DERIVATIONS AND CLOSED POLYNOMIALS IN POLYNOMIAL RINGS

TAKANORI NAGAMINE

Abstract

In this paper, we study closed polynomials over an integral domain of characteristic zero and give a criterion for a nonconstant polynomial to be a closed polynomial.

1. Introduction

Let R be an integral domain with unit and let $R[\mathbf{X}]:=R\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over R. We denote by $Q(R)$ the quotient field of R. A non-constant polynomial $f \in R[\mathbf{X}] \backslash R$ is a closed polynomial if the ring $R[f]$ is integrally closed in $R[\mathbf{X}]$. An R-linear map $D: R[\mathbf{X}] \rightarrow R[\mathbf{X}]$ is an R-derivation on $R[\mathbf{X}]$ if $D(f g)=f D(g)+g D(f)$ for $f, g \in R[\mathbf{X}]$. By using terms of derivations and their kernels, we can understand closed polynomials. The following result gives us a relation between closed polynomials and derivations and is a generalization of a part of [1, Theorem 1].

Theorem 1.1. (cf. [2, Theorem 3.1]) Let R be an integral domain and $K:=Q(R)$. For a non-constant polynomial $f \in R[\mathbf{X}] \backslash R$ satisfying $K[f] \cap R[\mathbf{X}]=R[f]$, the following conditions are equivalent.
(1) f is a closed polynomial.
(2) There are no polynomials $g \in K[\mathbf{X}]$ with $K[f] \subsetneq K[g]$.

If the characteristic of R equals zero, then the following condition (3) is equivalent to the condition (1).
(3) There exist an R-derivation D on $R[\mathbf{X}]$ such that $\operatorname{Ker} D=R[f]$.

Furthermore, closed polynomials relate the Jacobian conjecture as below. Let k be a field of characteristic zero and let $k[\mathbf{X}]=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over k. For polynomials $f_{1}, \ldots, f_{n} \in$ $k[\mathbf{X}]$, let $F:=\left(f_{1}, \ldots, f_{n}\right)$. Then F defines a k-endomorphism on $k[\mathbf{X}]$ by $F\left(x_{i}\right)=f_{i}$ for $1 \leq i \leq n$. We define the Jacobian matrix of F with respect to x_{1}, \ldots, x_{n} by

Key words and phrases. Closed polynomials, Derivations.

$$
J(F):=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right) \in k[\mathbf{X}] .
$$

Now we consider the following two conditions:
(A) F defines a k-automorphism on $k[\mathbf{X}]$.
(B) $\operatorname{det} J(F)$ belongs to $k \backslash\{0\}$.

Jacobian conjecture says that the implication " $(B) \Rightarrow(A)$ " holds true. If $n=1$, then this conjecture is true. In the case where $n \geq 2$, however, this conjecture is still open. The following result gives us a relation between closed polynomials and this conjecture.

Proposition 1.2. Let k be a field of characteristic zero. For polynomials $f_{1}, \ldots, f_{n} \in k[\mathbf{X}]$, let $F:=\left(f_{1}, \ldots, f_{n}\right)$. If $\operatorname{det} J(F) \in k \backslash\{0\}$, then these polynomials f_{1}, \ldots, f_{n} are closed polynomials.

In this paper, we give a criterion for a polynomial $f \in R[\mathbf{X}]$ to be a closed polynomial, in the case where R is an arbitrary integral domain of characteristic zero. The main result in this paper is Theorem 2.4. As a corollary of this theorem, we get Proposition 1.2.

2. Criteria for closed polynomials

Let R be an integral domain and let $R[\mathbf{X}]=R\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over R. For a polynomial $f \in R[\mathbf{X}]$,

$$
\hat{f}:=\operatorname{gcd}\left(f_{x_{1}}, \ldots, f_{x_{n}}\right)
$$

where $f_{x_{i}}$ is the partial derivative of f with respect to x_{i} and we take the greatest common divisor of $f_{x_{1}}, \ldots, f_{x_{n}}$ as polynomials in $Q(R)[\mathbf{X}]$. Now we represent $f \in R[\mathbf{X}]$ as follows:

$$
f=\sum_{\mathbf{a} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}} u_{\mathbf{a}} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}},
$$

