=q_{2}$. If we put $D=2 a b$, then the a-invariant of R is given by $a(R)=$ $D-q_{0}-q_{1}-q_{2}$. Then we can calculate the geometric genus of A by

$$
\begin{aligned}
p_{g}(A) & =\sum_{n=0}^{a(R)} \operatorname{dim}_{\mathbb{C}} R_{n} \\
& =\sharp\left\{\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}_{\geq 0}^{3} \mid D-\left(q_{0}+q_{1}+q_{2}\right) \geq \lambda_{0} q_{0}+\lambda_{1} q_{1}+\lambda_{2} q_{2}\right\} .
\end{aligned}
$$

In this case, we have

$$
\begin{aligned}
p_{g}(A) & =\sharp\left\{\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}_{\geq 0}^{3} \mid 2 a b-a b-2 b-2 a \geq a b \lambda_{0}+2 b \lambda_{1}+2 a \lambda_{2}\right\} \\
& =\sharp\left\{\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}_{\geq 0}^{3} \mid a b-2 b-2 a \geq a b \lambda_{0}+2 b \lambda_{1}+2 a \lambda_{2}\right\} .
\end{aligned}
$$

Then one can easily see that $\lambda_{0}=0$. Hence

$$
\begin{equation*}
p_{g}(A)=\sharp\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}_{\geq 0}^{2} \mid a b-2 a-2 b \geq 2 b \lambda_{1}+2 a \lambda_{2}\right\} . \tag{3.1}
\end{equation*}
$$

Example 3.4. Let $p \geq 1$ be an integer. Let $A=\mathbb{C}[[x, y, z]] /\left(x^{2}+y^{3}+z^{6 p+1}\right)$. Then $p_{g}(A)=p$ and $\operatorname{nr}(\mathfrak{m})=1$.

Example 3.5. Let $p \geq 1$ be an integer. Let $A=\mathbb{C}[[x, y, z]] /\left(x^{2}+y^{4}+z^{4 p+1}\right)$. Then $p_{g}(A)=p$ and $\operatorname{nr}(\mathfrak{m})=2$.

4. An example of normal core reduction number

In the last of this note, we prove Example 2.4.
Proposition 4.1. Let $r \geq 2$ be an integer, and let $A=\mathbb{C}[[x, y, z]] /\left(z^{2}+x^{2 r}+y^{2 r}\right)$. Then
(1) $p_{g}(A)=\binom{r}{2}$.
(2) $\operatorname{nr}(A)=\operatorname{nr}(\mathfrak{m})=r$.
(3) $\operatorname{ncr}(A)=\operatorname{ncr}(\mathfrak{m})=r$.

Proof. Put $R=\mathbb{C}[x, y, z] /\left(z^{2}+x^{2 r}+y^{2 r}\right)$.
(1) By the formula (3.1), we have

$$
p_{g}(A)=\sharp\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}_{\geq 0}^{2} \mid r-2 \geq \lambda_{1}+\lambda_{2}\right\}=\binom{r}{2} .
$$

(2) One can easily see that $\operatorname{nr}(\mathfrak{m})=\bar{r}(\mathfrak{m})=r$ and our main theorem implies that $p_{g}(A) \geq$ $\binom{\mathrm{nr}(I)}{2}$ for any integrally closed \mathfrak{m}-primary ideal and thus $\operatorname{nr}(A) \leq r$. Hence we obtain that $\operatorname{nr}(A)=\operatorname{nr}(\mathfrak{m})=r$.
(3) By definition, we have $\operatorname{ncr}(I) \leq \operatorname{nr}(I)$ for any \mathfrak{m}-primary integrally closed ideal $I \subset A$. On the other hand, since $\mathfrak{m}^{2}=Q \mathfrak{m}$, we have core $(\mathfrak{m})=(Q: \mathfrak{m}) \mathfrak{m}=\mathfrak{m}^{2}$. Hence $\overline{\mathfrak{m}^{n+1}}=$ $F_{n+1} \subset \operatorname{core}(\mathfrak{m})=\mathfrak{m}^{2}$ if and only if $n \geq r$. Thus ncr $(\mathfrak{m})=r$.
For any \mathfrak{m}-primary integrally closed ideal I, since $\operatorname{nr}(I) \leq \operatorname{nr}(A)=r$, we have that $\overline{I^{r+1}} \subset Q^{\prime}$ for any minimal reduction Q^{\prime} of I. Hence $\operatorname{ncr}(I) \leq r=\operatorname{ncr}(\mathfrak{m})$ and thus $\operatorname{ncr}(A)=r$, as required.

