
Chapter 5

System F

5.1 System F

In system F , we have type variables X,Y , etc. and the universal quantifier
∀ binding type variables. So the bnf generating the types of system F is
given as follows:

A ::= X | A ⇒ A | ∀X.A.

In contrast with simple types, we do not have to have atomic types to start
the generation of types, since we have type variables. The universal quan-
tifier ∀ binds the type variable that follows immediately. So, as in lambda
abstraction, we do not distinguish a type ∀X.A from its α-equivalent one
∀Y.A[Y/X].

According to the new type constructor ∀, we extend the terms by allowing
abstraction ΛX.M by a type variable and application MA of types A:

M ::= x | MM | λxA.M | MA | ΛX.M .

Let ∆ be a sequence of type variables X1, X2, . . . , Xm. We write ∆ ` A Type
if A is a type with free type variables included in {X1, X2, . . . , Xn}. The
typing judgment of system F has the shape Γ `∆ M : B where ∆ is a
sequence of type variables and Γ a sequence x1 : A1, x2 : A2, . . . , xn : An of
the typing of term variables.

Table 5.1.1 Typing judgements of system F

(Id) Γ, x : A `∆ x : A
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(Wk) Γ `∆ M : B

Γ, x : A `∆ M : B

(Wk′) Γ `∆ M : B

Γ `∆,X M : B

(⇒I) Γ, x : A `∆ M : B

Γ `∆ λxA. M : A ⇒ B

(⇒E) Γ `∆ M : A ⇒ B Γ `∆ N : A

Γ `∆ MN : B

(∀I) Γ `∆,X M : A

Γ `∆ ΛX. M : ∀X. A

if X is not free in types in Γ

(∀E) Γ `∆ M : ∀X. A ∆ ` B Type

Γ `∆ MB : A[B/X]

(TBD).

5.2 Encoding of types

The type constructs of system F are only exponentiation⇒ and the quan-
tifier ∀ over type variables. In the early twentieth century, Russell already
pointed out that disjunction can be encoded by implication and universal
quantification over propositions. This observation was given a firm basis
afterwards by Prawitz, who showed that all logical connectives are encoded
by implication and universal quantification in intuitionistic second order
logic. The idea is applicable also to higher order type theory, and we use
the encodings given in Tab. 5.2.1 for various type constructs. In the table,
we give also some abbreviations for terms. For example, the encoding of
A × B is associated with terms π, π′ and 〈·, ·〉.

Table 5.2.1 Encoding of various constructs

⊥ = ∀X. X

1 = ∀X. X⇒X

Term:Type Definition

∗ : 1 ΛX λxX . x
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A × B = ∀X. (A⇒B⇒X)⇒X

Term:Type Definition

π : (A × B)⇒A λxA×B . xA(λyAλzB . y)

π′ : (A × B)⇒B λxA×B . xB(λyAλzB . z)

〈M, N〉 : A × B ΛXλyA⇒B⇒X . yMN
for M : A and N : B

A + B = ∀X. (A⇒X)⇒(B⇒X)⇒X

Term:Type Definition

ι : A⇒(A + B) λxAΛXλyA⇒XλzB⇒X . yx

ι′ : B⇒(A + B) λxBΛXλyA⇒XλzB⇒X . zx

∃X. A(X) = ∀Y (∀X.A(X)⇒Y )⇒Y

Term:Type Definition

IC : A(C)⇒∃X. A(X) λxA(C)ΛXλy∀X.A(X)⇒Y . yCx

N = ∀X. X⇒(X⇒X)⇒X

Term:Type Definition

0 : N ΛXλxXλyX⇒X . x

SM : N for M : N ΛXλxXλyX⇒X . y(MXxy)

LN = ∀X. X⇒(N⇒X⇒X)⇒X

Term:Type Definition

[ ] : LN ΛXλxXλyN⇒X⇒X . x

[L|M ] : LN ΛXλxXλyN⇒X⇒X . yL(MXxy)
for M : N, N : LN

5.2.2 Lemma
The following reductions hold for terms of appropriate types by the β-rule
only:

(i) π〈M,N〉 →β M and π′〈M,N〉 →β N .
(ii) (ιK)CMN →β MK and (ι′L)CMN →β NL.
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(iii) (ICK)BM →β MCK

(iv) 0ANK →β N , and moreover (SM)ANK →β K(MANK).
(v) [ ]ANK →β N , and moreover [L|M ]ANK =βη KL(MANK).

We call an object in a category a weak limit if the object satisfies the
same universal condition as that of limits except that the uniqueness of the
morphism to the limit is omitted. Similarly weak colimits are defined. We
may regard system F as a category where terms of type A ⇒ B modulo
βη-equality are considered to be morphisms from A to B. The composition
of M : A⇒B and N :B⇒C is given by λxA. N(Mx).

