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Throughout this note, let (A,m) be a two-dimensional excellent normal local domain
containing an algebraically closed residue field k = k ∼= A/m unless otherwise specified.
Then there exists a resolution of singularity Y → SpecA. Then pg(A) = ℓA(H

1(Y,OY ))
is called the geometric genus of A, which is independent on the choice of resolution of
singularities. This invariant plays a key role in our argument.

1. geometric genus and normal reduction number

Throughout this section, let (A,m) be a two-dimensional excellent normal local domain
with algebraically closed residue field k, and let I ⊂ A be an m-primary integrally closed
ideal. Then there exists a resolution of singularity X → SpecA and an anti-nef cycle Z
on X so that IOX = OX(−Z) and I = H0(OX(−Z)). The ideal I is represented by Z on
X which is denoted by I = IZ . Then In = InZ .

We recall the definition of normal reduction numbers. In what follows, we always
assume that I = IZ .

Definition 1.1 (Normal reduction number). Let Q be a minimal reduction of I, that
is, Q ⊂ I is a parameter ideal and there exists a positive integer n such that In+1 = QIn.
Then

nr(I) = inf{n ∈ Z | In+1 = QIn},
is independent on the choice of Q by Huneke [6, Theorem 4.5] and so we call it the normal
reduction number of I. Moreover, we can define

nr(A) = max{nr(I) | I is a m-primary integrally closed ideal of A},

which is called the normal reduction number of A.

Remark 1.2. Put r(I) = inf{n ∈ Z | IN+1 = QIN (∀N ≥ n)}. In general, Lemma 2.1 and
Lemma 2.3 imply nr(I) = r(I) in our case. But we do not know whether equality holds
true for higher-dimensional case.

The notion of ”core” was introduced by Rees and Sally [18], and their properties have
been studied by Corso-Ulrich, Huneke–Swanson, Huneke–Trung, Hyry–Smith, Polini–
Ulrich and so on; e.g. [1, 2, 7, 8, 9]. The core of I is defined as follows:

core(I) =
∩

Q : a reduction of I

Q

In general, it is not so easy to calculate core(I), but in the case of stable ideals, it is easy
to compute.

1This is not in final form. The detailed version will be submitted to elsewhere for publication.



Lemma 1.3 ([2, 8, 9]). If I2 = QI holds true for some minimal reduction Q of I, then
core(I) = (Q : I)I.

Let us introduce the following notion.

Definition 1.4 (Normal core reduction number). Let I be an m-primary ideal of A.
Then the core reduction number (resp. the normal core reduction number) is defined by

cr(I) = min{n ∈ Z | In+1 ⊂ core(Q)},
ncr(I) = min{n ∈ Z | In+1 ⊂ core(Q)},

respectively. Moreover, we define

ncr(A) = sup{ncr(I) | I is an m-primary ideal with I = I },
which is called the normal core reduction number of A.

The main aim of this talk is to evaluate nr(A), ncr(A) in terms of geometric invariants.

Example 1.5. Let A be as above. Then

(1) nr(A) = 0 if and only if A is regular (see [3]).
(2) nr(A) = 1 if and only if A is a rational singularity which is not regular (see [10]).
(3) If A is an elliptic singularity, then nr(A) = 2. How about the converse? (see

Okuma [11])

The following theorem is motivated by the previous example.

Theorem 1.6. For any m-primary integrally closed ideal I ⊂ A with r = nr(I), we have

pg(A) ≥
(
r

2

)
+ ℓA(H

1(X,OX(−rZ))).

In particular, pg(A) ≥
(
nr(A)

2

)
≥

(
ncr(A)

2

)
.

In the next section, we give a proof of this theorem.

2. Proof of Main theorem

Throughout this section, let I = IZ be an m-primary integrally closed ideal in a a
two-dimensional excellent normal local domain (A,m) with algebraically closed residue
field k. For a given ideal I, we define a function q : Z≥0 → Z≥0 as follows:

q(k) := q(kI) := ℓA(H
1(X,OX(−kZ)).

By definition, we put q(0) = pg(A) and q(I) = q(1I). Note that q(nI) = q(In) for every
integer n ≥ 1.

Let us recall the following fundamental properties of q(kI).

Lemma 2.1 ([12, 13]). The following statements hold.