Question. The following questions are interesting.
(1) When does $\operatorname{ncr}(A)=\operatorname{ncr}(\mathfrak{m})$ hold?
（2）When does $\operatorname{nr}(A)=\operatorname{nr}(\mathfrak{m})$ hold？
（3）When does $\operatorname{ncr}(A)=\operatorname{nr}(A)$ hold？
（4）When does $\operatorname{nr}(\mathfrak{m})=\binom{r}{2}$ hold？

References

［1］Alberto Corso，Claudia Polini and Bernd Ulrich，The structure of the core of ideals，Math．Ann． 321（1）（2001），89－105．
［2］Alberto Corso，Claudia Polini and Bernd Ulrich，Core and residual intersections of ideals，Trans． Amer．Math．Soc．354（7）（2002），2579－2594（electronic）．
［3］Shiro Goto，Integrally closedness of complete intersection ideals，J．Algebra 108 （1987），151－160
［4］Shiro Goto，Sin－ichiro Iai，Kei－ichi Watanabe，Good ideals in Gorenstein local rings，Trans．Amer． Math．Soc．353（6）（2001），2309－2346（electronic）
［5］Shiro Goto and Yasuhiro Shimoda，On the Rees algebras of Cohen－Macaulay local rings，Commu－ tative algebra（Fairfax，Va．，1979），Lecture Notes in Pure and Appl．Math．，vol．68，Dekker，New York，1982，pp．201－231．
［6］Craig Huneke，Hilbert functions and symbolic powers，Michigan Math．J． 34 （1987），293－318．
［7］Craig Huneke and Irena Swanson，Cores of ideals in 2－dimensional regular local rings，Michigan Math．J．42（1）（1995），193－208．
［8］Craig Huneke and Ngô Viêt Trung，On the core of ideals，Composite Math．141（1）（2005），1－18．
［9］Eero Hyry and Karen E．Smith，On a non－vanishing conjecture of Kawamata and the core of an ideal，Amer．J．Math．125（6）（2003），1349－1410．
［10］Joseph Lipman，Rational singularities，with applications to algebraic surfaces and unique factoriza－ tion，Publ．Math．IHES 36 （1969），195－279．
［11］Tohomohiro Okuma，Cohomology of ideals in elliptic surface singularities，preprint 2017.
［12］Tomohiro Okuma，Kei－ichi Watanabe and Ken－ichi Yoshida，Good ideals and p_{g}－ideals in two－ dimensional normal singularities，manuscripta math． 150 （2016），499－520．
［13］Tomohiro Okuma，Kei－ichi Watanabe and Ken－ichi Yoshida，Rees algebras and p_{g}－ideals in a two－ dimensional normal local domain，Proc．Amer．Math．Soc． 145 （2017）（1），39－47．
［14］Tomohiro Okuma，Kei－ichi Watanabe and Ken－ichi Yoshida，Characterization of two－dimensional rational singularities via core of ideals，to appear in Journal of Algebra．
［15］Akira Ooishi，J－genera and sectional genera of commutative rings，Hiroshima Math．J．（1987），361－ 372.
［16］Kazuho Ozeki and Malia E．Rossi，The structure of the Sally module of integrally closed ideals， Nagoya Math．J． 227 （2017），49－76．
［17］Tran Thi Phuong，Normal Sally module of rank one，preprint（ArXiv：1506．05210v3）．
［18］David Rees and Judith D．Sally，General elements and joint reductions，Michigan Math．J．35（2） （1988）241－254．
［19］Judith D．Sally，Cohen－Macaulay local rings of maximal embedding dimension，J．Algebra 56 （1979）， 168－183．

奥間智弘 990－8560，山形県山形市小白川町1－4－12山形大学理学部理学科
email：okuma＠sci．kj．yamagata－u．ac．jp
渡辺敬一 156－8550，東京都世田谷区桜上水 3－25－40
日本大学文理学部数学科
email：watanabe＠math．chs．nihon－u．ac．jp
吉田健一 156－8550，東京都世田谷区桜上水 3－25－40
日本大学文理学部数学科
email：yoshida＠math．chs．nihon－u．ac．jp

[^0]: ${ }^{1}$ This is not in final form. The detailed version will be submitted to elsewhere for publication.