where $u_{\mathbf{a}} \in R$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$. We define the support set of f by $\operatorname{Supp}(f):=\left\{\mathbf{a} \in\left(\mathbb{Z}_{\geq 0}\right)^{n} \mid u_{\mathbf{a}} \neq 0\right\}$. For $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$, we define the weighted degree of f with respect to \mathbf{w} by the maximal element of the set $\{\mathbf{a} \cdot \mathbf{w} \mid \mathbf{a} \in \operatorname{Supp}(f)\}$, where $\mathbf{a} \cdot \mathbf{w}=a_{1} w_{1}+\cdots+a_{n} w_{n}$ and denote by $\operatorname{deg}_{\mathbf{w}}(f)$. Note that the weighted degree of the zeropolynomial is $-\infty$. Also, we denote simply $\operatorname{deg}(f)$ by the weighted degree of f with respect to $(1, \ldots, 1)$.
Remark 2.1. For any $\mathbf{w} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$, the weighted degree of polynomials with respect to \mathbf{w} is a degree function on $R[\mathbf{X}]$. That is, for $f, g \in R[\mathbf{X}]$, the following conditions are satisfied.
(1) $\operatorname{deg}_{\mathbf{w}}(f)=-\infty$ if and only if $f=0$.
(2) $\operatorname{deg}_{\mathbf{w}}(f g)=\operatorname{deg}_{\mathbf{w}}(f)+\operatorname{deg}_{\mathbf{w}}(g)$.
(3) $\operatorname{deg}_{\mathbf{w}}(f+g) \leq \max \left\{\operatorname{deg}_{\mathbf{w}}(f), \operatorname{deg}_{\mathbf{w}}(g)\right\}$.

Definition 2.2. Let $f \in R[\mathbf{X}]$ and $\mathbf{w} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$. Assume that $\operatorname{deg}_{\mathbf{w}}(f) \geq$ 2. Then we denote by $N_{\mathbf{w}}(f)$ the smallest positive prime dividing $\operatorname{deg}_{\mathbf{w}}(f)$.

Example 2.3. For $f=x^{9}+x^{6} y^{2}+x^{3} y^{4} \in \mathbb{Z}[x, y]$, we can easily see that $\operatorname{Supp}(f)=\{(9,0),(6,2),(3,4)\}$. Then,
(1) for $\mathbf{u}=(1,1), \operatorname{deg}_{\mathbf{u}}(f)=\operatorname{deg}(f)=9$ and $N_{\mathbf{u}}(f)=3$,
(2) for $\mathbf{v}=(0,1), \operatorname{deg}_{\mathbf{v}}(f)=4$ and $N_{\mathbf{v}}(f)=2$,
(3) for $\mathbf{w}=(1,2), \operatorname{deg}_{\mathbf{w}}(f)=11$ and $N_{\mathbf{w}}(f)=11$.

In general, for given a polynomial $f \in R[\mathbf{X}] \backslash R$, it is difficult to understand whether f is a closed polynomial or not. The following gives a sufficient condition for f to be a closed polynomial and is the main theorem in this paper.

Theorem 2.4. (cf. [3, Proposition 3.11]) Let R be an integral domain of characteristic zero and let $f \in R[\mathbf{X}] \backslash R$ be a non-constant polynomial such that $Q(R)[f] \cap R[\mathbf{X}]=R[f]$. If there exists $\mathbf{w} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ such that $\operatorname{deg}_{\mathrm{w}}(f)=1$ or

$$
\operatorname{deg}_{\mathbf{w}}(f) \geq 2 \text { and } \operatorname{deg}_{\mathbf{w}}(\hat{f})<\frac{N_{\mathbf{w}}(f)-1}{N_{\mathbf{w}}(f)} \operatorname{deg}_{\mathbf{w}}(f)
$$

then f is a closed polynomial.
To show this theorem, we prepare the following lemma.
Lemma 2.5. Let R be an integral domain. Let $\mathbf{w} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ and let $f, g \in R[\mathbf{X}] \backslash R$ with $f \in R[g]$. Assume that $\operatorname{deg}_{\mathbf{w}}(f)>0$ and $f=u(g)$ for a polynomial $u(t) \in R[t]$ in one variable t of degree $m \geq 1$. Then the following assertions hold true.
(1) $\operatorname{deg}_{\mathbf{w}}(f)=m \operatorname{deg}_{\mathbf{w}}(g)$. In particular, m divides $\operatorname{deg}_{\mathbf{w}}(f)$.
(2) If the characteristic of R equals zero, then

$$
\operatorname{deg}_{\mathbf{w}}(\hat{f}) \geq \frac{m-1}{m} \operatorname{deg}_{\mathbf{w}}(f) .
$$

