
On parameter F -jumping numbers

Shunsuke Takagi

Kyushu University/MIT

Mathematical Research Communities
Special Session on Commutative Algebra
Joint AMS-MAA Mathematical Meetings

New Orleans - January 7, 2011



This talk is based on the following papers:

• C. Huneke, M. Mustaţă, S. Takagi and

K. Watanabe, F -thresholds, tight closure,

integral closure, and multiplicity bounds.

• C. Huneke, S. Takagi and K. Watanabe,

Multiplicity bounds in graded rings.

• M. Mustaţă, S. Takagi and K. Watanabe,

F -thresholds and Bernstein-Sato polynomials.

Notation:

R: Noetherian domain of char. p > 0, dim R = d

a, J ⊆ R : ideals s.t. a ⊆
√

J
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J denotes the integral closure of J

J∗ denotes the tight closure of J

(x ∈ J∗ ⇐⇒ ∃c ∈ R \ {0}, ∀q = pe � 0, cxq ∈ J [q])

F-thresholds:

For q = pe, J [q] := (xq | x ∈ J)

νJ
a (q) := max{r ∈ N|ar 6⊆ J [q]}

(if a ⊆ J [q], then we put νJ
a (q) = 0)

cJ
+(a) := lim sup

q→∞

νJ
a (q)

q
, cJ

−(a) := lim inf
q→∞

νJ
a (q)

q

If cJ
+(a) = cJ

−(a), we denote this value by cJ(a).
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Ex. R = Fp[X1, . . . , Xd] and m = (X1, . . . , Xd)

(X1, . . . , Xd)
d(q−1)+1 ⊆ (Xq

1 , . . . , Xq
d)

(X1 · · · Xd)
q−1 /∈ (Xq

1 , . . . , Xq
d)

=⇒ νm
m(q) = d(q − 1) and cm(m) = d

Basic Properties a

(1) cJ
±(a) = cJ

±(a)

(2) cJ
±(a) � cJ

±(a) in general

(3) If R is local and J is generated by a full s.o.p.

=⇒ cJ(J) = d

Q. When does cJ(a) exist?
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A. cJ(a) exists

• if a is a principal ideal, or

• if RP is F -pure for all primes P not containing a

Prop. Suppose R is local and J ⊆ I ⊆ R are

ideals s.t. J is generated by a full s.o.p.

(1) If R is excellent and analytically irreducible,

I ⊆ J∗ ⇐⇒ cI
+(J) = d

(2) If R is formally equidimensional,

I ⊆ J ⇐⇒ cJ
+(I) = d
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Suppose (R, m) is an F-finite local domain or

a graded domain R =
⊕

n≥0 Rn with R0 a field

and m =
⊕

n≥1 Rn

Parameter F -jumping numbers:

F e : Hd
m(R) → Hd

m(R) e-times iterated Frobenius

For t ≥ 0,

0∗at

Hd
m (R)

⊆ Hd
m(R) R-submodule defined as follows:

z ∈ 0∗at

Hd
m (R) ⇐⇒ ∃c ∈ R\{0}, ∀q = pe � 0, cadtqeF e(z) = 0

Hd
m(R) × ωR → Hd

m(R) duality pairring

τ (ωR, at) := AnnωR
0∗at

Hd
m (R)

⊆ ωR

fjnJ(ωR, a) := min{t ≥ 0 | τ (ωR, at) ⊆ JωR}
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Basic Properties a

(1) τ (ωR, at) = τ (ωR, at)

In particular, fjnJ(ωR, a) = fjnJ(ωR, a)

(2) fjnJ(ωR, a) � fjnJ(ωR, a) in general

(3) If J is generated by a full s.o.p.

