Microlocal Singularities and Scattering Theory for Schrödinger Equations on Manifolds

Shu Nakamura

Graduate School of Mathematical Sciences, University of Tokyo

August 8, 2012, ICMP12, Aalborg, Denmark

(Joint work with Kenichi Ito, Tsukuba Univ.)
Plan of Talk

1. Very Brief Introduction to Scattering Theory

2. Scattering for the Geodesic Flow on Asymptotically Conic Manifolds

3. Quantization (1) — Analysis of Singularities

4. Quantization (2) — Microlocal Analysis of Scattering Matrix

5. Conclusion
1. Very brief introduction to scattering theory

1.1 Scattering for the Newton particle (cf. [Reed-Simon] XI-2)

Let \(x = x(t) \in \mathbb{R}^d \) be the position of a particle, and let \(V(x) \) be the potential function. The motion is described by the Newton equation:

\[
x''(t) = -\nabla V(x(t)), \quad x(0) = x_0, \quad x'(0) = p_0.
\]

We suppose \(\text{Supp}[V] : \text{compact} \).

- If the particle is \textit{not trapped}, then the trajectory converges to the straight motion (= free motion) as \(t \to \pm \infty \), i.e., there are

\[
p_{\pm} = \lim_{t \to \pm \infty} x'(t), \quad x_{\pm} = \lim_{t \to \pm \infty} (x(t) - tp_{\pm}).
\]

In other words, the motion is asymptotically \(x(t) \sim x_{\pm} + tp_{\pm} \ (t \to \pm \infty) \).

\((x_0, p_0) \mapsto (x_{\pm}, p_{\pm}) \) (the scattering data)

Remark: The above statement holds if \(|\nabla V(x)| = O(|x|^{-2-\varepsilon}) \) (\(\varepsilon > 0, |x| \to \infty \)).
1.2 Scattering in the quantum mechanics
(cf. [Reed-Simon] Vol.3, [Yafaev], etc.)

Let $\mathcal{H} = L^2(\mathbb{R}^d)$ and suppose $\text{Supp}[V]$: compact. Let

$$ H = -\frac{1}{2} \triangle + V(x), \quad H_0 = -\frac{1}{2} \triangle \quad \text{on } \mathcal{H} $$

be Schrödinger operators. The solution to the Schrödinger equation:

$$ i \frac{\partial}{\partial t} u(t) = Hu(t), \quad u(0) = u_0 \in \mathcal{H} $$

is given by $u(t) = e^{-itH}u_0 \in C(\mathbb{R}; \mathcal{H})$.

If u_0 is orthogonal to all the eigenfunctions, then $u(t)$ converges to a free motion as $t \to \pm \infty$, i.e.,

$$ \exists u_\pm \in \mathcal{H}, \quad ||u(t) - e^{-itH_0}u_\pm|| \to 0 \quad (t \to \pm \infty). $$

The scattering data are: $u_0 \mapsto u_\pm$.

$\mathcal{W}_\pm : u_\pm \mapsto u_0$ (wave operators), $\mathcal{S} : u_- \mapsto u_+$ (scattering operator)

Remarks:
1. Spectral properties of H follows from these.
2. We only need to assume $V(x) = O(|x|^{-1-\varepsilon}) \ (\varepsilon > 0, \ |x| \to \infty)$.
2. Scattering for the geodesic flow on asymptotically conic manifolds

2.1 Hamilton flow on asymptotically conic manifolds

Let $M : d$-dim, non-compact manifold, s.t. $M = M_c \cup M_\infty$, $M_c :$ precompact,

$$M_\infty \cong (0, \infty) \times \partial M, \quad \partial M : \text{a compact manifold.}$$

In the following, we always use the coordinate:

$$\mathbf{(r, \theta)} \in (0, \infty) \times \partial M \cong M_\infty$$
on M_∞. We let $g :$ an asymptotically conic Riemannian metric on M, i.e., g has the form:

$$g \sim dr^2 + r^2 h, \quad \mathbf{(r, \theta)} \in M_\infty, \quad r \to \infty.$$