(1) 0 ≤ q(I) ≤ pg(A). If q(I) = pg(A) holds true, then I is said to be a pg-ideal.
(2) The function q(·I) is decreasing: q(kI) ≥ q((k + 1)I) for every integer k ≥ 1.
(3) The function q(·I) stabilize: there exists an integer n0 = n0(I) (0 ≤ n0 ≤ pg(A))

such that q(nI) = q(n0I) for n ≥ n0.



The m-primary ideal I is called good (in the sense of Goto-Iai-Watanabe [4]) if I2 = QI
and I = Q : I for some (every) minimal reduction Q of I.

Example 2.2 ([12, 14]). Any two-dimensional excellent normal local domain over k =
A/m = k admits a pg-ideal. If, in addition, A is not regular, then A admits a good
pg-ideal.

In order to prove Theorem 1.6, we need the following lemma.

Lemma 2.3. For any integer n ≥ 1, we have

2 · q(nI) + ℓA(In+1/QIn) = q((n+ 1)I) + q((n− 1)I).

Proof. It follows from the following exact sequence:

0 → In+1/QIn → H1(OX(−(n− 1)Z)) → H1(OX(−nZ))⊕2 → H1(OX(−(n+1)Z)) → 0.

□

Proof of Theorem 1.6. Suppose nr(I) = r. Then since ℓA(Ik+1/QIk) ≥ 1 for every k =

1, 2, . . . , r − 1 and ℓ(Ir+1/QIr) = 0, we have

q((r − 1)I)− q(rI) = q(rI)− q((r + 1)I),

q((r − 2)I)− q((r − 1)I) ≥ q((r − 1)I)− q(rI) + 1,

q((r − 3)I)− q((r − 2)I) ≥ q((r − 2)I)− q((r − 1)I) + 1,
...

q(0I)− q(1I) ≥ q(1I)− q(2I) + 1.

Thus if we put ak = q((r − k)I) for k = 1, . . . , r, then we get

ak − ak−1 ≥ ak−1 − ak−2 + 1

≥ ak−2 − ak−3 + 2

≥ · · ·
≥

{
a1 − a0

}
+ (k − 1) ≥ k − 1.

Hence

pg(A) = ar =
r∑

k=1

(ak − ak−1) + a0 ≥
r∑

k=1

(k − 1) + a0 =
r(r − 1)

2
+ q(rI),

as required. In particular, we have pg(A) ≥
(
r
2

)
.

On the other hand, for any minimal reduction Q of I, we get Ir+1 = QIr ⊂ Q, which
shows Ir+1 ⊂ core(I). Hence r ≥ ncr(I). This yields that nr(I) ≥ ncr(I). Hence

nr(A) ≥ ncr(A). Hence pg(A) ≥
(
nr(A)

2

)
≥

(
ncr(A)

2

)
. □

The above theorem gives a best possible bound. In fact, we have the following example.
See the next subsection for more details.



Example 2.4. Let r ≥ 1 be an integer. Let A = C[[x, y, z]]/(x2 + y2r + z2r). Then
nr(A) = nr(m) = r and

pg(A) =

(
r

2

)
=

(
nr(A)

2

)
=

(
ncr(A)

2

)
.

In particular, we consider the case of r = 2. Let I ⊂ A be an m-primary integrally
closed ideal. Then 0 ≤ q(I) ≤ pg(A) = 1 implies q(I) = 0 or q(I) = 1.

If q(I) = 0, then q(2I) = q(3I) = · · · = 0 by Lemma 2.1. Then by Lemma 2.3 we get

ℓA(I2/QI) = 2 · q(I) + ℓA(I2/QI) = q(2I) + pg(A) = 1,

ℓA(Ik+1/QIk) = 2 · q(kI) + ℓA(Ik+1/QIk) = q((k + 1)I) + q((k − 1)I) = 0 for k ≥ 2.

Hence nr(I) = r(I) = 2.

On the other hand, if q(I) = 1, then I is a pg-ideal and hence Ik+1 = QIk for every
k ≥ 1 and q(I) = q(2I) = · · · = pg(A) = 1. That is, nr(I) = r(I) = 1.

For instance, m = (x, y, z) satisfies q(m) = 0 and I = (x2, y, z) satisfies q(I) = 1.