=⇒ fjnJ(ωR, J) = d

(4) R is F -rational (i.e., I∗ = I for all par. ideals I)

iff R is CM and τ (ωR, R) = ωR

(5) Fix 0 6= ∀c ∈ τpar(R) :=
∩

J⊆R:par. ideal J : J∗

(F e)∨ : F e
∗ ωR → ωR dual of F e : R → F e

∗ R

τ (ωR, at) =
∑
e≥1

(F e)∨(F e
∗ (cadtpeeωR))
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(6) (cf. Hyry–Villamayor)

Suppose (R, m) is a CM normal local ring and

F -rational in the punctured spectrum

r(R) := min{r ≥ 0 | mrωR ⊆ τ (ωR, R)}

In+d+r(R)−1 ⊆ In for ∀I ⊆ R and ∀n ≥ 0

Multiplier submodules:

S: normal domain ess. finite type over a field of

char. 0

a, J ⊆ S : ideals s.t. a ⊆
√

J , t ≥ 0

π : Y → X := Spec S log resolution of a

s.t. aOY = OY (−F )
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J (ωS, at) := π∗(ωY ⊗ OY (−btF c)) ⊆ ωS

λJ(ωS, a) := min{t ≥ 0 | J (ωS, at) ⊆ JωS}

Prop. (Hara–Yoshida) Suppose (Sp, ap, Jp) is a re-

duction of (S, a, J) to char. p � 0

(1) τ (ωSp , at
p) ⊆ J (ωS, at)p for ∀t ≥ 0. In particu-

lar,

fjnJp (ωSp , ap) ≤ λJ(ωS, a)

(2) If p � 0 (how large p has to be depends on t),

τ (ωSp , at
p) ⊆ J (ωS, at)p
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A comparison of cJ(a) and fjnJ(ωR, a):

Prop. (1) If R is regular, then cJ(a) = fjnJ(ωR, a)

(2) In general, cJ
+(a) 	 fjnJ(ωR, a)

Ex. R = k[X, Y, Z]/(XY − Z2), m = (x, y, z)

=⇒ cm(m) = 3/2 and fjnm(ωR, m) = 1

Thm. If RP is F -rational for all primes P not

containing a and if J is generated by a full s.o.p.,

cJ
+(a) = fjnJ(ωR, a)

Q. What if R is not F -rational away from V (a)?
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Multiplicity bounds:

Thm. (de Fernex–Ein–Mustaţă)

(S, n) : d-dim. regular local ring ess. finite type

over a field of char. 0

e(a) ≥
(

d

λn(ωS, n)

)d

for all n-primary ideals a

Q. What if S is singular?

Ex. S = C[X, Y, Z]/XY − Z2 and n = (x, y, z).

e(n) = 2 � 4 =

(
2

1

)2

=

(
d

fjnJ(ωS, n)

)d
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Conj. (R, m) : d-dim. F -finite local domain

a, J ⊆ R : m-primary ideals

If J is generated by a full s.o.p.,

e(a) ≥
(

d

fjnJ(ωR, a)

)d

e(J)

Rem. a

(1) Conj. is true if dim R = 1 or if R is regular

and J = m

(2)We may assume a is generated by a full s.o.p.

(3) If J is not generated by a full s.o.p,

Conj. can fail
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Ex. R = k[X1, . . . , Xd], a = m and J = ml (l ≥ 2)

e(a) = 1 �
(

dl

d + l − 1

)d

=

(
d

fjnJ(ωR, a)

)d

e(J)

Main Thm. R =
⊕

n≥0 Rn : graded domain with

R0 a field of char. p > 0

a, J ⊆ R : ideals generated by full homog. s.o.p.

e(a) ≥
(

d

fjnJ(ωR, a)

)d

e(J)
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Cor. R =
⊕

n≥0 Rn : normal graded domain with

R0 a field of char. 0

a, J ⊆ R : ideals generated by full homog. s.o.p.

e(a) ≥
(

d

fjnJ(ωR, a)

)d

e(J)

Outline of the proof of Main thm. a

(a) a = (x1, . . . , xd) and J = (f1, . . . , fd)

e(a)

e(J)
=

deg x1 · · · deg xd

deg f1 · · · deg fd
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(b) fjnJ(ωR, a) ≥ t

=⇒ ∃c ∈ R \ {0} homog. element

s.t. cadtqe ⊆ J [q] for all q = pe � 0

(c) R+gr is a big CM R-algebra (Hochster–Huneke)

We may assume R is CM

(d) Compare the Koszul complex of fq
1 , . . . , fq

d and

the Taylor resolution of a monomial ideal in xi’s

=⇒ Can compare the degrees of xi’s and fi’s.

14


