A CLASSIFICATION OF SUBSYSTEMS OF A ROOT SYSTEM

TOSHIO OSHIMA

ABSTRACT. We classify isomorphic classes of the homomorphisms of a root
system Z to a root system 3 which do not change Cartan integers. We examine
several types of isomorphic classes defined by the Weyl group of 3, that of =
and the automorphisms of ¥ or = etc. We also distinguish the subsystem
generated by a subset of a fundamental system. We introduce the concept of
the dual pair for root systems which helps to study the action of the outer
automorphism of = on the homomorphisms.
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1. INTRODUCTION

Root systems were introduced by W. Killing and E. Cartan for the study of
semisimple Lie algebras and now they are basic in several fields of mathematics. In
this note a subsystem of a root system means a subset of a root system which is
stable under the reflections with respect to the roots in the subset. The purpose of
this note is to study subsystems of a root system. It is not difficult to classify the
subsystems if the root system is of the classical type but we do it in a unified way.
The method used here will be useful in particular when the root system is of the
exceptional type.

Let = and Z’ be subsystems of a root system Y. We define that =’ is equivalent
to 2 by ¥ and we write 2 -~ = if w(E) = Z with an element w of the Weyl group

Wy of 3. By the classification in this note we will get complete answers to the
following fundamental questions (cf. Remark 10.2 for the answers).

Q1. What kinds of subsystems of ¥ exist as abstract root systems?

Q2. Suppose Z' is isomorphic to Z as abstract root systems, which is denoted
by 2’ ~ Z. How do we know Z’ 3 =?

Q3. How many subsystems of ¥ exist which are equivalent to =7
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Q4. Does the outer automorphism of = come from Wx?

Q5. Suppose o is an outer automorphism of = which stabilizes every irreducible
component of =. Is ¢ realized by an element of Wx?

Q6. Suppose that Z is transformed to Z’ by an outer automorphism of X. Is
= om0
E~E valid?

Q7. Is Z equivalent to a subsystem (O) generated by a subset O of a fundamental
system ¥ of ¥? How many elements exist in {© C U; (O) Y =}

For example, Q4 may be interesting if = has irreducible components which are
mutually isomorphic to each other. An orthogonal system is its typical example
(cf. Remark 8.2).

The first question of Q7 is studied by [1] and the answer is given there when =
is irreducible (cf. Remark 8.3 iii)).

To answer these questions we will study subsystems as follows.

Let = and ¥ be reduced root systems and let Hom(Z, 3) denote the set of maps
of = to ¥ which keep the Cartan integers ZEZ;ES invariant for the roots a and 3.
Since the map is injective and its image is a root system, the image is a subsystem
of ¥ isomorphic to =.

Let Wz and Wy denote the Weyl groups of = and X respectively and put
Aut(E) = Hom(E, E) and Aut(X) = Hom(X, X). We will first study the most re-
fined classification, that is, Wx\Hom(Z, ) after the review of the standard materi-
als for root systems in §2. In §3 we will give Theorem 3.5 which reduces the structure
of Wx\Hom(Z,X) to a simple graphic combinatorics in the extended Dynkin dia-
grams. It is a generalization of the fact that an element of Wyx\ Aut(X) corresponds
to a graph automorphism of the Dynkin diagram associated to ¥ (cf. Example 3.6)
and will be proved in §5 after the preparation in §4.

In §6 we define the dual pair of subsystems, which helps us to study the action
of Aut(ZE) on Hom(E, X). In §10 we have the table of all the non-empty Hom(E, X)
with irreducible X. The table gives the numbers of the elements of the cosets

Ws\Hom(E, ¥), Aut(X)\Hom(Z,X),
Ws\Hom(Z, ¥)/Aut(Z), Ws\Hom(Z,X)/Aut’(Z)

and the number of the subsystems generated by subsets of a fundamental system of
¥ which correspond to a coset. Here Aut’(Z) is the subgroup of Aut(Z) defined by
the direct product of the automorphisms of the irreducible components of =Z. The
table also determines certain closures of = (cf. Definition 6.3, 6.6).

In many cases #(Wg\Hom(E7 E)/Aut(E)) = 1, which is equivalent to say that
the subsystems of ¥ which are isomorphic to = form a single Wy-orbit. We will
also distinguish the orbits when the number is larger than one.

In §8 we give some remarks obtained by our study. For example, Q4 will be
examined for the orthogonal systems of the root systems of type E7 and Ey .

In §9 we give the extended Dynkin diagrams and roots of the irreducible root
systems following the notation in [3], which is for the reader’s convenience and will
be constantly used in this note. A proof of the classification of the root systems is
also given for the completeness (cf. Proposition 9.3 and Remark 9.4 iv)).

Dynkin [4] classified regular subalgebras of a simple Lie algebra in his study
of semisimple subalgebras. The classification is given by Table 9 and Table 11
in [4]. In Table 11, A + A2 and the second one of A7 + A; should be replaced
by Eg¢ + A2 and E; + Aj, respectively. These tables describe the classification of
Aut(X)\Hom(E, X)/Aut(E) for S-closed subsystems (cf. Definition 6.6) in our table
in §10 (cf. Remark 10.7 ii)) and were obtained from Dynkin diagrams given by suc-
cessive procedures removing roots from extended Dynkin diagrams. The procedure
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is the way to classify maximal S-closed subsystems used by [2] (cf. Remark 8.4). The
maximal S-closed subsystems are also classified by [8]. Our classification based on
Theorem 3.5 gives a more refined classification of Wy \Hom(Z, ¥). In fact we give a
simple algorithm to give the complete representatives of the coset Wy \Hom(Z, ).

The author would like to thank E. Opdam for pointing out (8.8) and related
errors in the table in §10.

2. NOTATION

In this section we review the root systems and fix the notation related to them.
All the materials in this section are elementary and found in [3].

Fix a standard inner product ( | ) of R™ and an orthonormal basis {e1,...,€,}
of R™. For o € R™ \ {0} the reflection s, with respect to « is defined by

Sq: R — R™
(2.1)

and we put |a] = v/(o|a).

Definition 2.1. A reduced root system of rank n is a finite subset ¥ of R™ \ {0}
which satisfies

(2.2) R" =3 s Ra,

(2.3) 5.(D) =%  (Yaey),
(2.4) 253:3 €Z  (Va, BEY),
(2.5) RanN¥ = {+a} (Va € 5).

In general the rank of a root system ¥ is denoted by rank 3.

Remark 2.2. i) In this note any non-reduced root system, which doesn’t satisfy
(2.5), doesn’t appear except in §9 and hereafter for simplicity a root system always
means a reduced root system.

ii) We use the notation N for the set {0,1,2,...} of non-negative integers.

Definition 2.3. Let ¥ be a root system of rank n. A fundamental system ¥ of ¥

is a finite subset {a1,...,a,} of ¥ which satisfies

(2.6) R"™ = Ray + Rasg + - - - + Ray,,

(2.7) o= ij(a)aj €Y = (mi(a),...,...,myu(a)) € N" or —N".
j=1

The fundamental system W exists for any root system ¥ and the root a € ¥ is
positive (with respect to ¥) if m;(a) > 0 for j = 1,...,n, which is denoted by
a > 0.

Definition 2.4. Let © be a finite subset of ¥ and put

(2.8) Wo 1= (sq; a € ©) = the group generated by {s,; o € ©},
(2.9) W= Wyxg = Wy,

(2.10) () := WO,

(2.11) 0t :={acX; (a|f)=0 (V3e€O)}.

The group W is called the Weyl group of ¥.. A subset = of ¥ is called a subsystem of

Yif 54(E) = Efor any a € E. Then Z is a root system with rank = = dim ) - Ra.
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We put at = {a}t for a € ¥. Note that (©) and ©1 are subsystems of X and
(2.12) rank(©) + rank O+ < rankX.

Definition 2.5. A map ¢ of a root system = to a root system ¥ is a homomorphism
if ¢ keeps the Cartan integers:

o13) L0@B) _(alf)

((@)]ela))  (ala)
In this case ¢ is injective and ¢(E) is a subsystem of X.
The set of all homomorphisms of = to ¥ is denoted by Hom(=, ¥) and define

a)lu(B -
e (Va, B € E).

(2.14) Aut(X) := Hom(X%, X).
Note that Wy and Wz naturally act on Hom(Z, ¥) and
(2.15) 108y = 80t (1€Hom(E,X), acE).
Two homomorphisms ¢ and ¢/ of Z to ¥ are Wx-equivalent if
(2.16) /=wour
for a suitable w € Wy and we define
(2.17) Hom(Z,Y) := Wy \Hom(Z, ¥) ~ Wx\Hom(Z, )/ Wa,
(2.18) Out(X) := Wy\Aut(¥) = Hom(%, ¥) ~ Aut(X)/ Wy

= {g € Aut(2); g(¥) = ¥}

The root system = is isomorphic to Y, which is denoted by Z ~ ¥, if there exists
a surjective homomorphism of = onto X.

Suppose Y1 and Yo are subsystems of ¥ such that ¥ = ¥; UXs and X7 L 3.
Then we say that X is a direct sum of 31 and X5, which is denoted by ¥ = 31 + Xs.
A root system is irreducible if if has no non-trivial direct sum decomposition. Note
that every root system is decomposed into a direct sum of irreducible root systems
and

(2.19) Aut(X) ~ {g € O(n); g(X) =X}
if ¥ is an irreducible root system of rank n. Here O(n) is the orthogonal group of
R™ with respect to ( | ).

For root systems 37 and 35 there exists a root system ¥ = 3} + X} such that
¥ o~ E; for j = 1 and 2. This root system X is determined modulo isomorphisms
and hence we simply write ¥ = 31 + X5. When 31 = X5, we sometimes write 23
in place of ¥1 + Y.

For any two elements o and o’ in ¥, there exists an isomorphism ¢ of (o, ') to
one of the following four root systems with the fundamental system {3, 3’} such
that ((a)) = 8 and «(a/) = 5"

Ay + Ay =241 (B,8) = (1, e2) 2090 _g,  oBB) o f &
Azt (B,0) = (a1 — 2,00 — &3) 2 =1, 2 =1 8@
By (B,0) = (a1 — 2, 2 =1, 2 =2 80
Ga: (B,8") = (—2e1 + €2 + €3,€1 — €2) 2((%‘—‘%/)) = —1, 2((5/“%//)) =-3 ggg

The Dynkin diagram G(¥) of a root system ¥ with the fundamental system ¥
is the graph which consists of vertices expressed by circles and edges expressed by
some lines or arrows such that the vertices are associated to the elements of W.
The lines or arrows connecting two vertices represent the isomorphic classes of the
corresponding two roots in ¥ according to the above Dynkin diagram of rank 2.



A CLASSIFICATION OF SUBSYSTEMS OF A ROOT SYSTEM 5

—2(B18")

. A ;. .
Here the number of lines which link 8 to 8’ in the diagram equals R CITORCALANE

The arrow points toward a shorter root.

Definition 2.6. A root « of an irreducible root system ¥ is called maximal and
denoted by amay if every number m;(«) for j = 1,...,n in Definition 2.3 is maximal
among the roots of X. It is known that the maximal root uniquely exists.

Let ¥ = {aq,...,a,} be a fundamental system of 3. Define

(2.20) Qo = —Qlmag,

(2.21) U= WU {ag}.

The extended Dynkin diagram of ¥ in this note is the graph G(¥) associated to ¥
which is defined in the same way as G(¥) associated to ¥. We call ¥ the extended
fundamental system of ¥. A subdiagram of G(¥) is the Dynkin diagram G(O)
associated to a certain subset © C .

In §9 the extended Dynkin diagrams of all the irreducible root systems are listed,
which are based on the notation in [3]. The vertex expressed by a circled circle in
the diagram corresponds to the special root ag. If the vertex and the lines starting
from it are removed from the diagram, we get the corresponding Dynkin diagram
of the irreducible root system. The numbers below vertices «; in the diagram in
89 are the numbers m;(Qmqz) given by (2.7). We define mg(@max) = 1 and then

(2.22) > mj(omax)o; = 0.

a;ew

Remark 2.7. i) There is a bijection between the isomorphic classes of root systems
and the Dynkin diagrams.

The irreducible decomposition of a root system X corresponds to the decompo-
sition of its Dynkin diagram G(¥) into the connected components G(¥;). It also
induces the decomposition of the fundamental system W = ¥ IT---IIW¥,, such that
¥ =(U1)+ -+ (¥,,) is the decomposition into irreducible root systems. Then
we call each ¥; an irreducible component of .

The irreducible root systems are classified as follows (cf. §9):

(2.23)  An(n>1), Bu(n>2), Co(n>3), Dn(n>4), E, Br, Es, Fy, Gs.

We will also use this notation A4,, ... for a root system or a fundamental system.
For example, A5 + 2B3 means a root system isomorphic to the direct sum of the
root system of type As and two copies of the root system of type Bs or it means
its fundamental system.

ii) Out(X) is naturally isomorphic to the group of graph automorphisms of the
Dynkin diagram associated to 3. If ¥ is irreducible, it also corresponds to the graph
automorphisms of the extended Dynkin diagram which fix the vertex corresponding
to a. Here we give the list of irreducible root systems ¥ with non-trivial Out(X):

Out(4,) ~ Z/2Z (n > 2),

(2.24) Out(Dy) ~ (= the symmetric group of degree 3),
Out(D,,) ~ Z/2Z (n >5),
Out(Eg) ~Z/2Z.
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iii) The graph automorphism o of the extended Dynkin diagram G(¥) with the
following property corresponds to a transformation by an element of Wy,.

A rotation of G(\0) (2 =A,, Ep),

Any automorphism (E Bn, Cyn, Er),
(2.25) 0((040,041,04",1,04")) = (a1, @0, ap,an—1) (X =Dy),

0((040,041,04",1,04")) = (an, p—1,01, Qp) (E D,, n:even > 4),

a((ao,al,an_l,an)) = (Qn, n—1,00,01) (X =Dy, n:odd).

When ¥ is irreducible, we have the bijection:

{weWs; w@) =T} 5 {aj € T; mj(ama) =1}
(2.26) w w
o — o(ap)

To classify subsystems contained in a root system we prepare more definitions.
Definition 2.8. We put
(2.27) Aut'(Z) := Aut(Z;) x - x Aut(E,,) C Aut(Z),
(2.28) Out'(Z) := Aut/(2)/ W=
for a root system = with an irreducible decomposition === + -+ - + =,,.
Definition 2.9. Let =, 2’ and © be subsystems of X.
(2.29)

/

—_
—
—

(1]

vE e Jw € Weg such that &' = w(2),
(2.30) = L(;ﬁ E & dg € Aut(O) such that = = g(=).
If= I~ E' (resp. E :J@i =), we say that =’ is equivalent (resp. weakly equivalent) to

by ©. Since Aut(Z) ~ {+ € Hom(E, X); «(Z) = E}, we have
{2 C ¥ 5,(E) =% (Va € ') and E/ZE}/;
(2.31) ~ Wy \Hom(Z, X)/Aut (=)

(2.32) ~ Aut(X)\Hom(E, X)/Aut (=)
~ Out(X)\Hom(ZE, £)/Out(E),
(2.33) Wy \Hom(E, ¥)/Aut’(E) ~ Hom(E, X)/Out’(2).

Definition 2.10 (fundamental subsystems). A subsystem Z of X is called funda-
mental if there exists © C ¥ such that = i~ (©).

Remark 2.11. Suppose X is of type A,. Then it is clear that

(2.34) any subsystem of ¥ is fundamental,
(2.35) (2 -~ Z & Z~E) for subsystems E and =’ of ¥.

Our aim in this note is to clarify the structure of
Hom(Z,Y), Out(X)\Hom(Z,¥), Hom(Z,X)/Out(Z), Hom(Z,X)/Out’(Z),
Out(X)\Hom(E, ¥)/Out(E) and fundamental subsystems of ¥.

For this purpose we prepare the following definition.
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Definition 2.12. i) A root o € ¥ (resp. ¥) is an end root of ¥ (resp. W) if

(2.36) #{B €W (resp. ¥); (B,a) <0} < 1.
A root a € W (resp. W) is called a branching root of ¥ (resp. W) if
(2.37) #{B € W (resp. ¥); (B,a) <0} > 3.

The corresponding vertex in the (extended) Dynkin diagram is also called an end
vertex or a branching vertex, respectively.

ii) When ¥ is irreducible, we put
(2.38) Yhi={ae¥; |a| = |omanl}
and denote its fundamental system by WZ. Then T is a subsystem of ¥ and
(239) AL = A, BE =D, (n>2), CE=nA, (n>3), DL =D, (n>4),

' EY = Fs, B = E;, Ef = Es, FF = Dy, GE = A,.

A root system whose Dynkin diagram contains no arrow is called simply laced.

3. A THEOREM

In this section we will give a simple procedure to clarify the set Hom(Z,X) :=
Ws\Hom(E, ) for root systems = and X.

Remark 3.1. i) Note that
(3.1) Hom(Z, %1 + %) =~ H (Hom(E/’21),Hom((5/)J_722)),

Z/CZE: component

(32) HomE +%%)~ [[ (sHom(.(E)Y).
t€Hom(E1,%)
Here 7 means a class of © € Hom(Z1,Y) in Hom(Z;,Y) and the component =’ of
Z is the subsystem of Z such that = = Z’ 4 (Z’)*. The empty set and = are also
components of =.
The identification (3.2) follows from

(3.3) {w e Wy w|L(5) = id} = WL(E)L Cc Wy

for any « € Hom(E, X)) (cf. [3]).

ii) The identifications (3.1) and (3.2) assure that we may assume = and ¥ are
irreducible. In fact, the study of the structure of Hom(Z, ¥) is reduced to the study
of £ € Hom(Z, ¥) and «(Z)* for irreducible = and .

iii) We may moreover assume +(Z)NXY # () by considering the dual root systems
BV :={2Z%;a€cZ} and TV := {(2—"‘ ; a € £} in place of E and ¥, respectively.

