COMMUTING FAMILIES OF DIFFERENTIAL
OPERATORS INVARIANT UNDER
THE ACTION OF A WEYL GROUP

TosHIO OSHIMA AND HIDEKO SEKIGUCHI

ABSTRACT. For a Weyl group W of a classical root system (X, E), we study W-
invariant commuting differential operators on E whose highest order terms generate
the W-invariant differential operators with constant coefficients. We show that the
potential function for the Laplacian in this commuting family of differential opera-
tors is expressed by the Weierstrass elliptic functions. The commuting differential
operators define a generalization of hypergeometric equations.

0. INTRODUCTION

Let (3, E) be an irreducible and reduced root system of rank n and let W be
the corresponding Weyl group. We denote by S(FE) the symmetric algebra over the
complexification E. of the vector space E. Let 0 denote the algebra homomorphism
of S(E) to the ring of differential operators on E such that

01 (OX)8)(x) = 60 + X i=o

for functions ¢ on £ and X € E. We fix a system of homogeneous generators
P1,- .. ,pn of the algebra S(E)W of W-invariant elements of S(E). Here we choose
p1 so that degp; = 2.

In this paper we shall study a system of differential operators

(0.2) P;=0(p;)+R; for j=1,...,n
satisfying

P; are W-invariant,

ord Ry =0,

ord Rj < degp; —1 for2<j<mn,
[P, Pj]=0 for1<i<j<n

(0.3)

in the case when the root system is of the classical type with n > 1.
We fix a W-invariant inner product (, ) on E and identify F and its dual by this
inner product. We extend (, ) on E. x E, as a complex bilinear form. Since R;(x)
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is a function and O(p1) is a Laplacian on E under a natural coordinate system of
E. the operator

(0.4) P =

is a Euclidean Laplacian with the potential R(z) by putting R = Ry for simplicity.

The radial parts of the generators of the ring of invariant differential operators
on a Riemannian symmetric space give an example of the commuting family ([HC]).
In this case

(@, )
2 )

(0.5) R(z)= )  Cqsinh™

aext

where Y is a restricted root system corresponding to the Riemannian symmetric
space, X7 is its positive system,

1
(0.6) Co = Zma(ma + 2maq — 2){a, )

and m,, is the dimension of the root space for o € ¥, which satisfies
(0.7) Mo = Myo for weW

and only take special integers. Then J. Sekiguchi, Heckman-Opdam and Debiard
([Sjl, [H1], [H2], [HO], [Opl], [Op2], [D]) studied the operator (0.4) with (0.5)—(0.7)
and proved the existence of a commuting family.

On the other hand, the operator P; which allows such a commuting family is
called a completely integrable quantum system and has been studied from the view
point of mathematical physics (cf. [OP2]). The construction of such system is
usually related to a root system and the most general potential function which
have been proposed is written by elliptic functions. The similar fact is also true in
the case of classical dynamical systems (cf. [OP1], [P], [IM], [I]).

The main purpose of this paper is to prove that the potential function R(z)
which allows the existence of a commuting family of differential operators with
conditions (0.2) and (0.3) can be explicitly expressed by the Weierstrass elliptic
function p(t) and moreover to give certain uniqueness properties of the commuting
family in terms of R(z). We note that the results in this paper are also valid in
the case of classical dynamical systems because the same but easier proof for them
works.

In this paper we assume that the coefficients of the operators P; can be extended
to holomorphic functions on a W-invariant connected open subset 2’ of the com-
plexification E. of E. Here ' = Q\ V with a proper analytic subset V' of an open
neighborhood 2 of the origin of E..

In §2 we shall prove that the potential function R(z) can be expressed by even
functions u,(t) of one variable:

(0.8) R(z) = ) ual((a,x))



with
(0.9) U (t) = Upa(t) for a€ X, weW.

Here X7 is a positive system of X.

In §3 we shall prove a uniqueness for the commuting algebra C[Py,..., P,] in
terms of two generators with small orders.

In §4 and §5 we shall study R(x) when the root system is of type A,, and prove
that

(0.10) ua(t) = Co + Crp(t) for a e BT

with suitable Cy, C7 € C. Moreover we shall construct the commuting operators
Py, ..., P,. These operators and their pairwise commutativity seem to be known.
See [OP3] and references therein. But one of the proofs of the commutativity in
[OP3] is insufficient (cf. Remark 3.7).

In §6 and §7 we shall study R(z) when the root system is of type B,, or of type
D,,. First we shall give a uniqueness theorem (cf. Theorem 6.5) and a functional
differential equation (cf. Theorem 6.1) which is equivalent to the commutativity of
Py and an operator of the fourth order. When n > 2, we shall solve the equation (cf.
Theorem 7.10), which says that the potential function R(x) is explicitly expressed
by g except for a trivial case.

When the root system is of type B, we shall only determine R(x) when the
coefficients of the differential operators have expansions of Harish-Chandra type
(cf. Theorem 7.12). Moreover owing to this result we have a characterization of
Sekiguchi-Heckman-Opdam’s operators corresponding to classical Weyl groups (cf.
Remark 7.14). The complete solutions for type Bz and the explicit form of com-
muting differential operators for type B, and D, are given in successive papers
[0O0S8], [O0] and [O].

For readers’ convenience, in §8 we shall give some examples of commuting fami-
lies we have constructed and write them in an algebraic form. We shall see that in
general the ordinary differential equation corresponding to the potential of a higher
rank equals the generic Fuchsian equation of the second order on P!(C) which has
four regular singular points. If we specialize parameters of the equation, it coincides
with the equations of Lamé’s functions, Mathieu’s functions, Gauss’ hypergeomet-
ric functions, Kummer’s confluent hypergeometric functions or Bessel functions.
Hence our commuting families are naturally considered as a generalization of these
ordinary differential equations to systems of partial differential equations.

The authors thank Masaki Kashiwara and Hiroyuki Ochiai for the conversations
with them which encourage us to write this paper. In particular Ochiai pointed us
out a simplification of our original proof of Theorem 2.1.

The main result in this paper is announced in [Sh] and [OOS].

1. NOTATION

For a positive number m we fix an orthonormal basis {ej,... e} of the Eu-
clidean space R™ and use the coordinate system (zi,...,2,,) with R™ > z1e; +
-+« + Zmem,. Then the root system (X, E) of type A, is naturally realized in

(1.1) E={(x1,... ,xm) ER™; 21+ -+ 1z, =0}
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with m = n 4 1 and we may choose the positive system

(1.2) YT ={ei—e;;1<i<j<m}.

Similarly in the case when (X, F) is of type D,, we have E = R™ and
(1.3) Yt ={ei—ej, eite;;1<i<j<n}

and in the case when (X, F) is of type B,, we have E = R" and

(1.4) Yt={e;;1<i<n}U{e;—ej e;+e;;1<i<j<n}

We note that we need not to distinguish the root systems of type B,, and type C),
in our problem.

For the coordinate system (x1,... ,2,,) of R™ we put
0
a’i = ’
aCL'Z'
80{ = 81061 .. 8,?;{”,
lal = a1 + - + am,
Oir,...ix) = Y Oy
I/#’L‘l,... ,ik
1<v<m
Here o = (g, ... , ;) with non-negative integers «;.

Let P =) po(x)0* be a differential operator. Then we put

tp — Z |a|ao¢pa )

In this paper we call the operator is self-adjoint (resp. skew self-adjoint) if ‘P = P
(resp. 'P = —P).

For integers k and ¢ with k < ¢ we put [k,¢| = {k,k+1,... ,¢} and for a subset
I of [k, (] we denote by |I| the number of elements of I.

For an element g of the permutation group &y, of the set [1, k] with 1 < k < m we
denote by g(P) the operator transformed from P by the coordinate transformation
(1, 2y ) = (Zo(1)s -+ To(k)s - -+ > Tm). Then the operator P is said to
be symmetric for the coordinate (z1,... ,xy) if g(P) = P for all g € &y

Moreover we denote by P~ the operator transformed from P by the coordinate
transformation (z1,...,zy) — (=21,..., —Z;,). Then we say that P has an even
(resp. odd) parity ift P~ = P(resp. P~ = —P).

Lastly in this section we review on the Weierstrass elliptic function g (cf. [WW]),
which is a doubly periodic meromorphic function on C with the Laurent develop-
ment

(1.5) 0(2|2w1, 2ws) = 272 + ag2® + agz* + ag2® + - -



at the origin. The complex numbers w; and wy are primitive half-periods:
(1.6) (2 + 2mywy 4 2mows 2wy, 2we) = p(z|2wr,2wy)  for my, mg € Z.
It has the expansion
1 1 1
1.7 2w, 2 = — —_— = —

where the sum ranges over all w = 2mjw; + 2mawsy except 0 (my, mo € Z). This
o is uniquely characterized by the differential equation

(1.8) (¢')? = 49" — g2p — g3
with the condition
(1.9) o has a pole of order 2 at the origin.

Here g2 and g3 are complex numbers, which have the relation

g2 = 60 Z wt = 20as,
w#0

g3 =140 w0 = 28a4.
w#0

(1.10)

The complex numbers w; and ws are linearly independent over R but we allow
the period to be infinity. In other words, the numbers g, and g3 are any complex
numbers. For example we have

8

Y 1 4
p(Z’ —17'(', OO) = Sil’lh*2 z + g when go = § and gz = _ﬁ7

(1.11)

2

p(z|oo,00) = 27* when g¢go = g3 =0.

2. REDUCTION TO ONE VARIABLE

Now we examine the potential function R(z) of the operator P; in (0.4) which
allows the commuting family (0.2) and (0.3) and we shall prove

Theorem 2.1. Suppose the root system is of type A,, with n > 1 or of type B,
with n > 1 or of type D,, with n > 2. Let {Py,...,P,} be a system of differential
operators of the form (0.2) which satisfies (0.3). Then there exist even functions
u(t) and v(t) of one variable such that

R(x) = Z u(z; — x;) if W is of type A,,
1<i<j<n+1

R(z) = Z <u(:1:Z —x;) + u(z; + x])) + Z v(z;) if W is of type By,
1<i<j<n 1<j<n

R(x) = Z <u(ﬂr:Z —x;) +u(z; + x])) if W is of type D,,.
1<i<j<n



Note that ‘P, = P, and '[P,Q] = —['P,'Q] for differential operators P and
Q. Hence in the following study to determine the potential function R(x) we may
assume
(21) tPj — (_1)OrdePj
by replacing P; by (P; + (—1)°r4fitp;) /2.

First consider the case when the root system is of type A,. Identifying F with
a hyperplane of R™ with m =n+1 as in (1.1), we can assume the existence of the
following system of commuting differential operators:

(2.2) AL =04+ O,
Ay = Z 818] -+ R(I),
1<i<j<m
Ag = Z 6laja]€ + Z azlal + ap.
1<i<j<k<m 1<i<m

Here R(z),a! and ag are functions of x and the function —2R(z) corresponds to
the original R(z) in (0.4) because P; = A7 —2A,. The commutativity [A1,A;] =0
implies

(23) AlR = Ala’i = Ala() =0.

Now consider the equation [Az, Az] = 0. Then the vanishing of the term 9?
implies 9(i)a® = 0 and by combining this with (2.3) we have

(2.4) dia} = 0.
The term 9;0; with i < j implies d(j)a} + d(i)al = (4, j)R and hence

(2.5) d;a% + 9;a) = (0; + 9;)R for 1<i<j<m.
Therefore from (2.4) and (2.5) we have
(26) 82(9]((91 + 8J)R =0 for 1 <i< j <m.

First we prepare
Lemma 2.2. Let uy(x),...un(x) be functions satisfying
Oiuj + O0ju; =0  for i # j.

Then
0;0ku; = 0 for different indices i, j and k.

Moreover if O;u; = 0 for any i, we have
8j8kui =0 fOl"i, j, k= 1,... ,m.
Proof. When ¢, j and k are different indices, 90;0,u; = —0;0;ur, = 0;0ru; =

—00;u; and we have the first claim. The last claim is also obtained by this equality
for arbitrary indices 7, j and k. [

Now we claim the following lemma which means that the potential function R
is a sum of functions depends only on two coordinates in (z1,... ,Zm).
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Lemma 2.3 (type A,). Under the above notation

(27) azajé’kR =0 for 1<9 <j <k <m.

Proof. Let 4, j and k are indices in [1,m] which are mutually different. Then (2.5)
implies 9;(a% — R) + 9;(a] — R) = 0 and we have 9;0yR = 0;0xa} by Lemma 2.2
and the lemma follows from (2.4). O

Now we shall continue the proof of Theorem 2.1. Put Ris = 0109 R. Then it

satisfies (81 —+ 82)R12 = 83R12 = = aleg = 0 and we have R12 = T(I‘l — 1’2)
with a function r(¢). Note that r(¢) is an even holomorphic function for 0 < |t| < 1
because of our assumption for As. Let u(t) be a function with u” = —r. Define a

W-invariant function by

1<i<j<m

Here 010rS(x) = 0 for k = 2,...,m and we can choose a function ¢(t) with
d¢(x1) = 015(x). Then the function T'(z) = S(z) — X2, <<, ¢(z;) satisfies

0;T(x) =0for j =1,...,m. Hence replacing ¢(z;) if necessary, we may assume
R(z)= Y ulwi—xz)+ > o).
1<i<j<m 1<j<m

Then by using (2.3) we have » ; ¢'(x;) = 0 and therefore ¢ is constant. Modifying
u by a constant, we may moreover assume ¢ = 0.