Here h is a Riemannian metric on ∂M. The corresponding energy function is:

$$k(x, \xi) = \frac{1}{2} \sum_{i,j} g_{ij}(x) \xi^i \xi^j, \quad (x, \xi) \in T^*M$$

$$\sim \frac{1}{2} \left(\rho^2 + \frac{1}{r^2} \sum_{j,k} h_{jk}(\theta) \omega^j \omega^k \right), \quad (r, \rho, \theta, \omega) \in T^*M_\infty, \quad r \to \infty.$$

Here we use the identification: $T^*M_\infty \cong T^*\mathbb{R}_+ \times T^*\partial M$.
Assumption : We write

\[k(x, \xi) = \frac{1}{2} \left(a_1(r, \theta) \rho^2 + \frac{2}{r} \sum_{j=1}^{d-1} a_{2,j}(r, \theta) \rho \omega^j + \frac{1}{r^2} \sum_{j,k=1}^{d-1} a_{3,jk}(r, \theta) \omega^j \omega^k \right) \]

on \(T^*M_\infty \). There exists \(\mu > 0 \) such that for any indeces \(\ell \in \mathbb{Z}_+, \alpha \in \mathbb{Z}^{d-1}_+ \),

\[
|\partial_r^\ell \partial_\theta^\alpha (a_1(r, \theta) - 1)| \leq C_{\ell \alpha} r^{-1-\mu-\ell}, \quad |\partial_r^\ell \partial_\theta^\alpha a_2(r, \theta)| \leq C_{\ell \alpha} r^{-\mu-\ell}, \quad |\partial_r^\ell \partial_\theta^\alpha (a_3(r, \theta) - h(\theta))| \leq C_{\ell \alpha} r^{-\mu-\ell}.
\]

We write the Hamilton flow generated by \(k(x, \xi) \):

\[\exp(tH_k) : T^*M \to T^*M \quad (t \in \mathbb{R}) \]

(Note this is the geodesic flow up to parameterizations.)
2.2 Nontrapping condition and the existence of scattering

Nontrapping Condition: Let \((x_0, \xi_0) \in T^*M, \xi \neq 0\) and we denote
\((x(t), \xi(t)) = \exp(tH_k)(x_0, \xi_0)\). Then \((x_0, \xi_0)\) is called nontrapping if for \(\forall K \subseteq M\), \(\exists T > 0\) such that \(|t| \geq T \Rightarrow x(t) \notin K\).

If \((x_0, \xi_0)\) is nontrapping, we may suppose \((x(t), \xi(t)) \in T^*M_\infty\) for large \(|t|\). Thus we write

\[\exp(tH_k)(x_0, \xi_0) = (r(t), \rho(t), \theta(t), \omega(t)) \in T^*\mathbb{R}_+ \times T^*\partial M\]

for \(|t| \gg 0\). Then the limits:

\[r_\pm = \lim_{t \to \pm \infty} (r(t) - t\rho(t)), \quad \rho_\pm = \lim_{t \to \pm \infty} \rho(t),\]

\[\theta_\pm = \lim_{t \to \pm \infty} \theta(t), \quad \omega_\pm = \lim_{t \to \pm \infty} \omega(t)\]

exist, i.e., \(\rho(t), \theta(t), \omega(t)\) have limits, and \(r(t) \sim r_\pm + t\rho_\pm (t \to \pm \infty)\).
The idea of Proof:

1. We denote $q(\theta, \omega) = \frac{1}{2} \sum h_{jk}(\theta) \omega^j \omega^k$. Then $k \sim \frac{1}{2} \rho^2 + \frac{q(\theta, \omega)}{r^2}$ as $r \to \infty$. Hence $\rho(t), \frac{\omega(t)}{r(t)}$ are bounded by the energy conservation law.

2. Since $\frac{d^2}{dt^2} (r(t)^2) \sim 8k > 0$ (as $r \to \infty$), $r(t) > c|t| - C$ as $|t| \to \infty$.

3. $q(\theta(t), \omega(t))$ is uniformly bounded.