(aa) ala)

Definition 3.2. When G(®) is isomorphic to a subdiagram G(©) of G(V) with a
map t: P — O C U, it is clear that  defines an~element of Hom(Z, ¥). In this case
we say that 7 is an imbedding of G(®) into G(¥).

Recalling Definition 2.4, 2.6 and 2.12, we now state a main lemma in this note,
which will be proved in §5 by using lemmas in §4.

Lemma 3.3. Let = and X be irreducible root systems and let ® and ¥ be their
fundamental systems, respectively. Denoting

(3.4) Hom'(Z,%) := {1 € Hom(E,X); «(E) N =* # 0},
(3.5) Hom' (E, %) := Wy \Hom'(Z, ),

we have the following claims according to the type of =:
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1) E s of type Ap,.
Ho—m/(E, ¥) & {Imbeddings © of G(®) into G(¥) with the end vertex ag }.
Let T be this graph imbedding corresponding to « € Hom(Z, ). Then
(3.6) VB = (ae T a Li(d)).
In the case #Ho—m/(E, ¥) > 1, we have #Ho—m/(E, ¥) =3 (E,X) is of type (A3, D4)
and 2 if otherwise. Moreover for T, T € Ho—m/(E, ¥)
“T and U are conjugate under an element of Out(X) or Out(Z)”
(3.7 s 2)t =~/ (E)E.

2) E is of type Dy, (m > 4).
Let @, = {00, ..., Bm—-1} be a fundamental system of Z with the Dynkin diagram

o fr o 0 Prycs fim—t

i)ﬁmfl
is an imbedding T, of G(®,,) into G(¥L). We put ms, = 0 if such an imbedding
doesn’t exist. Then

and my, denote the maximal integer m such that there

0 (2 is of type Ay, Cpn, Ga2),
s — rank Y (X is of type By, Dy, Es, Fy),
5 (X is of type Eg),
6 (X is of type E7)
and
Hom'(D,,, %) #0 & (4 <)m < my
& #(Hom (E,%)/Out(E)) = 1.
Y. is of type Fg, E7 or Eg.

2 (m=my),

1 (4<m<my),
A1 (Tl:7),

0 (n=6,38).

#Hom(D,,, ) = {

L(E)l ~ Dipse—m + {

Y is of type Dy, By, or Fy (m <mn).

6 (X:Dy (m=n=4)),
— )3 (X : By, and D,, (m =4 < n)),
#HOII] (‘—‘72)* ) (an (4<7,n:n))7
1 (X:Fy(4=m), B, (4<m<n), D, (4<m<n)),

Dy (L S HOm(Dm; Dn))7
WE)r ~{ By (0 € Hom(D,,, By)),
0 (¢ € Hom(Dy, Fy)).
3) E is of type By, (m > 2).
Y is of type By, with m < n,
Hom(Z,X) #0 < #Hom(Z,X) =1 and { X is of type C, with m = 2,
Y. is of type Fy with m < 4,
(E)VPNT, ~Ty sy (T'=B,C, F, F =By, Fi=A4; and «(B3)* NFy ¢ ©b).
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4) Z is of type Cp, (m > 3).
> is of type Cy, with m < n,
Y is of type Fy with m < 4,
(B)PNT, ~T, sy (T'=C,F, Fy=0Cy Fy = Ay and o(C3)t N F, ¢ ©5).
5) E is of type E,, (m =6, 7 and 8).
Hom(E, ) < {Imbeddings i of G(®) into G(¥)} /~,
WE)r ~{aeT;ali(d)).

Here [~ is interpreted that all the imbeddings of G(®) are considered to be isomor-
phic except for (2,%) ~ (Eg, Es). Namely #Hom(Z,%) <1 if (E,X) # (Es, Eg).
6) = is of type Go or Fjy.

Hom(=,%) #0 < #Hom(=,X) =1 and 2~ X.

Hom(Z, %) #0 < #Hom(Z, %) =1 and {

Remark 3.4. i) In the proof of Lemma 3.3 2) we will have

L(:)J‘ -~ <Zm>: ((I)mz)l N ‘Il> (mz —1<m< 7712)7
- <Zm>: ((I)mz)l nv, Zm):(ﬁm)v colmg (ﬁmz—l» (4 <m < my— 2)

for the imbedding Z,,,, With Z(8.,,) = ag if ¥ is of type D,,, Eg, E7 or Es.
Let ©,, be a subset of ¥ such that (0,,) ~ D,,. If ¥ is of type B,, or D,, we
may assume that ¢, € Hom(D,,, X)) satisfies ¢, (E) = (0,,) and then

(3.8) L (@)t = (O, N ).

Suppose X is of type Fg, E7 or Eg. Let Gunqe be the maximal root of (0,,). Put
4o = —Qmaz and O, = O, U{ap}. We may assume ¢, € Hom(D,,,, X) satisfies
tm(E) = (©,) and ©,, C O,,,. Then

(3.9) b (@)t = (04 N Oy, OF NT).

Note that G(Oy,,,) is the extended Dynkin diagram of (©,,;,) ~ Dy,y.. See Exam-
ple 3.6 viii) and ix).

ii) Using a graph automorphism of G(¥) corresponding to a suitable element
of Wy, we may replace oo by another element «; of ¥ with m,;(amez) = 1 in
Theorem 3.5 and in the remark above (cf. Remark 2.7 ii)).

iii) The image ¢(Z) corresponding to the graph automorphism 7 in Lemma 3.3 is
obtained by Proposition 4.4.

Lemma 3.3 can be summarized in the following form.

Theorem 3.5. Let X and Z be irreducible root systems and let ¥ and ® be their
fundamental systems, respectively. Retain the notation given in Definition 2.4-2.6
and 2.12. If ¥ is not simply laced, we denote the mazimal root in S\XL by ol . and
the Dynkin diagram of U’ by G(V'). Here we put oy = —a’,y,,p and U’ = WU {a}}.
i) Suppose X is of the classical type or = ~ A,, with m > 1.

When = % Dy or (3,2) ~ (Dy, Dy),

Hom(Z, %) & {Imbeddings T of G(®) to G(U) or G(¥')

(3.10) /
such that By corresponds to ag or oy by T}

for a suitable root By € ®. Here we delete G(U') and afy in the above if ¥ is simply
laced. Moreover By is any root in ® such that the right hand side of (3.10) is not
empty and if such By doesn’t exit, Hom(Z,%) = 0.

When = ~ Dy,

(3.11) #(Hom(Z,¥)/Out(=)) < 1
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and the representative of Hom(Z,X)/Out(Z) is given by the above imbedding T and
(3.12)  #Hom(Dy, B,) = #Hom(Dy, C,,) = #Hom (D4, Dy 1) =3 (n > 4).
For 1 € Hom(E, X) corresponding to this imbedding t of G(®) we have
(3.13) WE)r =(aeT;al ().
Moreover for t, I’ € Hom(Z,X)
“Tand U are conjugate under an element of Out(X) or Out(Z)”
s 1@ nsl ~ /@) Nl and W(2)T ~ /().

ii) Suppose ¥ is of the exceptional type and 2 = R, with R = B, C, D, E,
F and G. Putm0f23464and2acco7"dmgtoR B, C, D, E, F and
G, respectively, and moreover suppose m > mit. Let m be the mazimal number
m such that the Dynkin diagram G(R,,) of the root system R, is a subdiagram of
G(U) or G(V'). Thus for a subset ®E of U or U we identify G(R,,r) with the
subdiagram G(®E). Put m& = 0 if such a number m with m > m& does not ewists.
When (2, Rp) # (Fi, D4), we have (3.11) and

(3.14)

0 (m >mg),
(3.15) #Hom(Ry, 2) = ¢ # Out(R,,n)  (m =mf),
1 (mff <m <mg),

mg
(316)  RANE = (Rh N Rypg) + (@) 0T (or #))  (mff <m < mb)

through the natural map G(Rp) C G(Rpr) ~ G(®E) ¢ G(¥) (or G(V)) and
REtnN R,r is given by i) or Lemma 3.3 5). The coset Hom(Dy, Fy) consists of the
two elements corresponding to the identifications Dy ~ Ff and Dy ~ Fy \ FF.

Proof. When ¥ is of type R with R = B, C,, Fy or Gg, G(‘i/') is the affine
Dynkin diagram R’ given by Proposition 9.3. This theorem follows from Lemma 3.3,
Remark 3.1 iv), Remark 9.4 iii) and Remark 4.2. O

Example 3.6. (Hom(Z,X) and =)

i) #Hom(As, A,) =2 and Ay N A, ~ A, 3 (n >2).
Two elements of Hom(As, A,,) are defined by (a1, as) — (oo, 1) and (a1, ) —
(o, @), Tespectively. They are isomorphic to each other under Out(Az). Note
that the rotation of the extended Dynkin diagram corresponds to an element of

Wa

n*

Q1 Qg 3 " Qp—1 Qp Oél Qg 3 " Qp—1 Op
& —0—@. % e @— 70
@ e

(7)) (7))

ii) #Hom(As, Dy) = 3, #(Out(D4)\Hom(Asz, Ds)) =1 and A3 N Dy = 0.
The group Out(D,4) ~ &3 corresponds to that of the graph automorphisms of the
extended Dynkin diagram which fix «p.

g OOé4 Qg

Qg Q2 g LOQ [C3NNe D)
O0—O0-% (3 * * (X3 ¥ O—O0 (3

Qo éao (7]

iii) #Hom(A3, D,,) = #(Out(Dn)\m(Ag, D,,)/Out(A3)) = 2 for n > 4.

a1 02 3 Qg Q5 * " " Qip—2 Qp ] al Qg O3 044 Q5 Qp_2 Qp_1
Oo—oO0 >k *—O0— ——0 Oo—oO0 *— ——0

bag dan bag dan
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Aé‘ NnD, ~D,_3or D,_4 according to the imbeddings A3 C D,,.
iv) ##Hom(A, Eg) = 1 and Ay NEg ~ 2A,. Then 34, C Eg and #Hom(3A,, Fg) =
#Hom(2A3,2A2) = 8 (cf. §8.2.5) .

a1 Q3 044 045 046
*—o

(o0

J@Ozo
v) #Hom(Ay4, Es) = 2, #(Out(Es)\Hom(Ay4, Eg)) = 1 and Az N Eg ~ A;.
Ozl a3 4 a5 aG Q1 (i3 04 5 QO
0—0 @ K. OOk
(%) (€5
gao J@Oéo
vi) #Hom (A5, E7) = #(Out(E7)\Hom(A5, E7)/Out(A5)) =2
Qg (01 g3 Oy a5 Qg 7 ap (1 (g 04 045 046 047
©—O0—0—0 *—0 ©—O0—O0—O0—
(6%} (8%
Aé N E7 ~ Ay or A; according to the imbeddings As C FEr.
vii) #Hom(44,, Dy) = 6 and # (Out(D4)\Hom(4A4,, Dy)) =
o4
Ok Peas o = {+oq, +as, Tay}

@0

viii) #Hom(Dy, E,,) = 1 (cf. Remark 3.4 1))

Q1 3 Q4 Q5 Qg Qp a1 (3 044 045 046 047 041 043 044 045 046 Q7 g Qo
ko keOnek ok ©—0—O0 — 0—0—®
QnO—0o Q2 Qg eQ2 (%) Qg

Qg
DiNEg=0 Di NE; ~ 34, Dif NEg ~ Dy

ix) #Hom(Ds5, Dg) = #Hom(D5, By) = 1 (cf. Remark 3.4 i)).

a1 g (i3 04 5 Olg Q7 A8 0&1 0&2 0&3 Oé4 Oé5 Qg 07 g (g
O0—O0—0—0 % @—O0—@ o—o—0—0
Qo Qg Qo
Dé‘ﬁDgZD;l Dg‘mBgﬁle

x) #Hom(As, Fy) = 2, (AN)L N EFy ~ AS, (A5)E N Fy ~ AL with AT = Ay \ AL.

Qp Q1 Q2 (3 Oy Q1 Qg a3 g
@—0 % >0—e *—@ >k 0—@

xi) #Hom(Cs, Fy) = 1, G(Cy) C G(F}), G(C3) € G(Cy) and C4- N Fy = AL,

oy &
EU Cy = {az, a3, a4, 00}, C3 = {aa, ag, o}
xii) #Hom(A4 + Az, Fs) = 2 and #(Hom(A4 + Az, Eg)/Out(Ay + A2)) = 1.
Putting (Z1,E2,X) = (A4, Az, Es) (resp. (Asz, A4, Es)) in the identification (3.2),
we have the first (resp. second) line of diagrams below. These two reductions lead
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to the same result. In particular (44 + Az)*~ N Eg ~ A;. Note that (A4, A4) and
(As, E) are special dual pairs in Eg (cf. Definition 6.3).

a1 Qa3 044 045 Qe Q7 Qg (g Q] Q3 Qg Qg Qq Q3 Oy Q2
o—o— 0—O0—0—0® — o\* @k or Koo @k 20
%} ol RC
Q1 3 Q4 Q5 046 a7 as e7s) al Qg Qg a5 CYG Q1 3 4 Q5 Qg
*—0—0—0— —0O — Oo—oO0 or [ ] >k O0—O0 *
o (6% a2

! !

Corollary 3.7. i) Suppose ¥ is not of type A. Let G({wo,j,,... 5, ,}) be a
mazimal subdiagram of G(V) isomorphic to G(A,,) such that ag and aj,,_, are the

end vertices of the subdiagram and «;, are not the branching vertexr of G(‘i/) for
v=1,....,m—2. Then

#Hom (A, ) =1  (k=1,...,m),

S =0 (aj,_, is not a branchi t G(¥
#Hom/(AmH,E) (s z.s not a m.nc ing vertex of~ (©))
>1 (aj,_, is a branching vertex of G(V))
with
2 (X=DB,, n>3), 1 (¥ =B, C,),
2 (X=D,, n>4),
3 (¥ = Ep), 4 (¥ = E7), 6 (X = Ejg),
3 (X =Fy), 2 (X =Gy).
Here vj,, , is the branching vertex if ¥ = B, (n > 3), D,, (n >4), Es, E; or Es.
ii) We consider the following procedure for a Dynkin diagram X :
If X is connected, we replace it by the subdiagram X' of the extended
Dynkin diagram X of X where the vertices of X' correspond to
the roots orthogonal to the mazximal root of X. If an irreducible
component of X' has no root with the length of the mazximal root,
we remove the component.
If X is not connected, we choose one of the connected component
of X and change the component by the above procedure.

Then Ho—m/(rAl, X)) corresponds to the totality of r steps of the above procedures
starting from G(W). The existence of these steps implies Hom'(rA;,%) # 0 and
in this case #Ho—m/(rAl, Y) =1 if and only if any non-connected Dynkin diagram
does not appear except for the final step. In particular, we have the following:

Let r(X) be the mazimal integer r satisfying Hom'(rA;, %) # 0. Then

(3.17) r(2) =14 > r(Z)).

Here {3} is the set of irreducible components of ag such that X NS # 0 and

r(An) =14+ 7r(An_2) = [ (n>2), r(4)=1, r(Ay) =0,
r(Bp) =2+ 1(Bn_2) = 2[5] (n>4), r(B3)=r(B2)=2,
r(Cpn)=1471(Cpho1) =n (n>3), r(C2) =2,

7(Dp) =2+ 1r(Dp—2) = 2[3] (n>4), r(D3)=r(Dy) =2,
r(Fs) =1+r(45) =4, r(E7)=1+r(Dg) =17,
r(Es) =1+r(kr) =8,

r(Fy) =141r(Cs) =4, r(Gs) =1
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Remark 3.8. 1) If ¥ is of type A, D or E, then Hom(rA;,Y) is figured as follows
according to the procedures in Corollary 3.7 ii) and the notation in §9.

An An72 An74 An76 T D, — Dy_o+ Al >
o €1t---tes—€estesgter—eg €4 — € €r— € e ¢

E6 0 A5 2 A3 4 1 Al 3 2 0 Eg 7 8E7

€ € 4A1 — 3A1

—€3 7 €4
€7 — €3 —€5 — €¢ / \
E7 D6 D4+A1 /2A1:>A1HQ]
€6 — €5
\ D4 I 3A1

There appear the subsystems 3A4; of E7 twice in the above. They are distinguished
by the structure of (34;)+ N E7 but they are in the same Wg,-orbit under the above
inclusion E7 C Eg (cf. §7.2, §7.3 and §8.2.3).

For example, it follows from the procedures shown above that

#Hom(5A1, E7) = #Hom(4A4;, Dg) = #Hom(3A1, Dy + Aq)
(318) = #HOHI(QAl, D4) + :,PE)EPIOIH(QAl7 4A1)
= :,PE)EI{OH?[(Al7 3A1) + 4#HOH1(A1, 3141) =3 + 4-3=15.
ii) For an irreducible root system X, we can easily calculate #Hom(Z,Y) and
L N Y for any root system = in virtue of Theorem 3.5 together with Remark 3.1
(cf. Example 3.4 x)). The complete list for non-trivial Hom(Z, ¥) is given in §10.