Then the preceding lemma shows that the encoded types provide weak
(co)limits. For example, A + B is a weak coproduct. In fact, if we let
[M,N ] for M : A⇒C and N : B⇒C be defined by λxA+B . xCMN , then
the phrase (ii) implies [M,N ] ◦ ι = M and [M,N ] ◦ ι′ = N by βη-equality.
The uniqueness fails since [ι, ι′] 6=βη idA+B .

Remark: Later we will show that, if we consider parametricity, then A+B
turns out to be a coproduct, and similarly for other encoded types. At the
same time, we will explain the reason the encoded types take those forms.



Chapter 6

Term Extraction

One of the main themes towards the theory of programming language is to
provide the theory for the justification of the programme codes. We want
to have an assurance that the programmes we code are correct. The Curry-
Howard isomorphism gives an answer to the problem from the perspective
of mathematical logic. This principle asserts that one can read off a pro-
gramme from a formalized proof. The proof verifies some mathematical
formula and the associated programme turns out to satisfy the property
stated by the formula.

In this chapter, we discuss to extract a term of system F from a proof
given in second order logic with the axioms of arithmetic and those for
other inductively defined sets. It is known that the second order arithmetic
is fairly strong and most theories of mathematics can be formalized and
proved in this system. So, in comparison with the simplicity of the syntax,
the expressiveness of system F is surprisingly strong.

6.1 Martin-Löf’s productions and second order logic

In chapter 2, we gave the system NJ of natural deduction for intuition-
istic first order predicate logic. If we want to prove anything interesting,
we definitely need more primitives than just logical connectives. First we
give the inference rules for the equality predicate. Then the inductively de-
fined structures, such as natural numbers, are introduced by Martin-Löf’s
production rules. Finally we extend our logic to second order.

We add the equality predicate =. Accordingly we include new rules in
natural deduction as in Tab. 6.1.1. There A(x) is an arbitrary formula
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Table 6.1.1 The rules for equality predicate

(=Ref)
x = x

...
...

A(x) x = y
(=Sub1)A(y)

...
x = y

(=Sub2)
t(x) = t(y)

Table 6.1.2 Production for N

(N-I1)N(0)

...
N(t)

(N-I2)N(St)

A(x)
...

...
...

N(t) A(0) A(Sx)
(N-E)†

A(t)

† x is a fresh variable.

and t is an arbitrary term where x designates some (not necessarily all)
occurrences of x in the formula A and in the term t. The symmetricity
and transitivity of the equality predicate is derivable. For symmetricity
(x = y) → (y = x), let A(·) be (· = x). Since A(x) = (x = x) is derived
by (=-Ref), the rule (=-Sub1) gives A(y), i.e., y = x from x = y. The
transitivity is proved similarly.

Martin-Löf’s production is a formalization of inductive data types in the
form of inference rules of natural deduction. In place of presenting general
rules, we give two simple examples we are interested in.

We introduce a new unary relation symbol N(·). The intended meaning of
N(t) is that “t is a natural number”. Martin-Löf’s production for natural
numbers consists of three new inference rules concerning the predicate N
in Tab. 6.1.2. The first two are introduction rules and the last is the elim-
ination rule. The introduction rules correspond to that the set of natural
numbers n is generated by the syntax n ::= 0 |Sn where Sn is the successor
of n. The elimination rule is the induction principle over natural numbers:
If we have A(0) and ∀x.A(x) → A(Sx) then A(t) holds for every natural
number t.

The next example is the production for the predicate LN(·) of finite lists
of natural numbers in Tab. 6.1.3, where t and u are arbitrary terms. The
finite lists l of natural numbers is generated by the syntax
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Table 6.1.3 Production for LN

(LN-I1)LN([ ])

...
...

N(t) LN(u)
(LN-I2)LN([t|u])

N(x) A(y)
...

...
. . . . .

.

LN(u) A([ ]) A([x|y])
(LN-E)†

A(u)

† x, y are fresh variables.

l ::= [ ] | [n|l]

where n ranges over the set of natural numbers. So we have two introduction
rules corresponding to the right hand sides. The third rule is the induction
principle over finite lists of natural numbers.

So far we presented the system of natural deduction for first order logic.
We want to extend the system to second order logic, where the formulas
are allowed to have set variables. Let X etc. denote set variables. If t
is a term and X is a set variable, then t ∈ X is a formula. We write this
X(t) occasionally. Moreover, the formulas may have quantifications over set
variables as ∀X.A or ∃X.A. For reader’s convenience, we give the syntax
of formulas A of second order logic with equality augmented by production
rules for N and LN:

A ::= t ∈ X | t = t | ⊥
| A & A | A ∨ A | A → A
| ∀x.A | ∃x.A | ∀X.A | ∃X.A
| N(t) | LN(t)

where t ranges over terms, x over first order variables and X over set
variables. If B(x) is a formula with a chosen free variable x that may or
may not occur in B, we can substitute B(·) for a free set variable X in a
formula A(X) by simply changing t ∈ X by B(t). The inference rules for
second order quantifiers in natural deduction is given in Tab. 6.1.4, where
A and B are arbitrary formulas and A(B) is the substitution of B(·) for X
in A.