4. Combining these, we show the derivative of these scattering quantities $(r(t) - t\rho(t), \rho(t), \theta(t), \omega(t))$ are integrable, and hence the limits exist.
2.3 Wave operators; Scattering operator

We set $M_f = \mathbb{R} \times \partial \mathcal{M}$, $T^*M_f \cong T^*\mathbb{R} \times T^*\partial \mathcal{M}$. We call the correspondence:

$$w_\pm : (r_\pm, \rho_\pm, \theta_\pm, \omega_\pm) \in T^*M_f \mapsto (x_0, \xi_0) \in T^*\mathcal{M}$$

the (classical mechanical) wave operators.

Remark: Actually, we always have $\pm \rho_\pm > 0$, w_\pm is not defined on $(\mathbb{R} \times \mathbb{R}_{\mp}) \times T^*\partial \mathcal{M}$. Hence, $w_\pm : (\mathbb{R} \times \mathbb{R}_{\pm}) \times T^*\partial \mathcal{M} \to T^*\mathcal{M}$.

If we define $k_f(\rho) = \frac{1}{2} \rho^2$, the free energy with respect to r, then

$$\exp(tH_{k_f})(r, \rho, \theta, \omega) = (r + t\rho, \rho, \theta, \omega), \quad (r, \rho, \theta, \omega) \in T^*\mathcal{M}_0.$$

Thus (with suitable identifications),

$$w_\pm^{-1} = \lim_{t \to \pm \infty} \exp(-tH_{k_f}) \circ \exp(tH_k), \quad w_\pm = \lim_{t \to \pm \infty} \exp(-tH_k) \circ \exp(tH_{k_f}).$$

Remark: w_\pm is a homogeneous canonical map: $w_\pm(x, \lambda \xi) = (r_\pm, \lambda \rho_\pm, \theta_\pm, \lambda \omega_\pm)$ $(\forall \lambda > 0)$.

We define the scattering operator by

$$s = w_+^{-1} \circ w_- : (r_-, \rho_-, \theta_-, \omega_-) \mapsto (r_+, \rho_+, \theta_+, \omega_+)$$

Note $s : (\mathbb{R} \times \mathbb{R}_-) \times T^*\partial \mathcal{M} \to (\mathbb{R} \times \mathbb{R}_+) \times T^*\partial \mathcal{M}$.
2.4 Euclidean space – The scattering theory in the polar coordinate

Let $M = \mathbb{R}^d$, $\partial M = S^{d-1}$, $\mathbb{R}^d = \{|x| < 2\} \cup (1, \infty) \times S^{d-1}$, and can we apply our formulation. For $(x_0, \xi_0) \in T^*\mathbb{R}^d$, we write

$$\xi_0 = |\xi_0| \hat{\xi}_0, \quad \hat{\xi}_0 = \frac{\xi_0}{|\xi_0|} \in S^{d-1}, \quad x_0 = x_0^\perp + s_0 \hat{\xi}_0, \quad x_0^\perp \perp \hat{\xi}_0.$$

It is easy to see

$$\rho_\pm = \pm |\xi_0|, \quad \theta_\pm = \pm \hat{\xi}_0, \quad r_\pm = \pm s_0, \quad \omega_\pm = \mp |\xi_0| x_0^\perp.$$

The free motion is $x(t) = x_0^\perp + (t + s_0/|\xi_0|) \hat{\xi}_0$, and we may consider

- ρ_\pm: length of the momentum,
- θ_\pm: direction of the momentum,
- r_\pm: time-delay (× momentum),
- ω_\pm: impact parameter (/ momentum).

The scattering operator s is: $(r, \rho, \theta, \omega) \mapsto (-r, -\rho, -\theta, -\omega)$.
2.5 Scattering Matrix

We can show, if we write $s(r_-, \rho_-, \theta_-, \omega_-) = (r_+, \rho_+, \theta_+, \omega_+)$, then $\rho_+ = -\rho_-,

\[s(r_- + s, \rho_-, \theta_-, \omega_-) = (r_+ - s, \rho_+, \theta_+, \omega_+), \quad \forall s \in \mathbb{R}. \]

Hence, we can set

\[s(\lambda) : (\theta_-, \omega_-) \mapsto (\theta_+, \omega_+), \quad \lambda = \frac{1}{2} \rho^2 \]

with $\rho = \rho_+$ as the parameter. $s(\lambda)$ is called the scattering matrix.