More refined structures related to the actions of Out(X) and Out(Z) etc. are also
given in §10, which will be studied in later sections.

4. LEMMAS

In this section we prepare some lemmas to prove Lemma 3.3 and we always
assume that ¥ is a fundamental system of an irreducible root system ¥ and U is
the corresponding extended fundamental system.

First note that for & € ¥ N 2L we have

olalf) _ J{0,=1} (¥5 € (¥'\ {a}) and > 0),
(o) {0,1} (VB € (T \{a}) and 5 <0).
Here we put U\ {a} =T if a ¢ T.

(4.1)

Lemma 4.1. If a subset © of ¥ contains o and the diagram G(©) is connected,
(4.2) Ot ={(ae¥;alO).

Proof. Note that (a;|a;) <0for 0<i<j<n.
We will prove the lemma by the induction on #0.

We may put © = {ag, a1, ..., an,} and we may assume 0’ := {ag,a1,...,m—_1}
is empty or forms a connected subdiagram.

Let a = Z;I:l mj(a)a; € ©F with mj(a) > 0. Then the induction hypothesis
for ©’ implies m;(a) = 0 for j < m and

0= (amla) = Z;'L:erl mj(a)(amlag).
Hence (am|ey;) # 0 means m;(a) = 0. O

Remark 4.2. In Lemma 4.1 we may replace a by any element oy satisfying (af|a) <
0 for all @ € ¥. Then the Dynkin diagram G(¥’) of ¥ = ¥ U {of} is an affine
Dynkin diagram in Proposition 9.3.
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Lemma 4.3. Fiz © C ¥ and m € Z#® \ {0}. Define the map

Po : Y — 7#®
w w

5:Zaiexpmi(ﬁ)ai = (mi(ﬁ))aieel

Then pél(m) NXL is empty or a single Wy e-orbit. Moreover pél(m) \ 2L is also
empty or a single Wy e-orbit.
Proof. Fix 0 £ m = (m;)aco in the image of pe.

Let g be the complex simple Lie algebra with the root system ¥ and let X, € g

be a root vector for o € ¥.. We denote by gy e the semisimple Lie algebra generated
by {Xa; @ € ¥\ ©}. Then the space

Vin 1= Y aepet (my CXa C 8

is a gy\ @-stable subset under the adjoint representation of g, which is an irreducible
representation of gy\e as is shown in [6, Proposition 2.39 ii)].
Let me be the orthogonal projection of ) . Ra onto Zae\I'\G) Ra with respect

to (| ). Put om =3, comici —me(d_,, co mii). Then
o (a) = & = Um, (mo(a)|me(a)) = (afa) = (Vm|vm) (Vo € pg'(m)).
The set of the weights of the irreducible representation (gu\e, Vin) is To(pg ' (m))
and the set of the weights with the longest length is 7e(pg'(m) N L), Hence
pél(m) N XL is a single Wy e-orbit.
When pél(m) ¢ Y, we have the last statement in the lemma by combining the
above argument with [6, Proposition 2.37 ii)]. O

Proposition 4.4. For a proper subset © of the extended fundamental system ¥ of
3 we have

©) = {p\p{@(o) (0 ¢ ©),
pﬁ@({O, +ppe()}) (a0 € O)

under the notation in Lemma 4.3.

(4.3)

Proof. Note that (©) D pa@ (0) We assume «g € ¥ because the claim is clear
when ag ¢ ©. Then (4.1) implies (©) C p\;{@ ({0, £py\e(a0)}). Let Og be the irre-

ducible component of © containing . Since (0) is We\ (q,}-invariant, Lemma 4.3
implies that

(©) \P\R@ (0) = p\;i@ ({£pwe(an)}) or P\R@ ({£pw\e(ao)}) NS

Hence the proposition is clear if ¥ is simply laced or if ©q is of type B, or C,,.
It is also easy to check p\;ie (pse(a)) C E* in any other case when (¥,0¢) =
(Bns Am-1), (Bn, Dp,), (Cp, A1) or (Fy, A) with m <n and k < 3. O

Lemma 4.5 (roots orthogonal to the end root). Suppose oy is an end root of ¥
with oy € . Then the set
(44) Q= {a=ai+ma(a)az +mz(a)az + -+ my(a)a, € = (alar) =0}
is empty if ¥ is of type A and it is a single W\Ifmaf -orbit if otherwise.
Proof. We may assume #W¥ > 1. Then there is a unique 8 € ¥ with (ay|8) < 0.
We may assume 3 = as and we have

Q= {a = a1 + 200 + ma(@)as + -+ mp(@)ay, € EL}.

Then @Q = () if and only if ¥ is of type A. If ¥ is not of type A, Lemma 4.3 assures
that @ is a single Wi\ (4, a,}-0rbit. Note that ¥ N af = U\ {a1,az}. O
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Lemma 4.6 (special imbeddings of As and As). Let ¥/ C V. If ¥ # U, we
assume that we can choose o/ € W NS with o/ ¢ V. If ¥ = ¥, we put o’ = .
Define

Q1= {B e (¥)nxt; (Bla) <0},
Q2 = {(B1, B2) € ((¥') N BF) x ((¥) N TF);
(Br,a’) = (B2]a’) < 0 and (B1|B2) = 0},
0:={aecV; (aa') <0},

el:=enxh.
Then ©F is the set of complete representatives of Q1/Wyne. Moreover if U' # U,
Q2/#Wyne = #0" (#0" —1)

+ {a € ©F; G(V),) is not of type A or not an end root of G(V,,)}.

Here W', is the irreducible component of U’ containing o € ©.

Proof. Let 8 € Q1. It follows from (4.1) that there exists a, € ¥’ satisfying

(4.5) B =am+ Z m;(B)a;,
a; €ET\O
(4.6) (am|B) < 0.

If ap, ¢ BF, i, is of type A or C and therefore § of the form (4.5) does not
belong to ¥¥. Hence o, € OF and o, € WyneB by Lemma 4.3.

Let iy, aoy € OF with m # m’. We have a,,, & Wyneam and therefore oL is
the set of complete representatives of Q1/Wyne.

Let (81, 8) € Q2. We may assume 31 = ay € O by the argument above and 3
is of the form (4.5) with a,,, € OF.

If k # m, we may similarly assume § = a,,, and (ag, @) € Q2.

Qp
’ ’ ’ o
A o Qm o Qn o Oy
0—0—0 0——00 0——o0
k=m k:m\oéq

Suppose k = m. If a,, is the end root of ¥, , it follows from Lemma 4.5 that ¥y, |
is not of type A and (ax, ) corresponds to a unique element of Q2/Wyne.

If oy, is not the end root of Wy, , W —is of type A and it is easy to see that
(ax, ) also corresponds to a unique class in Q2/Wyne. In fact, we may put
{a € ¥, ; (a|lam) < 0} = {ap, aq} and

B=am+oap+ o+ Z m;(B)5 € 3.
o €V \{am,ap,aq}
Note that the roots  with this expression are in a single Wy (., a,,a,}-0rbit.
Thus we have the lemma. O

5. PROOF OF THE MAIN LEMMA

Retain the notation in Lemma 3.3 to prove it.
1) Let = be of type A;,4+1 with the fundamental system ® = {0, ..., } and

the Dynkin diagram %LBOL' i ',Oﬂ%iﬂé“ )

First note that  naturally corresponds to an element of Hom'(Z,¥) and then
(3.6) follows from Lemma 4.1. We will prove the lemma by the induction on m.

Let « € Hom'(E,Y). Since {a € ¥; |a| = |amaz|} = Wsamaz, the lemma is
clear when m = 0. Suppose m > 1. By the induction hypothesis we may assume
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that there exists a unique sequence («o, . .., @m,—1) of element of U and an element
w € Wy, such that wo(8;) =aj for j =0,...,m—1.

o B - Bma B
YA G G S

ayg o - am}.

wour :

Put o, = wo (By,) and

UV ={ae¥;(ala;)=0 (j=0,...,m—2)},
© ={aec¥; (a|am-1) <0}.

Since (of,|a;) = 0 for j = 0,....,m — 2, o, € (V). Applying Lemma 4.6 to
o' = Qym_1, we have a,, € ONTL and v’ € Wyne such that w'(a;,) = a,. Hence
w'w o ¢ corresponds to a required imbedding of G(®) into G(¥).

The uniqueness of a,, € © N X¥ is proved as follows. Suppose there exists
w € Wy, such that

wa; =a; forj=0,...,m—-1 and wame@ﬂEL.

Then w € Wy g and Lemma 4.6 assures wou, = .

Thus we have proved the first claim and then Lemma 4.1 assures (3.6). The
last claim is easily obtained by applying the claims we have proved to the extended
Dynkin diagrams in §9.

2) Let Z is of type D,, with m > 4. We may assume that ¥ is of type By, D,,
E, or F,. Let « € Hom'(Z,%). Lemma 3.3 1) assures that there exists a unique
sequence qg, Qjy ;- - ., 0y

s in ¥ and an element w € Wy such that

(5.1) wou(fy) =a;, (v=0,...,m—3) with jo=0.

Putting

0= {a € \III; (aaaj7,L 3) < O}a &10—4ﬁ7%—3l78—2
o =aj, ,,
(8,8") = (wo tlBr—z2), w0 UBn-1)), Fin—1

we have 3, 3/ € (') and we can apply Lemma 4.6 as in the case when = is of type
A. Thus

#Ws\{L € Hom'(E, %) ; 3w € Wy, such that (5.1) is satisfied. }
= (#(6 N EL)) (#(@ nxk) — 1) + #{a € O©N XL : the irreducible component of

U’ containing « is not of type A or « is not an end vertex of the component}.

Hence Hom'(D,,,,¥) = 0 if ¥ is of type A, C,, or G or m > rank . Moreover we
have #Hom(D,,,Y) shown in the following table under the notation in §10.
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D5 {ala"'aQG}zEG
D6 {041,...,045}2D5
D7 | {1, a2, a3,a4} =~ A4(3 a4 : not an end root)
Dg | {ag,a1,a3} ~ Ay + Ay

Here my is the rank of the maximal subdiagram of type D,, contained in the
extended Dynkin diagram of X% and then

by = | v #
Dy Dy | {oq,a3,a4} ~ 34, 6
Ds Dy | U\ {as} ~ A1 + A3(3 a3 : not an end root) 3
Dn (n>6) Dy |V \ {042} ~ A + Dy,_s 3
By Dy \I/\{OLQ} ~ A; + By 3
F4 D4 v \ {al} ~ 05 1
D, (4<m=n) D, {an—h an} ~ 24, 2
D, (4<m=n—1) | Dm | {an_2,0n_1,0n} ~ A3(5 a,,_2 : not an end root) | 1
D, (4<m<n—2) D, {am—h S an} ~ Dy mi1 1
B, (4<m<n) D | {am—1,-- @} =~ Bnomi1 1
Es Dy | U\ {as} ~ A5(3 a4 : not an end root) 1
D5 {041,043,045,046} 22142 2

E7 D4 v \ {al} ~ D6 1
Ds | {ag,a4,...,a7} ~ A5(3 a4 : not an end root) 1

D¢ | {azg, a5, 6,7} =~ Ay + A3(3 a5 : an end root) 2

Eg D4 v \ {048} ~ E7 1
1

1

1

2

n (32 is of type By, or D),
5,6,8 (X isof type Eg, E7 or Eg, respectively).
Qq Q2 3 Oy Op—2 Qp—1 a1 Qg 3 Oy Up—1 Oy,
o O—O0—0— —O0—0—-0 O—O0—O0—-~0— —O0—0—0:>0
ap éan o

(53) Q1 O3 (g4 Q5 Qg p (1 (3 Oy (5 Qlg Ay a1 3 04 05 g Q7 g
* O0—O0—-0 % ©—0—0—0—-0 % L] * O0—0—O0——0—"0—"0—-=0

Qa9 Qa2 a2
Qo
Fix ¢« € Hom(Dy, Fy). Since Hom(Dy, Fy) is a single Wpg,-orbit, for any g €

Aut(Dy) there exists wy, € Wg, with 1o g = wy or. Here wy is uniquely determined
by g because rank Fy = rank D4. Hence we have

Aut(D4) ~Wpg, D Aut(B4) =Wpg, D Wp,,
Out(D4) ~ 63, WB4/WD4 ~ Z/ZZ
Let ¢ : Dy C D,, (C B,) be the natural imbedding given by the realization in §9

and let g € Aut(D4) be a non-trivial rotation of G(Dy). Then it is easy to see
tog# wo for any w € Wg, . Hence if n > 4, we have

(5.5) #(Hom(Dy, D,)/Out(Dy)) = #(Hom(Dy, By,)/Out(Dy)) = 1
because # (Hom(Dy, D)) = #(Hom(Dy, By,)) = 3 and moreover we have
(5.6) Dy N Dy = Dyn;, Dy N By = By

for m = 4. Here Dy = D1 = Bg =0, Dy ~ 2A;, By ~ Af and Als is the root space
of type A; such that A7 N (B,)Y = 0.
Note that

(5.7) Aut(D,,) ~ Wpg, and Out(D,,) := Aut(D,)/Wp, ~Z/2Z (n >5)

(5.4)
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under the natural imbedding D,, C B,, of root spaces. Thus we have
(5.8) #(Hom(Dyy,, X)/Out(Dyy,)) = 0 or 1 if m > 4 and ¥ is irreducible

and therefore {¢(D,,)* ; « € Hom(D,,,¥)} is a single Wx-orbit if it is non-empty.
Thus we have (5.6) for 4 < m < n since it does not depend on the imbedding of
D,,.
Let n € {6,7,8} and put m = mpg,. There exists ¢« € Hom(D,,, E,) such that
v corresponds to the imbedding of ®,,. to ¥ with +(8y) = ag. Then we have
Di N Eg =0, D N E; ~ A; and Dg N Eg = () from Lemma 4.1.
Moreover there exists ¢ € Hom(D,,,—1, E,,) such that

LI(Dmfl) = {L(ﬂo)a R L(6m73)7 L(6m73) + L(6m72) + L(ﬂmfl)}

and it is clear that D;x_; N E, ~ D N E,.

Let 4 < k < 6. Then Dkl N Es D Dkl N Dg ~ Dg_; and we can conclude
D,ﬁ N Eg ~ Ds_;. because rank(D,ﬁ N Eg) < 8 — k and there is no root system
containing Dg_j as a proper subsystem such that its roots have the same length
and its rank is not larger than 8 — k.

Since D N B ~ Ay and Df N Dg ~ 2A;, Dy N E; O 3A; and we have
Dj N E; ~ 3A; by the same argument as above.

Thus we have obtained the claims in the lemma and therefore Remark 3.4 i) is
also clear.

3) Suppose = is of type B, with m > 2.

Note that for any 8 € =\ =L, there exists 41, f2 € ZF such that 3 = %(ﬁl + [9)
and (31]|32) = 0. Hence ¢ € Hom(Z, ) is determined by ¢|z.. Note that Z% is of
type D,, with Dy ~ 2A; and D3 ~ As.

Then Hom(Z, X) # () means ¥ is of type B, (n > m) or Fy if m > 2.

If m > 2 or if ¥ is of type Fy, #Hom(Z", %) = 1 and therefore #Hom(Z, %) = 1.
If m=2and ¥ = B, or C,,, it is easy to see that

{+ € Hom(24,,%); 5(«(61) + 1(2)) € £}

is a single Wy-orbit and we have also #Hom(Z, %) = 1. Here ZL = (51) + (B2) ~
24;.

4) When X is of type C,,, we have the lemma from the case 3) by considering
the dual root systems =V and XV.

5) We first examine Hom(Eg, Fs) and Hom(E7, Eg) under the notation in §9.
Since #Hom (A5, Eg) = #Hom(Ag, Fg) = 1, we may assume

E§ D Wa, ={ag = —€7 —€g, ag = €7 — €6, Qy = €6 — €5, Qg = €5 — €4, Q5 = €4 — €3}
for the imbedding Eg ~ E§ C Es. Let & € ® \ ¥4,. We have

0 (j=0,86,15),

8
a= cje; € E§ C Eg: (G, ay) = ,
j; €3 J 1 (=)

Thus
a =cr€61 + coea +cles+es+€5) + (¢ — 1) (e + €7 — €3).

Since & is a root of Eg, we have ¢ = % and hence

a = a4 = %(:I:(el+62)+e3+64+65—66—e7+68).
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Since as = €1 + €2 is orthogonal to a; (j = 0,5,6,7,8) and s4,a4 = a_, we have
#Hom(Fs, Eg) =1 and

(Eg)lﬂESZ\IIXE)mOéimlaé a1 a3 «

= ({on1, a3) + (a2)) Nag:

= (a1, a3) >~ As.

4 Q5 Qg Q7 Qg O
e e O O O——O——@©

* (v oqy

Let E7 ~ E2 C Eg. Then we may moreover assume a4 = €3 — €2 € E7 and the
condition & L ay implies & = ay. Hence #Hom(E7, Es) = 1 and
(B9 N Eg ~ (a1,a3) Nag = (o) =~ Ay.
Now we examine Hom(Fg, E7). Since As C Fg ~ E$ C Er, the argument in 1)
assures that we may assume
E§ D W) =V, U{ag =€+ e} or E§ DUy, =Wy, U{as = €4 — €3}
g, i={ap=€s —er, a1 = 3(€1 — €2 — €3 — €4 — €5 — €6 — €7 + €3),
Q3 = €3 — €1, g = €3 — €2}.