3. Normal reduction numbers of hypersurfaces of Fermat type

In what follows, let R = C[x, y, z]/(z2+xa+ yb) be a hypersurface with 2 ≤ a ≤ b. Put

m = (x, y, z)A and r = ⌊a
2
⌋. Then the m-adic completion A = R̂m is a two-dimensional

excellent normal local domain. Put Q = (x, y). This gives a minimal reduction of m.

Also we put Fk = mk for every integer k ≥ 1. First we calculate ℓA(Fk+1/QFk) for all
k ≥ 0. In order to do that we determine the normalization of the extended Rees algebra
R′(m) = A[mt, t−1]

Lemma 3.1. The normalization of R′ = R′(m) = A[xt, yt, zt, t−1] is given by

R′ = R′[zt2, . . . , ztr] ∼=

{
C[X,Y, Z, U ]/(Z2 +X2r + Y bU b−2r) if a = 2r,

C[X,Y, Z, U ]/(Z2 +X2r+1U + Y bU b−2r) if a = 2r + 1.

Proof. PutX = xt, Y = yt, Z = ztr, U = t−1 ∈ Q(R′). Then S = C[xt, yt, zt, t−1, zt2, . . . , ztr]
is generated by X, Y , Z and U as C-algebra because zti = ZU r−i for each i = 0, 1, . . . , r−
1. Note that a = 2r or a = 2r + 1 by definition.

• The case of a = 2r

Then we have

Z2 = (ztr)2 = z2t2r = −x2rt2r − ybt2r = −X2r − Y bU b−2r,

that is, F := Z2 + X2r + Y bU b−2r = 0 in S. Clearly, Z2 + X2r + Y bU b−2r is a prime
element of C[X,Y, Z, U ] and thus dimC[X,Y, Z, U ]/(F ) = 3. On the other hand, since
dimR′ = dimR′ = 3 and S is a homomorphic image of C[X, Y, Z, U ]/(F ), we can prove
that S ∼= C[X, Y, Z, U ]/(F ).



So it is enough to show that S is normal. The Jacobian ideals of S is

J(F ) =

(
∂F

∂X
,
∂F

∂Y
,
∂F

∂Z
,
∂F

∂U

)
= (2rX2r−1, bY b−1U b−2r, 2Z, (b− 2r)Y bU b−2r−1)

=

{
(Z, X2r−1, Y b−1U b−2r, Y bU b−2r−1) if b ≥ 2r + 1,

(Z, X2r−1, Y 2r−1), if b = 2r.

Since S is Cohen-Macaulay and height J(F ) = 2, S is normal.

• The case of a = 2r + 1

Then we have

Z2 = (ztr)2 = −x2r+1t2r − zbt2r = −X2r+1U − Y bU b−2r,

that is, Fo := Z2 + X2r+1U + Y bU b−2r = 0 in S. Similar argument implies that S ∼=
C[X, Y, Z, U ]/(Fo).

So it is enough to show that S is normal. The Jacobian ideals of S is

J(Fo) =

(
∂Fo

∂X
,
∂Fo

∂Y
,
∂Fo

∂Z
,
∂Fo

∂U

)
= (2Z, (2r + 1)X2rU, bY b−1U b−2r, X2r+1 + (b− 2r)Y bU b−2r−1)

=

{
(Z, X2rU, Y b−1U b−2r, X2r+1 + (b− 2r)Y bU b−2r−1) if b ≥ 2r + 2,

(Z, X2rU, Y 2rU, X2r+1 + Y 2r+1) if b = 2r + 1.

Suppose b ≥ 2r + 2 and P ∈ SpecK[X, Y, Z, U ] such that

P ⊃ (Z, X2rU, Y b−1U b−2r, X2r+1 + (b− 2r)Y bU b−2r−1).

If U /∈ P , then (X, Y, Z) ⊂ P . Otherwise, (X,Z, U) ⊂ P . Hence height J(Fo) ≥ 2.
Next suppose b = 2r + 1 and P ∈ SpecK[X, Y, Z, U ] such that

P ⊃ (Z, X2rU, Y 2rU, X2r+1 + Y 2r+1).