Since r(t) is an even function, we may assume u(t) = w(t) + C'logt with an even
holomorphic function w(t) for 0 < |t| < 1 and a complex number C' € C. Then we
have C' = 0 because R(z) is a single valued holomorphic function on '. Thus we
have Theorem 2.1 when the root system is of type A,.

Remark 2.4 (H. Ochiai). Suppose the root system is of type A,,. Then it is clear
from the above argument that we have

R(z) = ) ual((a,x))

aext

with suitable functions u,(t) even if we omit the assumption of the W-invariance
for P;.

Next we consider the case when the root system is of type B,, with n > 1 or of
type D,, with n > 2. Then we may put

(2.8)
Pi= > 97 +R(),
1<i<n
Py = Z 81'2832‘+ Z a%@f—{— Z alﬂaiaj—*— Z ailai—kao
1<i<y<n 1<i<n 1<i<j<n 1<i<n



as in the case of type A,. We shall use the convention a% = al’ if i > j.
First we study the condition [Py, P5] = 0. The terms 87, 029; and 9;0;0) imply

177

(2.9) dial =0,
(2.10) djab + ;0 = O;R for 1<i,j <n with i # j,
(2.11) dall + d;alk +9pa? =0 for 1<i<j<k<n,

respectively. Then we have 950; R = 970;(9;R) = 970;(d;a% + d;a?) = 8383%?1 =
020; R and hence
(2.12) 0;05(0; + 05)(0; — 9;)R = 0.
Now we prepare
Lemma 2.5. Given functions u;(x) and wu;i(z) = ug;(z) of (z1,...,z,) for 1 <
1<mand1<j<k>n. Suppose n > 3 and
Oju; + O;u;; =0 for i Js
(2.13) ’ ’ 7
Oiuji, + Ojug; + Opuy; =0 for @ # 5 # k.

Then

(2.14) &2 0,u; =0

and

(2.15) 0;0,0pu; = 0.
Moreover if

(2.16) Oiu; =0 for i=1,...,n,
then

a?Uij =0,

(2.17) ,
0%u; = 0%u;; =0 if |of > 3.

Here i, j, k and ¢ are arbitrary indices in [1,n| which are different to each other
and if n = 3, we ignore (2.15).

PT‘OOf. It follows from (213) that 8?6’kuz = —832821% = 6J82(8Zuk] + 8kuﬂ) =
—020ku; — 0;0;0ku; = —20?0,u; and therefore this equals —2(—28328,&,-) and we
have (2.14).

If n > 3, we have similarly 20;0,0pu; = —0;0,0iuip — 0;000;ui, = _a?ajng.
Permuting the indices j, £ and ¢ in this equation and summing up them, we get
(2.15) because of (2.13).

Now suppose (2.16). Then 6?uij = —0;0;u; =0 and a;”ui = —8?8iuij = 0. Thus
we have 0%u; = 0 if |a] > 3. Hence if |o| > 2, we have 0%0;u;; = —0%0;u; = 0
and therefore we have 9p07u;; = —0,0k(diujr + Ojur;) = 0. Suppose n > 4.
Then agakuij = —agaiu]'k — 8gaju;ﬂ- == &-ajukg + 8i8ku€j + 8j8kuie + ajﬁiu% =
20;0jure — OrOpu;; and so 0pOku;; = 0;0juke. Hence 0,,0;05upe = 0 O0pOrui; =
0¢0;0jumi and this also equals 0,0;0;ugp,. Since Oyuem + Optimi + Omure = 0, we
have 0,,0;0;ur¢ = 0. Thus we have completed the proof of the lemma. O



Lemma 2.6 (type B,, or D,).
(218) 818J8kR =0 for 1 <9 <j <k<n.

Proof. Put u; = ab — R and u;; = a%. Then Lemma 2.5 and (2.10) and (2.11)
imply

070;(R—ab) =0 fori#j+#k#1i,
0;0k0s(R — ab) =0 for different indices i, j, k and .
Applying 0; to these equations, we have

0;00;R=0 fori#j#k#i,
0;0;0,0,R =0 for different indices ¢, j, k and ¢

because of (2.9).
Put R12 = 8182}%. Then

(2.19) Ry = ¢(x1,22) + Zcﬂi

1=3

with a function ¢ of (z1,x2) and numbers C; € C.

Here we note that C; do not depend on ¢ because of the W-invariance of R.

If the root space is of type B,,, Ris is invariant under the coordinate change
x3 +— —xg and C; = 0 in (2.19). Hence 0;0203R = 0 and we have Lemma 2.6.

Suppose the root system is of type D,,. Since D3 ~ A3, we may assume n > 3.
Then by considering the coordinate change (z3,z4) — (—x3, —x4) we have the same
conclusion. [J

Now we shall continue the proof of Theorem 2.1 when the root system is of type
B,, with n > 1 or type D,, with n > 3. Under the expression (2.19) it follows from
(2.12) that

d(z1,22) = ur (21 + x2) — u2(x1 — T2)

with suitable holomorphic functions uq(t) and us(t) with 0 < || < 1. Here uqg
is an even function since ¢(z1,z2) is symmetric for (z1,z2). Moreover we have
u; = ug because the coordinate transformation (z1,z2,...) — (v1,—22,...) or
(21,22, 23,24, ...) = (x1, —T2, —T3,Ty4,...) transforms ¢ into —a¢.

Let u(t) be the function with u” = uy. Then by the same argument as in the
case of A,,, we have

(2.20) R(x) = Z (w(wi + x)) + u(z; — z;)) + Z v(z;)

1<i<j<n 1<i<n

with a suitable holomorphic function v(t). Since R(z) is a W-invariant holomorphic
function, we can conclude that u(t) and v(t) are even holomorphic functions for
0 < |t| < 1. Thus we have Theorem 2.1 when the root system is of type B,,.

The remaining part of the proof is to show that we may assume v equals 0 in
the expression when the root system is of type D,,. Before we prove it, we express
functions a% and a3, by the functions u and v for our later purpose:
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Lemma 2.7. Under the notation above we may assume
ay(z) = Z (u(zk + xe) +u(zr — 20)) + Z v(z),
(2.21) 1§kl$£<;2i§n 15271
ath = u(z; + ;) — ulw; — ;)
by replacing u and v if necessary.

Proof. Note that if we define a} and a* by (2.21), the system of equations (2.11)
holds. Hence if we denote the differences between the original functions and the
above corresponding functions by the same notation with a bar, they satisfy

iy = 0;ah + 0ay) = ials + 0;al + oat) = 0.
Owing to Lemma 2.5, we have

C_Ll% = 201’11’2 + (1’1 + %2)¢1($/) + ¢2($/)

with a constant C' and polynomial functions ¢;(z") of ' = (x3, ... ,x,) with degree
at most j for j =1 and 2.

Since ai? is invariant or changes into —ai3 under the coordinate transformation
(r1, T2, x3) — (—x1, —x2,x3) Or (T1, X2, T3) — (—T1, T, —T3), respectively, we have
¢1 =0 and ¢ = C'23---x, with a constant C’. But since d3ai? is symmetric for
(w1, 2, 23), we have 03ai? = 0 by the relation d3ai? + 91a23 + deats = 0. Hence
we can conclude a7 = 2Cx;x;.

Replacing u(t) and v(t) by u(t) + Ct? and v(t) — 2C(n — 1)t2, respectively, we
may assume &ijl = 0. Then we have 9;a} = 9;a% = 0 and therefore @), are constant.
Finally subtracting a constant multiple of P, from P, we have the Lemma. [J

Lastly we assume the root system is of type D,, to prove Theorem 2.1. We
introduce the following operator which commutes with P;.

(2.22) Py=010n+ Y a.q,00 00 + R (2,0).
i1, =n—2
Here R/(x,0) is a suitable W-invariant differential operator of order < n — 2.
We put a(j, k) = a;,...;, with the indices iy,--- i, given by
1 if v#jand v #k,
{O if v=j0r v==t.
Then by the term 0505 - - - 9, of [Py, P!] we have

(2.23) 2 Y dia(l,j) =R
2<j<n
Furthermore by the term 829, - - - 9, of [Py, P!] with Lemma 2.7 we have
2 Z 8ja(1,j) = alaé + Z @-aﬁ

2<j<n 2<j<n

= > (W(z1+ )+ (w1 — xy)).

2<j<n

n

1y, =

(2.24)

Comparing this with (2.20) and (2.23), we have v" = 0. Modifying u by a constant,
we have Theorem 2.1 and subtracting a constant multiple of P; from P, we may
assume Lemma 2.7 with v = 0.
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3. UNIQUENESS OF THE COMMUTING FAMILY

In this section we shall prove that the generator P; and the generator, say
P,, having the lowest order among the remaining generators {P,..., P,} of the
commuting family (0.3) uniquely determine the commuting algebra C[Py, ... , P,].

In the subsequent sections we shall study the relation [Py, P;] = 0 and we shall
get a more refined result on the dependence of the commuting algebra on the
potential function R(z). First we prepare

Lemma 3.1. Let

(31) Q(ajaf): Z QQ('T)ga

la|=K
be a homogeneous polynomial of £ = (&1,...,&yn) of degree K whose coefficients
are functions of x = (x1,... ,x,,) and consider the conditions

(3.2.0) {> & a0} =0
=1

and

(3.3) Z qo(x)0% is symmetric for (z1,... ,Tm).
|la|=K

Here { , } is the Poisson bracket defined by

LOf 09~ Of Oy
(3.4) {f,9}=2a—§ia—%‘ o, 06,

=1

i) If (3.2.2) holds, then q,(x) are polynomials.
ii) Fix a positive integer N with N > 3. Then the functions q, are constants if
one of the following conditions holds:

(3.5) K < N —2 and condition (3.2.N) holds.

(3.6) K = N —1 and conditions (3.2.2) and (3.2.N) hold.
(3.7) K = N and conditions (3.2.2), (3.2.N) and (3.3) hold.
(3.8) K =N+1, N >4 and conditions (3.2.2), (3.2.N) and

(3.3) hold.

Proof. In this proof we always assume that the index a € Z™ satisfies |a| = K.
Put §, = (61,,. .. ,0my) with Kronecker’s 4.
Note that for 8 € Z™, the coefficients of the term &7 of (3.2.2) mean

(3.9) > 0ugp-s, =0
v=1
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and in general, the coefficients of the term &7 of (3.2.N) mean

(3.10) > 0vgs—(n-1)s, = 0.

v=1

Here we use the convention that g, = 0 if a has a negative component.
Suppose (3.2.2) and fix an index j. Applying 8]K_aj to (3.9) with g = a + ¢,
we have
aj{+1_aj oo = — Zaj{_ajauCIaJr&j—éu-
V]

If K —a; =0, then a,, = 0 for v # j and the above equation is reduced to 9;q, = 0.
Then by the induction on the non-negative integer K — o; we can prove

(3.11) 9 Mg, =0,
Thus we have lemma 3.1 i).

Note that if a € Z™ satisfies o, < N — 2 for v = 1,... ,m, then equation (3.10)
with = o+ (IV — 1)J; equals

(3.12) 8;qa = 0.

If (3.5) holds, (3.12) is valid for any j and « and therefore g, are constant. To
prove the remaining part of the Lemma, we may assume that ¢, (x) are polynomials
without constant terms because of the assumption (3.2.2).

Suppose (3.6). Then the above argument assures that we may assume ¢, = 0 if

a, < N—-2forv=1,...,m and we have the expression
(3.13) q(z,8) =) di(x)eff.
v=1

Since K > 1, we have d;a} = 0 from equation (3.9) with 3 = ¢, + K¢; for any i
and 7 and we have the lemma.
Suppose (3.7). Then by the same argument as above we can write

m

(3.14) q(z, &) = Za%(m)fi{ + Z afl_ (x)&,68

v=1 VEL
1<v,u<m

In equation (3.10), putting § = (2K — 1)§; and = (2K — 2)d; + 2, we have
(3.15) Oray = O1aty_; =0
and putting = Kdé; + (K — 1)d2 and f = (K — 1)d; + 02 + (K — 1)d3, we have

(3.16) drag + drary_; =0,
(3.17) dhaiy_y + dzaif_; =0,

12



respectively. On the other hand, from equation (3.9) with 8 = K¢, + §2 we have
(3.18) Drake + 013}, = 0.

It follows from (3.15), (3.16) and (3.18) that

(3.19) Doty = O1ars_ | =

and it follows from (3.15), (3.17) and Lemma 2.2 that

(3.20) 0ia?3, | = 0104033 | = 0.

Then from (3.7), (3.15), (3.19) and (3.20) we have a’ = 0 and a”, | = =C> v
with a constant number C. But equation (3.17) proves C' = 0.
Suppose (3.8). Note that K = N +1 > 5. We may assume

(3.21)
Z“K )6+ Y Ak ()€
2l
+Z“2K R (@)EDEL T2 + Z att i o(2)€,6, 6872
[z v<p, T#EW,V

Putting ﬁ = (2K—2)51, (2K—3)(51 —|—52, (2K—4)51 —|—2(52 and (2K—4)(51 +(52 —|—(53,

we obtain

(3.22) dray = dhafy_y = dad o = diaiig_o =0

from (3.10). Similarly putting 5 = Ké; + (K —2)d2, = (K —1)d1 + (K —2)d2 + I3,
B =(K—-2)01+ (K —2)d2+203 and § = (K —2)01 + (K —2)d2 + I3 + d4 in equation
(3.10) we have

(3.23) O1ak2_ 5+ Dpak =0,
(3.24) dratik_o + Daly_y =0,
(3.25) dras55 o + Dra3g_o =0,
(3.26) O1ai1% o + Oaaiti_o =0,

respectively. On the other hand, putting 8 = Kd; + 2, 5 = (K — 1)d1 + 2d2 and
p = (K —1)d1 + 2 + 03 in equation (3.9), we have

(3.27) alalK 1 + 82(1}( - 0,
(3.28) a3k _o + Doaif_ =0,
(3.29) Oraiif_o + 02al) | + Ozaif_, =0,
respectively.