Then there exists & = 35

j=1¢j€; € E§ C E7 such that

(dlaj)zo (j:O, 174)7 Qg 1 3 (g A5 Qg Qi
©@—O0——0——0——0 - sk-ork

O 002

Then the condition (&|ag) = 0 implies ¢z = ¢g = 0 and
&= (c+1)eg + c(ea + €3) + caeq + cs€5 + co€p,
l—c—c4—c5—cg=0,
(2c+1)(c—ca) =0.
Hence ¢ =0, Eg D Wy, and & = €1 + €5 or €1 + €. Since
‘Ilj5 NE7 = {a7) = (e — €5)

and S, _c, (€1 + €5) = €1 + €6, we have #Hom(Z,¥) = 1 and (E§)* N E; = 0.

If #Hom(E,X) = 1, any element of Hom(Z, X) is isomorphic to the imbedding
¢ corresponding to the graphic imbedding 7 given in the claim. Since ¢(Z)+ D
(T NEE)L) and (E)*F ~ (T N(Z)*), we have () = (T N(Z)1).

6) If = is of type Gy or Fy, the lemma is clear and thus we have completed the
proof of the lemma.

6. DUAL PAIRS AND CLOSURES

Definition 6.1. For a subsystem = of a root system ¥ and a subgroup G of Aut(X)
we put

(6.1) Ng(E) :={ge€G;9(E) =B}, Za(E):={g€G;ygl==id},

(6.2) Auts (2) := Ny (E)/Zwy (E) C Aut(E),

(6.3) Outs(2) := Autg(E)/Wa ~ Ny, (B)/(Wa x Wzi) C Out(E).

Note that the isomorphism in (6.3) follows from the equality Zw,, (E) = Wz..
i

Proposition 6.2. Let =1 be a subsystem of ¥. Put 2o = Z1. Then there is a
homomorphism

(6.4) w : Outy(Z;) — Outy(Z;) ~ Outx(Ey)
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and

(6.5 15

(6.6)  Outs(Z) = Out(Zy) if #(Hom(Z;,X)/Out(Z;)) = #Hom(Z,, %),
(6.7)  Outg(Z2) = Out(Zs) if #(Hom(Zz,%)/Out(Z;)) = #Hom(Z, X).
Proof. Since Ny (Z1) C Nwy(Z2) and Z5 D Zy, (6.4) is well-defined and (6.5)
is clear. Suppose #(M(El,E)/Ou‘c(El)) = #Hom(Z;,Y). Then for any g €

Aut(Z;) there exists w € Wy, with w|z, = g|z, and (6.6) is clear. We similarly have
(6.7). The isomorphism in (6.4) follows from (6.5) and the relation (Z3)* = Z,. O

) w is bijective if Z3 =2

Definition 6.3 (dual pairs). A pair (Z1,Z5) of subsystems of a root system ¥ is
called a dual pair in ¥ if

(6.8) Ef =% and Ej =E;.

If (21,Z9) is a dual pair, the map w in Proposition 6.2 is an isomorphism. The
dual pair is called special if the map w is the isomorphism

(6.9) @ : Out(L1) = Out(a).
For a subsystem = of X, its L-closure  is defined by = := (2 Then_ 2,2+
is a dual pair if and only if = is L-closed (i.e. (1)t = nd hence (E,24) is

always a dual pair. We say that = is L-dense in ¥ if Z+
Corollary 6.4. Let (21,Z2) be a dual pair in X. Then

#(Hom(Z4,%)/Out(Z)) < #Hom(Z4,X)
(6.10) Out(Z1) £ Out(Z2) = < or

#(Hom(Z,%)/Out(Z2)) < #Hom(Z, ).
Suppose #Hom(Zz,%) = 1. Let « € Hom(Z1,%). Then we have
(6.11) (E1,E2) is a special dual pair < # Out(Z1) = # Out(Es),
(6.12) Jw € Wy, such that 1(Z1) = w(Z;) & o(E1)F ~ Z,.
Proof. Note that (6.10) is the direct consequence of Proposition 6.2.

Suppose #Hom(=Z5,3) = 1. Then Proposition 6.2 implies
Out(Z1) D Outx(Z1) = Out(Zs)

and (6.11) is clear. Then if 1(Z;)* ~ Z,, there exists w € Wy, with ¢(Z1) = w(Zz)
and therefore ¢(Z21) = w(E;), which implies the claim. O

Example 6.5. i) The followings are examples of the triplets (2, Z1, Z2) such that
(21, E2) are special dual pairs in X.

(Dmgns Dy D) (m>2,n2>2, m#4,n#4),

(EG, A3a 2A1)a (E7a A5a AQ); (E7a A3 + Ala A3)a (E7a 3A1; D4)a
(Es, Eg, A2), (Es, As, As 4 A1), (Es, A4, As), (Es, Dg,2A1), (Es, Ds, As),
(Es, D4, Dy), (Es, Dy~ A1,3A1), (Eg,2A2,24A7),
(Eg, Az + Al, As + Al), (Eg, 4141, 4A1), (F4, AQ, AQ)

In these examples except for (D4, 2A1,24;) and (Fs,4A1,4A4;), #Hom(E2, %) =1
and the triplet is uniquely determined by the data (X,Z;,Zs) up to the automor-
phisms defined by Wy. If the imbedding 4A4; C Eg satisfies (44;)% ~ 4A;, we have

a special dual pair (44;,4A4,) in Eg, which is also uniquely defined. The imbedding
2A; C Dy is unique up to Aut(Dy).
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ii) The isomorphism w € Out(2As) defined by the dual pair (243,2A42) in Es
satisfies

(6.13) @ (Out(Az) x Out(Az)) # Out(Az) x Out(As)
because # (Hom(4A,, Eg)/ Out’(4A2)) = #Hom(24,, Eg) = 1. See §8.2.5.

iii) It happens that any dual pair of Ej is special. But for example, if (X,Z;, =
is (Fs, As, A1) or (E7,Dg, A1), (E1,Z2) is a dual pair in ¥ satisfying Out(Z;)
Out(ZE2) and #Hom(Z,,X) = 1, which implies #Hom(Z1,3) > 1.

2)
#

Definition 6.6 (S-closure and L-closure). Let = be a subsystem of X. Then E is
S-closed if and only if

(6.14) a,€E and a+f€Y = a+ €=
and L-closed if and only if
(6.15) BETN) Ra = BeE

aEs

The smallest S-closed (resp. L-closed) subsystem of ¥ containing Z is called the
S-closure (resp. L-closure) of Z.

Remark 6.7. 1) We have the following relation for a subsystem E of X:
(6.16) L-closed = L-closed = S-closed.

ii) Let g be a complex semisimple Lie algebra with the root system 3 and let X,
be root vectors corresponding to a € ¥. Then the root system of the semisimple
Lie algebra gz generated by {X, ; a € Z} is the S-closure of =.

Let =1 and Z5 be S-closed subsystems of 3. Then

(617) [gElagEg] =0 < El 1 EQ.

Hence if (El, Eg) is a dual pair with rankZ; 4+ rank Z5 = rank X, the dual pair of
root systems gives a dual pair in semisimple Lie algebras (cf. [7]).

iii) Suppose ¥ is irreducible and there exist a, 5 € ¥ with a+ 3 € ¥\ 2. Then
(o, B, a0+ B) is of type Bg or of type G2, which implies that ¥ is not simply laced.
For example, D,, C C,, is not S-closed and the S-closure of D,, equals C,, (n > 2).

iv) Let Z be an L-closed subsystem of ¥. Then for any subsystem =’ of &

(6.18) W=z N Wz = Wenz.

This is proved as follows. Choose a generic element v of the orthogonal complement
of Y czRain Y v Ra so that {a € X; (afv) = 0} = E. Since Wz = {w €
Ws ; WU = 'U}, Wen Wz = {'LU € W= ;WU = ’U} = W{aeE’ s (alv)=0} = Wznzr.

V) Put 2 = {iﬁl + 62,i€3 + 64} >~ 4A1 and =2 = {iel + 63,i€2 + 64} ~ 4A1
Then the subsystems = and =’ of Dy under the notation in §9 do not satisfy (6.18).
When ¥ = B, Cp,, Fj or Go and = = XX and ' = ¥\ Z, (6.18) is not valid.

7. MAKING TABLES

We are ready to answer the questions in the introduction by completing the
tables in §10. In this section we do it when the root system X is of the exceptional
type. Following the argument in §3, we easily get all = satisfying Hom(E,X) # 0
together with #Hom(Z,¥%) and =% by Theorem 3.5. In fact, we start from the
irreducible = and then examine other E by using (3.2) in a suitable lexicographic
order (as in the tables) to avoid confusion (cf. Example 3.6 xii)).

As a result we finally get (21)+ and the dual pairs. Moreover (6.11) tells us
whether the dual pair is special or not. We will calculate #{© C ®; () ~ =} in
§7.5.
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Now we prepare the lemma to examine the action of Wy on the imbeddings of
a root system Z into X.

Lemma 7.1. Let 21 and Z5 be subsystems of ¥ with Zo C Ell Then

#(Hom(Z,,%)/Out(Z,)) = #(Hom(Eg,Ef‘)/Out(Eg)) =1
= #(Hom(Z; + =, %) /Out(E; + =) = 1,

#(Hom(Z;,%)/Out/(2)) = #(Hom(Z,, EJ‘)/Out( 2)) =1
= #(Hom(Z; + Zp,%)/Out’(Z; + Z)) =

#(Hom(Z1,%)/Out(Z1)) = #(Out(Ef )\Hom(_g,_l )/Out’(Z2)) =1,
(7.3) | Out'(E1) ~ Out(Zy) and (Z1,Z7) is a special dual pair

(7.1)

(7.2)

= #(Hom(E; + E2,%)/0ut’ (21 + ) = 1,
#(Hom(E1,%)/0ut(Z1)) = #(Hom(Z2,Z1)/Out(Z,)) = 1

7-4) and ()t ~E; (Vi € Hom(Z,, %)) = #(Hom(Z,,%)/Out(Z,)) = 1.

Proof. The claims (7.1) and (7.2) are clear because for ¢ € Hom(Z; + =22, %) the
assumptions assure that there exists w € Wy such that ¢«(Z;) = w(Z;) and hence
we may assume +(Z;) = Z; in Hom(Z; + Z5,%). Under the assumption in (7.3)
there exists w € Wy such that w o ¢ stabilizes every irreducible component of =5
and therefore it also stabilizes =1 and we have (7.3).

The claim (7.4) is also clear because for ¢ € Hom(E3,X), Jw € Wy such that
wo 1(Z)+ = Zy, which implies w o 1(Z) C Z1-. O

7.1. Type Eg. The automorphism group of G (\i/) is of order 6, which is generated
by a rotation and a reflection. Since the rotation has order 3, it corresponds to an
element of W, and the reflection corresponds to a non-trivial element of Out(Ej).

Qo

The set Hom(Ay, Eg) has two elements which are shown in Example 3.6 v). It
also shows that Out(Fg) non-trivially acts on this set. If A4 is imbedded to Fg
given as in the above imbedding G(A4) C G(Fs) with the starting vertex {ao},
the non-trivial action by Out(A4) changes the starting vertex as is shown above.
Then by an element of Wy, with As = («g, ag, a1, s, ag) the imbedding is trans-
formed as is shown by the second arrow. Then the result corresponds to a reflec-
tion, which implies that Out(A4) also acts non-trivially on Hom(Ay4, Eg) and hence
#(Ho—m(A4, Eg)/Out(A4)) =1.

The same argument works for = = As, Ay + Ay and Az + A;. Similarly
(a2, g, a5, ) is transformed to (o, as, o, a2) by an element of W4, and fur-
thermore to (ay, aa, g, as) by a rotation. Hence a non-trivial element of Out(Asz)
for A2 = (ap,a2) induces the transposition of two irreducible components of
Ay ~ Ay + Ay, which implies # (Hom(24s, Eg)/Out’ (242)) =

From our construction of the representatives of Hom(Z, Es) it is obvious to have
#(Hom(E, Eg)/Out/(Z)) = 1 for & = D5 (cf. (5.3)) and Eg and we can easily
calculate # (Out(Eg)\Hom(Z, Eg)). Put ¥ = Eg and let (Z;, Z5) be any one of the
pairs (A2 + Al,Al), (2A2,A1), (2142,142), (2141,143), (A4,A1) and (A5,A1). Then
applying (7.2) to ¥ and (21, Es), we have # (Hom(Z; + 25, ¥)/Out’(Z; + =) = 1.
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7.2. Type E;. Note that G (E7) has an automorphism of order 2 and it corresponds
to an element of Wg. because Wg, = Aut(Er).

Let ¥ = E7 and let (El,Eg) be any one of (141,D6)7 (AQ,AQ), (AQ,AQ + Al)
(AQ,A3), (AQ,A3 + Al), (A3,A3) and (A3,A3 + Al) We have #(HOIH(Z +
Z2,%)/0ut’ (21 + EQ)) = 1 by (7.2). Here we note that All ~ Dg, AQl ~ As
and A3 ~ Az + A;. We can apply (7.3) to (21,Z2) = (D4, kA;) with 1 <
k < 3 and we have the same conclusion. Applying (7.1) to (A4s,341), we have
#(Ho—m(A3 + 3A4, E7)/Out(A3 + 3A1)) =1.

The subsystems = of E7 which are isomorphic to 3A4; and satisfy B+ ~4A, are
mutually equivalent by 3. Hence Z+ ~ 4A4; also have this property. Namely

#(We,\{t € Hom(44:, E7); (1(4A1) 1)t = 1(4A41)}/ Aut(44,)) = 1.

Put (A1) = (o). We have G((A1)}) as is given in the following first diagram.
Put (241), = (a0, p). Then the extended Dynkin diagrams of the components
of (241)% = (g, a3, a4, as,a7) ~ Dy + Ap are also given by the following second
diagram. These diagrams correspond to the last figure in Remark 3.8 i). Here

—op = (e +az+---+ay)+ (u+as+ o) = €5+ €6,

—ag = a2 +ag + 204 + a5 = €3 + €4,

.aq
Qp 1 Q3 Qs Qg Q7
g O ko @k @ ®
Qp 0] Qi3 Qg A Qg Q7 Qp 01 3 T Qs Qg Q7
@ OO0 0—0—0 —> @000k @ —> o0z  eQp

Qq

6% « (6% rYe?
2 P 2 P Qo a1 ag i as ag a7
[ ) 23 O—O0—O0 >k L ]

(65) oy

In the above diagrams the vertices expressed by asterisks are considered to be
removed and the diagrams are (extended) Dynkin diagrams for other roots.

There are two equivalence classes in the imbeddings of 34; to FEr, whose repre-
sentatives are

(3A1)1 = <040,0ép,04q>, (3A1)2 = <O¢0,0ép,0é7>,
which satisfy
(3A1)T = (g, a3, a5, a7) ~ 44, (3A1)5y = (0, a3, g, a5) ~ Dy.

Thus the image of the imbedding of 44, to E7 is equivalent to one of the following
subsystems (44:); of Er:

(4A1)1 = (a0, ap, ag, a7), (4A1)1 = (a2, a3, a5),
(4A1)2 = (a0, ap, ag, o), (4A1)y = (a2, a3, a7),
(441)3 = (a0, ap, ag, a2), (441)5 = (as, a5, a7),
(4A1)4 = {ao, ap, ag, a3), (4417 = (ag, as, ar).

In view of Remark 3.4 ii) the above procedures for 34; C Eg can be also explained
by the following isomorphic ones.

cle%
(7] Q3 04 Q5 Qg Q7
ot @k @K @
Qp 0 Qi3 Qg4 Oy OZG Ot7 (7] (L Qa3 04 Q5 Qg Q7
0—0—0—0—0 O O—@ k@K@ — eQr ot
o o éa o 0Qs
v 2 ro 02 ap | as as a5 ag az
O—0—6 - F

(679 [ Yo%)
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Here a, = —a, and a5 = —a,. In fact ap, ap € (a2, a3, a4, a5,a7)t = (Dy +
Ayt ~ Ay As mr(ap) < 0 and mr(a,) > 0, we have o, = —a,. Similarly we have
as = —aq from oy, as € (ag, a2, s, as, ar, o)t =~ Aq. This is also easily verified
by the Dynkin diagrams with the coefficients m;(—aq) in §9.

Note that

<O[2,0[3,065> ~ <O[2,063,0é7> ~ <O[1,0[4,0é7> ~ <O[3,0[5,0é7>.
(as,a6,07) (a1,00,03,04) (a1,a3,,a7)

Thus we can conclude

1 .
1] ~(as,as,a = (o, g, O, (i) = 4A =1,2,3),
(7.5) ((4141)]4) 7( 3, Qr5, 0v7) (o, 2, 0, ) 1 (j )
= (@, a1, a3,y 5) =~ Dy (j =4).

Since (4A1)j- for j = 1,2, 3 are equivalent to each other by Ejg, so are the subsystems
(441); = ((4141)]4)L for j =1,2,3. Moreover we have

(7.6) (a0, ap, g, 3) ~ (o, a2, g, a7) ~ (a0, as, as, a7).
(az,a3,...,a7) (a2,a3,a4,05)
Put P = {© C ¥; (©) ~ Z}. It is easy to see that if © € Psa4, satisfies
ONn{al,as} #0, (0) ~ (3A1)1. Moreover if © € P34, satisfies © N {ay, a3} =0,
7

then © = {aq, a5, ar}. We will have #Bs4, = 11 in §7.5.