Let NJ2
N,LN

denote the natural deduction for intuitionistic second order
predicate logic with equality augmented by Martin-Löf’s production rules
for natural numbers N and the finite lists LN of natural numbers.
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Table 6.1.4 Inference rules for second order quantifiers

...
A(X)

(∀2-I)†∀X. A(X)

...
∀X. A(X)

(∀2-E)
A(B)

† X is not a free variable in any of the hypotheses.

...
A(B)

(∃2-I)∃X. A(X)

A(X)
...

...
∃X. A(X) B

(∃2-E)‡
B

‡ X is not free in B or the hypotheses of the derivation of B.

6.2 First order erasure

The fundamental idea of intuitionistic logic is that every proof has a com-
putational content. It is so, especially if we have a proof of a formula of the
shape ∀x ∈ N ∃y ∈ N. A(x, y) where ∀x ∈ N · · · abbreviates ∀x. N(x) → · · ·
and ∃x ∈ N · · · abbreviates ∃x. N(x) & · · ·. We want to extract a term of
type N ⇒ N in system F from a NJ2

N,LN
-proof of the formula. There are

several ways to do this. In this section, we provide the first order era-
sure, which is the simplest method. Indeed, the term extraction is achieved
simply by erasing all first-order parts from the derivation.

We associate a type tA to each formula A of system NJ2
N,LN

in such a way
that, if A has free set variables X1, . . . , Xn, then tA has free type variables
X1, . . . , Xn. The definition of tA is given in Tab. 6.2.1. It amounts to
eliminating all first-order parts from formulas. We note especially that an
atomic formula t = u is translated into 1. This means we do not expect
any computational information from the equality predicate.

To each NJ2
N,LN

-derivation of a formula B from (bags of) hypotheses A1, . . . ,
An, we associate a term M of type tB under the environment x1 : tA1, . . . ,
xn : tAn in system F . We write

Γ
...M
B
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Table 6.2.1 Definition of tA

formula A type tA

t ∈ X X ∀x. A tA

t = u 1 ∃x. A tA

⊥ ⊥ ∀X. A ∀X. tA

A & B tA × tB ∃X. A ∃X. tA

A ∨ B tA + tB N(t) N
A→B tA⇒ tB LN(t) LN

if M is the term assigned to the proof Γ ` B (we may omit Γ). In case we
need emphasize a specific variable, we write

A
...M [x]

B

where x : tA is the variable associated to the bag of the formula A. For
explanation, let us consider the (→I)-rule of natural deduction. Suppose
that the term M = M [x] of type tB is assigned to the proof Γ, A ` B.
Then we assign λxtA.M to the proof Γ ` A→B. We denote this argument
by the figure

A
...M [x]

B
A→B

Ã λxtA.M .

The assignment of terms to the inference rules of system NJ2
N,LN

is given in
Tab. 6.2.2.

Table 6.2.2 Assignment of terms to NJ2
N,LN

-proofs

(Hyp)

A

Ã x

(→I)

A
...M [x]

B

A → B

Ã λxtA. M

(→E)

...M
...N

A → B A

B

Ã MN

(&I)

...M
...N

A B

A & B

Ã 〈M, N〉
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(&E1)

...M

A & B

A

Ã πM

(&E2)

...M

A & B

B

Ã π′M

(∨I1)

...M

A

A ∨ B

Ã ιM

(∨I2)

...M

B

A ∨ B

Ã ι′M

(∨E)

A B
...K

...M [x]
...N [y]

A ∨ B C C

C

Ã KtC(λxtA. M)(λytA. N)

(∀I)

...M

A(x)

∀x. A(x)

Ã M

(∀E)

...M

∀x. A(x)

A(t)

Ã M

(∃I)

...M

A(t)

∃x. A(x)

Ã M

(∃E)

A(y)
...K

...M [x]

∃x. A(x) C

C

Ã M [K]

(∀2-I)

...M

A(X)

∀X. A(X)

Ã ΛX. M

(∀2-E)

...M

∀X. A(X)

A(B)

Ã MtB

(∃2-I)

...M

A(B)

∃X. A(X)

Ã IBM

(∃2-E)

A(X)
...K

...M [x]

∃X. A(X) B

B

Ã KtB(ΛXλxtA. M)

(⊥E)

...M

⊥
A

Ã MtA

(=Ref)

x = x

Ã ∗

(=Sub1)

...M
...N

A(x) x = y
A(y)

Ã M

(=Sub2)

...M

x = y

t(x) = t(y)

Ã M

(N-I1)

N(0)

Ã 0



59

(N-I2)

...M

N(t)

N(St)

Ã SM

(N-E)

A(x)
...K

...M
...N [y]

N(t) A(0) A(Sx)

A(t)

Ã KtAM(λytA. N)

(LN-I1)

LN([ ])

Ã [ ]

(LN-I2)

...L
...M

N(t) LN(u)

LN([t|u])

Ã [L|M ]

(LN-E)

N(x) A(y)

...K
...M

. . . . .
.
N [z,w]

LN(u) A([ ]) A([x|y])

A(u)

Ã KtAM(λzNλwtA. N)

Remark: The encodings of types in Tab. 5.2.1 mimic the elimination rules
of the corresponding connectives. Only the encoding of A × B does not
follow this principle. We can explain the encoding of A × B by Kan’s
theorem, as given in a chapter of parametricity.