By (3.22) and (3.27) we have drak = 0 and in general we have d;a’. = 0 for
i,j =1,...,m and hence a% = 0.
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Note that (3.22) and (3.29) means
(3.30) Opadl. | 4 Ozatk | = 0.
Then from (3.28), (3.22), (3.30), (3.3) and Lemma 2.2 we obtain
(3.31) Daafte_y = 03ai_y = Dodaaiye_y =0
and from (3.23), (3.22), (3.25), (3.3) and Lemma 2.2 we obtain
(3.32) Oraygc_y = Oasz_y = 010sa35_5 =0
and from (3.22), (3.24), (3.31), (3.26), (3.3) and Lemma 2.2 we obtain
(3.33) Ofarlic o = 10sa1iic o = Ofaiiic 5 = O10saiiic o = 0.
Thus from (3.3), (3.31), (3.32), (3.32) we have the expression

afk_1=Cilzs + -+ ),
(3.34) 5o = Co(s + - + ),
a%i}(—2 = 03(372 + 333) + 04(x4 4+ .+ xn)

with suitable constant numbers C;. Then from (3.24), (3.25), (3.26) and (3.30) we
can conclude C3 + Cy = 0, 2C5 = 0, 2C4 = 0 and 2C; = 0, respectively, which
completes the proof of the Lemma. [

Now we give the theorem in this section:

Theorem 3.2. Without loss of generality we suppose that the order of the gener-
ator Py of our commuting family (0.2) equals 3 (resp. 4) in the case when the root
system is of type A, (resp. By, or D,). Then P; and P, uniquely determine the
commuting algebra C[Py, ..., P,].

Proof. First consider the case when the root system is of type A,,. We may assume
that

(3.35) =Y OF+Rj(x,D) for k=1,...,m

=1

generate our commuting algebra with the identification (1.1). Here ord R} (z,0) <
k, Ri(z,0) = 0 and ord Ry(z,9) = 0. We shall prove that A’y _; is uniquely deter-
mined modulo C[A},... ,Aly] for N =3,... ,m — 1, which implies the theorem.

Suppose this is not true for some N. Then there exist W-invariant differential
operators Ay_ (1) and A’y (2) with the same principal symbol }_, ¢V which
commute with A}, ... Al.

Put Q = Ay (1) = Ay,1(2) and K = ord Q. We may assume the principal
symbol q(z,£) = 0(Q) of Q really depends on = because otherwise we can reduce
the order of () by subtracting an element of C[A], ..., Aly].
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Then the condition [A}, Q] = [Aly, Q] = 0 implies one of the conditions (3.5),
(3.6) and (3.7) and therefore Lemma 3.1 proves that g(x, &) does not depend on x.
This contradicts our assumption and hence we have the theorem.

In the case when the root system is of type B,, we may assume ord P; = 25 and
o(Pj)=>, €2 Then the proof proceeds in the same way as in the case when the
root system is of type A,,. In the case when the root system is of type D,, we can
prove the theorem in the same way if we define the operators P; from lower order
ones. [

Since the condition
(3.36) {Zgl (@1, @, &y, &)} =0 forany k> 1

implies that ¢ does not depend on z, we have the following as in the proof of
Theorem 3.2.

Proposition 3.3. Let P be a W-invariant differential operator which commutes
with any element of the commuting algebra C[Py, ..., P,]. Then P € C[Py,... , P,].

Now we give the lemmas which shall be used later.

Lemma 3.4. Let Qo(x,d), Q1(x,0) and Q2(x,0) be differential operators of the
form

= 2822 + qo(7)
0) = (@0, Qaz,0)=> ¢ ()

Suppose qo(x) and ¢$(z) are polynomial functions of x and furthermore suppose
[Qo(z,0),Q1(z,0)] = Q2(x,0) + r(x)Q1(x,0) with a polynomial function r(zx).
Then ¢f(z) are also polynomial functions of x.

Proof. We shall prove that ¢{(x) are polynomial functions of x by the induction
on the number |«|.

If || > ord Qq(z,0), the claim is clear. Let k be a nonnegative integers and
suppose ¢{(z) are polynomial functions of x if || > k. Then the (k + 1)-th order
term of [Qo(x,d), Q1(x,0)] = Q2(x, D) shows

(D& > a@et= Y (ap(a) +r(2)d) (@)’

=1 |al=k B =k-+1

with some polynomial functions ag(x).
Choosing a positive integer N so that deg (as(x) + r(:c)qlﬁ(:c)) < N, we have

{Zf,,zaeql =0

i=1 |la|=K
for £ =1,... ,n. Then Lemma 3.1 proves that 9})¥¢{(z) are polynomial functions
of z for |a] =k and £ =1,... ,n and so are ¢{(z). O
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Lemma 3.5. Let Qo(x,0), Q1(z,0) and Q2(x,0) be holomorphic differential op-
erators defined on a connected open dense subset of the n-dimensional complex
vector space E. such that Qg is of the form

Qo(x,0) =>_ 07 + qo(x)
1=0

and they satisfy
[Qo, Q1] = [Qo, Q2] =0, go(—z) = qo(x).

Suppose there exist linearly independent vectors Ty,...,T, in E. such that the
operators QQg, ()1 and ()5 are invariant under the parallel translations on E. by the
vectors 7; for j =1,... ,n. Then 'Q1 = Q7 , 'Q2 = Q5 and [Q1,Q2] =0

Proof. First note that *(P~) = (*P)~ for any differential operator P. Put S =
Q1 —'Q7. Then [Qo,S] = —[Qo,'Q7] = [Qov, Q1] = 0 and Lemma 3.1 proves
that o(5) is a polynomial function of (z, &) and hence the invariance by the parallel
translations shows that o(S) does not depend on z. Combining this with {S~ = —S,
we can conclude S = 0 and therefore 'Q; = Q7 .

Put R = [QDQQ]' Since [QO;R] = [Qh [QO;QZ]] - [QQ; [QO)QIH = 07 we have
similarly ‘R = R~ and 'Q2 = ;. Then

R="[Q1,Q2]” ="[Q7,Q5] =['Q3,'Q1] = [Q2,@Q1] = R,

which proves the Lemma. [
The following proposition also gives a uniqueness for the commuting algebra.

Proposition 3.6. Let Py,..., P, be the commuting differential operators corre-
sponding to the Weyl group of type A,,, B, or D,,. Suppose the coefficients of P;
are holomorphic on a connected open dense subset of E. and moreover suppose
there exist linearly independent vectors 71, ... ,T, of E. such that P; are invariant
under the parallel translations by 7;(i, j =1,...,n). Let Q be a W-invariant dif-
ferential operator with the same invariant property under the parallel translations.
Then the condition [Py, Q] = 0 implies Q € C[Py,... , P,].

Proof. This is a direct consequence of Lemma 3.5 and Proposition 3.3. [

Remark 3.7. In [OP3, §5 Proposition 1] and [OP2] it is claimed that W-invariant
differential operators which commute with P; are completely determined by their
terms of highest degree. But it is incorrect, which is clear by example (8.18). Note
that if § = —2f in (8.18), it corresponds to type I (v(q) = ¢2) for the root system
By under the notation in [OP3]. The same incorrect argument is used to prove the
pairwise commutativity of Ps, ... , P, (cf. [OP3, §5 Proposition 2 and Appendix EJ).

The following lemma will be used in the proof of Theorem 6.5.

Lemma 3.8. Let p(x1,...,2n,&1,.-.,&n) = Z|a|:3pa(w)§°‘ be a homogeneous
polynomial of £ such that p(x,0) is symmetric and invariant under the coordinate
transformation (z1,22) — (—1, —x2). Suppose {>_ &2, p(x,£)} = 0.
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i) If n > 4, then p(x,&) = 0.
ii) If n > 2 and p(z, 0) is invariant under the coordinate change x1 — —x1, then

p(z,€) = 0.
iii) If n = 4, then
(3 37)

1 1
C ) g 56235337451 - 2,$1$3334f152 30 = (@] + 23 + 25 — 23)x4616283)
geS, )

with a suitable constant C', where g naturally acts on suffices.

Proof. Since p,(z) are polynomials by Lemma 3.1 i) and the assumption implies
2 &imr 8” = 0, we have
$ §

2
—T1,T3 — axlw" axn__nx].)gl?"' 7£n)

&1 &1

with a suitable polynomial function h of (2n — 1)-variables. Moreover p,(x) are
polynomials of = with degree at most three because p(z, §) is a polynomial of £ with
degree at most three.

Put
2,0) =Y ayll+> a6+ > afi&d

it i<j<k

p(ﬂf,f) = h(:l}2 -

with polynomials a}, a3, and aﬁl of x. Then the coefficients of &1, £3&;, €263,
£1€2€3 and &16,83€, of the equation {3 Y &2, p(x, &)} = 0 show

61@3 - 0
820/3 + 81@21 — O,
(3.38) Bras; + a3} =0,

Oza53 + O2a33 + 01a123 = 0,

123 124 134 234
0sa17] + O3a17] + O2a17] + O1ajy; = 0,

respectively.
Note that the assumption of the invaria,nce says that a} changes into —aj under
(r1,x2) — (—x1, —T32). Moreover a} is symmetric for (za,...,x,) and degai < 3.

Hence the condition dya3 = 0 proves a3 = 0 in the cases i) and ii) and a3 = Czaxzzy
with C' € C in the case iii).

Suppose the invariance in ii) and suppose n > 2. Then 81(121 = 03a3? = 0 and
we can put a21 = zo¢(x3,. .. ,T,) because a 2 changes into a21 under xo — —Io.
But 2¢ = 0yad? + 01431 = 0 and therefore a%? = 0. Thus 9;ai?? = 0 and the
invariance under T, — —x1 proves aiys = 0.

It is easy to check that (3.37) satisfies {> &2, p(x,£)} = 0 in the case n = 4 and
hence subtractlng the right hand side of (3.37) from p(z, £), the proof is reduced to

the case a} = 0.

Suppose n > 4 and a} = 0. Then we have similarly ai? = z2¢(z3,...,1,) by
the invariance under (z1,z2) — (—z1, —x2), which implies a21 = 816&%:15 =0 asin
the proof of ii) and we have aji} = (C + C'(x] + - -- 4+ 22))a4 - - - @, because aif;

changes into —ai?? under (z1,24) — (=21, —x4). Here C' = 0 if n > 4. Thus we

have a}?3 = 0 by the last equation of (3.38). O
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4. DETERMINATION OF THE POTENTIAL FUNCTION - TYPE A,

In this section we consider the case when the root system is of type A,,. We have
W -invariant differential operators

A1 = Z ai)

1<i<m
(4.1) Ag = Z 0,0; + R(z),
1<i<j<m
A3 = Z azajak + Z a’lﬁz + ag
1<i<j<k<m 1<i<m

satisfying [A1, Ag] = [Ag, Ag] = [A1,A3] = 0 and *A; = (—1)A; for i = 1,2 and
3. Theorem 2.1 says the existence of an even function u(t) with

(4.2) R(x) = Z u(z; — ;).

1<i<j<m

Moreover we have

Lemma 4.1. There exist a constant number C' with

Ag — CAl = Z ala]ak + Z Z U(LI?]' — a:k)&

1<i<j<k<m i=1  jk#i
1<j<k<m

Proof. We remark that if

(4.3) al = Z u(z; — k)

the functions a! satisfy (2.4) and (2.5). Hence put

a, =al — Z u(zr; — k).

J k#1
1<j<k<m

Then the commutativity implies
Oy = 9;ai + 9@, =0 for 1<i<j<m

and by Lemma 2.2 we have 9;0,a; = 0 for j, k=2,... ,m. Since aj is symmetric
for (z2,... ,2m),

ai =C+C(za++xm)

with constant numbers C' and C’. Now the equation >, d;a; = 0 means C’ = 0.
Since Ag is skew self-adjoint, we have Lemma 4.1. [
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Lemma 4.1 assures that we may assume (4.3). Then the above proof shows
ord [A2, As] < 1. Since [Ag, As] is self-adjoint, we can prove that the condition
[Ag, As] = 0 is equals to

(4.4) > 00;0eR+ D> aioR=0

1<i<j<k<m 1<k<m
by the 0-th order term of [Ag, As]. Applying (4.2) and (4.3) to (4.4), we have

(4.5) g{( > u(mu—x,,))(?k( > u(xi—xj)>}20.

p, vk 1<i<j<m
1<pu<v<m

Since the term containing u'(z; —x;) with ¢ < j in the left hand side of (4.5) equals

( S ulm—m)— Y ulm— %))ul(%‘ - ;)

u<v, pu,v7#i u<v, w,v#j
= < Z u(zy — x5) + Z u(zy — xj) + Z u(x; — xk)>5’lu(:cl — ;)
k<i<j i<k<j i<j<k
+ ( Z u(zy — x;) + Z u(z; — x) + Z u(z; — xk)> Oju(x; — xj),
k<i<j i<k<j i<j<k
we have

Proposition 4.2. Under the above notation the necessary and sufficient condition
for [Al, AQ] = [AQ, Ag] = [Al,Ag] =0 equa]s

1<i<j<k<m

with

(4.7) Uijr(u) = u(z; — x1)0; (u(xl —x;) +u(z; — xk))

Now we solve equation (4.6) for u:

Theorem 4.3. Let u(t) be an even holomorphic function for 0 < |t| < 1 satisfying
(4.6). Then there exist complex numbers Cy and Cy such that

(48) u(t) = Cl p(t’le, 2002) + Co

Here p(t|2w1,2ws) is Weierstrass’ elliptic function with primitive periods 2w; and
2&)2.
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Conversely for complex numbers Cy, Cy, w1 and we, the function given by (4.8)
satisfies (4.6). Here wy and wy are complex numbers which are linearly independent
over R and allowed to be cc.