Remark: $s(\lambda) : T^*\partial M \to T^*\partial M$ is a homogeneous canonical map.

Remark: $t(\lambda; \theta, \omega) = r_- + r_+$ is the time delay.
2.6 Conic manifolds – The geodesic flow in the boundary manifold

We consider an important special case, i.e., completely conical metric:

\[k(r, \rho, \theta, \omega) = \frac{1}{2} \left(\rho^2 + \frac{1}{r^2} \sum_{j,k} h_{jk}(\theta) \omega^j \omega^k \right), \quad (r, \rho, \theta, \omega) \in T^*\mathbb{R}_+ \times T^*\partial M. \]

(Note \(k \) has a singularity at \(r = 0 \), but we consider trajectories which do not hit \(r = 0 \).)

- \(q(\theta, \omega) = \frac{1}{2} \sum h_{jk}(\theta) \omega^j \omega^k \) is an invariant.
- By setting \(q_0 = q(\theta_0, \omega_0) \), we can solve \((r(t), \rho(t))\) in terms of \((r_0, \rho_0)\) and \(q_0 \). In particular,
 \[r(t) = \sqrt{2E_0 t^2 + 2r_0 \rho_0 t + r_0^2}, \quad E_0 = \frac{1}{2} \rho_0^2 + \frac{q_0}{r_0^2}. \]

- By changing the time variable as \(\sigma(t) = \sqrt{2q_0} \int_0^t r(s)^{-2} ds \), we have
 \[(\theta(t), \omega(t)) = \exp(\sigma(t)H_{\sqrt{2q}})(\theta_0, \omega_0). \]
 The right hand side is the geodesic flow on \(T^*\partial M \).
- We have \(\sigma(\infty) - \sigma(-\infty) = \pi \), and hence \(s(\lambda) = \exp(\pi H_{\sqrt{2q}}) \).

Remark: \(s(\lambda) \) does not depend on \(\lambda > 0 \), but it is specific to the conic case. If \(g \) is asymptotically conic, there may be \(\lambda \)-dependent lower order terms.
3. Quantization (1) — Analysis of Singularities

3.1 Function space and Schrödinger operators

▷ Let $G(x)dx$ be the standard density on M, and set

$$\mathcal{H} = L^2(M, Gdx)$$

be our Hilbert space.

▷ Let P be the quantization of $k(x, \xi)$, i.e., the Laplace-Beltrami operator. On M_∞, P can be written:

$$P = -\frac{1}{2} G^{-1} \left(\partial_r, \partial_\theta / r \right) G \begin{pmatrix} a_1 & a_2 \\ t a_2 & a_3 \end{pmatrix} \begin{pmatrix} \partial_r \\ \partial_\theta / r \end{pmatrix}$$

Here a_1, a_2, a_3 satisfy the above assumptions.

▷ P is essentially self-adjoint on $C_0^\infty(M)$.

▷ $\sigma_{\text{ess}}(P) = \sigma_{\text{ac}}(P) = [0, \infty)$. No positive eigenvalues. (Froese-Hislop, Donnelly, etc...)

▷ We study the time-evolution generated by P:

$$U(t) = e^{-itP} : \mathcal{H} \to \mathcal{H}.$$

Remark: We can add the potential function $V(x)$, but we omit it for simplicity here.
3.2 Construction of free quantum system

▻ We need a *free system* to construct a scattering theory. In order that, we quantize
\[k_f(\rho) = \frac{1}{2} \rho^2 \]
(as in the classical mechanics case). We set
\[\mathcal{H}_f = L^2(\mathbb{R} \times \partial M; dr \wedge H(\theta) d\theta), \]
where \(H(\theta) d\theta \) is the standard density on \((\partial M, h) \).