Applying (7.4) to (E21,E2) = (241,541) and (A41,6A4;) with ¥ = E7, we have
#(m(EQ,E)/Ou‘L(Eg)) = 1, respectively. Similarly applying (7.1) to (Z1,Z2) =
(5A1, A1) and (5A;,2A4;), we have #(Ho—m(El +E9,%)/0ut(Z, —|—Eg)) =1, respec-
tively.

7.3. Type Eg. Applying (7.4) to (341,5A4;) and then (7.1) to (5A1, A1), (5A41,24,)
and (5A;1,3A;), respectively, we have #(Hom(kA;, Eg)/Out(kA;)) = 1 for k =
5,6,7 and 8. See §8.2.3 to get further results on Hom(kA;, Eg) with 1 < k <8.

If (21,Z1) is any one of the pairs (As, Eg), (A4, A4), (D4, Dy), (Ds, A3) and
(Dg, A1), we have

Hom(Zs,Z1) # 0 = #(Hom(Z; + Es, Eg)/Out’(E; + Z2)) = 1

by applying (7.3). Hence if E contains As, A4, Dy, D5 or Dg as an irreducible
component, the value of the column indicated by #=/ equals one. Moreover (7.1)
can be applied to (Z1,Z2) = (A43,341), (As,44;) and (A45,24;1). The number
#(Hom(E, Eg)/Out/(2)) for & = Az + 34;, A3 + 44, and A5 + 24, is easily
obtained from (A3 + A1)+ ~ A3z + Ay and A ~ Ay + A;.

Put

(A7)0 = {a1,03,...,a8) C (As)o = (A7)0, ),
(Dg)o = {Ee; £ €55 3<i<j <8} ={as az}",
P=-={6 CA{ay,...,as}; (©) 2 E}.
Then we note the following for ©1, ©4 € Px=.
(Ch i~ O if ©; C (Ag), for j =1, 2 and ©1 ~ Oa.

If ©; > {ag, a3}, then OF = OF N (Dg),.
Using these facts, we can easily examine Ps. For example, any © € Py4, satisfies
(0) ~ (4A1)0 == {2, a3, a6, ag). Here (4A41)+ = (ap, as)t N Dg =~ 44;.

8

7.4. Type F, and G5. It is easy to examine the cases when ¥ = Fj and G2 by
using Theorem 3.5 together with Remark 3.1, (2.39) and (5.4).
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7.5. Fundamental subsystems. We will give the number of the elements Pz :=
{©® C ¥; (©) ~ E} for a subsystem = of 3 when ¥ is of the exceptional type. If
#0O = #U — 1, it is easy to specify = that is isomorphic to (0) and we get the
corresponding #P=. Other (©) are fundamental subsystems of these maximal ones
and hence it is also easy to know whether Pz = ) or not. Note that rank(©) = #06.

The number # P= can be inductively calculated as follows. Let denote the num-
ber by [E,X]. For simplicity ; m;A; may be denoted 1™ -2™2 ... with omitting
the terms satisfying m; = 0.

If ¥ is of type E,, we divide P= into the subsets according to the relation with
the end root ay,. For example, suppose ¥ = Eg and © C U satisfies (0) ~ 24;.
Then if ag € O, the other element of © is in ag ~ Ay. If ag € O, O is contained
in ¥\ {ag} ~ Ds. Thus we have [12, Eg] = [1, A4] + [12, D5]. Now it is quite easy
to have [1, A4] = 4 and [12, D5] = 6. Note that [12, D5] = [1, As + A1] + [12, A4] =
3 4+ 3 = 6. We will show such calculations except for quite easy cases.

[12, ] = [1, A4] + [1%,D5] = 4+ 6 = 10,

[12, B7] = [1, Ds] + [1?, Eg] = 5+ 10 = 15,

[12, Eg] = [1, Eg] + [12, E7] = 6 + 15 = 21,

[13, ] = [1%, A4] + [1%,D5] =3+ 2 = 5,

(13, B7] = [1%, Ds) 4 [13, E6) = 6 + 5 = 11,

[13, Fs] = [1%, Eg] + [1°, E7] = 10 + 11 = 21

(14, B7] = [13,Ds) + 11, E) = 24+ 0 = 2,

(14 Bg) =13, FEs] + 14, B7] =5+2 =T,
[2-1,E6) = [1, A2 + A1) +[2, A4] +[2-1,Ds) = 34344 = 10,
2-1,E7] =[1,A4] + [2,D5] + [2- 1, Eg] =4+ 4+ 10 = 18,
[2-1,E5] =[1,Ds5]+ [2, Eg) + [2-1,E7] =5+ 5+ 18 = 28,

[2-1,D5] +[2-1%,Es] =3 +4+5=12,
[ | +[2-1%, E7] =6+ 10+ 12 = 28,
[2-1%Es) +[2- 1% E7] =2+5+0=17,

(2%, B7] = [2, A4] + [2%, Eg] = 3+ 1 = 4,
[22,E8 =[2,D5] + [2%, E7] =4 +4 =38,

[22.1,FEg] =[2- 1D5] + 2%, Eg) +[22-1,FB7] =4 +14+4=09,
[22-1% Eg :[2 2 Ds)4+22-1,E] +[22-1,B7] =1+14+0=2,
B-1,E;]=[1,A24+ A1)+ [3,D5] + [3-1,Eg] =3 +4+4 =11,
B-1,Eg) =[1,A4] + [3,E¢] + [3-1,E7] =4+ 5+ 11 = 20,
[3-12, Eg] = [1%, A4] + [3-1,E¢] + [3- 12, B7] =34+ 4 4 3 = 10,
[3-2,Es] = [2,A4] + [3,Ds] + [3-2,E7] = 3+ 4+ 3 = 10,
[3-2-1,E5] =[2-1,A4] +[3-1,D5] +[3-2,Eg] +[3-2- 1, F]

=2+1+0+1=4,
[3%, Fs] = [3,A4) + 3%, E7] =2+ 0 =2,
[4-1,E7]=[1,A1] 4+ [4,Ds|+[4-1,Eg) =1+2+2=5,
[4-1,E) =[1,As + A1)+ 4, FEg] + [4-1,E7] =3+ 4+ 5 = 12,
=12

[4-2,Es] = [2, Ay + Ay + [4,Ds] + [4-2,B7] =1+ 2+ 1 =14.
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8. SOME REMARKS

8.1. Some results from the tables. In this section we always assume that = is
a subsystem of an irreducible root system .
By our classification we have the following remarks.

Remark 8.1. i) The numbers of equivalence classes of certain subsystems Z (cf. Re-
mark 8.4) and their pairs are as follows. Here we don’t count the empty subsystem.

> Fe E; Fs | G
equivalence (isomorphic) classes | 20 (20) | 46 (40) | 76 (71) | 36 (22) | 6 (4)
S-closed subsystems 20 46 76 23 5
L-closed (L-closed) subsystems | 16 (7) |31 (13) | 40 (18) | 11 (9) |3 (3)
ET = (rank = = rank ) 10 (3) |19 (7) |33 (13) |20 (16) |4 (4)
maximal (S-closed) subsystems | 3 (3) 4 (4) 5 (5) 3(3) [3(2)
dual pairs (special dual pairs) 3 (1) 6(3) |11(11)] 5(4) |1(1)

ii) Let o be an outer automorphism of ¥. Then o(Z) i~ E if (%,Z) does not

satisfy the following condition.

(8.1) Y ~ D, with an even n, = ¥ >_;miAj and Y- (7 + L)m; = n.

iii) Suppose = is irreducible. Then =1 N X is also irreducible if (X, Z) is not
isomorphic to any one in the following list:

% = =L b)) = =t

B, (n>3) Ay Bna+Aior By || Cp (n>3) Ay Cno+Aror Cpg
Dn (n>4) Al Dn—2 + Al

D5 A5 2A1 or @ D() A5 A5 or 2A1

Dy (n>7) | An—s 24, Dy (n>6) | Dn—2 24,

FEg Ao 2A5 FEg Az 2A4

E; Az Az + A E7 Dy 3A,

FEg As Ay + Ay FEg Dg 2A5

iv) The L-closure Z of Z in ¥ (cf. Definition 6.6 and Remark 6.7) can be easily
obtained from the table in §10. Note that = is the maximal subsystem satisfying

(8.2) ECEC (El)L and rank = = rank =.

Remark 8.2 (orthogonal systems). A subsystem = of ¥ or the fundamental system
of = is called an orthogonal system of X if = is isomorphic to mA; with a certain
positive integer m. An orthogonal system = is called maximal if =+ = () and called
strongly orthogonal if = is S-closed.

Suppose ¥ is irreducible. Let = = (a1,...,qy) and 2/ = (of,...,al,) be or-
thogonal systems of ¥ with rank m.

i) The rank of a maximal orthogonal system is given in Corollary 3.7 i) when ¥
is simply laced. If ¥ is not simply laced, the rank equals rank X.

ii) If one of the following conditions is satisfied, then = Y =

(
(

8.3) = and =’ are strongly orthogonal maximal systems,
8.4) Y is of type Ay, Eg, E7 or Eg and (X, Z) is not isomorphic to
(E7, 3A1), (E7,4A1) or (Eg, 4A1)

iii) Let ¢ be a bijective map of Z to Z' with (¢(a;)|e(ey)) = (eylay) for j =
1,...,m. Suppose m > 2. Then there exists w € Wy, with + = w|gz if one of the
following conditions is satisfied.

(8.5) Y is of type Ay, Bs, Eg, Fy or Gs.
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(8.6) Y is of type E7 with m < 2.
(8.7) Y is of type Eg with m < 3.
See §8.2.2 and §8.2.3 for more details.

Remark 8.3 (fundamental subsystem). i) We have

(8.8) E is L-closed < = is fundamental,
(8.9) Zis L-closed = Z is fundamental.

The minimal fundamental subsystem containing = is the L-closure of =.
ii) For a subset © C ¥

(8.10) (©)~Z= and O)NZL~=nxl = <@>§

[1]

if (X, ) is not isomorphic to any one of the following list.
¥ is of type B, (n >2), C,, (n>3) or Dy, (n >4)

(8.11) and = has at least one As-component or two Aj-components.
(8.12) (E7,4A1), (E7, As +2A1), (E7,As + Ay),

(Es,4A1), (Es, As + 2A4), (Es,2A3), (Es, As + A1), (Es, A7).
(8.13) (E7,344), (E7,As), (E7,As + A1).

If (3,E) is isomorphic to one of the pairs in (8.12) and = is a fundamental
subsystem, then (8.10) is valid.
If (X, =) is isomorphic to one of the pairs in (8.13), there exist ©1, O3 C ¥ such

that 2 ~ (©1) = (©5), (©1) 7;; (02) and = Y (01) or (©3).
Hence if (¥, =) is not isomorphic to any one of the pairs in (8.11) and (8.12),

(8.14) (©)~Z and (©)NXLl~=nNXt = 3O C ¥ such that (0)

Y E
Note that (8.14) is still valid even if ¥ is of type D,, except for the case

(8.15) ¥ is of type D,, (n > 4) and mq + 2mg > 4,

where m; is the number of Aj-components of =. In fact the subsystems

(1 €2, €3 T €4) o~ 2Dy ~ 4A4,

(8.16) (61 L €2, €3 — €4, €4 T €5) o~ Dy + D3 ~ 24, + As,

(€1 — €9, €2 T €3, €4 — €5, €5 L ) ~ 2D3 ~ 245

of D,, and the subsystems

(61 £ €2) I Dy ~ 2A4,
8.17 "
(8.17) {1 —e2 2 e3) ~ Dy Ay

of B,, are not fundamental.
iii) Given a subset ® of ¥, we examine the condition
(8.18) Jw € Wy, such that w(®) C U,

namely, the condition that ® can be extended to a fundamental system of .
A subset ® of ¥ is called a II-system by [4] if ® satisfies the two conditions

(8.19) aed fed=>a—0¢ X,
(8.20) the elements of ® are linearly independent.

It is easy to see that (8.18) implies that ® is a II-system.
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Suppose @ is a II-system of ¥. Put E = (®). Then ® is a fundamental system
of 2, which is shown by [4, Theorem 5.1]. Hence we note that the fundamental
system of a subsystem of ¥ is a II-system if and only if the subsystem is S-closed.
Therefore if G(®) is a subdiagram of the Dynkin diagram of ¥ and the condition

{(Z, E) is isomorphic to one of (8.15) and (8.12),

(3.21) | .
or X is of type B,, with (8.11)

is not satisfied, it follows from our table that (8.18) is valid. When ZE is irreducible,
(8.21) is equivalent to the condition that (X,Z) ~ (Es, A7) or (B, As), which
coincides with the result given by [1].

Remark 8.4 (maximal subsystems). i) A proper subsystem = of ¥ is called maximal
if there is no subsystem =’ satisfying = G = G ¥. We have the following list of the
maximal subsystems of irreducible root systems.

Y | Z: maximal, rank= = rank ¥ rank= =rank ¥ — 1
Ay Ap 1 +Apn_m = Em (2<2m<n+1)
B, | By + Bn—m (2<2m<n)> D'rli
Cn C’rn + Cnfm (2<2m<n)> Dybz
Dn Dm + anm = E'm (4<2m<n) anl = Ela Anfl = En
Eg | Ay + A5 =E3, 343 =23 D5 ==
Er | Ay +Dg =521, Ay =55, Ao+ A5 =Z3| Eg = Z¢
Es | Dg =E1, Ag = Ea, 244 = Es,
Ay + Eg =27, A1+ E7 =Eg
Fy | Cy, A% +A§, By
Go | AL ¥ A, AL, A5

Note that Dy ~ 241 and D3 ~ As in the above.

ii) A proper subsystem Z of ¥ is called a maximal S-closed subsystem if = is
S-closed and if there is no S-closed subsystem Z’ satisfying = ; = ; Y. The list
of the maximal S-closed subsystems of the irreducible root system X is same as in
i) if ¥ is simply laced. In the other cases we have

> | 2 S-closed maximal, rank = = rank X rank= =rank ¥ — 1
L — = - =
B, D7n +Bnom = —=m (2<m<n) B,_1=2
_= S =
Cn C’m + Cnfm — —=m (2<2m<n) Anfl — =n

Fy |Af +C3=E), AJ+ A5 =5y, Bi=E4
Gs A{‘#’A‘ls:El, A%ZEQ

They are studied by [2] and [8] (cf. [4]) and the Dynkin diagram of Z is
{G(@ \agd) - (mj(amar) = 1),

G(\il \{a;}) (mj(maz) is & prime number > 2)

(8.22)

with a suitable a; € ¥ satisfying m;(amax) =1, 2, 3 or 5.
iii) Let E; be the maximal subsystem of ¥ defined by (8.22) with «; € ¥. Then
Proposition 4.4 (cf. [8, Theorem 3.1]) implies

(823) Ej={a=>, cgmu(@)a, € X;mj(a) =0 mod max{2, m;(amax)}}-

Note that ¢(A,,) N E; # 0 for any ¢ € Hom(A,,, X) if m > max{2, m;(maz)}-

This claim follows from the following fact with putting n;, = m; (L(ei — ei+1)) for
the i-th root €; — €;41 in the fundamental system of A,,.

For a positive integer m > 2 and a sequence of integers nq, . . ., n,, we can choose
1 <k <k <m such that ng +ngy1 +--- + ng =0 mod m.

For example, when ¥ = Fg, we have Z5 ~ 244, ms(maee) = 5 and

(8.24) Es\Z5 D E = <0081000, 0121100, 1111110, 00%1111> ~ Ay
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under the notation in §10. Here the roots o € ¥ are indicated by the numbers
m, («) arranged according to the Dynkin diagram of X. We have W, N Wz = {e}
because =’ is L-closed in ¥ (cf. Remark 6.7 iv)).

8.2. Further study of the action of the Weyl group. As for Q4 in §1, that is,
“Is Out(E) realized by Wx?” can be answered from the table in §10 by the condition
# = #= and the answer is “yes” in most cases in the table. We will consider the
cases when the answer is “no”, namely, we will study the group Outy(Z) in Out(E)
(cf. Definition 6.1). Under the notation in §10 we have

(8.25) #(Out(E)/Outg(E)) = #/#=.
If ¥ is of the classical type, it is easy to analyze Outy(Z) because the action of
Wy, is easy. If E is irreducible, Wx(Z) is understood well by Theorem 3.5 using

—_
—

Dynkin diagrams. Moreover since Ny, (Z) C Ny (2 + Z4), we have
(8.26) Outy(Z) ~ {g € Outx(E+E1); g(2) = E}

by (6.3) and therefore the group Outs (Z) is described by Outs(Z+ =1). Hence we
may assume = is L-dense.

8.2.1. Dual pairs. If E is not irreducible, Outy(Z) may be understood as a dual
pair. For example the dual pair (Dg,2A4;1) in Fg is special and the imbedding
D¢ + 2A; C Eg is unique up to the transformations by Wg,. Hence there exists
w € Nwp, (D + 2A;1) which swaps two A;’s. Then w always defines a non-trivial
element of Out(Dg). Namely Outs(E) is the diagonal subgroup of Out(Dg + 2A4;)
through the isomorphism Out(Dg) ~ Out(2A;). The following cases are understood
in this way.
D+ Dy C Dy (m>2,n>2 m#4,n+#4),
Az +2A, C FEg,
2A3+ Ay C E7, A5+ Ay C E7, Dy + 3A, C E7,
Eg + Ao C Eg, As + Ay + Ay C Fg, Ay + Ay C Eg, D¢ + 244 C Eg,
D5+ As C FEs, Dy + Dy C Eg, Ag + Ay C Fy.