Proof. (1) For $u_{0} \in R \backslash\{0\}$ and $u_{1}, \ldots, u_{m} \in R$,

$$
f=u(g)=u_{0} g^{m}+u_{1} g^{m-1}+\cdots+u_{m-1} g+u_{m}
$$

Since $\operatorname{deg}_{\mathbf{w}}(f)>0, \operatorname{deg}_{\mathbf{w}}(g)>0$. This implies that $\operatorname{deg}_{\mathbf{w}}\left(g^{i}\right) \geq \operatorname{deg}_{\mathbf{w}}\left(g^{j}\right)$ if $i \geq j$. So,

$$
\operatorname{deg}_{\mathbf{w}}(f)=\operatorname{deg}_{\mathbf{w}}(u(g))=\operatorname{deg}_{\mathbf{w}}\left(u_{0} g^{m}\right)=m \operatorname{deg}_{\mathbf{w}}(g)
$$

(2) Since $f=u(g), f_{x_{i}}=u^{\prime}(g) g_{x_{i}}$ for $1 \leq i \leq n$, where $u^{\prime}(t)=d u / d t$. This implies that each $f_{x_{i}}$ is divided by $u^{\prime}(g)$, so $u^{\prime}(g)$ divides \hat{f} as a polynomial defined over $Q(R)$. Therefore $\operatorname{deg}_{\mathbf{w}}(\hat{f}) \geq \operatorname{deg}_{\mathbf{w}}\left(u^{\prime}(g)\right)$. On the other hand, since the characteristic of R equals zero, $m u_{0} \neq 0$. Therefore $\operatorname{deg}_{\mathbf{w}} u^{\prime}(g)=(m-1) \operatorname{deg}_{\mathbf{w}}(g)$, so we have

$$
\operatorname{deg}_{\mathbf{w}}(\hat{f}) \geq \operatorname{deg}_{\mathbf{w}}\left(u^{\prime}(g)\right)=(m-1) \operatorname{deg}_{\mathbf{w}}(g)=\frac{m-1}{m} \operatorname{deg}_{\mathbf{w}}(f)
$$

Now, we start the proof of Theorem 2.4.
Proof of Theorem 2.4. Set $K:=Q(R)$. By Theorem 1.1, we enough to show that for $g \in K[\mathbf{X}]$ with $K[f] \subset K[g], K[f]=K[g]$.

Let $g \in K[\mathbf{X}]$ with $K[f] \subset K[g]$. Since $f \in K[g]$, there exists $u(t) \in$ $K[t]$ of degree m such that $f=u(g)$. We write $u(t)$ as

$$
u(t)=u_{0} t^{m}+u_{1} t^{m-1}+\cdots+u_{m-1} t+u_{m}
$$

for some $u_{i} \in K$ and $u_{0} \neq 0$. By Lemma $2.5(1), \operatorname{deg}_{\mathbf{w}}(f)=m \operatorname{deg}_{\mathbf{w}}(g)$. We enough to show that $m=1$. Indeed, if $m=1$, then $f=u_{0} g+u_{1}$. This implies $g \in K[f]$, so $K[f]=K[g]$.

If $\operatorname{deg}_{\mathbf{w}}(f)=1$, then obviously $m=1$. On the other hand, we suppose that $\mathbf{w} \in\left(\mathbb{Z}_{\geq 0}\right)^{n}$ satisfies $\operatorname{deg}_{\mathbf{w}}(f) \geq 2$ and

$$
\operatorname{deg}_{\mathbf{w}}(\hat{f})<\frac{N_{\mathbf{w}}(f)-1}{N_{\mathbf{w}}(f)} \operatorname{deg}_{\mathbf{w}}(f)
$$

Since the characteristic of R equals zero, by Lemma 2.5 (2),

$$
\operatorname{deg}_{\mathbf{w}}(\hat{f}) \geq \frac{m-1}{m} \operatorname{deg}_{\mathbf{w}}(f)
$$

By comparing the above two inequalities, we have $N_{\mathbf{w}}(f)>m$. By using Lemma 2.5 (1) again, we see that m divides $\operatorname{deg}_{\mathbf{w}}(f)$. But the number $N_{\mathbf{w}}(f)$ is the smallest positive prime dividing $\operatorname{deg}_{\mathbf{w}}(f)$, hence $m=1$. Therefore f is a closed polynomial.