▻ The free motion is
\[P_f = -\frac{1}{2} \frac{\partial^2}{\partial r^2} \text{ on } \mathcal{H}_f. \]

▻ We set \(j(r) \in C^\infty(\mathbb{R}) \) s.t. \(j(r) = \begin{cases} 0, & (r \leq 1), \\ 1, & (r \geq 2). \end{cases} \)

The identification operator: \(\mathcal{I} : \mathcal{H}_f \rightarrow \mathcal{H} \) is defined by
\[\mathcal{I}\varphi(r, \theta) = (H(\theta)/G(r, \theta))^{1/2} j(r) \varphi(r, \theta), \quad \varphi \in \mathcal{H}_f. \]
3.3 Construction of the fundamental solution

Theorem 1: (Ito-N) We suppose all the geodesics are nontrapping on T^*M. Then for each $\pm t > 0$,

$$W(t) = e^{itP} \mathcal{I}^* e^{-itP}$$

is a Fourier integral operator (FIO) (asymptotically) corresponding to w^{-1}_{\pm}.

Remark: $W(t)$ may be considered as a quantization of w^{-1}_{\pm}, though it is *finite time* evolution, since:

- FIOs describe (microlocal) singularities of an operator, i.e., behavior at high Fourier variables.
- A trajectories with high Fourier variable (momentum) move to far away, even for a fixed time. By a scaling, they corresponds to long-time motions.
- Long-time behavior of trajectories can be described by the (classical) scattering theory, w_{\pm} in particular.

Remark: If $\mu = 1$ Theorem 1 holds with *usual* FIO, but if $0 < \mu < 1$, we need slightly generalized notion of FIOs.
Remark: From Theorem 1 and *microlocal smoothing effect*, we can show

$$e^{-itP} = \mathcal{I}e^{-itP_f}W(t) + K, \quad \text{(with } K \text{ an smoothing operator)}. $$

Since e^{-itP_f} can be explicitly known, e^{-itP} can be written as a product of a known operator and an FIO. (cf. Hassell-Wunsch 2004)

Remark: We can also show the wave operator $W_\pm = \lim_{t \to \pm \infty} e^{itP} \mathcal{I}e^{-itP_f}$ is an FIO corresponding to w_\pm by letting $t \to \pm \infty$.
As an application of Theorem 1, we can determine the wave front sets of solutions to Schrödinger equations.

Wave front set (definition): Let \(u \in \mathcal{S}'(\mathbb{R}^d) \). \((x_0, \xi_0) \not\in \text{WF}(u) \) (\(\xi_0 \neq 0 \)) if and only if \(\exists \varphi \in C_0^\infty(\mathbb{R}^d), \varphi(x_0) \neq 0 \), \(\exists \Gamma \subset \mathbb{R}^d \): a conic neighborhood of \(\xi_0 \) and moreover, \(\forall N, \exists C_N > 0 \) s.t.

\[
\mathcal{F}(\varphi u)(\xi) \leq C_N (1 + |\xi|)^{-N}, \quad \xi \in \Gamma.
\]

The wave front set of solutions to the Schrödinger equation is given by:

\[
\text{WF}(e^{-itP}u) = w_{\mp}(\text{WF}(e^{-itP}I^*u)), \quad \pm t > 0.
\]

Remark: If there are trapped trajectories, the characterization of \(\text{WF}(u(t)) \) is not well-understood. (However, see Burq-Guillarmou-Hassell for Strichartz estimate)

Remark: We denote the distribution kernel of \(W(t) \) by the same symbol. Then

\[
\text{WF}(W(t)) = \{(w_{\pm}^{-1}(x, \xi), x, -\xi) \mid (x, \xi) \in T^*M\}, \quad \pm t > 0.
\]

follows from Theorem 1. The above result follows from this.
3.5 The idea of the proof — Standard quantization

▷ For a symbol (function) \(a(x, \xi) \) on \(T^*M \) (or \(T^*M_f \)), we quantize it by

\[
\text{Op}_\hbar(a) = a(x, \hbar D_x), \quad \hbar > 0.
\]

(\(\text{Op}_\hbar(a) \) is an \(\hbar \)-pseudodifferential operator.)