If U /∈ P , then (X,Y, Z) ⊂ P . Otherwise, (Z,U) ⊂ P and X2r+1 + Y 2r+1 ∈ P . Take
ω as one of (2r + 1)-th primitive roots of unity. Hence (Z,U,X + ωiY ) ⊂ P . Therefore
height J(Fo) ≥ 2 and S is normal. □

Lemma 3.2. We have Fk = zmk−r + mk for every k ≥ 1 and nr(m) = r(m) = r.
Furthermore, we get{

ℓA(F2/QF1) = ℓA(F3/QF2) = · · · = ℓA(Fr/QFr−1) = 1,

ℓA(Fr+1/QFr) = ℓA(Fr+2/QFr+1) = · · · = 0.

Proof. By the previous lemma, A[mt][zt2, . . . , ztr] = A[xt, yt, zt, . . . , ztr, t−1]∩A[t] is nor-
mal. From this, one can easily see that Fk = zmk−r +mk for every k ≥ 1, where mn = A
for each n ≤ 0.

We will show that ℓA(Fk+1/QFk) = 1 for each k = 1, 2, . . . , r − 1. For such an integer
k, we have z2 ∈ m2r ⊂ mk+1. Thus

zm+mk+1 = zQ+mk+1 = zQ+Qmk = Q(zA+mk) = QFk.



It follows that Fk+1 = zA + QFk and zm ⊂ QFk. Hence ℓA(Fk+1/QFk) = 1 because
z /∈ QFk.

Next we will show that Fk+1 = QFk for every k ≥ r. Since z2 ∈ m2r, we get

QFk = (x, y)(zmk−r +mk)

= z(x, y)mk−r +Qmk

= (z2, xz, yz)mk−r +mk+1

= zmk+1−r +mk+1 = Fk+1,

as required. By definition, we have nr(m) = r(m) = r. □

By virtue of the previous lemma, we can determine q(im) completely in our case.

Theorem 3.3. Put p = pg(A). Then we have

q(im) =

{
p− i(r − 1) +

(
i
2

)
1 ≤ i ≤ r − 1;

p−
(
r
2

)
i ≥ r.

In particular, q(m) = p− (r − 1). Moreover, for all n ≥ r − 1, we get

ℓA
(
A/mn+1

)
= 2 ·

(
n+ 2

2

)
− r ·

(
n+ 1

1

)
+

(
r

2

)
.

In particular, we have

e0(m) = 2, e1(m) = r, e2(m) =

(
r

2

)
.

Proof. Put k = p− q(m) ≥ 0. Then we prove the following claim.

Claim 1: q(im) = p− ik +
(
i
2

)
for all i = 1, 2, . . . , r.

Use an induction on i. It is easy to check the case of i = 1. Now suppose 2 ≤ i+1 ≤ r,
and the above equation holds true for j ≤ i. Then by assumption, we get

q((i+ 1)m) = 2 · q(im)− q((i− 1)m) + ℓA(Fi+1/QFi)

= 2

[
p− ik +

(
i

2

)]
−
[
p− (i− 1)k +

(
i− 1

2

)]
+ 1

= p− (i+ 1)k +

(
i+ 1

2

)
.

Next we show that

Claim 2: q((r + i)m) = p− rk +
(
r
2

)
+ i(r − 1− k) for all i = 1, 2, . . ..



Use an induction on i. When i = 1, we have

q((r + 1)m) = 2 · q(rm)− q((r − 1)m) + ℓA(Fr+1/QFr)

= 2

[
p− rk +

(
r

2

)]
−
[
p− (r − 1)k +

(
r − 1

2

)]
= p− (r + 1)k +

(
r + 1

2

)
− 1

= p− rk +

(
r

2

)
+ (r − 1− k),

as required. Now suppose i ≥ 2 and the above equation holds true for any j ≤ i. Then
we have

q((r + i+ 1)m) = 2 · q((r + i)m)− q((r + i− 1)m) + ℓA(Fr+i+1/QFr+i)

= 2

[
p− rk +

(
r

2

)
+ i(r − 1− k)

]
−
[
p− rk +

(
r

2

)
+ (i− 1)(r − 1− k)

]
= p− rk +

(
r

2

)
+ (i+ 1)(r − 1− k).