Proof. Note that p and ¢’ are even and odd functions, respectively. Then it is clear
from the addition formula (cf. [WW]) of p-function

p(x) ¢'(x) 1
(4.9) | p(y) '(y) 1|=0 for complex numbers z,y and z with z+y+2z =0
plz) ¢'(z) 1

that the function u given by (4.8) satisfies U;jx(u) = 0 and therefore it is a solution
of (4.6).

Let u(t) be an even holomorphic function for 0 < |t| < 1 satisfying (4.6). Put
s=ux; —xj and t = z; — x;, and suppose 0 < |s| < |[t| < 1. Then

Uiji(w) = u(t) (v'(s) + v/ (s +t)) + uls +t)( —u'(s) + ' (t))
+u(s)(— /(s +t) — /(1))

(4.10)
= — ((u(s + 1) —u(t))u'(s) + (u'(s +t) + u’(t))u(s)) + F(s,t)

with a function F'(s,t). Here we note that F'(s,t) is holomorphic function of s at
the origin if ¢ is fixed with the condition 0 < |¢| < 1.

Now put s = 21 —x2 and t; = x;_1 —x; for j = 3,... ,m. Fix complex numbers
t3,...,tm with 0 < [t;| < 1 and suppose 0 < |s| < |t;| < 1 for j = 3,...,m.
Then condition (4.6) implies

(411) =3 ((U(8+ts +o ) —ults - ) (s)
+ (u’(s +it3 4+ t5) + u’(tg 4+t tj))U(S)) = f(s)

with a holomorphic function f(s) on a neighborhood of the origin. Now we may
assume the number

C:Zu/(t?)"’"“"tj)
§=3
is not zero for generic ts,- -+ ,t,, and from (4.11) we have
(4.12) —(C +c1(s)s)su’(s) — 2(C + ca(s)s)u(s) = f(s)
with holomorphic functions ¢1(s) and c2(s) on a neighborhood of the origin. Since
the origin is the regular singular point for the differential equation (4.12) for u and

its characteristic exponent equals —2, the origin is at most a pole of order 2 for u.
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First suppose u(s) is holomorphic at the origin. We may assume «(0) = u/(0) =0
because u + C’ is also a solution of (4.6) for C’ € C. Then

Uijr(uw)] = u(w; — x;)05u(x; — x7) + u(x; — x7)0u(r; — 7))

= -0, <u(acZ - xj)Q),

Uiji(u)

Ti=T;=Tk

and

Yo U@y = Y U@y,

1<i<j<k<m 1<j<k<m

- (m; 1) 01 (u(xl - :1:2)2> .
d

Hence < (u(t)?) = 0 and therefore u(t) is constant, which implies u = 0.

Therefore replacing u by C’u + C” with suitable C’,C” € C, we may assume
u(t) =t7% + Cot® + Cyt* + Cot® + - --

with complex numbers C;. Then under the same notation in equation (4.10) we
have

Uijr(u) = %u(t} (u(s+1t) —u(s)) — %u(s) (u(s+1t) —u(t))

u® u®
= %u(t}{ (u(t) + 1!(t)s + 2!(t) s*+-)
(4.13) — (572 +0232+C434+...)}
0

—a{(82+0282+0484+"')

(U(t) (2)(15) (3)(,5)
u u 9 U 3
TR TR S T +"')}‘

The coefficient of s72 in the expansion (4.13) equals —u("(¢) 4+« (t) = 0 and
therefore (4.13) is holomorphic at s = 0.
The coefficient of s° equals

0 ) d 5 2 4 o 1 -5
_ R - . — —(=4! 4! R
tu(t) 6u (t) t(t + Cgt + C4t + ) 6( t° 4+ C4t + ),

which is holomorphic at the origin and takes the value zero at the point. Thus we
have

- Z {zu(ﬂcz — ap)u (xg — x1) — éu(g) (z2 — xk)}

T1=T2 2<k

+ 2 Z Ugjk(u) + Z ka(u)

2<j<k<m 2<i<j<k<m

Y. Uinlu)

1<i<j<k<m
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and by the induction on / it is easy to show

L) )

1<i<j<k<m
=(1+2+---+((—-1)) Z {2u(zy — mp)u/ (2 — x) — éu(g)(:z:g —xp)}

Tg_1=T¢

<k
+/ Z Ugjk(u) + Z Uijk(u).
L<j<k<m I<i<j<k<m
When ¢ =m — 1, we have
-2 -1 1
(m )2(m ) (2u(:vm_1 — T U (X1 — Tim) — EU(B) (Tpm—1 — :cm)) =0
and thus

2u® = 12(u?),
2u® = 120% — ga,
2u'u" = 12uu — g’
(u")? = 4u® — gyu — g3
with suitable complex numbers g, and g3. Since u has a pole of order 2 at the

origin, this differential equation implies that u is Weierstrass’ elliptic function. [J

Remark 4.4. The claim of Theorem 4.3 follows from the commutativity of the oper-
ators A; for ¢ = 1, 2 and 3. In fact we does not use the existence of the commuting
operators A; of order > 3 for the proof.

5. CONSTRUCTION OF COMMUTING FAMILIES - TYPE A4,

As in the previous section we assume the root system is of type A,, and we shall
construct a commuting family of differential operators A; for j =1,... ,m =n+1.
In fact we shall prove the operators

(5.1) Ar= Y Y {( > H“(W’f”“»)Ha%j}

0<e<k JC[1,m] AEX(J;0) a€A JjeJ
| J|=k—2¢

form a commuting family for any function u given by Theorem 4.3. Here

Y(J;4) = {{Bl,... Be}s B, ..., Beej (j € J) are orthogonal
to each other and f3; € E+}

for J C [1,m] and we define

Z Hu((a,x})zl and Haiszl.

AEX(J;0) a€A j€D
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We may write them in the following way:

(5.2) = > > #ng_%) 9(Lie,k—20)

0<e<k ge6.,
by putting
7
3$21‘+13I2i+2 . '8$2i+j '

(53) Li,j = u(a:l — $2)u($3 — .174) s U(in_l — £L’2@')

Here &,, is the permutation group of the set [1,m] = {1,...,m} and we denote
G(i,§) = {9 € &m; g(Lij) = Lij}.
Lemma 5.1. These operators satisfy

(54) [Ak,Al] = [Ak,A2] = O, tAk = A]: = (—1)kAk for k= 1, ..,

Proof. Note that [Ag,A;] = 0 and ‘A, = A, = (=1)*Aj are clear by defini-
tion. Furthermore it is easy to see that (5.1) implies that the commutator [Ay, Ag]
vanishes except for the terms 0;, ---9;, with j1 < ja < -+ < js.

Suppose Q = [Ag, Ag] # 0. Since 'Q = (—1)¥71Q, the order of Q is odd if k
is even and even otherwise. Let k — 2N — 1 be the order of () with a nonnegative
integer N and put I = [k — 2N, m] and J = [1,k — 2N — 1]. Then the coefficient of
O+ Og—an—1 of [Ag, As] equals

(5.5) i > 2)0; Y u(w, — 1)

i=k—2N AeX(JU{i};N) v<p
k—2N—-1

POETONED DENENG

AeX(J\{i};N+1)

> Y we( S -m)
i=k—2N AeX(JU{i};N) v#i
k—2N-—-1 m

+ Y > S uaa)d (@ - ay)

i=1 j=k—2N A€X(JU{j};N)

by denoting

(5.6) up(z) = [T u{a.2))

Hence for k — 2N < v < p < m, the sum of the terms in (5.5) which contain
v (x, — x,) equals

(5.7)

( Yo w@ - )] u/\(x))u'(xy — )

AeX(JU{r};N) AeX(JU{u};N)

= Z Z up(x) (U(% —x,) —u(z; — wu))u’(xy - xu)-

ieN\{v,u} AeX(Ju{p,v,i};N—1)
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Since we have

> >, <U(1‘z’ —x,)0u(z, — 1) +u(z; — 2,)0,u(z, — xu)) —0

k—2N<v<p<m iel\{p}

from the addition formula (4.9), the terms (5.7) cancel out if we sum up them for all
v and p satisfying k —2N < v < p < m. On the other hand, in the expression (5.5)
it is easy to see that the terms u'(x; —x,) for i € [k —2N,m] and v € [1,k—2N —1]
vanish. This assures the vanishing of the term of order £ — 2N — 1 of ), which
contradicts the assumption. Thus we have the Lemma. [

Now we can state our main theorem when the root system is of type A,.

Theorem 5.2. i) For Weierstrass’ elliptic function p(t|2w1, 2ws) and any complex
numbers Cy and C'y we put

(58) u(t) = C’lp(t]2w1, 2LU2) + C().
Then the differential operators Ay given by (5.1) satisfy

[AZ,AJ]:O for 1§2<]§m,

(59) A= A7 =(-1)'A; for 1<i<m.
Here we note that wi and wo are allowed to be infinity.

ii) Let Q) be a W-invariant connected open neighborhood of the origin of C™.
Let D(A,,) be a commutative algebra generated by suitable W -invariant differential
operators whose coefficients are holomorphic on an open dense subset ' of Q such
that Q\ Q' is an analytic subset of Q. Suppose D(A,,) contains the operators

(5.10) ( Z a—ka) + Ri(z,0) for k=1,--- ,m.

L. - - )
1<iy<-<ig<m 4 Lk

Here Ry(x,0) are differential operators of order < k — 1. Furthermore suppose
Ri(z,0) = 0, ord Ra(z,0) < 0 and ord R3(x,0) < 1. Then D(A,,) coincides with
C[A4,...,A,,] which is determined by a suitable function u of the form (5.8).

Proof. Owing to Theorem 3.2, Proposition 3.3, Theorem 4.3 and Lemma 5.1, we
have only to prove the commutativity of A;. But it follows from Lemma 3.5 and
the analytic continuation for the parameters of p(t). O

Remark 5.3. Tt is clear that the commuting algebra C[Aq, -, A,,] in Theorem 5.2
stays invariant even if we change the constant number Cj in (5.8).

Furthermore it is easy to show that if we consider Cy as an element which
commutes with any differential operator and consider the differential operators
A, and Al = [Ay,,x1 + -+ + ] defined by (5.1) as a polynomial of Cy, then
their coefficients of C¥ for k = 0,1,... form a complete set of generators of the
commuting algebra.
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6. A FUNCTIONAL DIFFERENTIAL EQUATION SATISFIED
BY THE POTENTIAL FUNCTION - TYPE B,, AND D,,

Hereafter in this paper we shall study the case when the root system is of type
B,, with n > 1 or of type D,, with n > 3. In this section we examine W-invariant
differential operators P; and P, of the form

Pr= ) 07+ R(),

1<i<n
1<i<j<n 1<i<n

Po= > RF+ D ahdi+ > dh0i0i+ > aidi+ag
1<i<j<n 1<i<n 1<i<j<n 1<i<n

which satisfy [Py, P;] = 0 and ‘P = P.
The term 0; of [Py, Py] gives

(6.2) > 02ah +20,a0 = Y 20,00R+2a50;R+ > al{0,R.
1<v<n v#£i v#£i
1<v<n 1<v<n

We may assume that a} and aijl are given by (2.21). Furthermore we may assume
v = 0 if the root system is of type D,,, which follows from the argument in the last
part of §2.

The condition ! P, = P, is equivalent to

’ 1
(6.3) al = 3 Z (v (z; + ) + ' (25 — 2,,))
1£z;/één

and from (6.2) we have

(64)  20,00= 20:0}R ~ Y Oai +2ai0:R + ) af{0,R

o - Vi
=" (W (s + 2,) + u® (@ - 2,))
Vi
+2 < V%Zi (u(@y + 2) +ulzy — 24)) + ; ”(x”))
. <§Z (v (z; 4+ 2) + /(25 — 20)) + U’(%’)>
1 ; { (u(xi +2y) —u(ri — 33'1/))
. (; (W' (2 +2) — /(2 — 20)) + “/(%))) }
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Theorem 6.1.

i) Under the above notation the condition [Py, P;] = 0 is equivalent to the
existence of a W-invariant function aq satisfying (6.4).

ii) The compatibility condition of the integrability of equation (6.4) for ag is

(6.5)
((n —2)(u (21 + 23) + " (21 — 3)) + v"(x1)> (u(ml + o) — ufzy — x2))

+3 ((n ) (a1 + ) + 2/ (1 — 3)) + v'(ml)) (u'(x1 )+ (1 — g;Q))
9 <(n — 2) (u(ws + 25) +ulan — x3)) + v(:z:l)) (u”(ml T ag) — (a1 — x2)>

F(n-2) (u”(ml T x5) (21 — x?,)) (u(m + 23) — uler — xg,))

_ ((n 9 (u (w2 + w5) + 0 (w2 — 73)) + U"(xg)) (u(ml b ) — u(zs — m))

+3 ((n — ) (! (02 + ) + 2/ (02 — ) + v'(acg)) (u (21 + 72) — (21 — g;Q))
9 <(n — 2) (u(ws + 75) + ulws — 73)) + v(xz)) (u”(a:l T ag) — (w1 — )

+(n—2) (u"(:ﬁz +as) — (2 — xg)) (u(ajg +a3) — uwy — m)).