If we assign a term to a proof of the formula ∀x ∈ N ∃y ∈ N. A(x, y)
by the translations of Tab. 6.2.2, then we have a closed term M ′ of type
N ⇒ (N × tA). Hence we can extract a closed term of type N ⇒ N by
M = λxN. π(M ′x). Similarly, for example, we can extract a term of type
LN⇒N from a proof of a formula of the shape ∀x ∈ LN ∃y ∈ N. A(x, y).

6.3 Realisability

We must show that the terms extracted by the first-order erasure are correct
in some sense. We achieve this by the realisability argument. Here, a
formula A of NJ2

N,LN
is realised by a term M of system F , denoted by

M ² A.

Convention: In order to avoid the confusion, we denote types of system F
by lower greek letters σ etc. in this and the following sections.
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Let U be a first-order structure for constants 0, [ ], function symbols S, [·|·].
The standard model is the collection of all natural numbers and all finite
lists of natural numbers, but we do not exclude other structures. The
equality symbol = is interpreted as the real equality. The crux is the
interpretation of the symbol ∈, which involves in set variables.

In models of classical logic, the range of set variables is a collection of
subsets of the structure U . So t ∈ X is true iff the interpretation [[t]] is
a member of the subset [[X]]. This is not sufficient for intuitionistic logic,
since we are required to have a computational reasoning if we claim that
t ∈ X is true. Therefore we consider subsets of U endowed with realisers
witnessing how each member of U belongs to the subset:

6.3.1 Definition
A realised set is a pair R = (σ, S) of a closed type σ of system F and a
family S = {Sa}a∈U where Sa is a set of closed terms of type σ.

A realised set may be regarded as a subset {a ∈ U | Sa 6= ∅}, endowed with
a family of realisers Sa to each a in this subset. Let A be the collection of
all realised sets. We will interpret set variables as realised sets. Suppose
that A[X, x] is a formula with free variables among set variables X =
X1, . . . , Xm and individual variables x = x1, . . . , xn. If we assign realised
sets Ri to Xi and members aj of U to xj , then we write A[R, a] as if the
variables were substituted for.

6.3.2 Definition
Let A[R, a] be a formula of NJ2

N,LN
under the assignment of Ri = (σi, Si)

to Xi and the assignment of aj to xj .

A term M realises the formula A[R, a] if M is a closed term of type tA[σ]
satisfying M ² A[R, a], this relation ² defined as the smallest relation
subject to the conditions in Tab. 6.3.3.

Table 6.3.3 Definition of M ² A[R, a]

(o) N ² A[R, a] if M ² A[R, a] and N → M by β-reduction
for a closed term N .

(i) ∗ ² A(a) if A(a) is true in U , for every atomic formula
A(x) except ⊥ and those in (ii) through (iv).

(ii) M ² (t ∈ R) if M is a member of Sa where a is the inter-
pretation of t and R = (σ, S).
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(iii) 0 ² N(0).

SM ² N(St) if M ² N(t) holds.

(iv) [ ] ² LN([ ]).

[K|M ] ² LN([t|l]) if both K ² N(t) and M ² LN(l) hold.

(v) M ² A & B if both πM ² A and π′M ² B hold.

(vi) ιM ² A ∨ B if M ² A holds.
ι′N ² A ∨ B if N ² B holds.

(vii) M ² A→B if it holds that MN ² B for every N such
that N ² A.

(viii) M ² ∀x. A(x) if, for every a ∈ U , it holds that M ² A(a).

(ix) M ² ∃x. A(x) if there is a ∈ U such that M ² A(a).

(x) M ² ∀X. A(X) if, for every realised set R = (σ, S) in A, it
holds that Mσ ² A(R).

(xi) IσM ² ∃X. A(X) if M ² A(R) for some realised set R = (σ, S)
in A

Remark: (1) The definition of M ² A[R, a] is by induction on the construc-
tion of A. In the clauses for N and LN, inner inductions on the construction
of terms M are used.

(2) In the clause (i), a formula is true in U if it is so in the sense of the
usual validity in a structure. The involved atomic formulas are only the
equality t = u at this moment. We have ∗ ² t = u iff the interpretations of
t and u are equal. Afterwards, we will deal with the case we have additional
relation symbols (e.g., t < u).