Next, we prove Proposition 1.2 by using Theorem 2.4.
Proof of Proposition 1.2. Suppose that $\operatorname{det} J(F) \in k \backslash\{0\}$, where $F=$ $\left(f_{1}, \ldots f_{n}\right), f_{i} \in k[\mathbf{X}]$ and k is a field of characteristic zero. Then there exist $g_{i j} \in k[\mathbf{X}]$ such that

$$
\frac{\partial f_{i}}{\partial x_{j}}=g_{i j} \hat{f}_{i}
$$

for $1 \leq i, j \leq n$. Then we have

$$
\begin{aligned}
\operatorname{det} J(F) & =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \frac{\partial f_{1}}{\partial x_{\sigma(1)}} \cdots \frac{\partial f_{n}}{\partial x_{\sigma(n)}} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) g_{1 \sigma(1)} \hat{f}_{1} \cdots g_{n \sigma(n)} \hat{f}_{n} \\
& =\left(\hat{f}_{1} \cdots \hat{f}_{n}\right) \cdot \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) g_{1 \sigma(1)} \cdots g_{n \sigma(n)},
\end{aligned}
$$

where S_{n} is the symmetric group on n elements. For each permutation $\sigma \in S_{n}, \operatorname{sgn}(\sigma)$ denotes the signature of σ. Since $\operatorname{det} J(F) \in k \backslash\{0\}$, $\hat{f}_{i} \in k \backslash\{0\}$, so $\operatorname{deg}\left(\hat{f}_{i}\right)=0$ for $1 \leq i \leq n$. Therefore \hat{f}_{i} satisfies the inequality of Theorem 2.4 for $\mathbf{w}=(1, \ldots, 1)$ if $\operatorname{deg}\left(f_{i}\right) \geq 2$. Otherwise $\operatorname{deg}\left(f_{i}\right)=1$. By Theorem 2.4, f_{i} is a closed polynomial for $1 \leq i \leq n$.

Proposition 2.6. Let k be a field of characteristic zero. For a nonconstant polynomial $f \in k[\mathbf{X}] \backslash k$, the following conditions are equivalent.
(1) $\operatorname{deg}(\hat{f})=\operatorname{deg}(f)-1$.
(2) There exist $r_{1}, \ldots, r_{n} \in k$ with $\left(r_{1}, \ldots, r_{n}\right) \neq(0, \ldots, 0)$ such that $f \in k\left[r_{1} x_{1}+\cdots+r_{n} x_{n}\right]$.
Proof. (1) \Rightarrow (2) There exist $r_{1}, \ldots, r_{n} \in k[\mathbf{X}]$ such that $f_{x_{i}}=r_{i} \hat{f}$ for $1 \leq i \leq n$. We may assume that $f_{x_{1}} \neq 0$. Then

$$
d-1=\operatorname{deg}(\hat{f}) \leq \operatorname{deg}\left(f_{x_{1}}\right) \leq d-1
$$

so we have $\operatorname{deg}\left(f_{x_{1}}\right)=d-1=\operatorname{deg}(\hat{f})$ and $r_{1} \in k \backslash\{0\}$. For $1 \leq i \leq n$ with $f_{x_{i}} \neq 0$, using the same argument, we have $r_{i} \in k \backslash\{0\}$. On the other hand, for $1 \leq i \leq n$ with $f_{x_{i}}=0$, we have $r_{i}=0$. So r_{i} is either a non-zero constant polynomial or 0 for $1 \leq i \leq n$. Set $g:=r_{1} x_{1}+\cdots+r_{n} x_{n}$. By Theorem 2.4, g is a closed polynomial because $\operatorname{deg}(g)=1$. Therefore, by Theorem 1.1, there exists a k-derivation D on $k[\mathbf{X}]$ such that Ker $D=k[g]$. Then

$$
\begin{aligned}
D(f) & =D\left(x_{1}\right) f_{x_{1}}+\cdots+D\left(x_{n}\right) f_{x_{n}} \\
& =D\left(x_{1}\right) r_{1} \hat{f}+\cdots+D\left(x_{n}\right) r_{n} \hat{f} \\
& =D(g) \cdot \hat{f}=0
\end{aligned}
$$