Proof. Suppose there exists a W-invariant function satisfying (6.4). Since the com-
mutator satisfies '[Py, Po] = —[P1, P»], the order of [Py, P] equals 1 or 3 or 5 if it
is not zero.

It is clear that the order is smaller than 5. Furthermore equations (2.21) and
(6.4) assure the vanishing of the 3-rd and and first order terms, respectively. Hence
we have the first statement of the theorem.

Note that the function R and the operator Y, a}d; are symmetric with respect
to the coordinate. Therefore the compatibility condition for equation (6.4) equals

(6.6) WU (1,10, 7") = 01U (22,21, 2)

by putting

(6.7)  Ulwr,zz,2') =) 20102R — 282 +2a300 R+ al{o,R.
v#1 v#1
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with 2/ = (x3,... ,2,). Defining a symmetric function

(6.8) S(x) =Y <u(2)(xu +a,) +u?(z, —x,)+ 2v(xu)v(xl,)>

+ ( Z (u(zp + ) + ulz, — a:,,)))
+ L (u(zp + z) — ulzy, ﬂv,,))2
+ QZv(xk) ( Z (u(zy +20) — ulzy .CL’Z,))),
k u<v, p,v#k
we have
(6.9)
U(zy,20,7") — 015(x) = Z (u(zy + ) —u(zy — z,))0 (z)
+2) (W1 + ) + (21 — 7)) v(zy)
_ 2(2 (u(z1 + 2y) + ulzy — x,,))) (Z (v (21 + ) + 0/ (21 — my)))
+ u(xy +x,) —u(ry — ) u(z, + ) —u(z, — )
P (2 )
Then
(6.10)

62U(x1,x2,x’) — 81625(1')
= ( u(zy + x2) — u(:z:l — 22))v" (22 )

T1 4 22) + U (21 — x2))V'(
! )

Ju(x

T+ T2) —u ($1 - 902))( (561 + x2) + u' (@1 — x2) + 31W(l‘1,96/))
u(z1 + x2) + u(z1 — 22) + W1, 2")) (v (21 + 22) — v (21 — 22))
+ (v (z1 + z2) + U (21 — 22)) D2 W (22, 2)

+ (u(x1 + 22) + u(z1 — 22))BW (22, 2")

+ Z u(ry +,) — u(r) — CUV)) (u//($2 +ay) — (2 — x,,))
v>2

I1+CC2 $1—9€2

+3(u'(
+2(u
( /
= 2(u(

by putting

(6.11) W(xy,2') = Z (u(zy + ) + u(zr — x,)).

3<v<n
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Denoting

(6.12)
Q(z1,22,2")
= (OFW (21, 2") + 0" (1)) (u(z1 + 22) — u(z1 — 32))
+ 3(nW (21, 2") + 0" (1)) (v (21 + 22) — v/ (21 — 22))
+2(W(z1,2") +v(z1)) (v (21 + 22) — (21 — 22))

+ Z (v (21 + 2) — " (21 — ) (u(z2 + 1) — u(z2 — 3)),
v>3

the compatibility condition (6.6) can be stated as
(6.13) Q(z1,2,2") = Q(x2,21,2").

Then if we put x3 = x4 = --- = x,, we obtain (6.5).
On the other hand, if (6.5) holds, the function

(614) D($1,.T2,.T3)

= (u”(acl +w3)+u (1 — x3 ) u(xy + x2) —u:z:l—xg))
)

(u(
( /

+ 3 (v (@1 + x3) + v/ (21 — 23)) (W (21 + 22) — U/ (31 — 32))
+ 2(u(zy + 23) + u(zr — x3)) (v (21 + 22) — U’ (21 — 22))
+ (v (21 + @3) — v (@1 — 23 )(u(a:2+x3 — u(z2 — x3))
—(U//(332+333)+U (22 — 23)) (u(z1 + 22) — u(z1 — 22))
—3(u’(m2+a:3) xg—xg))( "(z1 + x2) + ' (21 —mg))
— 2(u(wa + x3) + u(zs — x3)) (0’ (21 + 22) — U’ (31 — 32))
— (" (w2 + 23) — u" (22 — x3)) (u(z1 + 23) — u(z) — 23))

does not depend on z3 and therefore (6.13) holds. O
Remark 6.2. If we put
Az, 23) = (n — 2) (u(z1 + 3) + u(zy — 3)) + v(21)
U(xy,22) = u(xy + x2) — u(zy — x2)
B(x1,x9,23) = (n — 2) (u(a:l +x3) —u(x; — xg)) (u(xz +x3) —u(xs — :1:3))

8 8U(x1,x2) 814(.11)1,:173)
a.’lfl (QA(:C17 3) a.’lfl + a.’lfl U(x17x2>

4 83(331,232,233))’

C(.fﬂl, Z2, .fC3)

(91'1
condition (6.5) is equivalent to
(615) C(l‘l,il,’Q,xg) :C(CL'Q,ZUl,iL’g).

When the root system is of type By, we can state our result in this section as
follows.
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Proposition 6.3. Suppose the root system is of type Bs.
i) In Theorem 2.1 we can choose functions u(t), v(t) and T(x,y) such that

R(z,y) =u(zx+y) +u(z —y) + v(x) + v(y),

(6.16)

23%T($, y) =" (@)(ul@ +y) —ulz —y)) +2v(@) (v (z +y) —v'(z —y))
and
(6.17) T(z,y) =T(y,x).

ii) Assume that for given functions u(t) and v(t) there exists a function T (z,y)
satisfying (6.16) and (6.17). Then the following two differential operators are com-

mutative.

pl—%+%—|—u(:c+y)—|—u(a:—y)+v($)‘H)(y),
4 2 2 2

PQ:—ﬁx(z&yQ +o(y )%‘FU( )5a_y2+(u(x+y)_u(x_y))8iay

1 ’ / 0 1 / / 0

+§(u(m+y)+u($_y))%+§(u(x+y)_u(m_y))8_y
(( -l—y)—u(a:—y)) +u//(x+y);—u”(x_y)+v(x)v(y)+T(m,?J)
{/U —ulx — 2 2 2
< et DY) 2 4 vle) o o)
+T(x

iii) We can choose functions u(t) and v(t) in Theorem 2.1 such that

(6.18)
;_;(v@)(umy)—u(w— ) 63( §(u<w+y>—u<w—y>))
o

2
— 5 (20 e+ 9) — uto = 1))
iv) If a pair (u(t),v(t)) = (uo(t),v0(t)) is a solution of (6.18), then the pair
(u(t),v(t)) = (Crug(Ct) + Ca, Clug(Ct) + C}) for complex numbers C, Cy, Cf, Cs
and CY with C # 0 and the pair (u(t),v(t)) = (UO(\%), uo(v/2t)) also satisfy (6.18).
Proof. The first and the second claims follow from the proof of Theorem 6.1. In fact
putting x = x9 and y = x1, they follow from (2. 21) (6.3), (6.4), (6.8) and (6.9) and
the fact that the right hand side of (6.16) equals -2 35 (2a0—S— (u(z+y)—u(z—y))?).
The third claim is obvious from Remark 6.2 and the first pair (u(t),v(t)) in iv)
clearly satisfies (6.18).
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The last pair in iv) is obtained by the fact that the coordinate transformation

1 1
E(l‘—y)v Y = ﬁ(l’ﬂLy)

gives an automorphism of the Weyl group Bs which is identified with a group of
linear transformations of R2. In fact, we can rewrite (6.18) in the form

(v(@) —v(y)u" (z +y) + 3 (v () — ' (W) v (x + y) + 2(v"(x) — " (y))ulz + y)
= (v(z) —v(y))u"(x —y) + 3('(x) + ' (y))u' (x — y) + 2(v" (x) — " (y))u(z — y)

and the transformation (6.19) proves the second claim. O

(6.19) X =

When the rank of the root system is larger than 2, we have

Proposition 6.4. i) If the root system is of type D,, with n > 3, then the function
u in Theorem 2.1 satisfies (6.18) with v = u.

ii) If the root system is of type B,, with n > 3 or of type D,, with n > 3, then
we can choose the function u in Theorem 2.1 such that

(6.20)
ul (@) (u(z +y) — u(z - y ) + 3u® (z) (u (2 + y) —uM(z —y))
+2u () (u? (2 + y) — u® (@ — ) + 4 (2)uM (y)
= u(y) (u(z +y) — u(z - y)) +3u® (y) (WM (@ + y) + vV (@ —y))
D)+ y) 1D (e - ) + D (O e).

iii) Let u(t) and E(x,y, z) be functions which satisfy

(6.21)

(%E(x, Yy, 2) = 2<u(:ic +2) +u(z — z)) <%(U($ +y) —ulr - y)))

# (2wt +2) 4t = 2) ) (ute ) - e )

+ %(u(m—l—z)—u(m—z)) u(y+2) —uly —2) ),
(

(6.22)
E(z,y,z) = E(y,x, z).

Then D(z,y,z) = 0 for the function D defined by (6.14).

Furthermore if u(t) is holomorphic on €Y, then (6.20) is also valid.
Proof. The first claim is clear by putting v = 0 and 3 = 0 in (6.15).

Applying ;—% to (6.15) and moreover putting 1 = z, zo = y and x3 = 0, we
obtain (6.20).

Since D(x,y,2) = %E(m,y,z) — G%E(y,x,z), equations (6.21) and (6.22) imply
D(z,y,z) = 0 and therefore we obtain (6.20) in the same way as the proof of the
claim ii). O

For the uniqueness of our commuting family we have the following
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Theorem 6.5. Let {Py,...,P,} be a family of differential operators of the form
(0.2) which satisfies (0.3). Suppose the root system is of type D,, with n > 4 or
of type B, with n > 2. We may assume that the principal symbol of P, equals
dici 51-25]2- and that u and v in (2.20) satisfy (2.21). Then the commuting algebra
C[Py, ..., P,] is uniquely determined by the pair (u,v). Here we put v =0 in the
case of type D,,.

Proof. If P, = P,, we have the theorem from Theorem 3.2 and the proof of Theo-
rem 6.1. Put Pp =}, . 9797 4+ Ry. Let o(Ry) denote the principal symbol of Rj.
Then we have {>" &2, 0(R3)} = 0.

Suppose ord Ry = 3. Since Ry is W-invariant, Lemma 3.8 implies that W is of
type D4 and o(R3) equals the right hand side of (3.37) with C' # 0. Then we may
assume

Py = 01020304 + Ry

with ord Ry < 3. Let o3(R4) denote the symbol R4 of order 3. Note that [Py, Py| =
[P, Py] = [Py, P4y] = 0. Hence o3(Ry) = C'0(R3) with some C’ € C and by the
equality [Py — C' Py, P,] = 0, we have

{ao&a—-C' ). ge,

1<i<j<n

1 1 1
C Z g(ixzxgmff - 51’1:1:33345%52 — 5(:1}% + 23 4 23 — xi)x451§2§3)} = 0.
9€G,

Then the coefficients of £&5 in the above shows —2CC’x3x4 = 0 and hence C’ = 0.
The coefficients of £1£,¢3 prove —Cxoxs = 0. This leads the contradiction because
C #0.

Thus we have ord Ry < 2. Put Q = P, — 'P,. Suppose @Q # 0, then ordQ = 1
and [P1,Q] = 0. But it is easy to see that the equation {>_ &2, 0(Q)} = 0 never
holds for differential operator of order 1 if o(Q)(z,d) is symmetric. Thus we can
conclude P, =tP,. [

7. SOLUTIONS OF THE FUNCTIONAL
DIFFERENTIAL EQUATION - TYPE B,, AND D,

In this section we want to solve the functional differential equations (6.18) and
(6.20).

Lemma 7.1. i) Suppose u(t) and v(t) are holomorphic functions for 0 < |t| < 1
satisfying (6.18). Then if u’ # 0 and v’ # 0, the origin is at most a pole of order 2
for u(t) and v(t).

ii) Let (u(t),v(t)) be a meromorphic solution of (6.18) defined on a neighborhood
of the origin. Consider the Laurent developments

u(t) = Upth + Uppot™ 2 + Upgat™ ™

7.1
- o(t) = Vit" + Viot ™ + Vgt 4
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Here U; € C, V; € C, and k and ¢ are nonzero even integers. If Uy # 0 and
Ve # 0, then (k,?) equals (—2,-2), (—2,2), (=2,4), (=2,6), (2,2), (2,—2), (4,-2)
or (6,—2).