(3) It never happens that M ² ⊥.

(4) It is not the restriction that, in the clause (o), we enforce the reduction
to be the β-rule only. The argument below is not affected if we change it
by βη-reduction or βη-equality. We note that the proof of Thm. 6.3.9 uses
only the β-reduction .

6.3.4 Definition
Let B(x) be a formula in free variables among {x} only, but possibly with
parameters by realised sets in A and members of U .

The realised set RB is the pair of tB and the family SB = {(SB)a}a∈U
where (SB)a is the set of all terms M satisfying M ² B(a).
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6.3.5 Lemma
Let A(X) and B(x) be a formulas where free variables are those displayed
only, but possibly with parameters by realised sets in A and members of U .

We have M ² A(RB) iff M ² A(B) for every closed M term of type
t(A(B)).

(Proof) Easy by induction on the construction of A.

Remark: We have put A as the collection of all realised sets for simplicity
so far. It suffices, however, that A is closed under the formation of RB , for
the arguments throughout this section.

6.3.6 Definition
A (realisability) model is a pair (U ,A) where U is a structure interpreting
the first order language (except ∈) and A is a collection of realised sets
closed under the construction RB . The standard model has the set of all
natural numbers and all finite lists of natural numbers as U , and has all
realised sets as A.

Proof of Correctness

In the rest of this section, we fix an arbitrary model (U ,A), and consider
the realisability relation ² based on it.

6.3.7 Lemma
Let t[x] and u[x] be terms in the language of NJ2

N,LN
.

If t[a] = u[a] in U and M ² A(t[a]), then M ² A(u[a]) for all formulas
A(x).

(Proof) In the clause (iii) of Tab. 6.3.3, we must regard St as any term
that has the same interpretation as St, not as an expression starting with
symbol S. Likewise for clause (iv). Otherwise the proof is obvious.

We let n denote the interpretation of n = S(· · · S(S0) · · ·) (n copies of S)
in the structure U . We also let [a1, . . . , an−1, an] denote the interpretation
of finite lists [a1| · · · [an−1|an] · · ·] in U . We use the same abbreviations for
(encoded) terms of system F .
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6.3.8 Lemma
(i) If K ² N(t), then t is interpreted as some numeral n in U and K →β n.
(ii) If K ² LN(t), then t is interpreted as some [a1, . . . , an] in U , and

K →β [N1, . . . , Nn] for some Ni such that Ni ² N(ai) for i = 1, . . . , n.

(Proof) Note that K ² N(t) happens only by rules (o) or (iii) in Tab. 6.3.3.
We argue by induction on the number of application of these rules. Likewise
for LN.

The following theorem shows that every formula provable in system NJ2
N,LN

is realisable by the term extracted by the first order erasure.

6.3.9 Theorem
Suppose that A1, . . . , Ap ` B is derivable in NJ2

N,LN
where A1, . . . , An and B

are formulas in free variables among X = X1, . . . , Xm and x = x1, . . . , xn.
Let M [X, z] be the term extracted from the proof by first order erasure under
the environment zi : (tAi)[X] (i = 1, . . . , p).

Then, for all assignments of Ri = (σi, Si) to Xi and all assignments of ai

to xi, and for all terms L1, . . . , Lp,

L1 ² A1[R, a] , . . . , Lp ² Ap[R, a] ⇒ M [σ, L] ² B[R, a].

(Proof) The proof is by induction on the derivation of A1, . . . , An ` B.
To simplify the description, we suppress the substitutions [σ, L] and [R, a].
We start with interesting cases. Suppose the last rule of the derivation is
(N-E). The induction hypotheses are K ² N(t), M ² A(0), and that, for all
a ∈ U and all J such that J ² A(a), it holds that N [J ] ² A(Sa). The claim
is to show

(KtAM(λytA. N)) ² A(t).

By Lemma 6.3.8 (i), t = n for some n in U , and K →β n. We prove the claim
by induction on n. If n = 0, then the left hand side of the claim β-reduces to
M . Hence the second induction hypothesis is exactly the claim. If n = Sn′,
the left hand side β-reduces to N [J ] where J = n′

tAM(λytA. N)). By inner
induction hypothesis, J ² A(n′). So the third induction hypothesis implies
the claim.

The rule (LN-E) is handled similarly. The case of the rule (=-Sub1) is
derived from Lemma 6.3.7. The rule (⊥-E) is handled by the remark (3)
after Def. 6.3.2.
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The remainder follows a uniform pattern. We show the case of the existen-
tial quantifier over set variables. For the introduction rule, the induction
hypothesis M ² A(B) implies ItBM ² ∃X.A(X) as required, since we can
replace A(B) by A(RB) (Lemma 6.3.5). For the elimination rule, the in-
duction hypotheses are K ² ∃X.A(X) and that, for all R = (σ, S) in A
and all term J such that J ² A(R), it holds that M [J ] ² B. The claim is
KtB(ΛXλxtA[X].M [x]) ² B. By definition in Tab. 6.3.3, K reduces to IσJ
for some R = (σ, S) in A and some term J : tA[σ] such that J ² A(R).
Hence Lemma 5.2.2 implies that KtB(ΛXλxtA[X].M) reduces to M [J ]. So
the induction hypothesis on M implies the claim.