For the imbedding = C ¥ in this list, a still more concrete description of Outy (=)
is desirable if Out(E) % Z/2Z x Z/2Z.

For the imbedding D,,, + D,,, ~ D% + D" C Dayy, under the notation in §10, the
swapping of two D,,’s under the generators given there is in Outp,, (DY, + D) and
therefore Outp,,, (Dm + Dy,) is clear. Similarly for 244 C Es, if we fix As + A4 C
Ay+ Ay C Egand As+ Ay C Ag C Eg, we can also specify the swapping of two Ay’s
in Outp, (2A44). Other cases in the list are described by the study of the imbedding
of TA, C E7 and 8A; C Eg through 44; C D, as is shown later.

8.2.2. Strongly orthogonal systems of the maximal rank. Suppose X is of type A,,
By, Cp, Dy, Eg, Fy or Go and put m = 2[%]. Under the notation in §9 the strongly
orthogonal system (Ox) of ¥ with the maximal rank is weakly equivalent to
(827) @An = {61 — €2,€3 —€4,...,€2m 1 —€2m},

(8.28) Op, = {€1 —€2,€1 + €2,63 — €4, €3 + €4, .., €2m—1 + €am},

_ J©b, (n = 2m),
(8.29) Op, = {@Dn Ufent (n=2m+1),
(8.30) Oc

= {2€1,...,2¢e,},
(8.31) Op, :=0OF, == {e1 —€a,61 + €2,€3 — €4,€3 + €4},
(8.32) Oq, := {€1 — €2,€1 + €2 — 2¢e3}.
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Then Outy(Ox) := Outx((Ox)) is identified with the subgroup of the permuta-
tion group of ©x, which is also identified with the permutation group G4e, of
{1,...,#0Ox} according to the expression of Oy by the above ordered set. Then

Outy(O%) ~ Guey (X is of type A,,, Cy,, Eg, F4),
OUtG2(®G2) = {1}7
((12)(34),(13)(24),
(13---2m—1)(24---2m)) ~ Wp

((12),(13)(24),
(13--2m—1)(24---2m)) ~Wg,, (n=2m+1).

OutDn (@Dn) = (n - 2m)7

Here the generators of Outp, (©p, ) are expressed by products of circular permuta-
tions. Note that the group Outp, (©p, ) is isomorphic to Wp,, or Wg, if n =2m
or 2m + 1, respectively.

8.2.3. 841 C Eg and 7TA; C E7. Since Out(8A4;) is isomorphic to the symmetric
group &g, Outp,(841) is identified with a subgroup of &s. Since #/#= = 30,
# Outp, (841) = 8!/30 = 1344 = 253 - 7. To be more precise, we fix 84; C Es:

(841), := {Fag, +a3, +as, +a, + a7, +a,, +a, +af} C F,

(8.33) Qg = €1 + €2, Q3 = €3 — €1, Q5 = €4 — €3, Q7 = €g — €5,
8 7
Qp = —€5 — €6, Qg = —€3 — €4, O = —€7 — €8, (g = €7 — €g.
ol 8 8
0 Q1 3 g Q5 Q7 g A Q1 a3 Qg a5 g a7 ag Ap
(8.34) @ K 00000 k@ OO0
Qa2 Qp LOZQ gat

Here we used the notation in §7.2 and §10. In particular E7 C Es. Note that a
and of are negatives of maximal roots of Fg and E;, respectively. We identify
Gg with the permutation group of the set {1,2,3,4,5,6,7,8} of numbers and this
ordered set is also identified with the ordered set given as generators of (841), in
(8.33).

Since (a8)+ = E7, the left figure above corresponds to the first diagram in §7.2.
Since (Dg), := (g, as,...,as,a8) is of type D, its extended diagram is given in
the right figure of (8.34) with the negative ay of its maximal root. Here we note that
af < 0and a; > 0. Since (Dg)+ N (af)* ~ A; by denoting (Dg), := (az,...,az),
we have ay = —af. Then Out(py), ((8A1),) is generated by

(8.35) g1=(1357)(2468),
(8.36) g2 = (13)(24),
(8.37) g3 = (12)(34).

Here the generators g; are expressed by products of cyclic permutations in Sg.
Note that # Out(py), ((841),) =23 -41=26.3.
Now we will consider the other diagram in §7.2.

o Yo o
WL BWUBWBTBY =y a= —ay
QU @09
This shows that the element
(8.38) ga=(24)(67)

which corresponds to an element of the Wi,7 o, a5.0,) = Wp, is in Outp, ((841),)
and not in Outp,), ((841),). Then we can conclude that Outg, ((84;),) is gener-
ated by g; (j = 1,2,3,4), which is clear by considering the order of the groups.
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Put (7TA1), = (841), \ {£al}. Since E; = (a§)t, it is easy to see that
Outpg,((7A1),) is generated by go, g3, g4 and
(8.39) g, = (135)(246).
Here we naturally identify Out(7A4;) with &7 and we have
(8:40)  Outp,((841)o) = (91, 92,93, 94), # Outp ((841)) =2°-3-7 = 1344,
(8.41) Outg, ((TA1)o) = (91,92, 93, 94), #Outp, ((7TA1),) =2°-3-7 =168.

Put (641), = {£as, +as, tas, ay, a7, +a,} C {af, a8}t ~ Dg and (54,), =
{£az, tas, tas, tag, Tar}t C {ap,al, a8}t ~ Dy + A;. Note that (Dg,24;) and
(D4 + A1,3A;) are special dual pairs in Eg and therefore Outg, (Dg) = Out(Dg)
and Outg, (Dg+ A1) = Out(D4 + A1). Then we have easily

(8.42) Outpg,((TA1)o) < Outg, ((TA1)),

(8.43)  Outp, ((641),) = (g1, 92, (1 2)) =~ W, # Outg, ((641),) = 48,
(8.44) OutE7((6A1)o) = <g1,g2,g3> Wb, # Out g, ((6A1)0) =24,
(8.45)  Outp, ((541),) =((12),(23),(34)) ~Wa,, #Outpg,((541),) = 24,
(8.46) OutE7((5A1)o) = <g2, 2)) ~ Whg,, # Outg, ((5A41),) = 8.
Put (44 { a9, tas, tas, tagt and (441)1 = {*as, tas, as, £ar}. Then
(4ADEN Dy, (4A1)t ~ Dy and (44,)1 NEg ~ 4A; and (44;){+ = (44;);.

8.2.4. 2Dy C Eg, Dy +4Ay C Eg and Dy + 3A; C E7. Retain the notation in the
previous section (cf. (8.34)) and put

(847) (2D4)0 - <Otg,0[3,0¢4,0[5,0¢q> + <a77ataa8aa(8)7ap> C ES;
(8.48) (Dy +44A1)0 = (02, a3, 0, 5, ) + (Q7, O, ag, ap) C Eg,
(8.49) (D4 +3A1)0 = (a2, a3, a4, a5, () + (a7, Qi Q) C FE;.

Then we have the natural identification

OutEs ((2D4) ) D) OutE7 ((D4 + 3A1) )
o {g € OutES((SA )o ) g(ag) = g and g(ao) = ao}

together with (2.18) and therefore Outg, ((D4 + 3A1)0) is generated by
(12)(56): ag > asz, ar <o and (13)(67): ag < as, a7 < .

Here the first element corresponds to an element in W(p,), and the second el-
ement equals gogs. Moreover Outp, ((2D4),) contains (1 5)(2 6)(3 7)(4 8) and
Out g, ((D4 + 4A1)O) contains Out(ap,), ((D4 + 4A1)O). Hence

Outg, (D4 + 341),) = <( 2)(56), (13)(67)),
# Outp, ((D4 + 341),
OutEg( Dy)o

)

)o) =

)o)
# Outp, ((2D4),)

)o)

)o)

56), (13)(67), (15)(26)(37)(48)),

OutES( D4 + 4A o

<

12

< ) (5 8)(6 7)7 OUtEs ((2D4)O)>a
#OutES(D4+4A ° 48.



32 TOSHIO OSHIMA

8.2.5. 445 C Eg, 3As C E7 and 3As C FEg. First note that as groups, Out(4A4s)
and Out(3A43) are isomorphic to Wp, and Wp, and their orders of the groups are
24 . 4! and 23 - 3!, respectively. Fix a representative 44, C Eg:

Qg = €1 + €2, ag = *%(61+€2+63+64+€5*€6*€8+68),

1 1
az =€ —e€1, a1 =j5(€e1+e)—g(e2+e3+estes+ester),

5 = €4 — € g =— €5 — €
5 4 3 6 5 4, 03104 N O‘G Ofk7 0:8 02(8)
_ 8 __ 3 5 —
ag = €7 — €5, Qg = —€7 — €g, ey 8
G4
6 8
(4142)0 = <{a27a07a3aa17a5aa6aa87a0}>v [ Yo 5]
_ 6 !
(3A2)0 - <{0&27Oé070é3,a17065,066}>. O[g

Then the permutation group of the 8 generators of (443), is identified with &g as
in the case of (841), C Es. Then Out((442),) = (g1,92,93) and Out(3(Az2),) =

(g1, 92,93) (cf. (8.35)—(8.39)). Note that
# Outp, ((3A2)0) = # Out((342),)/8 =6,
# Outp, ((342),) = # Out((342),) /4 = 12,
# Outp, ((4A2)0) = # Out((442),) /8 = 48,
Out g ((3142)0) C Outg, ((4A2)0).
Since (2A43,2A5) is a special dual pair in Eg, we have
(8.50) (32A2 C (4As3), such that w|ea, = id) = w=1d

for w € Outp, ((442),). We will choose elements in Outg, ((242),). The rotation
of the extended Dynkin diagram of Eg comes from Wg, and therefore the element

(8.51) hy = (135)(246)

is contained in Outg, ((3142)0). The argument in §7.1 shows that in view of the
transformation of an element of Wias o, as.a5,a6)> (16)(25) or (16)(2 5)(3 4) should

be in Wg, ((342),). Owing to (8.50), we can conclude that
(8.52) hy = (1 6)(2 5)(3 4)

is contained in the group and Outg, ((3A2)0) = (h1, ha).
Since Hom(Eg, E7) = 1, Outg, ((342),) contains

(8.53) hs = (3 5)(4 6).

Considering in (4s), = (a1, a3, a4, as, ag, a7, as,a8) =~ Ag, there is an element
w € W4y, such that

w(ay) = a1, wlag) = ag wlay) = ag, w(as) = ar, wlag) = aq, wlay) = as.
Then it also follows from (8.50) that
(8.54) ha=(12)(57)(68)

is in Out g, ((4A2)0). Calculating the order of the group, we have

(8.55) Outg, ((342),) = (h1, ha), # Out g, ((342)0) = 6,
(856) OUtE7 ((3A2)o) = <h1; h?a h3>a # OutE7 ((SAQ)O) =12,
(857) OUtEg ((4A2)o) = <h1; h?a h4>a # OutEg ((4A2)0) = 48.
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9. LIST OF IRREDUCIBLE ROOT SYSTEMS

« « a3 ... Qp_2 Oy « le' «
An 1 2 3 n—2 n—1 n A1 0 1
1 1
T={t(e—¢);1<i<j<n+1l}, #X=n(n+1),
Q5 = €5 — €541 (j=1,...,n)» X0 = €nt1 — €1, #W = (nJF 1)!~
. Op—2 Qi a e’ e’ lo'
Bn n—2 n—1 n 32:02
2 2 2 1 2 1

S={t(e;—¢€), H(eit¢;), ep;1<i<j<n, 1<k<n}, #I=2n"

_ _ _ ! _on
Qj = € — €j41 (j=1,...n—1)s Qn = €n, Qg = —€1 — €2, o = —€1, HFW =2"-nl.
C (67 (6751 Qg ... Op—2 Qp_1 [67%
n —O——0<—=0
1 2 2 2 2 1

S={x(ei—¢), £eite), R2e;1<i<j<n, 1<k<n}, #X=2n%

— _ _ ! _on
Qj =€ — €41 (j=1,..n—1)s On = 2€n, Qo = —2€1, oy = —€1 — €2, FW =2" . nl.

D,
L ={*(e—€j), (e +e);1<i<j<n}, #I=2n(n-1),
Qj = €5 — €541 (j=1,....,n—1)> Op = €p—1 + €,
g = —€1 — €9, #W:2n71 -nl.
aq a3 Oy a5 Qg
Es o O
1 2 3 2 1
20 Q2
1 (e7y]

S ={t(e —¢j), £(ei+€j), £3(es —er — e+ S (1) W)
1<i<j<5, S, _,vik)iseven}, #X=r712

a1 = 3(e1+es) — S(e2+ €3+ €1+ €5 + €6+ €7),

ay=€1+€, aj=c¢cji_1—€c_2 (3<75<6),

ap=—2(e1+e+e3+estes—€—ertes), H#W=27.3".5
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S ={*(e; —¢;), £(e;i+¢;), £(er —e€s), T1(er —es+ SO (—1)*Be);
1<i<j<6, S0 _ v(k)isodd}, #¥% =126,

a1 = 3(e1+es) — S(e2+ €3+ €1+ €5+ €6+ €7),

Qo = €1 + €2, Qj =€_1 —€j_2 (3 <5< 7),

ap=€7—es, #W =219.31.5.7

Eg

MOE
©

T ={t(a—€), tlete) 33 (1) Wes1<i<j<3,
Zi=1 v(k) is even}, #X = 240,

a1 = 3(e1+es) — S(e2+ €3+ €1+ €5+ €6+ €7),

ar=€1+€, a;j=¢_1—€6_2 (3<j<8),

—e7 —eg, #HW =2M1.3°.52.7.

Qo

(7] aq (6% a3 Qg
Fy o e O O——=0 O
1 2 3 4 2

Y= {i(ei—ej), +(e; +¢€5), Le, i%(eliegi@,iq);
1<i<j<4,1<k<4}, #¥ =48,
Q) = € — €3, (g = €3 — €4, (3 = €4, 0442%(61—62—63—64)7

ap = —€1 — €, ay = —€1, HW =27.32

G2 (7)) a1 (%)
1 2 3
Y= {i(ei —¢€;), F(2e1 — €2 —€3), F(2e2 — €1 —€3), £(2€3 — €1 —€2);
1<i<j<3}, #¥=12,
a1 = —2€1+ €+ €3, ar =€ — €, ag = €1 + €2 — 2€3, A = €2 — €3, H#FW =12.
Remark 9.1. 1) There are natural identifications of root systems

(91) Dlz(b, DgﬁAl +A1, D32A37 AlzBlzCl, BQZCQ

and Weyl groups

&, x (2)22)r = Wp, = W,
v w
(9:2) (0,(ct,..sen)) = Wee:R" D6 = (=1)%e; (j=1,...,n),
Wo, = {wee € Wg, ; (—1)2% =1},
Wa, , = {wa,c eEWp, ;c1=-=cp= 0}'
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ii) For the fundamental system ¥ of an irreducible root system ¥ we have

(9.3) #Wy = #55 - #Wynae

(9.4) = (#U)-#{q; € U m;(Qmaz) = 1} - H m;(Omaz)-
a;ed

iii) There exist roots «; € U satisfying m;(maz) = 1, which are determined by
(2.26). Moreover we have

(9.5) mj(Qmas) = Y my(amam)<—(au|aj)) (a; € D)

o (as) (avjlevy)

because of (2.22). In particular

(9.6) 2mj(Omax) = Y, Mu(Qmaz) (0 € TN,

o €U\ {oy}

(avla;)7#0
Note that these conditions determine the extended Dynkin diagrams with the num-
bers {m;(amax); @j € \if} as in the following proposition, from which the classifi-
cation of the root systems follows.

Definition 9.2. A diagram G consisting of finite vertices and lines and/or arrows is
an affine Dynkin diagram if G satisfies the following conditions. Each line or arrow
links a vertex to another vertex and each arrow has a stem formed by multiple
lines. Moreover each vertex has an attached positive real number with the following
property.

Fix any vertex P in G and let m be the number attached to P. Let Lq,...,L,
be the lines and arrows linking P to other vertices. We denote the vertices and

their attached numbers by Q1,...,Qp, and mq,...,m,, respectively. Then
(97) 2m =kimi + -+ kpmp
by putting

{1 if L; is an arrow starting from P or a line,
;=

the number (> 2) of lines in L; if L; is an arrow pointing toward P
and the minimal number attached in any connected component of G equals 1.

Then we have the following proposition, which is probably known. Its proof is
elementary and easy and we give it for the completeness.

Proposition 9.3. The connected affine Dynkin diagram G is R with an irre-
ducible root system of type R or one of the following diagrams (cf. Remark 9.4 iii)).

D/ ol A1 R
B, bbb L 38 Cr(n>3) 83 303 2.0 Cy~By bllsd
—a
1@—€] — €2
1 2.3 2 1 A1 2 1 BO 1.2 22 2.2 B, 1.2
Fy & 8=3— 56— Gy =3 BC, =33 "5 325 BC =1
—€1 €5 — €3 —2€1

Here R denotes the extended Dynkin diagram of type R with the numbers mj(Qmaz)
attached to a; € W, which has been given in this section.