Proof. Using the Laurent development

W) u®) )
TSR

(7.2) u(x+y)—u(93_y):2( 1! y+ 3!

with respect to y, it follows from (6.18) that

2 uD (g u® (z
(7.3) -i@@<(b+ ”f+w)

1! 3!

WD) u® (e
b (s )

2 u (z u® (z
0 (v(y>( 1!< ) ( ) 3 ))

To prove i) we fix  with 0 < |z| < 1 and «/(z) # 0. Suppose 0 < |y| < |z|.
Then (7.3) implies

fx,y) = y(u'(x) + yea(z,y) 0" (y) + 3(u' (x) + yei (2, y))v'(x) + co(z, y)v(x)

with suitable holomorphic functions f(z,y), co(x,y), c1(z,y) and cao(z,y) of y de-
fined on a neighborhood of the origin. Since this equation for v has a regular
singularity at the origin with the characteristic exponents 0 and —2, the origin is
at most a pole of order 2 for the solution v.

On the other hand Proposition 6.3 iv) assures that the origin is also at most a
pole of order 2 for u and moreover that we may suppose ¢ > k to prove the second
part of the lemma.

Suppose £ > 4 and ¢ > k. Then the coefficients of y in equation (7.3) shows

82

da?

0

(v(:):)u(l)(x)) + %(v(x)u(z)(x)) = 0.

Expanding this into the Laurent series of z, the coefficients of z**¢=3 proves
k(k+£€—1)k+£—-2)VoUi +k(k—1)(k+£—-2)V,U, =0

and hence we can conclude that k equals 2 — ¢ or 1 — %, from which we have
(¢, k) = (4,—-2) or (6,—2) because of the assumption. [

Now we want to get solutions of (6.18). Suppose (u(t),v(t)) is a holomorphic
solution of (6.18) defined for 0 < |t| < 1. Furthermore suppose u’ # 0, v’ # 0,
u(—t) = u(t) and v(—t) = v(t). Then Lemma 7.1 assures that we may assume

32



k =+¢ = —2in (7.1). Here Uy may be 0 and V; may be 0. Subtracting constant
numbers from v and v, respectively, we may moreover assume Uy = V; = 0.
Then (7.3) equals

(7.4)
2 u) u®) u®@ u®
a7 g+ v ) 2@ (et Tt ) |
0? B u(©) e
:axay{(—QV_zy 3+2V2y1+4V4y3+---)(Ty+Ty?’%—---)

(0) (2)
+ (QV_QZ/_Q + 2V2y2 + 2V4y4 + - )(UW + %yQ 4. )}

Comparing the coefficients of y' and y? in the above, we have

Lemma 7.2. Under the above notation

2
(7.5) uMy + 24Py = ﬁv_gu(‘l) +2-2%Vou + C4
and
2 2-4!-3
(76) u(3)1)/ 4+ 2u(4)1} = ﬁv_gu(& +2- 42V2u(2) + 1 Viu + 02

with suitable constant numbers Cy and Cs.

Now we give solutions of equation (6.18). The claim i) in Proposition 7.3 is not
necessary for our later purpose if we have Proposition 7.8. The proof of Proposi-
tion 7.8 is similar as that of Proposition 7.3 i). The both proofs are elementary
but the latter one is more complicated. Hence we shall also give the former one
for the reader’s convenience. In fact, it is useful for the calculation in the proofs to
have the aid of a computer with an algebraic programming system such as Reduce,
Maple, Mathematica.

Proposition 7.3. Let (u(t),v(t)) be a holomorphic solution of (6.18) defined for
0 < |t] < 1. Assume that u' # 0, v' # 0, u(—t) = u(t) and v(—t) = v(t).
i) If u = v, then there exist complex numbers As, Ay, Ao, w1 and wy such that

(7.7) u(t) = Ay p(t|2w1, 2ws) + Ag
or
(78) U(t) = A1t2 + Agt_2 —+ AO.

ii) Suppose u(t) = ©(t|2w1, 2ws). Then there exist complex numbers Cy, Cy, Cs,
C3 and Cy4 such that

_ Cap(t)' + Csp()° + Cop(t)® + Crp(t) + Co
o' (t)? '
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On the other hand for any complex numbers C;, there exists a function T (z,y)
satisfying (6.16) and (6.17) if the function v is defined by (7.9).

iii) Suppose u(t) = t* + Ct~? with a complex number C. Then there exist
complex numbers Cy, C7 and Cs such that
(7.10) v(t) = Cy + C1t ™2 + Cot?.
Conversely for any complex numbers Cy, C; and Cy and the function v given by
(7.10), there exists a function T'(x,y) which satisfies (6.16) and (6.17).

Proof. First we shall prove the claim iii). Put
u(t) =at™2+ pt?,
v(t) =t72 + 6t?

with complex numbers «, 3, v and §. Then

(7.11)

_ 5,0 X 2
u(:c—i—y)—u(x—y)—Za—y(—axQ_yQ —|—B:cy)

and

(7.12) V(@) (u(z +y) —ulz —y)) +2v(x) (v (z+y) —u(z—y)) = 22—5
with

(7.13) T(z,y) = 4azx—;ik;i§2y + 4862y,

Hence (6.18) is clear from (6.16) and (6.17).

Next suppose u(t) = t2 + Ct~2. We want to prove that v is of the form (7.10).
Subtracting a suitable function of the form of the right hand side of (7.10) from v, we
may assume ¢ =4 in (7.1). We shall show v = 0, which proves Proposition 7.3 iii).

If C =0, then (7.5) means

9 :
2(tat +2)v(t) =C
with a constant number C’ and therefore we have v = 0.

Hence we may assume C # 0. Multiplying the both sides of (7.6) by 5%, we

get

/

0 _ 4 8 C 6
Cl—to +10)0(t) = 6Vi(C +1%) + 1t

with a constant C’. This proves that

3V,
o(t) = Vat* + Vet + 74758 + Viot'.

Since

60V,
uMy + 20y = 4CV, + (16V5 — 8CVi)t8 + 741&8 + 24V3t*,

equation (7.5) assures Vy = Vg = V39 = 0.
Next we shall prove the claim ii). Suppose u(t) = @(t) and v(t) is given by
(7.10). We shall show equation (6.18). Put

Q(t) = Cut* 4+ Cst> + Cot? + C1t + Cy.

Then we have the following lemma by direct calculation.
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Lemma 7.4.
2Q(s) — Q'(s)(s — t) = 2B(s,t) — (205> + C35)(s — t)*.

by denoting

(7.14) B(s,t) = Cys2 + Cyst> 0 4 Cyst+ 1 2 ;t +Co
Since g satisfies
0 o' (x)
(719) et =0l =) =5 5o - @

(cf. [WW]), we have

(7.16)

)
o' (2) 2Q(p(z) 0, p'(z)
+ o))

oy |0z ' (x)? 7 p(y) — p(z) p'(x)? Ox p(y) —p
_ Q{%? p(z)) — Q' (p(2))(p(x) — p(y))}
dy ) — 9(y))?

Since B(s,t) is symmetric for (s,t), we obtain (6.16) and (6.18).

Next suppose (u(t),v(t)) satisfies (6.18) with u(t) = (). Subtracting a suitable
function of the form of the right hand side of (7.8) from v(t), we may assume ¢ > 8
in (7.1) to prove the claim ii). But Lemma 7.1 assures that v = 0 and we have the

claim.

Now we shall prove i) and hence we suppose u = v. Note that if u is given by

(7.7) or (7.8) and v = u, then u and v satisfy (6.18) (cf. (1.8)).

Use the developments (7.1) and equations (7.5) and (7.6). Then we may assume
k = —2 or k = 2 and moreover Uy = 1 and Uy = 0 by virtue of Lemma 7.1.

Comparing the coefficients of 27 in equation (7.5), we have

J+2
> 4G+ 1)Uz Usjro o
(717) v=-—1

2 .. . . .
— (2 + 1)(2) + 2)(2) + 3)(2) + U _2Usja — 8UUz; = 0

15

for any positive integer j.
First suppose k = 2. Then for 7 > 2 we have

J—1

4(j + 1)U2j + 4](2])U2J + Z 41/(] + V)UQVU2j+2_2V — 8U2j_2 =0.

v=2
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and therefore

j—1
425 = 1) + DUz = =4 v(j + 1)U Usja-2.

v=2

Hence by the induction on j, we have Us; = 0 for j > 2, which means u(t) = ¢2.

Next suppose k = —2. Then in equation (7.17) there only appear U, for v <
27 +4. We can prove that if j > 2, then Usj4 are inductively determined by U,
with v < 2j 4+ 4. In fact, since the term containing Us;4 in (7.17) equals

2(=2)(2] + HYU—2Uzj44 + 2(=2)(=3)U—2Uzj 44 + 2(2j + 4)(2) + 3)Uz;j4+4U—2

2 . . . )
— (27 +1)(25 +2)(2 +3)(2) +4)U_2Uzj44

15
2 . . .
= —E(QJ —2)(2j + 7)(45° + 105 + 9)Uszj 1.4,
we have
1 -2
(7.18) Igw—3XQﬂ+®QM2—6ﬂHﬂUﬂ::E:yw+w—2ﬂbyUm@w_U—2Uﬂ5@_m
v=1

for £ = j +2 > 3. By putting £ =4, 5, 6 and 7 in (7.18), we obtain
3

(719) Ug - HU2U4,
(7.20) U ——2[IU'+ L
. 10 — 13 2U6 13 45
35 11
21 — 2
(7.21) U 3729U2 Uy + 113UAJLUG,
270 75 30
22 = —Ug
(7.22) Ura = 5557 UeU10 + 7555UalUs + 552 Us

respectively. In general, if £ > 4, U, are determined by U, with v < £ and therefore
the solution of (6.19) with u = v is uniquely determined by the numbers Us, Uy
and Us.

Similarly the coefficients of t® and ¢® in (7.6) mean

140 26
7.23 U = ——U2Uy + — U, U,
( ) 12 = 30032 4+353 4Us,

90 50 15
7.24 Uiy = —U,U — U Us + —U?.
(7.24) 14 = g5 2l10 F gagtals F gag s

Now it follows from (7.21) and (7.23) that

(7.25) Uy(U3 — 3Ug) = 0.

Note that Us = U3 if u is a p-function. Since u(t) = p(t) is a solution of

(6.18) and since Uy with £ > 4 are uniquely determined by Us, Uy and Uy, we can
conclude that u(t) is Weierstrass’ elliptic function if U2 = 3Us.
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Hence to prove the proposition we may assume U3 # 3Us. Then we have Uy = 0
and Uyg = 2 U,Us by (7.20). Combining this with (7.22) and (7.24), we get

(7.26) Us(U2 — 3Ug) = 0.
Then by the assumption UZ # 3Us we have Uy = Ug = 0 and therefore we can

conclude u(t) = t=2 + Ust? by the same reason as in the case U3 = 3Us. O

Remark 7.5. 1) Suppose u(t) = p(t|2w1, 2ws) and put wg = —w; — wq. If wy and
wo are finite complex numbers, then the condition that v is of the form (7.9) is
equivalent to say that

(7.27) v(t) = Cop(t) + Crpt +wi) + Cop(t + we) + Chp(t + ws) + C}

with suitable complex numbers C{, C1, C4, C% and C} (cf. [WW]).
ii) For complex numbers Cy, Cy and Cj3, the pair

(7.28) (u(t),v(t)) = (Crp(t), Cap(t) + C3p(2t))

satisfies equation (6.18), which follows from the duplication formula for @(t) (cf.

Corollary 7.6. Suppose the root system is of type B in Theorem 2.1.
i) Suppose u = 0. Then (6.18) always holds and our commuting differential
operators are

Py =0Q1+Q2, Po=@1Q2
with
Q; = 07 +v(xy)
for 7 =1 and 2.
ii) The case when v = 0 is also trivial. It corresponds to the case when v = 0 by

the symmetry given by Proposition 6.3 iv).
iii) Suppose

(7.29) (u(t),v(t)) = (at™2 + Bt*, 4t~ + 6t2)

or

Cap(t)* + Csp(t) 4+ Cap(t)? + Crp(t) + Co
’ o' (t)?
Then there exists a commuting algebra C[Py, Py|, where P; and P, are defined by
Proposition 6.3 i) through (7.13) or (7.16).

(7.30)  (u(®),v(t)) = (Ap(t) )-

Now we shall solve equation (6.20). Suppose u(t) is meromorphic at the origin.
We may assume that u(t) has the form given in (7.1).

Suppose k < —2 and U, = 1. Then by using (7.2), the coefficient of 3*~3 of
(6.20) means

((k)(k—1)(k —2)(k —3) + (k)(k — 1)(k — 2)(3 +2))u/(z) = 0
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and therefore we have k = —2.