▷ Then, in particular, \((x_0, \xi_0) \not\in \text{WF}(u)\) if and only if \(\exists a \in C_0^\infty(T^*M) \), such that

\[a(x_0, \xi_0) \neq 0\] and

\[
\|\text{Op}_\hbar(a)u\| = O(\hbar^\infty), \quad \hbar \to 0.
\]

▷ \(A(t) = W(t)\text{Op}_\hbar(a)W(t)^* \) satisfied the Heisenberg equation:

\[
\frac{d}{dt}A(t) = -i[L(t), A(t)] + (\text{small errors}), \quad A(0) = \text{Op}_\hbar(a). \quad (\text{HEq})
\]

Here \(L(t) \) is a self-adjoint operators such that

\[
L(t) \sim e^{iP_f}Pe^{-iP_f} - P_f
\]

ignoring the identification operator \(\mathcal{I} \).
The principal symbol of $L(t)$ is given by

$$\ell(t; r, \rho, \theta, \omega) \sim k(r + t\rho, \rho, \theta, \omega) - k_f(\rho) \sim \frac{q(\theta, \omega)}{(r + t\rho)^2},$$

which is the generator of flow: $w(t) = \exp(-tH_{k_0}) \circ \exp(tH_k)$.

We construct an asymptotic solution to (HEq), analogously to Egorov Theorem. Then the principal symbol of $A(t)$ is given by

$$\text{Sym}(A(t)) \sim a \circ w(t) \sim a \circ w_{\pm} \quad \text{if} \quad \pm t > 0.$$

Here we use a scaling property:

$$w(t; x, \lambda \xi) = (z(\lambda t), \lambda \xi(\lambda t)), \quad \text{where} \quad (z(t), \xi(t)) = w(t; x, \xi).$$

and hence $w(t; x, \xi) \sim w_{\pm}(x, \xi)$ when $|\xi| \rightarrow \infty$.

We then use a Beals type characterization for FIOs: Let $\Sigma: T^*\mathbb{R}^d \rightarrow T^*\mathbb{R}^d$ be a homogeneous canonical diffeomorphism. Let U: bounded in $L^2(\mathbb{R}^d)$, such that for any $a(x, \xi) \in C_0^\infty(T^*\mathbb{R}^d \setminus 0),

$$\text{Op}\, \hat{a} (a \circ \Sigma^{-1})U - U\text{Op}\, \hat{a} = \text{Op}\, \hat{b} U + O(\hat{h}^\infty)$$

with $b = b(\hat{h}; x, \xi)$, $b = O(\hat{h})$. Then U is an FIO (of order 0) associated to Σ.

$W(t)$ satisfies the characterization with $\Sigma = w_{\pm}$, and Theorem 1 follows.
3. Quantization (2) — Microlocal analysis of scattering matrix

3.1 Construction of scattering theory — Wave operators and the completeness

▷ We consider the quantization of the geodesic flow and the quantum scattering theory.
▷ We first construct a quantum scattering theory. Let \mathcal{H}_f, P_f, $I : \mathcal{H}_f \to \mathcal{H}$ as in the last section. We set F be the Fourier transform in r-variable; and function spaces $\mathcal{H}_{f,\pm}$ by

$$
(Ff)(\rho) = (2\pi)^{-1/2} \int e^{-ir\rho} f(r) dr,
$$

$$
\mathcal{H}_f = \mathcal{H}_{f,+} \oplus \mathcal{H}_{f,-}, \quad \mathcal{H}_{f,\pm} = \{ u \in \mathcal{H} \mid \text{supp}(Fu) \subset \mathbb{R}_\pm \}.
$$

▷ The wave operators are defined by

$$
W_{\pm} \varphi = \lim_{t \to \pm \infty} e^{itP} I e^{-itP_f} \varphi, \quad \varphi \in \mathcal{H}_f.
$$

Then W_{\pm} exist, $W_{\pm} = 0$ on $\mathcal{H}_{f,\mp}$, $W_{\pm} : \mathcal{H}_{f,\pm} \to \mathcal{H}$ are isometries.

