Whittaker models of degenerate principal series

Toshio OSHIMA
University of Tokyo

Conference on the occasion of Roger Howe's 60th birthday

January 11, 2006

National University of Singapore

G=KAN: a real reductive Lie group $\mathfrak{g}=\mathfrak{k}+\mathfrak{a}+\mathfrak{n}$: complexifications of Lie algebras For $\pi\in \widehat{G}_{ad}$ and $\varpi\in \widehat{N}$ Whittaker model: $\pi\hookrightarrow \mathrm{Ind}_N^G\varpi$

 $\Sigma(\mathfrak{g})$: the root system for the pair $(\mathfrak{g},\mathfrak{a})$ with the Weyl group W

 $\Sigma(\mathfrak{g})^+\colon$ the positive root system corresponding to $\mathfrak n$ \cup

 $\Psi(\mathfrak{g})$: the fundamental system $\mathfrak{g}^{\alpha} := \{X \in \mathfrak{g} ; \operatorname{ad}(H)X = \alpha(H)X \ (\forall H \in \mathfrak{a})\} \quad \text{for } \alpha \in \Sigma(\mathfrak{g}).$

For $\Theta \subset \Psi(\mathfrak{g})$ put $W_{\Theta} := \langle s_{\alpha}; \alpha \in \Theta \rangle$ and $W(\Theta) := \{ w \in W ; w \Theta \subset \Sigma(\mathfrak{g})^{+} \}$. Then $W(\Theta) \times W_{\Theta} \xrightarrow{\sim} W : (w_{1}, w_{2}) \mapsto w_{1}w_{2}$

P = MAN: a minimal parabolic subgroup with $M = Z_K(\mathfrak{a})$ $P_{\Theta} := PW_{\Theta}P = M_{\Theta}A_{\Theta}N_{\Theta} = G_{\Theta}N_{\Theta}$.

Here $G_{\Theta} = M_{\Theta} A_{\Theta}$ and $\Psi(\mathfrak{g}_{\Theta}) = \Theta$.

Theorem. Let $\lambda \in \widehat{G}_{\Theta}$ and $\varpi \in \widehat{N}$. Suppose $\dim \lambda < \infty$, $\dim \varpi = 1$ and $\lambda|_{A_{\Theta}}$ is generic. Then

 $\dim \operatorname{Hom}_{(\mathfrak{g},K)}(\operatorname{Ind}_{G \ominus N_{\Theta}}^G(\lambda \otimes 1),\operatorname{Ind}_N^G\varpi) = \#W(\operatorname{supp}_{\varpi},\Theta) \cdot \#W_{\operatorname{supp}_{\varpi}} \cdot \dim_M \lambda$ $\dim \operatorname{Hom}_{C^{\infty}}(\operatorname{Ind}_{G \ominus N_{\Theta}}^G(\lambda \otimes 1),\operatorname{Ind}_N^G\varpi) = \#W(\operatorname{supp}_{\varpi},\Theta) \cdot \dim_M \lambda \text{ if } \varpi \text{ is unitary}$

supp $\varpi:=\{\alpha\in\Psi(\mathfrak{g})\,;\,\varpi(\mathfrak{g}^{\alpha})\neq\{0\}\}$ $W(\Upsilon,\Theta):=\{w\in W(\Upsilon)\cap W(\Theta)^{-1}\,;\,w\Sigma(\mathfrak{g}_{\Upsilon})\cap\Sigma(\mathfrak{g}_{\Theta})=\emptyset\}$ dim $_{M}\lambda$: the dimension of the representation of M with the same highest weight of λ .

 ϖ is non-degenerate $\stackrel{\text{def}}{\Leftrightarrow} \text{supp} \varpi = \Psi(\mathfrak{g})$.

"The radial parts of K-finite functions of this Whittaker model of G" are

"those of the non-degenerate Whittaker model of $G_{\text{Supp}\varpi}$ ".