Proof. Fix any vertex P in G and retain the notation in Definition 9.2.

If p > 2 and Q1 = @2, then 2m > 2m; and we similarly have 2m; > 2m and
hence k; = ks = 1 and p = 2. This only happens when G = A;.

Now we may assume my > --- > my and Q; # Q; if ¢ # j.
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Claim: Let Py, ..., P, be vertices in G such that for any j = 2,...¢—1, P; is linked
only to both P;_; and P;y; and no arrow points to P;. Then the corresponding
attached numbers my1, ..., my form an arithmetical progression series.

Since 2m; > m, the relation (9.7) assures ) k; < 4.

Note that if 2m; = m, Q; is an end vertex to which no arrow points.

Case ) kj =4: Then m; = --- = m, = 3, Qj are end vertices and there is
no arrow starting from P. We may assume ky > --- > k,. Hence (k1,...,kp) =
(1,1,1,1),(2,1,1), (2,2), (3,1) or (4) and G = Dy, BQ, Bg, Gl or BC1, respectively.

Case Zk =3 and p=1: We have k; = 3 and m = le. Then there exists a
vertex Q" € G\ {P} with the number m’ > %L such that @’ is linked to Q. Since
2mi > m+m', m' = %ml and Q' is an end Vertex. Hence G = 02.

Case > k; =3, p>2 and m; > m: Note that k; =1 and p =2 or 3. When p =
2, ko = 2 and (mq,mg) = (m, m) When p = 3, ko = k3 = 1 and (mq,ma, m3) =

(m, 1m, 2m) Hence if 2 < j < p, Q; is an end vertex as follows.

Q2 P @ Q2 P
m m m mm
2 2 i
Q3
Denoting P, = P and P, = @1, we choose the maximal sequence of vertices
P, ..., Py given in the above claim. The numbers attached to these vertices are m.

If an arrow links P[ 1 to Pg, it has double lines and points toward the end vertex
P, and hence G = BC or B, according to p = 2 or 3, respectively.

Now we may assume that P; is linked to Pj4; by aline if 1 < j < £. Then Fy is
not an end vertex and therefore P, is a branching vertex or there exists an arrow
pointing toward P,. Applying the argument we have done to the vertex P, in place
of P, we conclude the following. If P is a branching vertex, P is linked to two end
vertices together with Py_; by lines and we have C’ or D,, according to p = 2 or 3,
respectively. If P, is not a branching vertex, an arrow starting from an end vertex
points toward P, and we have accordingly G = C,, or C’,’l

Case ) k; =3, p>2and m; <m: Fix j with 1 <j <pandlet Py,..., P, be
the maximal sequence given in the claim such that P, = P and P> = @;. The
corresponding attached numbers mj = m,msy = m;, mj, .. .,méj form a strictly

decreasing arithmetical progression series and the argument in the preceding case
assures that P, is not a branching vertex. Moreover P, is not linked to any arrow

=3, (9.7) implies

i 61
but it is an end vertex. Therefore m; = =~
J

(9.8) %—l—é-ﬁ-%:l, by >0y > 13

and hence (£1,¢2,03) = (3,3,3), (4,4,2) or (6,3,2) and G = Es, E7 or Eg, respec-
tively. Similarly if p = 2, we have k; = 2, ks = 1 and (¢1,42) = (3,3) or (4,2) and
G = E} or Fy, respectively.

Other cases: Now we may assume that G has no branching vertex and moreover
that if G contains an arrow, the arrow has double lines and points toward an end
vertex. Hence it follows from the claim that G equals B;l if G contains an arrow
and A, (n > 2) if otherwise. O

Remark 9.4. Retain the notation in Proposition 9.3.

i) A; is sometimes denoted by ©<:>O or ézé or é&é

ii) The proposition is known as the classification of the generalized Cartan ma-
trices of affine type (cf. [5, Ch. 4]), where R, B, C’,, BC,, F} and GY are denoted
by RV Dfizl AP AR EP and DY respectlvely.
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iii) Suppose R is not simply laced and let o/, ,. be the maximal root in ¥\ ©F
and put af = —a,,,- Then the root o corresponds to the vertex in R’ indicated
by @ and we get the Dynkin diagram of type R by deleting the vertex.

If we change the arrows in R’ by those with the opposite directions, R’ is changed
into the extended Dynkin diagram of the dual root system of R.

The root system

(9.9) {x(e; —€5), (e +€5), tex, £26e,;1<i<j<n, 1<k<n}

in R™ is the non-reduced root system of type BC,. If we denote the maximal
root of the non-reduced root system of type BC,, by Qmqz, the root ag := —maz
corresponds to the vertex in BC,, indicated by e.

Note that for an irreducible root system ¥ with a fundamental system ¥, the set
{Be€X;(a|]f) <0 (Va € ¥)} is the complete representatives of the orbits under
the action of its Weyl group or equivalently the decomposition of ¥ according to
the length of the roots. The attached numbers in the above diagrams are the
coefficients m;(—ap) in the expression —ag = 3, oy m;(—ao)a; for the element
g in the set. Here we don’t assume X is reduced.

iv) We easily get a realization of G in an Euclidean space as follows. For example,
if G = Es, we first realize (g, ..., a8,0) ~ Dg as in the standard way given in
this section and then a; is determined by (2.22) and moreover E; = {ag}+ and
Er ={ag,ag}t. If G = Fy, we first realize (g, a1, g, ag) =~ By and then ay.

v) The connected diagram G corresponds to an indecomposable finite subset ®
of R™\ {0} with #® = n + 1 such that

(«B)

(|)e{012 .}

(9.10) aed fedanda#F= -2

Here the subset ® of R" is indecomposable if there exists no non-trivial decompo-
sition & = @1 U (I)Q with CI)l 1 (I)Q.

vi) The diagram G with arrows is constructed as a quotient under the action of
an automorphism of an extended Dynkin diagram of a simply laced root system.
The arrow between two vertices in the quotient represents the difference of the
numbers of the corresponding original vertices as follows.

- . 11 .
1 bl
Asp—1 = B, (n>2) : 09" TS=06 — bbb

1
2 2

~ ~ =~ ~32_ 2 2 Lo g 9 1.2 2 2
Doy = By = BCy_q (n>3) : ><O, =0 — g=0——0=0 — 0=>0——0=0

~ = ~ -2 2 & 29 1 1.2 2 1
Dyy1=C, = Chy (n>3) " SO —0=g — g==0——0<=0 — 0=>0——0<=0

3
2 1 1 - — 9
Dyi=GY: 0\0*0 e Dy=BCy O§° - @jo
= 03 3 2 1 1 2.3 2 1 &3 3 1 2.3
/. O—O—_ - ~ . ~.
E¢ = F,: 38§=0—0—0 — 0—0=0—0—0 Es= Gy o—o=b — 0—0=>0
s s 2 3 4 9 1 2 3.4 2 - 2 4 5 4 3 2 1
E;=F,: 33 3=6—0 — 0—0—0=0—0 FEg: 6—6—06—0—06—0—0—0
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vii) Allowing a line linking a vertex to the same vertex in G, we have the following
extra ones.

1 2 22 2 1.1 11 1 1.2 22 2
o—i—o— —o—o@ O<=0—0— —o—o@ 0=>0—0— —o—o@
(o) 0

0—0——0—0 o

viii) If the assumption of the finiteness of the vertices is dropped in the proposi-
tion, we moreover have the following G, which easily follows from the proof of the
proposition.

(9.11)

Apw 38 A, b b p_ b33
(9.12) 1
Boo b<b—b— Coo 6=3—3— O%—%—éfm
10. TABLES

In this section we assume that ¥ is an irreducible and reduced root system. We
will classify the elements of Hom(Z,Y) under a suitable isomorphisms for every
root system =.

Definition 10.1. For ¢, ./ € Hom(Z, X) we define that ¢ is weakly equivalent to ¢/
if and only if there exists g € Aut(X) = Hom(X, X) with /(E) = g o «(E), that it,
J(E) 1;5 =. Then Hom(Z, ¥) is decomposed into the equivalence classes.

In many cases Hom(Z, X0) itself is the equivalence class but if it is not so, we will
identify every equivalence class Hom(Z, X)), contained in Hom(Z, X) by a suitable
geometric condition.

In the tables in this section we will list up all = with Hom(Z, X)) # () and classify
them with some data under the following notation.

Aut(E) := Hom(E, E), Aut(X) := Hom(%, ),

Aut'(Z) == H Aut(E;) C Aut(E) for the irreducible decomposition
T E_E 4 4B,
# + #(Ws\Hom(E, %),),
#= : #(Wx\Hom(ZE, X),/Aut(E)),
#= : #(Wx\Hom(E, X),/Aut’(2)),
#y #(Aut(Z)\Hom(E,E)O)7
o ((E+)* = E and (6.9) is valid),
= x ((E4)* = = but (6.9) is not valid),
{(Eﬂl () #2).
#{©CV¥; (O) % =} (if £ is fundamental),
P:q— (L—closure of Z is given by (EJ-)J-),
— (L—closure of = is given in the right column)7
L : L-closure (if rank(Z1)% > rank = and Z is not L-closed),

S : S-closure (if 2 is not S-closed (cf. Definition 6.6)),
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(J1s- o dm) = {0y, ay,) (under the notation in §9),
(\7) = (T \{a;}),
For subsystem = C ¥ and a subgroup G of Aut(X) we put

Hom(Z, %), := {¢t € Hom(Z,X); «(Z) 125 =},

Of ={0CX; We® =0 and © % =} (cf. Definition 2.8),
Oz ={0CX; Wog© =0 and @;E},
Na(E) :=={g€G;g(E) =E}.
Then
Of ~ Hom(Z, X),/Aut(Z) ~ Aut(X)/Nauxn) (),

Oz ~ Ws /N (B),
(10.1)  #O0%/#0= = #(W=\Hom(E, X),/Aut(T)) = (#z),
(10.2) (#)/(#E)_#(Wg\Hom )0)/ (WE\Hom( )O/Aut(E))
:#(Out( )/Outg(E))
= #(0ut(3) / (Nws (3)/ (W= x W=1)) ),

(10.3) #0= = (#)- #Ws | ((#s) - # Out(E) - #W= - #W=1).
Here (#), (#z), (#=/) and (#x) are numbers given in the columns indicated by #,
#z, #= and #yx in the table below, respectively. Since 1 < (#z) < (#=z), (#=)

may not be written if (#=/) = 1. If Out(X) is trivial, (#x) = (#) and therefore
(#x) may not be written.
Note that (9.3) corresponds to the special case of (10.3) with = = {£ao}.

Remark 10.2. We obtain the answers to the questions in the introduction from the
table in this section as follows.

Answers to Q1 and Q2 are given by the table.

The number in Q3 is given by (10.3) with the table.

The answer to Q4 is yes if and only if (#z) = (#) (cf. Remark 8.2 iii), Re-
mark 10.7 iii) and §8.2).

The answer to Qb is yes if and only if (#=/) = (#).

The answer to Q6 is yes if and only if (#=z) = 1 (cf. Remark 8.1 ii)).

The answer to the first question of Q7 is given by Remark 8.3 and the number
in Q7 is obtained from the column P in the table.

10.1. Classical type. (X : Ay, Bn, Cn, Dy)
= : Irreducible

% = [ ##=#= [ ELT P
A, A, T 1 1 |4 X n
Ay m<n-2) [Am [ 2] 1 | 1 |Anma X m+ 1
A, (n>3) Ap_1 | 2 1 1 0 by 2
A, (n>2) A, 2 1 1 ] by 1
b)) (TL Z 5) = # #5 #2 EJ‘ EJ‘J‘ P
D7 Al 1 1 1 Dn_g + A1 X n
Dn Ag 1 1 1 Dn—4 D4 n—2
(Dd) 1 1 1 Dn—3 (n#£7) o 1
Dy (n=1
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Then h € Aut(D,,) defined by h(e;) =

Dy (a<i<n—3) | Ak 111 1 | Dpg1 Dy 1 n—k+1
Dn An72 1 1 1 @ by 3
Dn (n:odd) An—l 2 1 1 [ by 2
D, (n:even) 2 2 1
n Di 3] 1] 3 |Duing |2 1
[ (n=5) )3
Dy, (4<k<n—2) | Dk 1|1 1 | Dp—g O (k#n—4) 1
X (k=n—4)

Dn (n>6) Dn—l 1 1 1 @ by 1
D, D, 2|1 110 b)) 1
¥ (TL > 2) = # #5 #2 EJ‘ EJ‘J‘ P
B, AL 1] 1 1 | B, 2+AF]o n—1

A (1] 1 1T | B > 1
Bn (n>3) A2 1 1 1 B,,L_3 Bg n—2
Bn (n>4) Az 1 1 1 B4 By n—3
Bn (n>3) (Dd) 1 1 1 B, _3 B3 —
B, (4<m<n) Am 1 1 1 Bym-1 B’rn-‘rl n—m
Bn (n>4) Dy 3 1 3 B4 By —
Bn (4<m<n) D’m 1 1 1 Bn—m B’m —
Bn (2<m<n) Bm 1 1 1 Bnm © 1
¥ (n>2) =) H14#= | #= [ET =L P
C A (11| 1 [CootAS|o n1

AL 1 1 1 | Ch o 1
Cn (n>3) A2 1 1 1 G,L_3 Cg n—2
Cn (n>4) Ad 1 1 1 Ch_y Cy n—3
Cn (n>3) (Dd) 1 1 1 CnfB Cd — S Cd
Cn (4<m<n) Am 1 1 1 Crnm—1 Gm-‘rl n—m
Cn (n>4) Dy 3 1 3 Crny Cy — S:0y
Cn (4<m<n) D, 1 1 1 Chnem Cm — §:Chp
Cn (2<m<n) Cm 1 1 1 Gn—m o 1

The symbol (Ds3) is the above table corresponds to Ds in (10.4). The subsystems
AL and A of B, in the above table correspond to A; and By in (10.4), respectively.
Applying Remark 3.1 iii) to the table for ¥ = B,,, we have the table for ¥ = C,,.
Suppose n > 4. Then #Hom(A,_1,D,) = 2 and the non-trivial element g €
Out(D,,) maps its element to the other. Let A,_; C D, by the notation in §10.
—¢; (j =1,...,n) induces the non-trivial
element of Out(A,_1). Here h is not an element of Wp_ if and only if n is odd.

Hence #(Hom(An_l, D,,L)/Out(An_l)) =1 if and only if n is odd.

Y =D,
S| E [#|#=]#= |#=|EF [EH]P
Ds| A 1] 1 1 1 |34 ] x 4
D,| Ay 1] 1 1 1 [ D) 3
D,| A5 | 3] 3 3 1 [ ¥ |3
Dy| Dy | 6| 1 1 1 [ b3 1
Dy|24, 3] 3 3 1 |24;] o 3
D,|34, 16 1 6 1 | A X 1
D, 44,16 ] 1 6 1 [ =
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Y: not of type Dy
We still assume that ¥ is irreducible and of classical type. We will examine
Hom(Z,X) when = may not be irreducible. It is not difficult because the root
system and its Weyl group are easy to describe. The subsystems of ¥ can be
imbedded in the root space By with a sufficiently large N. We should distinguish
two subsystems which are isomorphic as root systems but they are not equivalent
by BN.
Under the notation in §9 they are the followings:
A ={£(a — )},
Bl = {i€1} ~ Al,
(104) Dy = <€1 — €9,€1 + €2> ~ 2A1,
Az = (€1 — €2,€9 — €3, €3 — €4),
D3 = (€1 — €2,€9 — €3,€2 + €3) =~ As.

Let {e1,...,ex} be an orthonormal basis of RY with a sufficiently large positive
integer N. Let o be an element of O(N) defined by o(e;) = €41 for 1 < j < N
and o(ey) = €1. Let A, B,, C, and D,, denote the corresponding root spaces
given in §9 and we identify them with finite subsets of RY and put Q¢ := o(Q,,)
for @ = A, B, C and D. For example

Aj = (€4 — €5, €5 — €6, €7 — €5, €5 — €9) C RY
For m = (my,ma,...), k = (ki,k2,...), n = (ny,na,...) € NN with

o0
(10.5) k1 =0 and Z |m; + kj +n;| < oo
j=1

define

[I]

k;j—1

GHOv+SIZ i+ )ma
U A =D midj,
v=0 j>1

=U
i>1
=2 U+ m;,
i>1

ki—1 )
- - M j I Viks .
Emk = Zm U U U D; (m)FavF2ioy b e Dy = (61 — €9, €1 + €2),

i>2 v=0

M (m, k) m) + Y jkj,
j>2

pD(m; k) = ((ml + 2k27m2; m3 + k37m4a .- ')7 (Oa 07 0; k47 k5a .- ))a

ki—1 )
— M(m,K)+jv+37 "1k .
mkn ‘= Smk U U U Bj (k)3 +Zl_1 ! with Bl = <€1>

j>1 v=0
o A kD Y B,
N i>1 j>2 j>1
M(m,k,n) = M(m, k) + > jn; = (G +m;+>_j(k; +nj),
j21 j>1 i>1
pB(ma ka n) = ((ml +ni + 2k27m2; m3 + k37m4a .- ')a (07 0; 07 k47 k57 .. ')a
(0,n2,n3, .. ))

Suppose n > M (m, k,n). Then ZEy, k n is naturally a subsystem of B,, and
(106) mkntn*k1A1+Bn M (m,k,n)
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and if there exists w € Aut(B,,) = Wp, such that
Em,k,m == w(Em’,k’,n’)a

then (m,k,n) = (m’,k’,n’). B o
Fix elements m = (m1,ms,...), k = (ki,k2,...) and 0 = (A, na,...) in NY
satisfying

(10.7) ki = kg = k3 =ny =0.
Proposition 10.3 (type B,, (n > 2)). Let

(10.8) Emin =2 MiA;j+ > kiDj+ > n;B;.
j>1 j>4 j>2
Then
(10.9) Hom(Zy, g5, Bn) = 1T Hom(Ep, k ns Bn) (mjn)s
pB(m,k,n):(rﬁ,R,ﬁ)
M (m,k,i)<n
Hom(Z k.n» Brn)(mkn) = {t € Hom(ZE,  », Bn) ; there eists

w € Wpg, such that w(Emkn) = t(Eg ka 1
and
(10.10) Hom(Z, k1 Bn)(mkn) 7# 0
< pp(m,k,n) = (m,k,n) and M(m,k,n) <n
Assume Hom(Zg, ¢ 5, Bn)mkn) 7# 0. Then
3k (my 4 ny + 2k2)! - (3 + ks)!

