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The functor Zg’: By — A¥

Theorem (Massuyeau—H)

For each Drinfeld associator ¢ = (X, Y) € Q((X,Y)), there is a
braided monoidal functor

Zf: Bq —>A“§.

Here
> Bg is the non-strictification of the category I3 of bottom
tangles in handlebodies,

> K‘g’ is the non-strictification of the degree-completion A of the
category A of chord diagrams in handlebodies, equipped with
a braided monoidal structure associated to ¢,

» Z§ is constructed by using the Kontsevich integral of
(bottom) tangles in handlebodies.
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For each Drinfeld associator ¢ = (X, Y) € Q((X,Y)), there is a
braided monoidal functor

Zf: Bq —>A“§.

Here

> Bg is the non-strictification of the category I3 of bottom
tangles in handlebodies,

> K‘g’ is the non-strictification of the degree-completion A of the
category A of chord diagrams in handlebodies, equipped with
a braided monoidal structure associated to ¢,

» Z§ is constructed by using the Kontsevich integral of
(bottom) tangles in handlebodies.

By ignoring subtleties, we have a functor Z: B — A.



The category B

The category B of bottom tangles in handlebodies
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» B(m, n) = {n-component bottom tangles in V,,}/isotopy.
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The category B

The category B of bottom tangles in handlebodies
» Ob(B) =N={0,1,2,...}.
» B(m, n) = {n-component bottom tangles in V,,}/isotopy.
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Composition: Regard a morphism m — n as a cobordism between
Y m1 and X, 1, compose, and regard the result as a bottom tangle
in a handlebody.

(Thus B may be regarded as a subcategory of a cobordism
category.)
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The Vassiliev filtration on QB
Let QB be the Q-linearization of B.

» Ob(QB) = Ob(B) =N,
> (@B)("B n) = Q(B(ma n))
The Vassiliev filtration on QB(m, n):
QB(m,n) =V°(m,n) D V(m,n) > ...,
where V¥(m, n) is Q-spanned by all the alternating sums
> (kT
Sc{1,..d}

of d independent crossing/framing changes on bottom tangles T.
Then QB with V9, d > 0, is a filtered linear braided monoidal
category, i.e.,

VI(n, p) o V¥ (m, n) c V¥ (m, p),
VI(m,n) @V (m',n') c VI (m+m' n+n).



The associated graded gr(QB) of QB

Let gr(QB) be the associated graded of the Vassiliev filtration of
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The associated graded gr(QB) of QB

Let gr(QB) be the associated graded of the Vassiliev filtration of
QB.

> grd(QB)(m, n) = V4(m, n)/VIt(m, n).
gr(QB) is a graded Q-linear symmetric monoidal category.
Theorem (Massuyeau—H)

The functor Z: B — A induces an isomorphism of a graded
Q-linear symmetric monoidal categories

grZ: gr(QB) = gr(A) = A,



The category A

The category A of chord diagrams in handlebodies:
» Ob(A) =N,
_ @Q{chord diagrams on bottom n-strands in V,,}

> A(m,n) = homotopy, 4T



and

then




The category A

The category A of chord diagrams in handlebodies:
» Ob(A) =N,

_ @Q{chord diagrams on bottom n-strands in V,,}
> A(m,n) = homotopy, 4T

The category A is a graded, Q-linear, symmetric, (strict) monoidal
category.
Here the degree of a chord diagram is the number of chords.



The category A

The category A of chord diagrams in handlebodies:
» Ob(A) =N,

_ @Q{chord diagrams on bottom n-strands in V,,}
> A(m,n) = homotopy, 4T

The category A is a graded, Q-linear, symmetric, (strict) monoidal
category.
Here the degree of a chord diagram is the number of chords.