Remark. i) $W(\Theta, \Upsilon) = W(\Upsilon, \Theta)^{-1}$.

ii) $W(\Upsilon, \Theta)$ corresponds to a subset of $P_{\Theta} \backslash G/P_{\Upsilon}$.

$$\dim \operatorname{Hom}_*(\operatorname{Ind}_{P_{\Theta}}^G(\lambda),\operatorname{Ind}_N^G(\varpi)) = \#W(\operatorname{supp}\varpi,\Theta)\cdot\dim_M\lambda\cdot \begin{cases} \#W_{\operatorname{supp}\varpi} \\ 1 \end{cases}$$

$$W(\Upsilon,\Theta) := \{w\in W(\Upsilon)\cap W(\Theta)^{-1}\,;\,w\Sigma(\mathfrak{g}_\Upsilon)\cap\Sigma(\mathfrak{g}_\Theta) = \emptyset\}$$
 with $\Upsilon = \operatorname{supp}\varpi$

Examples. 1. $\underline{\varpi}$ is trivial. (\Rightarrow Imbeddings into principal series) \Rightarrow supp $\varpi = \emptyset \Rightarrow W(\operatorname{supp}\varpi) = W \Rightarrow W(\operatorname{supp}\varpi, \Theta) = W(\Theta)^{-1}$ If $\Theta = \emptyset$, then $P_{\Theta} = P$, $W(\Theta) = W$, $W(\operatorname{supp}\varpi, \Theta) = W$ and the imbeddings are obtained by standard intertwining operators between principal series.

If G is compact, the result corresponds to Peter-Weyl theorem. For general Θ they are similarly obtained through the natural imbedding of degenerate series into principal series.

2. $\underline{\varpi}$ is non-degenerate. $(\Rightarrow$ well-studied) $\Rightarrow W_{\text{Supp}\varpi} = W$, $W(\text{supp}\varpi) = \{e\}$, $\Sigma(\mathfrak{g}_{\text{Supp}\varpi}) = \Sigma(\mathfrak{g})$. Hence $W(\text{supp}\varpi, \Theta) \neq \emptyset \Rightarrow \Theta = \emptyset$ and $W(\text{supp}\varpi, \emptyset) = \{e\}$.

3. $G = GL(n, \mathbb{R})$. Θ corresponds to a partition of n and a Young diagram:

$$G_{\Theta} = GL(2,\mathbb{R}) \times GL(4,\mathbb{R}) \times GL(1,\mathbb{R}) \Rightarrow 7 = 4 + 2 + 1 : \Box$$

$$\#W(\operatorname{supp}_{\varpi}, \Theta) = 1$$

 \Leftrightarrow The partition supp ϖ equals the dual partition of Θ

$$7 = (4+2+1)' = 3+2+1+1 \Rightarrow 2+1+3+1$$
: $G_{\text{Supp}\varpi} = GL(2,\mathbb{R}) \times GL(1,\mathbb{R}) \times GL(3,\mathbb{R}) \times GL(1,\mathbb{R})$

$$E_{2,4,1}(\lambda_1, \lambda_2, \lambda_3) := \operatorname{Ind}_{P_{2,4,1}}^G(\lambda_1, \lambda_2, \lambda_3) \\ \mapsto E(\lambda_1, \lambda_2 + 1) \otimes E(\lambda_2 + 1) \otimes E(\lambda_1 - 2, \lambda_2, \lambda_3 + 1) \otimes E(\lambda_2 - 1)$$

Suppose $G = GL(n, \mathbb{R})$ and $\#W(\operatorname{supp}_{\varpi}, \Theta) = 1$. Then "K-finite functions of the Whittaker model are reduced to the usual Whittaker functions"

- $\Leftrightarrow G_{\mathsf{Supp}\varpi}$ is a direct product of some copies of $GL(2,\mathbb{R})$ and/or $GL(1,\mathbb{R})$
- $\Leftrightarrow P_{\Theta}$ is a maximal parabolic subgroup

$$x = (x_{ij}) \in GL(n, \mathbb{R})$$

$$(E_{ij}\varphi)(x) = \frac{d}{dt}\varphi(xe^{tE_{ij}})|_{t=0}, E_{ij} = \sum_{\nu=1}^{n} x_{\nu i} \frac{\partial}{\partial x_{\nu j}},$$

$$\mathfrak{n} = \sum_{1 \leq j < i \leq n} \mathbb{C}E_{ij}$$

$$\varpi(\exp(\sum_{i>j} t_{ij}E_{ij})) = e^{\sqrt{-1}(c_1t_{21} + \dots + c_{n-1}t_{n,n-1})}$$

$$\Theta = \{1, 2, \dots, k-1, k+1, \dots, n-1\} \ (2 \leq 2k \leq n), P_{\Theta} = P_{k,n-k}$$