6.3.10 Definition
A true sentence of NJ2

N,LN
is a sentence (i.e., a closed formula) A such that

there is a term M of system F satisfying M ² A. For general formulas, we
call them true formulas if their universal closures are true sentences.

6.3.11 Corollary
Suppose that ∀x ∈ N∃y ∈ N. A(x, y) is provable in NJ2

N,LN
.

Then there is a closed term K : N⇒N satisfying the following: For every
numeral m, there is a numeral n such that Km reduces to n by β-reduction
and A(m,n) is true.

(Proof) We extract a term M of type N ⇒ (N × tA) from the deriva-
tion. By definition, for every numeral m, there is a member a of U such
that π(Mm) ² N(a) and π′(Mm) ² A(m, a). By Lemma 6.3.8, there
is a numeral n such that π(Mm) →β n and a equals n in U . Let us put
K = λxN. π(Mx). Of course, this corollary holds if we replace N by LN.

In particular, if A is a first order formula composed of atomic formulas
t = u or P (t1, . . . , tn) for some additional relation symbol P as handled in
the next section, then the formula A(m, n) is true in the first-order structure
U in the usual sense of model theory.

Remark: (1) We note Cor. 6.3.11 shows also that term Km enjoys the
weak normalization property.

(2) By the standard diagonalization argument, Cor. 6.3.11 implies that we
cannot prove Thm. 6.3.9 in second order Peano arithmetic.
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6.4 Harrop formulas

In this section, we show that we can add new axioms keeping Thm. 6.3.9
valid. So far the symbols we have had are those of natural numbers, 0, S,
those of finite lists, [ ], [·|·], and the equality predicate =, with which we
can virtually do nothing. So we consider any expansion of the language
with new constants, new function symbols and new relations symbols. The
allowed axioms are those formulas which are true and have no effect on
realisers.

First of all we extend tA for new relation symbols. If A = P (t1, . . . , tn)
where P is an additional relation symbol, then we put tA = 1.

6.4.1 Definition
A Harrop formula is a formula obtained as one of the following: (i) For-
mulas t = u and P (t1, . . . , tn) for additional relation symbols P are Harrop
formulas; (ii) If A and B are Harrop, then A & B is Harrop; (iii) If A is
Harrop, then both ∀x. A and ∃x.A are Harrop; (iv) If A is Harrop, then
C → A is Harrop for any formula C.

Remark: The Harrop formulas are those formulas A for which tA is a
terminal object, if the encoded type 1 is regarded as a terminal object
in a cartesian closed category. Note that 1 × 1 ∼= 1 and 1C ∼= 1. We
regard Harrop formulas as those which have no computational information.
Conventionally, ⊥ may be added to Harrop formulas but we omit this since
t⊥ = ⊥ has no closed terms.

To each Harrop formula A, we associate a closed term sA of type tA as
follows: If A is atomic, then sA equals ∗. If the formula is conjunction
A & B, then sA&B is defined by 〈sA, sB〉. If the formula is implication
C→A, then sC→A is defined by λxtC . sA. Moreover s∀x.A = s∃x.A = sA.

6.4.2 Lemma
For each Harrop formula A, the following two are equivalent: (i) A is true,
and (ii) sA ² A.

Remark: For Harrop formulas A, their truth follows the usual definition
in the theory of models of classical logic. For example, a Harrop formula
C→A is true iff the truth of C implies that of A.
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6.4.3 Definition
An axiom is a true Harrop formula. Of course, the truth depends on the
model (U ,A) we bear in mind.

For example, in the standard model, (Sx < Sy) → (x < y) is an axiom if
we add a new relation symbol < and interpret it standardly. Oppositely,
(x < y) ∨ (x = y) ∨ (y < x) is not an axiom whereas the formula is true in
the usual sense of validity in the models of classical logic.

Remark: Most importantly, one of Peano’s axioms, 0 6= 1, is not an axiom
since it is not Harrop. We deal with a possibility to have non-Harrop axioms
in a later section.

6.4.4 Proposition
Suppose that A1, . . . , Ap ` B is derivable in NJ2

N,LN
using additional axioms.

Then we can still extract a term M [X, z] of type tB where zi : tAi for
i = 1, . . . , p, and Thm. 6.3.9 remains to hold for this term M .

(Proof) We assign terms sA to axioms A and otherwise follow Tab. 6.2.2
to extract a term M . The proof of Thm. 6.3.9 is valid, since axioms are
true, i.e., have realisers.