Hence we may assume k = —2 in the expansion (7.1) of u(t) if we allow Uy = 0.
Furthermore we may assume Uy = 0 by subtracting a constant from u. Then
expanding (6.20) into the Laurent series of y, we have

u(4>{¥y+§ys+...}
+3u(3>{$y+%y3+---}
+4u(4){¥y+§y3+---}
= ((—2)(—3)(—4)(—5)U_2y_6 +4-3-2-1U4+--->{$y+ §y3+---}
+ ((—2)(—3)(—4)U_2y—5 +4-3-2U4y + ){3(? + ?ﬁ + - ) + 2u<1>}
+ ((—2)(—3)U_2y_4 +2Us 4+ 4-3Us3° + - > {2(?% ?yg’ + - )}

- ((—Q)U_zy_S + 2Usy + 4Uyy® + - ) { —~ 2u(3)}.
The coefficients of y and 2 in the above equation imply

5u®u® 4 @y — %um + 144040,

1 2 U_ 2U.
§U(5)u(2) + gu(4)u(3) = F&)u(g) + T2U(5) + 56U,u®) + 960UsuV),

respectively. Integrating the above equations, we have

Lemma 7.7. Suppose a meromorphic function
(7.31) u(t) = U_ot ™2 + Ugt?® + Uyt + Ugt® + - -

defined on a neighborhood of the origin satisfies (6.20). Then it also satisfies the
differential equations

(7.32) %u(m —2u")? — w4+ 144U4u = C
and
_ 1 1 2
(7.33) Uz - Ly ~(u®)? + %u“) + 56U4u® + 960Usu = C’

1080 3 6

with suitable constants C' and C'.

Now the following proposition solves the equation (6.20).

38



Proposition 7.8. Let u(t) be a meromorphic function defined on a neighborhood
of the origin. Suppose u(t) satisfies (6.20). Then u(t) is of the form (7.7) or (7.8).
Conversely any function u(t) of the form (7.7) or (7.8) satisfies (6.20).

Now we prepare

Lemma 7.9. Let u(t) be a function of the form (7.7) or (7.8). Then D(x1,x2,x3) =
0 with the function D(x1,x2,x3) defined by (6.14).

Proof. First suppose u(t) is given by (7.7). Then Theorem 5.2 assures the existence
of the commuting algebra D(A,,) corresponding to the potential function R(x) de-
fined by u. Since A3 ~ Ds, we have D(x1,x2,23) = 0 from Theorem 2.1 and
Theorem 6.1

Next suppose u(t) is given by (7.8). Put

(7.34)
2x2y2 —|—ZL‘222 —|—y222
(@2 —y?)?(a® — 2%)(y* — 2°)

E(z,y,z) = SA%

Csad 20242 + 1222 + 4222 52 52
142 (22 — y2)? 72 — 22 Y2 2
+ 16A%($2y2 + 2222 4+ y222)
22 4 42
+ 8AOA1 Y b} + 8AOA2 ($2 + y2).

(z? — y?)
Then we can prove equality (6.21) by direct calculation. Hence Lemma 7.9 follows
from Proposition 6.4 iii). O

Proof of Proposition 7.8. First expand equations (7.32) and (7.33) into the Laurent
series of t. Then the coefficients of t1, ¢, 3 #19 ¢!2 and ¢! in (7.32) show

(7.35) 13U_oUyg — 2U,Us — UZ = 0,

(7.36) 195U _oUyo — 14U5Us — 24U,Us = 0,

(7.37) 2159U_y U4 — 90U, Uy — 170U, Us — 105U2 = 0,

(7.38) 2888U _oUys — TTUU o — 1532U4U0 — 202UsUs = 0,
(7.39)  20070U_Uyg — 364U5U 4 — 735U4U 2 — 1020UsU1 0 — 560UZ = 0,
(7.40)

97635U_oUz0 — 1260U2U16 — 2576U4U14 — 3675UcU 2 — 4270UgU19 = 0

by dividing 1680, 560, 168, 336, 112 and 48, respectively.
In general, comparing the coefficients of t2*=6 in (7.32), we obtain
(7.41)
1
Ezk(% — 2)(2k — 8)(2k + 3)(4k? — 16k + 43)U_oUsy
k—2
= (2v)(2v — 1)(4k — 20 — 2)(2k — 2 — 8)Us, Us(—yy—1) — 144U4Us(s,—s3)

=1

N
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for k > 4. This equation implies that U, are uniquely determined by Us,, with
v<kifk>5and U_5 # 0. Hence we see that u(t) is uniquely determined by Us,
Uy, Ug and Ug if U_5 # 0. In fact, from (7.35), (7.36) and (7.36) we have

1
(7.42) Upo = —(2U2U6 +U7),
(743) Uig = 195 (7U2U8 + 12U4U6)
(7.44) Uis = 58067 (36U2 Us + 18U2U4 + 442U,Ug + 273U6>

U, = 1.
Similarly the coefficients of ¢, 3, ¢! and ¢'2 in (7.33) mean

(7.45) 221U _5Uy4 — 20U,Us — 15UZ = 0,

(7.46) 57U_oUy — 3U4Uyg — 5UsUs = 0,

(7.47) 13515U_oUyg — 462U4U15 — 795Us U — 466U2 = 0,
(7.48) 939550 _oUsg — 2184U4 U4 — 3885UU 2 — 4690UsU 0 = 0,

by dividing 1008, 21600, 336 and 144, respectively.
First suppose U_o = 1. Then substituting U4 in (7.45) by the left hand side of
(7.44), we have

30
127

and hence if Uy # 0

3
11U,

Now suppose U_5 = 1 and Uy # 0. Then from (7.43), (7.44), (7.38) and (7.49)
we have

(7.49) Ug = (2U2Us + UpU — 6U3).

3
(7.50) Upp = 50 ————(14U3Us + TUSUZ — 42U,U§ + 44U3Us),
15
(751) Uig = 2431(8U2U6+4U2U4 —13U6)
1
(7.52) Uis = m(lO?SU§U6 + 539U3UZ + 36156U3 U3
4

+ 31443U,U2Us + 4180U; — 118170U;).
Then applying (7.42), (7.49) and (7.52) to (7.46), we have
(7.53) (3Us — U3)(130UF — 14U3Us — TULUZ) = 0.

Now we suppose U_o = 1, Uy # 0 and 3Ug # U3. If Uy = 0, then (7.53) implies
Ug = 0, which contradicts the assumption just we have made. Hence we conclude
Us # 0. Then from (7.53) we have

1

54 2
(7.54) Uy = Uy

——(130UZ — 14U3Us).
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In this case we get

10U2 16U3 45U2 20U3
U = =2, Upp = oo, = —3 = 0 _(TU3 4 65U%),
=g, Ve=gpps V=995 Uie = garmp (T0; +650s)
4 3
U = 8Us (154390U¢ — 5523U3).

147168490, U,
Applying these equations to (7.48), we obtain

19918080

3 2
189307050, U0 B3V ~ U2) =0
and therefore Us = 0 because 3Us # UZ. Then from (7.53) we have UsUZ = 0,
which contradicts our assumption.

Thus we have proved that if U_5 = 1 and Uy # 0, then Ug = %Ug and wu is
uniquely determined by Us and Uy. Since Weierstrass’ elliptic function is a solution
of (6.20), we can conclude in this case that u(t) is Weierstrass’ elliptic function.

Next we assume that U_5 = 1 and Uy = 0. In this case we have

205U _ MUUs o 150,
13 ° 27 195 0 UM T 98067

]
(7.55) Urg = m@swg +19695U5),

(327603 U + 245061U,UZ + 785876U% ).

Ui = (12U% + 91U5),

Ujg = ——
18 7 56330469

from (7.35), (7.42), (7.43), (7.44) and (7.39). Applying these equations with Uy =0

to (7.45), we have
180Us

127
If Ug = 0, then (7.47) is reduced to

(U3 —3Us) = 0.

—47432U%
669 N

by using (7.55) and therefore Ug = 0 and we can conclude u(t) = t=2 + Ust? in the
same way as in the case when U_o = 1 and Uy # 0.
Consider the case when Uy = 0, Us = 3U3Z # 0. In this case (7.46) is similarly
reduced to
—847U3Us
3705

and hence Ug = 0. Then we can similarly conclude that u(t) is the p-function.
Thus we have proved the proposition when U_5 = 1. Since we can reduce the
proof of the proposition to this special case if U_5 # 0, we may assume U_o = 0.
Choose a positive integer ¢ such that Usy # 0 and Uy, = 0 if v < £. Suppose
¢ > 3. Then the equation (7.41) with & = 2¢ + 1 says

20(2¢ — 1)(6£ 4 2)(2¢ — 6)Usz, = 0,
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which implies ¢ = 3.

Hence we can conclude that the condition U_5 = U; = Uy = Ug = 0 assures
u(t) = 0.

If U_g = Uy = 0, we have Uy = 0 from (7.35) and therefore Ug = 0 from (7.45)
and we can conclude u(t) = 0.

Suppose U_s = 0 and Uz # 0. Then from (7.35) and (7.36) we have

_ 772 —12 4
U6: (J.47 U8: U4U6 :6U4§
2U, U, U35
and (7.45) is reduced to
—7020U07
ui

Hence Uy = Ug = Ug = 0 and we can conclude u(t) = U,t? by the similar argument
as before.
Thus we have completed the proof of the proposition. [

Now we state our main result in this section. For any even function w(t) we can
define the following trivial commuting family

(7.56) Q= 2 H( 2 +w%)> for k=1,...,n

1<11<12< <1k<nl/ 1

]D(w): [Ql;--- 7Qn]-

Theorem 7.10. Suppose there exist a W-invariant connected open neighborhood
Q of the origin of C™ such that the potential function R(x) in (0.4) is a holomorphic
function defined on an open dense subset £’ of Q). Here 2\ Q' is an analytic subset
of €.

i) If the root system is of type D, with n > 3, then the function u(t) in Theo-
rem 2.1 equals A1 p(t|2w,2ws) + Ag or A1t? + Ast™2 + Ay with suitable complex
numbers A; and wy,.

ii) Suppose the root system is of type B, with n > 3 and suppose C[Py,... , P,]
is not equal to any trivial commuting algebra D(w). Then there exist complex
numbers A;, C; and wy, such that

U(t) = Alp(t|2w17 2(,{}2) + AO7

(7.57) Cup(t)* + C3p(t)® + Cap(t)? + Crp(t) + Co
U(t) = 1(1\2 )
o' (t)
or
u(t) = Art? + Ast ™2 + Ay,
(7.58) ) 1 ’ ’

v(t) = O1t? 4+ Cot =2 + Cy.

Here we remark that wy (k = 1,2) may be infinite.

Proof. The theorem is clear from Proposition 6.4, Proposition 7.3 and Proposi-
tion 7.8. [
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Remark 7.11. The proof of Theorem 7.10 shows that when n > 2, (7.57) and (7.58)
give all the solutions of (6.5) such that u(t) and v(t) are holomorphic for 0 < |t| < 1.
When the root system is of type B2, Theorem 7.10 is not valid (cf. [OOS]).
On the other hand, we have the following result under the assumption that the
coefficients of the differential operators have expansions of Harish-Chandra type.

Theorem 7.12. i) Assume the root system is of type By in Theorem 2.1. Suppose
u’ # 0, v' # 0 and the functions u(log s) and v(logs) are meromorphic for |s| < 1
under the notation (6.1). Then there exist a positive integer r and complex numbers
Cl,. .. ,Cg with

(7.59) CyCs = C4Cs =0

such that (u(t),v(t)) or (v(t),u(2t)) equals

(7.60) (Cl sinh 2 gt + Oy sinh ™2 rt 4+ Cj cosh rt + Cy cosh 2rt + Cs,

C sinh ™2 gt + Cysinh ™ rt + Cg).

ii) If (u(t),v(t)) equals (7.60) with complex numbers Ch,...,Cs satisfying (7.59).
Then u(t) and v(t) satisfy the assumption in Proposition 6.3 ii) and therefore we
have commuting differential operators.

Proof. Suppose the meromorphic functions

u(logt) =35, Uit
v(logs) =3 .5 Vs

satisfies (6.18). Here r and r’ are integers and U; and V; are complex numbers
with U, # 0. By subtracting constant numbers from u and v, we may assume
Up=Vy=0and r #0.
Since
u(log s + logt) — u(log s — logt) = Z Us(t' —t7%)s",

2>

for 0 < |s| < |t| < 1 it follows from (6.18) that

(o { (S vie) (T -}

e (Z Vi) (Tt = 179s) }
9 o . B} o
= (ta) {( 2Vjtﬂ)(ZUi(ﬁ — t_l)sl))}
i { (S v (v - s }
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and therefore

> (i 4 4)(2i+ UV, — )5

i>r

i>r’

=D, <(2i+j)(7;+j)UiVjti+j — (20 — j)(i —j)UiX/jt_i+j>si.
i>r
j=r

(7.61)

If V,» # 0 and 7’ < 0, the coefficients of #"s"+"" in (7.61) means
(r+r"2r + "YU, Vs =0

and therefore r = —1/ or r = —%. Hence Proposition 6.3 iv) assures that we may
assume r > 0 by replacing (u(t),v(t)) by (v(t),u(2t)) if necessary.

Admitting V,» to be 0, we may assume

r>0 and 7' = -2r

When j < 0, the coefficients of ¢"s" 7/ means (r + j)(2r + j)U,V; = 0 and therefore
(7.62) Vi=0 for —2r<j<—r and —r<j<0.

The terms in (7.61) corresponding to s” imply

S r(i+ UVt =t

r<i<3r
= D @D+ DUV = 3 (2 =) = UVt
j2—2r j=—2r

and hence from (7.62) we have

3r2Us, Vo (127 — t727) + 492 U3, Vo, (37 — t737)

(7.63) = 3 (O + WUV = (= B)RU Vi ) £
k>—3r

by denoting V; = 0 for j < —2r.
If k # 42r and k # 437, then by the coefficients of t* of (7.63) we have

(7“ + k>kUrVk—r = (T - k)kUrVk—Fr

and hence

(7.64) V=0 if j#0 modr
and

(7.65) Vi, = j]TlV(J'—W for j > 4.
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Furthermore the coefficients of t72", ¢*" and > in (7.63) mean

—3r2Us, V_, = —(2r)(=3r)U,.V_,
3r2Us, V_, = 6r2U,V, — 212U, Vs,

and
4r2U3rV—2r = 12’/“2U7~‘/27~ - 67°2U7~‘/47~,

respectively, and thus we have

(7.66) Ve (Usy — 2U,) = 0,
(7.67) Var = 3(V, — Vp),
(7.68) Vir = 2(Var — Viay).