▷ Asymptotic completeness: $\text{Ran}(W_{\pm}) = \mathcal{H}_c(H)$. In particular, the scattering operator: $S = W^*_+ W_- : \mathcal{H}_{f,-} \to \mathcal{H}_{f,+}$, is unitary. (Ito-N 2009. See also De Bievre-Hislop-Sigal 1992, Ito-Skibsted 2011, Hempel-Post-Wedder 2012, etc.)
4.2 Singularities of the scattering matrix— Melrose-Zworski theorem

▷ **Scattering matrix:** Thanks to the energy conservation: ([S, Pf] = 0), S is decomposed as follows:

\[\text{FSF}^{-1} \varphi(\rho, \cdot) = (S(\lambda)\varphi)(-\rho, \cdot), \quad \varphi \in L^2(\mathbb{R} \times \partial M), \]

where \(\lambda = \frac{1}{2} \rho^2 \), \(S(\lambda) \): \(L^2(\partial M, H_d\theta) \to L^2(\partial M, H_d\theta) \). S(\lambda) is the scattering matrix.

Theorem 2: (Melrose-Zworski, Ito-N) \(S(\lambda) \) is an FIO (asymptotically) corresponding to \(\exp(\pi H_{\sqrt{2q}}) \).

Remark: Melrose-Zworski (1996) proved Theorem 2 when \(\mu = 1 \), and the formulation is completely different. When \(0 < \mu < 1 \) we need a slightly generalized definition of FIOs.

Remark: We note \(\exp(\pi H_{\sqrt{2q}}) \) is the classical mechanical scattering matrix for the conic metric case. Thus this theorem may be considered as its quantization.

Remark: It may be considered as a refinement of the off-diagonal smoothness of the scattering matrix (cf. Isozaki-Kitada 1985, Yafaev (textbooks), etc.)
4.3 Idea of proof — Nonstandard quantization

- Since S is an operator on ∂M, the singularities corresponds to its behavior as $|\omega| \to \infty$ on $T^*\partial M$. (with $(\theta, \omega) \in T^*\partial M$)

- Since ω is the impact parameter, a particle with large ω cannot enter the area with small r. In other words, since $E \sim \frac{1}{2} \rho^2 + O((\omega/r)^2)$, we have to have $r = O(\omega)$ as long as the energy is fixed.

- Hence, we need to localize in (ρ, θ), and carry on the asymptotic analysis for large (r, ω). In the following, we always work in $M_\infty \cong \mathbb{R}_+ \times \partial M$.

- For a symbol: $a = a(r, \rho, \theta, \omega) \in C^\infty(T^*(\mathbb{R}_+ \times \partial M))$, we quantize a by

$$\text{Op}^\hbar(a) = a(\hbar r, D_r, \theta, \hbar D_\theta), \quad \hbar > 0,$$

(This is analogous to Isozaki-Kitada calculus, or the scattering calculus of Melrose.)

- We construct an asymptotic solution of $W(t)^*\text{Op}^\hbar(a)W(t)$ as $\hbar \to 0$, and then analyze the properties as before.
5. Conclusion

- We approximate the long-time behavior of classical trajectories (geodesic flow) by a free motion which is defined suitably.
- The relationship between the classical trajectories and free motion is given by wave operators/scattering operators.
- By quantizations (semiclassical pseudodifferential operator calculus), we can analyze behaviors of solutions to Schrödinger equations.
- By usual quantization, we can characterize the microlocal singularities of solutions.
- By scattering-type quantization, we can analyze the microlocal properties of scattering matrix.
- The strategy is very simple that various generalizations are possible:
 - more general manifolds, e.g., polynomially growing ends (Itozaki)
 - long-range perturbations (N, Itozaki)
 - the operators with potentials (including unbounded potentials)
 - perturbation of harmonic oscillators (Wunsch, Mao-N)
 - microlocal analytic singularities (Robbiano-Zuily, Martinez-N-Sordoni)
 - etc...