Remark: In the proof of Prop. 6.4.4, there is no using that axioms are
Harrop. Indeed, we can employ non-Harrop formulas as axioms if we can
detect their realisers. But this corresponds to detecting proofs of the for-
mulas in NJ2

N,LN
, so the merit to add such axioms are narrow. For Harrop

formulas, in contrast, we need not find realisers by ourselves, if we are sure
that the formulas are true (Lemma 6.4.2).

6.5 Examples

Length of finite lists

We extract a term lh of type LN ⇒N computing the length of finite lists.
We add a unary function symbol lh(·) and two axioms

lh([ ]) = 0
lh([y|z]) = S(lh(z)).
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Figure 6.5.1 The totality of lh

LN(x)

N(0) 0 = lh([ ])

N(lh([ ]))

(N(lh(z)))

N(S(lh(z))) S(lh(z)) = lh([y|z])

N(lh([y|z]))

N(lh(x))

LN(x)→N(lh(x))

∀x. LN(x)→N(lh(x))

We prove the totality ∀x ∈ LN ∃y ∈ N. lh(x) = y, or equivalently ∀x. LN(x)
→N(lh(x)). The derivation in NJ2

N,LN
is given in Fig. 6.5.1. We omitted the

proofs of symmetricity of the equality obtaining 0 = lh([ ]) from an axiom
lh([ ]) = 0 etc., since they do not affect the extracted term. Applying the
first order erasure, we extract the term lh = λxLN . xN0(λyNλzN. Sz).

Append function

We extract a term append of type LN ⇒LN ⇒LN concatenating two finite
lists. A familiar program by prolog is

append([ ],Y,Y).
append([X|Y],Z,[X|W]) :- append(Y,Z,W).

This corresponds to adding a 3-place relation symbol append(·, ·, ·) and two
axioms append([ ], y, y) and append(y, z, w) → append([x|y], z, [x|w]). The
latter may be given in the form of inference rule

append(y, z, w)
append([x|y], z, [x|w]).

We want to prove the totality ∀x, y ∈ LN ∃z ∈ LN. append(x, y, z). The
proof is given in Fig. 6.5.2. The extracted term from the proof is given as
follows: The subproof Π1 yields 〈y, ∗〉 of type LN × 1, and the subproof Π2

yields 〈[u|z], ∗〉 where u : N and z : LN × 1. Hence the extracted term of
type LN⇒LN⇒LN is

λxLNλyLN . π(xLN×1〈y, ∗〉(λuNλzLN×1. 〈[u|z], ∗〉)).

However, we can simplify the extracted term by ignoring the conjunct of
append in the formula A(x, y, z) = LN(x) & append(x, y, z) throughout the
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Figure 6.5.2 The totality of append

Let A(x, y, z) be LN(z) & append(x, y, z) in

Π1 =
LN(y) append([ ], y, y)

A([ ], y, y)

∃z. A([ ], y, z)

Π2 =

∃z. A(v, y, z)

N(u)

A(v, y, w)

LN(w)

LN([u|w])

A(v, y, w)

append(v, y, w)

append([u|v], y, [u|w])

A([u|v], y, [u|w])

∃z. A([u|v], y, z)

∃z. A([u|v], y, z)

Then the totality is proved as the following:

LN(x)

LN(y)
... Π1

∃z. A([ ], y, z)

N(u) ∃z. A(v, y, z)

. . . . .
.
Π2

∃z. A([u|v], y, z)

∃z. LN(z) & append(x, y, z)
...

(→-I) and (∀-I) rules

∀x, y. LN(x)→LN(y)→∃z. LN(z) & append(x, y, z)

derivation, since this part contains no computational information. Then
the term append is defined as

append = λxLNλyLN . xLNy(λuNλzLN . [u|z]).

6.6 A-translation

One of Peano’s axioms, 0 6= 1, is not admissible as an axiom in the sense
of Def. 6.4.3, since it is not Harrop. In fact, t(0 6= 1) = 1 → ⊥ has no
closed terms, so Prop. 6.4.4 is not applicable. We show that we can add
certain formulas in negated form, such as 0 6= 1, and still extract terms
from proofs. The vehicle is Friedman’s A-translation that is used to get
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rid of the axioms in negated form so that the argument in earlier sections
are applied. Later we show A-translation can be used also to extract terms
from proof of Π0

2-formulas in classical logic.

A-translation

6.6.1 Definition
Let A be an arbitrary formula.

The A-translation BA of a formula B is obtained by replacing all atomic
formulas P (including ⊥, N, etc.) occurring in B by disjunction P ∨ A.

Remark: The bound variables are renamed if necessary, in order to avoid
accidental capture of free variables in A.

6.6.2 Lemma
(i) A → BA is intuitionistically provable for every formula B.
(ii) Suppose that A is composed of conjunction and disjunction from atomic

formulas. Then (¬A)A, i.e., AA→A is intuitionistically provable.