"Existence of the Whittaker model of $\operatorname{Ind}_{P_{k,n-k}}^G(\lambda,\mu)$ " $\Leftrightarrow c_i c_{i+1} = c_{i_1} c_{i_2} \cdots c_{i_{k+1}} = 0 \ (1 \leq i < n, \ 1 \leq i_1 < \cdots < i_{k+1} < n)$

For example, put

$$\begin{cases} c_i = 0 & (i = 2, 4, \dots, 2k, 2k + 1, 2k + 2, \dots, n - 1), \\ c_{2j-1} \neq 0 & (j = 1, \dots, k) \end{cases}$$

 \Rightarrow The K-fixed vector of the Whittaker model is the solution of

$$\begin{cases} E_{i}v = \mu v & (i = 2k+1, 2k+2, \dots, n), \\ (E_{2j-1} + E_{2j})v = (\lambda + \mu - 2j + k + 1)v, \\ ((\frac{E_{2j-1} - E_{2j}}{2})^{2} - (\frac{E_{2j-1} - E_{2j}}{2}) - c_{2j-1}^{2}e^{2(t_{2j-1} - t_{2j})})v = \frac{\lambda - \mu - k + 1}{2}(\frac{\lambda - \mu - k + 1}{2} - 1)v, \\ \text{Here } j = 1, \dots, k, \quad E_{\nu} = \frac{\partial}{\partial t_{\nu}} \ (\nu = 1, \dots, n). \end{cases}$$

on $A \ni \operatorname{diag}(e^{t_1}, \dots, e^{t_n})$.

The dimension of the solution space equals 2^k .

There exists a unique solution with the moderate growth up to a constant multiple. It is written by the modified Bessel functions of the 2-nd kind.

(Similarly K-finite vectors \Rightarrow expressed by Whittaker functions.)

Key to prove Theorem.

1. Irreducibility of a Whittaker module.

The left $\mathfrak{g} = \mathfrak{gl}(2,\mathbb{C})$ -module

$$\begin{cases} (E_{11} + E_{22} - \lambda - \mu)v = 0, \\ (E_{11}E_{22} - E_{12}E_{21} + E_{11} - \lambda(\mu + 1))v = 0 \\ (E_{21} - c_1)v = 0 \end{cases}$$

is irreducible if $c_1 \neq 0$ (Kostant in general).

2. Twisted Harish-Chandra homomorphism.

 $\mathfrak{g} = \overline{\mathfrak{n}} + \mathfrak{a} + \mathfrak{n}$: a complex reductive Lie algebra (or G is a normal real form)

$$\gamma_{\varpi}: U(\mathfrak{g}) \to U(\mathfrak{a}), \ D \mapsto \gamma_{\varpi}(D) \text{ with } D - \gamma_{\varpi}(D) \in \overline{\mathfrak{n}}U(\mathfrak{g}) + U(\mathfrak{g}) \sum_{X \in \mathfrak{n}} (X - \varpi(X)),$$

Remark. *I*: two-sided ideal of $U(\mathfrak{g}) \stackrel{\searrow}{(\Rightarrow)} \gamma_{\varpi}(I)$ is an ideal of $U(\mathfrak{a})$

- i) $\operatorname{supp}_{\varpi} \subset \operatorname{supp}_{\varpi'} \Rightarrow \gamma_{\varpi}(I) \subset \gamma_{\varpi'}(I)$
- ii) If gr(I) does not vanish at $\sum_{\alpha \in \text{supp}\varpi} X_{\alpha}$, then $\gamma_{\varpi}(I) = U(\mathfrak{a})$.

Characterize $\gamma_{\varpi} \left(\mathsf{Ann}(\mathsf{Ind}_{P_{\Theta}}^G(\lambda))! \right)$

3. A Boundary value problem on $K_{\mathbb{C}} \times AN$

A boundary attached to infinite points of $\exp(\sqrt{-1}\mathfrak{t} + \mathfrak{a})$ corresponding to a certain Weyl chamber. Here \mathfrak{t} is a maximal torus of $\mathfrak{m} = Z_{\mathfrak{k}}(\mathfrak{a})$.

4. Integral expression of Whittaker model with moderate growth The kernel function of the intertwining operator is a distribution but its support has in general no inner point.

 $W(\operatorname{supp}_{\varpi}, \Theta)$ gives the possibility of the support.

That's all!
Thank you.