(10.11)  #(Wp,\Hom(Zx, i 5, Bn) (mkom)) = e il el el Tl
(10.12) #(Wa,\Hom(Zs & 5> Bn) (mkn) /AUt (Em g a)) = 1,

(10.13) Emken N Bn = m1A1 4 By v(m ko)

(10.14) Emkn =Emkn © mo=mg=---=ky=ky=---=0, 3,5, n; <1,
(10.15) Emkn 18 fundamental < ko =ks=---=0and >, n; <1

The S-closure of Em kn equals =y x (s Here Y n;B; changes into sz jn

v,> jnj)u :
The L-closure of Zmkn equals the furzdamental subsystem Em 0, (5

Here > k;D; + > n;B; changes into sz J(kj4my)

v, j(kj+nj))V .

Considering the dual root systems, we have the proposition for C,,:

Proposition 10.4 (type C,, (n > 3)). Let
(10.16) Emin =2 MA;i+ Y kiDj+ Y n,C
jz1 j=4 Jj=2

Then the statements in Proposition 10.3 with replacing By, and By, _pr(mx,n) by Cn
and Cp,_p(m,k,n), Tespectively, are valid except for the last statement on S-closure.

The S-closure of this Emxn 5 Zm,0,(n1 ko-tns,ks+ns,...), Which is obtained by
replacing > k;D; by > k;C;.

We have the following propositions when 3 is of type D,, or of type A,,.
Proposition 10.5 (type D,, (n >5)). Let

(10.17) Emi = miAj+ Y kD,

j=1 j=4
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Then
(10.18) Hom(Z, i, D) = H Hom(Zy, ks Dn) (m k)
o
Hom(Z4 &, Dn)(m,x) = {t € Hom(E g, Dn) ; there exists w € W,

rﬁ,f()}v
(10.19)  Hom(Eg i Dn)mx) # 0 < pp(m k) = (m,k) and M(m,k) < n.
When Hom(EﬁLf(, Dn)(m,k) 75 (Z),

such that W(Emx) = t(E

3k4 . (m1 + 2]172)' . (md —+ kd)'

(1020) - # (W \Hom(E e Dudimao) = &1 =35, T I
(10.21) #(Wp,\Hom(E, & Dn) (mx) /AUt (B i) = €2,

(10.22) # (Aut(Dy)\Hom(Z, g, D) (m ko) /At (Eqr ) = 1,

(10.23) Emk ~ MAL+ Dy ar(m)

(10.24) Emk =Zmk < ke=ks=---=0and M(m,k) #n—1,
(10.25) Emk 05 fundamental < 37, ,kj <1 & Emx is L-closed.
Here

~J2  if M(m,k)=n,
TV i Mmk) <,

- 2 if M(m,k)=n andma, =k,;1 =0 (v=1,2,...),
T 1 otherwise.

The L-closure of Em x 15 obtained by replacing Zj>2 k;iD; by Dzj>2 jk; -

Proposition 10.6 (type A4,,). Let E, = 2]21 mjA;. Then

(10.26) Hom(Em,A4n) #0 < M(m)<n-+1
and if M(m) <n+ 1, we have
(10.27) #Hom (S, A,) = 22522™7
(10.28) #(Hom(Em, 4,)/Out(Em)) =1,

S— 1 (520 m; = 0)
10.29 Out An H :m;An — i>2 "% )
( ) #( u ( )\ Om( )) {2(21>2 mj)—1 (2]22 m; > O)7
(10.30) Em N An = Ay ()
(10.31) Em=Em & X;5,m; <1 and M(m) # n.

Any subsystem of A, is fundamental and hence L-closed.

10.2. Exceptional type. (X : Eg, E7, Es, Fy, G)

2 = # |#= [ #s [ EF S P

Fs A, T 1] 1[4 X 6

E()‘ AQ 1 1 1 2A2 X 5

Eﬁ A3 1 1 1 2A1 o 5

Eg Ay 2|1 1 | A As 4

Eﬁ A5 2 1 1 Al X 1 <\2>

Eg Dy 1 1 110 b 1

Eg Ds 211 1|0 ) 2 | (\1), (\6)
Eg Ee 2|1 110 b 1
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EG 2141 1 1 1 Ag o 10
L 34, 1 1 1 | A As 5
EG 4A1 1 1 1 (Z) by — | L: D4
L As+ Ay 2 1 1 | A 24, 10
EG A2 + 2A1 2 1 1 (Z) by 5 C 3A5
E(; 2A2 4 1 2 A2 X 1
EG 2A2 + A1 4 1 2 (Z) Z 1 <\4> C 3A2
Eo 34, S| 1 | 410 > — | §8.2.5
EG A3 + A1 2 1 1 A1 A5 4
Bo | AstA, |2 1] 10 > 2 [ (\3), (\5)
by = # | #= [#= | E" - P
E7 A1 1 1 1 D() X 7
E7 Ag 1 1 1 A5 o 6
E7 A3 1 1 1 A5 + A1 o 6
E; A, T 11 A As 5
E, As |7 T 1] 1][A o 1](2,4,5,6,7)
I T 11 A Do 2 | (3,4,5,6,7)
E; Ag 1] 1 110 b3 1] (\2)
by Az 1 1 110 b)) —
E7 D4 1 1 1 3A1 e} 1
by Ds 1 1 1 | A Dg 2
E7 D6 2 1 1 A1 X 1 <\1>
Er Eq T 1110 E 1 (\7)
by D 1 1 110 b 1
E7 2141 1 1 1 D4 + A1 X 15
E; 34, |7 [ 1] 1|1 |Ds ° 12,57
K T 1| 1|44, X 10| (3,5,7)
E, 1A, 7 41| 4 [34 X 2 1 (2,3,5,7)
]/ 1 1 1 3A1 D4 —
by 54, 151 1 | 15 |24, Dy+ A | — | §8.23
Er 64, 30 1 | 30 | A, Dg — | §8.2.3
Ey TA; 30 1 1300 Y — | §8.2.3
by As + Ay 1 1 1 | A; As+ Ay | 18
E; | Ay +24, T 1] 1A De 12
by Ay + 34 1 1 110 b 1
E; 24, 2 1 1 | 1 | A As 4
by 245+ Ay 2 1 110 b)) 3 | 34,
E7 3142 4 1 1 (Z) by — §825, L: EG
E7 A3 +A1 ]N 1 1 1 A5 o 2 <2,5,6,7>
T 11|24 Dit A |9 ](3,56,7)
E7 Ag + 2A1 ]H 2 1 2 A1 DG 3 (A3 + A)t = Ag
{1 1 1 V(As + AL =24,
— | cbs+ Dy L : Dsg
E7 Ag + 3141 3 1 3 (Z) Z C 2A3 + Ay
— | L: D5 + Al
E7 A3 + A2 2 1 1 A1 DG 3 C 2A3 + Ay
E7 A5 + AQ + Al 2 ]. 1 @ E ]. <\4> C 2A3 + Ay
E7 2143 2 1 1 A1 DG S | C24A3+ A
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E. | 245+ A 21 1] 10 ) — 5821
by A+ Ay 1 1 110 b 5
Er Ag+ A 11| 1]0 ) 1| (\b)
Er A+ A 7|1 1110 5 1 [ af = a5, (\3)
| 1 1 1[0 b — | at =y, L: Eg

FEr As + As 2 1 1 {0 % — | §8.2.1
E; Dy + Ay 3 1 1 24, X 1
E. | Ds+24, 6 | 1| 1A Ds —
E: | Di+ 34, 611110 z — [§8.24
E- Ds + A 1] 1 110 b3} 1 | (\6)
E; D¢ + Ay 2 1 110 by —
by E # | #= |#= | EF B P
Eg A1 1 1 1 E7 o 8
Eg Ag 1 1 1 E6 o 7
Eg A3 1 1 1 D5 O 7
Eg A4 1 1 1 A4 e} 6
Eg A5 1 1 1 A2 + A1 o 4
Fs Ag Il 11 4 Fr 3
Eg A7 ]” 1 1 1 Al E7 —

) 1T 1170 by 1 [(\2)
Eg Ag 1 1 1 @ by —
Eg D4 1 1 1 D4 e} 1
Eg D5 1 1 1 A5 o 2
Eg D6 1 1 1 2A1 o 1
Es D T 1110 E 1 [ (\D)
Fs Dy 21 1] 110 ) =
Eg E() 1 1 1 A2 o 1
Eg E7 1 1 1 A1 o 1 <\8>
Ly Ly 1 1 110 b 1
Eg 2A1 1 1 1 D6 o 21
Ly 34, 1 1 1 | Dy+ A |o 21
Eg 4A1 ]N 1 1 1 D4 D4 —

K T 1| 1|44, o 7 1(2,3,6,8)
Eg 5A1 5 1 5 3A1 D4 + A1 — §823
Ly 64, 151 1 | 15 |24, Dg — | 88.2.3
Fs TA 30 1 | 30 | A F; — |§8.2.3
Ly 8A; 300 1 30|00 D) — | 88.2.3
Eg Ag + A1 1 1 1 A5 o 28
Ly As + 24, 1 1 1 | A; Dy 28
Eg A2 + 3141 1 1 1 A1 E7 7
Eg A2+4A1 1 1 1 @ by — LSA2+D4
Eg 2A2 1 1 1 2A2 o 8
Ly 245+ Ay 2 1 1 | Ay L 9
Eg 2A2 + 2A1 2 1 1 (Z) E 2 C 4Ao
Eg 3A2 4 1 1 A2 E(, —
Eg 3A2+A1 4 1 1 (Z) by — | c44, L : B¢ + A
Fs 1A, S| 1 | 110 > — | §8.2.5
Eg A3 + A1 1 1 1 A3 + A1 o 20
Eg A5 + 2A1 ]” 1 1 1 A5 D5 —

P11 124 Ds 10 | (2,3,4,6,8)
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Eg Ag + 3141 3 1 3 A1 E7 — | L: D5 + A1
Eg As + 44, 31 1 310 b)) — | cas+Dps L: Dy
Fs Az + Ay T 1| 1 ]|24; Dg 10
Es | A+ A+ A | 2] 1] 1A E, 1
FEg | A3+ Ay +2A:| 2 1 1 0 by C D¢ + 244
— | L: D5 + A2
Eg 2A3 ]N 1 1 1 2141 D(, —
K T 1110 ) 2 (2,3,4,6,7,8)
Eg 2145 + A1 2 1 1 Al E7 —
Es| 2435+24; [ 2| 1|10 > — | < Do + 24,
Eg As+ 4 1 1 1 | A Eg 12
Eg Ay + 24, 1] 1110 3 5
ES A4 + AQ 2 1 1 Al E7 4
Eg A4 + Ag + A1 2 1 1 (Z) by 1 <\4> C 2A4
Eg A4 + A5 2 1 1 @ hM 1 <\5> C 244
Eq 244 2|1 110 b3 — | §8.2.1
Eg A5 + Al ]N 1 1 1 A2 E(, —
P11 4 Er 3 (1,4,5,6,7,8)
ES A5+2A1 2 1 2 (Z) Y C As + Ay + Aq
— L N E(, + A1
Es As + Ao 2 1 1 Ay FEr «—
Es | As+As+A; [ 2] 1] 10 z — [§8.2.1
Eq A+ Ay 1] 1 110 b3 1| (\3)
Eg A7+ A 1 1 1 {0 hM —
Es Dy + Ay L] 1] 1 [34 o 2
Eg D4 + 2141 3 1 1 2141 D(, —
Es Dy + 3A; 6 1 1 Ay FEr —
Eg Dy +44, 6 1 110 by — | §8.24
FEg Dy + Ay 1 1 110 by 1
Ly Dy + A3 3| 1 110 b)) — | c2p, L: Dy
Es 2Dy 6 1] 110 by — | §8.2.4
Es D5+ Aj 1] 114 E, 3
Eg D5 + 2141 1 1 1 @ by — | L: D7
Eg D5 + Ay 2 1 110 by 1 | (\6) cps+as
Es D5 + As 21 1 1|0 z — [§8.2.1
Es D¢+ Ay 2 1 1 Ay FEr «—
Bs | De+24, | 2| 1 |10 5 — [ §8.2.1
Eq E¢+ A 1] 1 110 b3 1| (\7)
Es |  Eo+ Ay 21 [ 1[0 5 — [§82.1
FEg Er+ A 1 1 110 % —
D E # [ #= [#= ] =2 =T [P
Fy AT 111G o 2
AS 1] 1] 1 |Bs o 2
Fy AL 1] 1] 1]A5 o 1
A3 T 1] 1AL o 1
Fy AL 11 [ 1]0 by — | L:Bs
A3 T 1] 1]0 ) —1|L,S:C;
Fy DFf 1] 1] 170 by —
Dy 11110 by — | S:Fy
F4 BQ 1 1 1 Bg o) 1
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Fy Bs 1] 1] 1]47 o 1 T(\4)
Fy Cs 1| 1] 1 ]AF o L[ (\1)
Fy By 11170 by —
Fy Cy 1] 1 110 b)) — | S:Fy
Fy Fy 1] 1] 170 by 1
Fy 2AF 11118, By —
214‘15 1 1 1 BQ B2 — | S: BQ
AT + AF 1] 11 [AE+AY | x 4
Fy 3AL 1| 1] 1]AF Cs —
3A7 1] 1] 1]A4A7 B — | S:Bs
AY +24F 1] 1] 1]A7 Bj —
2A7 + AF 1] 1] 1]AF Cs — | S:By+ A
Fy 4AT 11| 1]0 by —
4A7 11 ]1]0 by — [ S:F,
2A7 +2AF 1] 1] 170 by — | S: By +2AF
Fy AL + A7 11110 ) 1] (\3)
A5 + AT T 11170 by 1 [(\2)
Fy A5 + AL 11170 ) —
Fy By + A{‘ 1 1 1 A{‘ Cs «—
BQ + A’lb 1 1 1 A“f Bg — | S: B3
Fy B, +2AT 11170 by —
By + 247 11170 ) — | S:B,
F4 232 1 1 1 (Z) by — | S: B4
Fy A5 + AL 11170 by — | S:C;+ AF
F, AL+ A7 t 1170 ) —
Fy Cs + AT 11170 by —
Fy Bz + A7 1] 111160 3 — | S:B,
G Al 111 A o 1 1(\2)
A7 1] 1] 1]AF o 1 [\
AS 1 1 110 b)) — [ 5:G,
Go Gs 1 1 1 (0 by 1
G A7 + AT 11170 by —

We explain some symbols used in the above table.

Remark 10.7. i) In the table we use following notation.

SFi={ae ;B <lal (VBeEN)},
A ~ AL~ A, AL cxb A% Nk =,

D5 ~DE ~D,, DEcxl DInzt=9.
ii) The symbols ]’ and ]” in the column X.
Suppose X is irreducible and of exceptional type. Then #Hom(Z,%)/Out(Z) < 2.
When #Hom(Z, ¥)/Out(Z) = 2, X is of type E; or Es and then the symbols [Z]’
and [Z]” are used in [4] to distinguish the equivalence classes of the imbeddings
= C X. Then [E]' means that there is a representative Z in the equivalence class
such that

(10.32) ZECA,CYX=E,
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with n = 7 or 8. For example, #Hom(4A;, F7)/Out(44;) = 2 and the symbols
[4A1])" and [4A4,]" are used in [4], which are expressed by ]’ and ]’ respectively
in the column ¥ in our table (cf. (7.6)).

In [4] the distinction of the elements of Out(X)\Hom(Z, X)/Out(Z) such as |’
and ]” is not discussed but it is stated there that the distinction is due to actual
calculation.

iii) The structure of Outy(Z).

If (#) = # Out(E) or (#) = 1 in the table, it follows from (10.2) that # Outx(Z) =

1 or Outx(Z) = Out(Z), respectively. In the column P in the table, a reference

such as §8.2.3 gives the description of Outy(Z) for other non-trivial cases.
FE=25+5 CZ =25 +Zf C ¥ and Out(Z) & Out(Z;) x Out(Zz) and
=L = (), we have

(10.33) Outs;(2) = Npyim (=) (Za)/We.

=/

The symbol “C E" is indicated in the column P if Outs(E) is easily obtained
by this relation. For example, Outg, (D5 + As2) is isomorphic to Outg, (Ds + As)
through the imbedding D5 + Ay C D5 + Az C Es.
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