(Proof) (i) is easy. For (ii), let A be in disjunctive normal form
∨

i

∧
j Pij

with atomic formulas Pij . Since (
∧

j Pij)A =
∧

j(Pij ∨A) is provably equiv-
alent to (

∧
j Pij) ∨ (A & C) for some formula C, we can derive A from

(
∧

j Pij)A. Hence AA implies A.

6.6.3 Proposition
In system NJ2

N,LN
, if we have a derivation of C1, . . . , Cn ` B, then we have

also a derivation of (C1)A, . . . , (Cn)A ` BA for any formula A.

(Proof) We show that the A-translations of all inference rules of NJ2
N,LN

are derivable in NJ2
N,LN

. The proof is a use of Lemma 6.6.2 (i).

Axioms in negated form

In order to apply the A-translation, the axioms by Harrop formulas are
too strong, so we restrict the axioms to Horn clauses. In practice, they are
sufficient. The axioms in the example of section 6.5 are all Horn clauses.
Moreover the axioms of Peano arithmetic except the induction principle,
which we already have, are Horn clauses, too.
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6.6.4 Definition
A Horn clause is a formula of the form P1(t) & · · · & Pn(t) → Q(t) where
P1, . . . , Pn and Q are atomic formulas that are not N(t) or LN(t).

Note that ⊥ is allowed as an atomic formula. If Q is ⊥, then the Horn
clause is the negation ¬(P1(t) & · · · & Pn(t)).

Suppose that A is a formula that is not true. For every Horn clause D that
is not in negated form (i.e., Q is not ⊥), D is true iff its A-translation DA

is true. (Why?)

6.6.5 Theorem
We assume axioms given by Horn clauses that are true. Let D(x, y) be a
Horn clause.

If we have a derivation of ∀x ∈ N ∃y ∈ N. D(x, y) from these axioms, then
there is a closed term K of type N⇒N such that, for every numeral m, the
term Km β-reduces to some numeral n and D(m,n) is true.

(Proof) Suppose that ¬C1, . . . ,¬Cn are axioms in negated form that are
used in the derivation. We let A be C1∨· · ·∨Cn and apply the A-translation.
Let us note that A is not true. By Prop. 6.4.4, we have a derivation of
∀x. (N(x) ∨ A) → ∃y. (N(y) ∨ A) & DA(x, y) from the hypotheses of the
A-translations of axioms. We can prove the translation (¬Ci)A of axioms
in negated form without using added axioms by Lemma 6.6.2 (ii), since
(¬C1)A & · · · & (¬Cn)A is equivalent to (¬A)A. For other axioms B, the
A-translation BA is derived from B.

So we can apply Prop. 6.4.4 to the proof of ∀x. (N(x)∨A)→∃y. (N(y)∨A) &
DA(x, y) from axioms B that are not in negated form, and we obtain a
closed term M of type (N+tA)→((N+tA)×t(BA)). Hence N = π(M(ιm))
is a realiser of N(n) ∨ A for some numeral n such that DA(m,n) is true.
By definition of ², either N →β ιn for some n ² N(n) or N →β ι′N1 for
some N1 ² A. But the latter is impossible since A is not true. By the
same reason, the truth of DA(m,n) implies the truth of D(m,n). So if
we put K = λxN. π(M(ιx))N(λyN. y)(λztA. 0), the assertion of the theorem
holds.

For example, 0 6= 1 and ¬(x < y & y ≤ x) are axioms that are allowed to
be included.

Remark: The conditions in the theorem above are not the weakest. All we
require for the axioms B not in negated form is that the truth of B implies
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the truth of BA. What we need for D(x, y) is that the truth of DA implies
the truth of D. So the following lemma shows that the formulas given there
can replace these. As for the axioms in negated form, we require (¬Ci)A is
provable (without using ¬Ci) where A = C1 ∨ · · · ∨ Cn.

6.6.6 Lemma
Suppose that D is a Harrop formula where the clause (iv) of Def. 6.4.1 is
restricted by the condition that, in the implication C → A, also C must be
Harrop.

For every formula A that is not true, the formula D is true iff its A-
translation DA is true.

(Proof) Left to the reader.

Markov’s rule

(TBD).

6.6.7 Exercise

Give a formal proof of N(n) → N(Sn) in natural deduction, where we assume
that the predicate N(n) is defined as ∀X. X(0) → (∀x. X(x) → X(Sx)) → X(n).
Show that the extracted lambda term is λn ΛXλz λy. y(nXzy).

(Answer) Let us put P = (∀x. X(x) → X(Sx)). We have the following formal
proof

P
X(n) → X(Sn)

∀X. X(0) → P → X(n)

X(0) → P → X(n) X(0)

P → X(n) P

X(n)

X(Sn)

P → X(Sn)

X(0) → P → X(Sn)

∀X. X(0) → P → X(Sn)

The hypothesis not discharged is exactly N(n) and the conclusion N(Sn). So the
discharging the hypothesis, we complete the proof in NJ .