Therefore $f \in \operatorname{Ker} D=k[g]$.
$\mathbf{(2)} \Rightarrow \mathbf{(1)}$ Set $g:=r_{1} x_{1}+\cdots+r_{n} x_{n}$. Since $f \in k[g]$, there exists $u(t) \in k[t]$ of degree $\operatorname{deg}(f)$ with $f=u(g)$. Then $f_{x_{i}}=r_{i} u^{\prime}(g)$ for $1 \leq i \leq n$, where $u^{\prime}(t)=d u(t) / d t$. Then $\operatorname{deg}\left(u^{\prime}(g)\right)=\operatorname{deg}(f)-1$ and $u^{\prime}(g)$ divides \hat{f}. So we have

$$
\operatorname{deg}\left(u^{\prime}(g)\right) \leq \operatorname{deg}(\hat{f}) \leq \operatorname{deg}(f)-1
$$

Therefore $\operatorname{deg}(\hat{f})=\operatorname{deg}(f)-1$.
Remark 2.7. In the proof of Proposition 2.6, we use a fundamental result on derivations. For an integral domain R, let D be an R-derivation on $R[\mathbf{X}]$. The we can represent D as the following form:

$$
D=D\left(x_{1}\right) \frac{\partial}{\partial x_{1}}+\cdots+D\left(x_{n}\right) \frac{\partial}{\partial x_{n}} .
$$

Corollary 2.8. Let k be a field of characteristic zero. For a non-constant polynomial $f \in k[\mathbf{X}] \backslash k$ of degree prime, the following conditions are equivalent.
(1) f is a closed polynomial.
(2) $\operatorname{deg}(\hat{f})<\operatorname{deg}(f)-1$.

Proof. (1) \Rightarrow (2) Suppose that $\operatorname{deg}(\hat{f})=\operatorname{deg}(f)-1$. By Proposition 2.6, there exist $r_{1}, \ldots, r_{n} \in k$ with $\left(r_{1}, \ldots, r_{n}\right) \neq(0, \ldots, 0)$ such that $f \in k[g]$, where $g:=r_{1} x_{1}+\cdots+r_{n} x_{n}$. Since $\operatorname{deg}(f)$ is prime, especially $\operatorname{deg}(f) \geq 2, k[f] \subsetneq k[g]$. By Theorem 1.1, f is not a closed polynomial.
(2) \Rightarrow (1) Suppose that $\operatorname{deg}(\hat{f})<\operatorname{deg}(f)-1$. Since $\operatorname{deg}(f)$ is prime, $N_{\mathbf{w}}(f)=\operatorname{deg}(f)$, where $\mathbf{w}=(1, \ldots, 1)$. Then

$$
\frac{N_{\mathbf{w}}(f)-1}{N_{\mathbf{w}}(f)} \operatorname{deg}(f)=\frac{\operatorname{deg}(f)-1}{\operatorname{deg}(f)} \operatorname{deg}(f)=\operatorname{deg}(f)-1 .
$$

Therefore we have

$$
\operatorname{deg}(\hat{f})<\operatorname{deg}(f)-1=\frac{N_{\mathbf{w}}(f)-1}{N_{\mathbf{w}}(f)} \operatorname{deg}(f)
$$

By Theorem 2.4, f is a closed polynomial.

From this, when you want to check the closedness of polynomial of degree prime, we only have to calculate \hat{f}.

References

[1] I. V. Arzhantsev and A. P. Petravchuk, Closed polynomials and saturated subalgebras of polynomial algebras, Ukrainian Math. J., 59 (2007), 1783-1790.
[2] H. Kojima and T. Nagamine, Closed polynomials in polynomial rings over integral domains, J. Pure Appl. Algebra, 219 (2015), 5493-5499.
[3] T. Nagamine, Derivations having divergence zero and closed polynomials over domains, J. Algebra, 462 (2016), 67-76.
(T. Nagamine) Graduate School of Science and Technology, Nifgata University, 8050 Ikarashininocho, Nishi-ku, Niigata 950-2181, Japan

E-mail address: t.nagamine14@m.sc.niigata-u.ac.jp