Remark

The category A of chord diagrams in handlebodies, and the
category of Jacobi diagrams (i.e., vertex-oriented unitrivalent
graphs) in handlebodies are the same.
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defined by
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defined by

A(X,D) = Z (X,D')& (X,D"), €(X,D)=dpp.
D'UD""=D

Proposition (Massuyeau—H)
The symmetric monoidal category A is enriched over
cocommutative coalgebras; i.e., the following are coalgebra maps

©=0mnp:A(np)®A(m n)— A(m,p) (m,n,p>0),
Q— A(mym), 1l+—id, (m>0),
®:A(m,n)@A(m',n'y — A(m+m' n+n") (mnm, n>0),
Q— A(m+n,n+m), 1+—— Pp, (mn>D0).
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Coalgebra enrichment of A

The space A(m, n) admits a coalgebra structure
A: A(m,n) — A(m,n) @ A(m,n), € A(m,n) — Q
defined by

AX,D)= > (X,D)&(X,D"), €X,D)=2dpp.
D'UD""=D

Proposition (Massuyeau—H)
The symmetric monoidal category A is enriched over
cocommutative coalgebras; i.e., ...

Corollary (Massuyeau—H)

The category A admits a (symmetric monoidal) subcategory AP
whose hom spaces A2'P(m, n) consist of grouplike elements, in
which Z: B — A takes values.
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Define morphisms in A by

A= Q 1 —2, 6_©:1—>0, S_@:lﬁl.




Hopf algebra in A

Define morphisms in A by

A= Q 11— 2, 6_©:1—>0, S

Proposition (Massuyeau—H)

A

:0— 1,

@:1%1.

(1, u,m, A€, S) form a cocommutative Hopf algebra in the

symmetric monoidal category A.
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Casimir 2-tensor

Definition
A Casimir 2-tensor for a cocommutative Hopf algebra H in a linear
symmetric monoidal category C is a morphism ¢ : | — H®? s.t.

Ph Hc = c (symmetric)
(A®idy)c = c13 + 3 (left primitive),
(ad ® ad)(idy Py @ idy)(A ® ¢) = ce  (ad-invariant).

By a Casimir Hopf algebra in C, we mean a cocommutative Hopf
algebra in C equipped with a Casimir 2-tensor.

Fact

c=| .~ |:0—2jsa Casimir2-tensor in A.

Theorem (Massuyeau—H)

As a Q-linear symmetric strict monoidal category, A is freely
generated by a Casimir Hopf algebra.
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Convolution algebra structure of A(m, n)

A(m, n) is an bialgebra with multiplication given by convolution
x: A(m,n) @ A(m,n) — A(m,n)

with unit n®"e®m,
Convolution makes A(m, n) a graded cocommutative bialgebra.
The degree 0 part Ag(m, n) satisfies

Ao(m,n) (~ QHom(Fp, Fm)) ~ Q[F]-
Let A(m, n)wiy C A(m, n) be spanned by chord diagrams (X, D)

with X “trivial”.
Then we have a coalgebra isomorphism

A(m, n)eiy ® Ag(m, n) % A(m,n).



Ribbon quasi-Hopf algebra

A quasi-Hopf algebra is a generalization of a Hopf algebra, where
coassociativity

(A®idy)A = (idy ®A)A
does not hold, but holds up to a specified 3-tensor ® € H®3:
- (A®idy)A(x) - &7 = (idy @A)A(x).

There are notions of quasi-triangular quasi-Hopf algebras and
ribbon quasi-Hopf algebras.
These notions are translated into symmetric monoidal categories.



A ribbon quasi-Hopf algebra in A

Theorem (Massuyeau—H)

For each Drinfeld associator ¢ = (X, Y) € Q((X,Y)), there is a
ribbon quasi-Hopf algebra structure in A such that the morphisms
w,n, A e, S are as before, and

® =pi(c2,c3) 10— 3,
R =exp,(c/2) :0—2,
r =exp,(pc/2) :0—1,

where * denotes convolution.

Remark

Let g be a Lie algebra and let t € g ® g be an ad-invariant
symmetric tensor. Then, by Drinfeld’s work, there is a ribbon
quasi-Hopf algebra structure on U(g)[[%]]. The above theorem may
be regarded as a diagrammatic version of this fact.