Since q(im) is stable for sufficiently large i, we obtain that k = r−1. Indeed, if k ≤ r−2,
then q((k+2)m) > q((k+1)m). On the other hand, if k ≥ r, then q(im) becomes strictly
decreasing function on i. This is a contradiction. Hence k = r − 1. Thus

q(im) =

{
p− i(r − 1) +

(
i
2

)
1 ≤ i ≤ r − 1;

p−
(
r
2

)
i ≥ r.

By [13], we obtain

e1(m) = e0(m)− ℓA(A/m) + [pg(A)− q(m)] = 2− 1 + [p− (p− (r − 1))] = r

and

e2(m) = p− q(rm) = p−
[
p−

(
r

2

)]
=

(
r

2

)
.

On the other hand,

ℓA(A/mn+1) = 2 ·
(
n+ 2

2

)
− r ·

(
n+ 1

1

)
+ p− q((n+ 1)m).

Thus Pm(n) = Hm(n) if and only if n ≥ r − 1. □

In the last of this section, we calculate the geometric genus of A. We regard R =
C[X, Y, Z]/(Z2 − Xa − Y b) as a graded ring by degZ = ab =: q0, degX = 2b =: q1,



deg Y = 2a := q2. If we put D = 2ab, then the a-invariant of R is given by a(R) =
D − q0 − q1 − q2. Then we can calculate the geometric genus of A by

pg(A) =

a(R)∑
n=0

dimC Rn

= ♯{(λ0, λ1, λ2) ∈ Z3
≥0 |D − (q0 + q1 + q2) ≥ λ0q0 + λ1q1 + λ2q2}.

In this case, we have

pg(A) = ♯{(λ0, λ1, λ2) ∈ Z3
≥0 | 2ab− ab− 2b− 2a ≥ abλ0 + 2bλ1 + 2aλ2}

= ♯{(λ0, λ1, λ2) ∈ Z3
≥0 | ab− 2b− 2a ≥ abλ0 + 2bλ1 + 2aλ2}.

Then one can easily see that λ0 = 0. Hence

pg(A) = ♯{(λ1, λ2) ∈ Z2
≥0 | ab− 2a− 2b ≥ 2bλ1 + 2aλ2}.(3.1)

Example 3.4. Let p ≥ 1 be an integer. Let A = C[[x, y, z]]/(x2 + y3 + z6p+1). Then
pg(A) = p and nr(m) = 1.

Example 3.5. Let p ≥ 1 be an integer. Let A = C[[x, y, z]]/(x2 + y4 + z4p+1). Then
pg(A) = p and nr(m) = 2.

4. An example of normal core reduction number

In the last of this note, we prove Example 2.4.

Proposition 4.1. Let r ≥ 2 be an integer, and let A = C[[x, y, z]]/(z2 + x2r + y2r). Then

(1) pg(A) =
(
r
2

)
.

(2) nr(A) = nr(m) = r.
(3) ncr(A) = ncr(m) = r.

Proof. Put R = C[x, y, z]/(z2 + x2r + y2r).

(1) By the formula (3.1), we have

pg(A) = ♯{(λ1, λ2) ∈ Z2
≥0 | r − 2 ≥ λ1 + λ2} =

(
r

2

)
.

(2) One can easily see that nr(m) = r(m) = r and our main theorem implies that pg(A) ≥(
nr(I)
2

)
for any integrally closed m-primary ideal and thus nr(A) ≤ r. Hence we obtain

that nr(A) = nr(m) = r.

(3) By definition, we have ncr(I) ≤ nr(I) for any m-primary integrally closed ideal I ⊂ A.

On the other hand, since m2 = Qm, we have core(m) = (Q : m)m = m2. Hence mn+1 =
Fn+1 ⊂ core(m) = m2 if and only if n ≥ r. Thus ncr(m) = r.

For any m-primary integrally closed ideal I, since nr(I) ≤ nr(A) = r, we have that

Ir+1 ⊂ Q′ for any minimal reduction Q′ of I. Hence ncr(I) ≤ r = ncr(m) and thus
ncr(A) = r, as required. □

Question. The following questions are interesting.

(1) When does ncr(A) = ncr(m) hold?



(2) When does nr(A) = nr(m) hold?
(3) When does ncr(A) = nr(A) hold?
(4) When does nr(m) =

(
r
2

)
hold?
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