On the other hand, the coefficients of t~"s*" in (7.61) says
—6r2U,V, = —=3r2Us,.V,
and therefore
(7.69) V. (Uyr — 2U,) = 0.
Now we remark that relations (7.64), (7.65), (7.67) and (7.68) show that the
numbers V_o,., V_,.. V. and Vs, uniquely determine the function v(logs) because

we have assumed V; = 0.
On the other hand, if V; are the coefficients of #/ of the function (1_757)2, they

satisfy (7.64), (7.65), (7.67) and (7.68). In fact it is clear from the equation

t .
(L =) kt*.
k=1

Similarly it is easy to see that the functions (15%)2’ t" 4+ t7" and t?" + ¢t72" have
the same property.
Thus we can conclude that

(7.70) v(t) = Cq sinh ™2 gt + Co sinh™2 7t 4+ C5 cosh rt + Cy cosh 21t

with some constant numbers C1,...,Cjy.
Next we shall show

(7.71) u(t) = Cgsinh ™2 gt + Cysinh™ 2 rt

with some constant numbers Cg and C7, which proves the first part of the theorem
by virtue of relations (7.66) and (7.69). Here we note that we have assumed that
U, # 0 with r > 0.
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If v(log s) is holomorphic at the origin s = 0, it follows from (7.70) that u(t) is
of the form (7.71) because (v(t),u(2t)) is also a solution of (6.18).

To examine the case when v(log s) is not holomorphic at the origin, we shall study
the solution (v(t),u(2t)) of (6.18) and the proof of Theorem 7.12 i) is reduced to
the determination of wu(t) satisfying (7.61) under the assumption r < 0, U, # 0
and 7’ > 0 by replacing r if necessary. Under this assumption, the terms in (7.61)
corresponding to s” prove

> (@r+ )0+ UV = @2r = j)r = HUVETH ) =0

jzr!
and furthermore by the coefficients of /=" in the above we have
=m0 —2r)V; =(j —r)jVj-2r for j>0,

which means
r

v(t) = Cf sinh ™2 5

t + Chsinh™2 rt

with some complex numbers C§ and C%. Thus we have completed the proof of
Theorem 7.12 i).

First suppose Cs = 0 to prove the second part of the theorem. If (v(2t), u(t))
equals (7.60), (u(t),v(t)) is a special case given in Theorem 7.3 ii) and therefore it
satisfies the assumption in Proposition 6.3 ii). Hence the second part follows from
Proposition 6.3 iv) when Cg = 0.

Next suppose Co = Cy = 0. We have proved that if (u(t),v(t)) equals

r
(C’1 sinh ™2 515 + C5coshrt + Cs, Cy sinh ™2 rt),
or
(C’1 sinh ™2 7't + C5 cosh 21"t + Cs, Cgsinh ™2 r't + C’g)7
with suitable positive numbers r and 7/, it satisfies the assumption in Proposi-
tion 6.3 ii).
Putting r’ = %, it is clear that
,

u(t) = Cq sinh ™2 51& + Cs coshrt + Cf,

v(t) = Cg sinh ™2 gt + Crsinh ™2 rt + Cg
satisfy the same assumption. Thus we have completed the proof of Theorem 7.12
owing to Proposition 6.3 iv).

Combining Proposition 3.6, Theorem 5.2, Theorem 7.10 and Theorem 7.12, we
have
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Theorem 7.13. Let u and v be functions in Theorem 2.1. Suppose u and v are
holomorphic except some isolated singular points and suppose u(log s) and v(log s)
are holomorphically extended to the point s = 0.

i) If the root system is of type A, withn > 1 or of type D,, with n > 2, then

(7.72) u(t) = Cysinh ™2 kt + Cy.

ii) Suppose the root system is of type B, and suppose v’ # 0 and v # 0. If
n > 2, then

u(t) = Cy sinh™? kt + Cj,

(7.73) Ly Ly
v(t) = Ay sinh™“ kt + Agsinh™~ 2kt 4+ A

and if n = 2, then (7.73) holds or

u(t) = Ay sinh™? kt 4+ Ao sinh ™2 2kt + Ao,

(7.74) s
v(t) = Cy sinh™ = 2kt 4+ Cj.

In i) and ii), Ay, A1, As, Cy and Cy are complex numbers and 2k is a positive
integer.

iii) Suppose P; are invariant under the parallel translation x1 — z1 + 21/ —1.
Then u and v in Theorem 2.1 determine the commuting algebra C[Py, ... , P,].

Remark 7.14. The assumption in Theorem 7.13 gives a characterization for the
commuting algebra C[Py, ..., P,] to be equal to the one constructed by [D1], [H1],
H2], [Op1], [0p2] and [Sj].

8. EXAMPLES

In this paper we have studied the potential function R(x) of a Laplacian which
allows a commuting family of differential operators invariant under the action of a
classical Weyl group. In this section we first consider the one-dimensional analogue
of the potential function we have obtained. That is the ordinal differential equation

(8.1) — Fua(t)y=0

for the function u, in (0.8).
Then the most general potential function in Theorem 7.10 gives

d?y . Cap(t)* + Csp(t)* + Cap(t)® + Crp(t) + Co

(8.2) — oL

y=0.

Note that

[0 = 40° — g2 — g3
=4(p —e1)(p — e2)(p — €3)
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with some complex numbers e, e; and e3 and then

=2{(p—e2)(p—e3) +(p—e3)(p—e1) +(p—e1)(p—e2)},

© _1( 1 n 1 n 1 )
]2 2\p—e1 p—e p—e3/

Putting z = p(t), we have & = o/(t)-L and
d? d? 1 1 1 1 d
8.3 - ’2{ —( )—}
(8:3) dt? %] d:c2+2 p—el+p—eg+p—63 dx
Hence equation (8.2) equals
(8.4)
@"—l( 1 1 1 )dy+C4x4+03x3+02$2+01x+00 0
dz?  2\z—e; x—e€y x—e3/dr 16(z — e1)?(x — e2)?(x — e3)? y="
Suppose e; # ey # ez # e1. Then (8.4) can be written as
(8.5)
d? 1 1 1 1 d
Y p Ly
dz?2 2\xz—e; x—e€y x—e3/dx
Al AZ A3 Bl B2 B3
=0
((x—el)Q (x — eq)? (x—63)2+a:—el+m—eg+x—eg)y

with some complex numbers A;, As, A3, B1, By and Bj satisfying
(8.6) B; + By + B3 = 0.

Equation (8.5) is a Fuchsian equation on P*(C) which has the four regular singular
points eq, es, ez and co. The indicial equations for the singular points are
1

p2-—§pj+z4j=0 at x =e; forj=1, 2and3,
(8.7)

——poo+z j+eiBj)=0 atx=o0.

By the transformation y — (z — e1)* (2 — e2)*2(z — e3)**y with complex numbers
A1, A2 and As, the equation is transformed into Huen’s equation (cf. [WW]) and
moreover we obtain any Fuchsian equation on P!(C) of order 2 which has the four
regular singular points.

On the other hand, if

(8.8) Uq (t) = Cysinh ™2t + Cysinh ™2 2t 4 Cs
or
(8.9) uq(t) = C3cosh 2t + Cs
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or
(8.10) U (t) = Art? 4+ Axt™2 4 Ag

(cf. Theorem 7.10 and Theorem 7.12), (8.1) is isomorphic to the Gauss hypergeo-
metric equation or the modified Mathieu equation or the equation of the paraboloid
of revolution which is equivalent to the equation of Whittaker functions, respec-
tively.

When the root system is of type A,,, Theorem 4.3 says u, = C1p + Cy and the
corresponding equation (8.1) is the Weierstrassian form of Lamé’s equation, which
corresponds to A; = Ay = Az = 0 in (8.5). In particular if u, (t) = Cy sinh ™2t +Cj
or uq(t) = C1t=2 + Cy, the equation is reduced to the Legendre equation or the
Bessel equation, respectively.

Next consider the case when the root system is of type A,. First remark that

ol25) = 1 2508~ 20).
(8.11) p(s+1)+p(s—t)= w(s) +&) 5 — 2p(s) — 2p(1),

p(s+1t) —p(s—t) =

For (x1, 22, 73) € C3, we consider the coordinate system (X,Y, Z) with
(812) 2X:$1—$2, X+Y:$1—.’133, Z:.CEg.
Then 2Y = 21 + 29 — 223 and

o0 _0 10 o 0 10 0 _0 0
or; 0X  20Y Oxs  0X  20Y Oxs 0OY 07

The commuting family in this case is generated by

(8.13)
9, 9, 9,
A= 0xy * Oxa + Ors’
0? o2 02
Ao = 011012 + 015073 * 01013 + Cp(r1 — 22) + Cp(z2 — 73) + Cpp(71 — 73),
83 0 o 9
A3 N 8x18x28m3 + C@(ZL‘Q - x3)a_x1 + Cp(xl - ‘/L‘3)a_x2 + Cp(xl - -’L‘Q)a—xg

Let J be the left ideal of the ring of differential operators generated by A; = a%
and put z = p(X), y = p(Y) and z = p(Z). Then

(8.14)
82 3 5 5?2

Re=—o%3 ~Jove T avez

+Cp2X)+Cp(X —Y)+Cp(X +Y)
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0? 3 0?
= (423 — dgox — g3) —— — = (dy® — dgoy — g3) —
(427 — dg2x — g3) 55 — 4 (4" — 492y 93)83/2

622 — 2)°
—(62—%)£—§(62 92)8 C (62 ) ~
270x 4 oy 4(423 — gox — g3)
3 3 _ ooy —
C’4$ Ty — ga 292y 295 —4Cx —2Cy  mod J,
Z(x—y)
0? 1 02 0 0 g 10
Ag = <—8X2 ‘zm) (ay az)*cmX Y>(ax+ a_Y>
g 10 0
+Cp(X+Y)<—a—X—|—§8—Y)+Cp(2X)a—Y
0? 102\ 0 0
=<aXz‘zm)a—y‘C( X +Y) (X -Y)) 5%
P(X+Y)+p(X —-Y) 9,
+C’( 5 + p(2X) % mod J
63 g2 82
— 3 _ _ 3 _ _ 2
VAY? — g2y — g3 {(433 9o gg)axzayﬂﬁw 2)8x8y

1 83 3 g 62
— 2 (43 — —g:)— — Z(6y? — L=)=——
4$3—92—g3 0

Ty e

C
+ —<4933 +4y® — (g2 + 8)x — gay — 293 +

2 _
= 122% — go )2}

8x3 — 290w + 293/ Oy |

Now consider the case when the root system is of type Bs. Use the coordinate
system (s,t) € C? and put = = p(s) and y = p(t). Let

u(t) = Ap(t),

(8.15) o(t) = Cap(t)t + C3p(t)2 + Cop(t)? + Crp(t) + Cy
©'(t)?

in Proposition 6.3 and Proposition 7.3. Then by (7.16) we have
(8.16)

2 2
P = 0 3
952 (9152
n C4IL’ + ng + 021'2 + Ciz + Cy n C’4y4 + ngg + ng2 + Chy + Cy
423 — gax — g3 4y3 — g2y — g3

0? g2, 0 9?
= (42” = 92w — g3) 5 + (607 = ) 5 + (4¢” — gay _93)8_y2

+ A(p(s+1t) +p(s—1))

9_2)2 n A(622 + 6y% — g2)
270y (z —y)?

N Cuxt + Cz23 + Cox® + Cixz + Cy N Cuy* + C3y3 + Coy? + Chy + CO
423 — gox — g3 4y% — g2y — g3

+ (6y° —

— 2Ax — 2Ay
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Pr= | + D] 0 1+ ) + oot

0s? ot?
n 2AC 2%y% + AC32y(z + y) + 2ACsmy + AC, (z + ) + 2AC,
2(x —y)?
82
= {\/(4:1:3 — 927 — 93)(4y® — g2y — 93) 920y

A/(423 = gz — g3) (4% — goy — g3) |°
_|_
2(r —y)?
Cuyt + Ca1® + Coy2 + Cry + C BE )
L Gyt + Csy’ + Coy” + Cry + 0((4m3—ggm—gg)62+(6m2 929 9. )

4y3 — g2y — g3 2" 0x
C4.T —1—03I —f-CQZL‘ +01$+Co< 32 9 gg) 3)
)

4y — goy — 6

(Cyx* + ng + Cox? + Chz + Cp)(Cay* + C3y® + Coy? + Cry + Cp)
+ 3 3
(423 — gox — g3)(4y® — g2y — g3)
n 2AC 2%y + ACszy(x +y) + 2402y + AC (z + ) + 2AC,
2(x —y)? '
Here we note that the coefficients of the differential operator P, are rational func-

tions under the coordinate (z,y).
On the other hand, if

(8.17) (u(t),v(t)) = (at™ + B2, 4t + 6t7),

the commuting operators are

(8.18)
o 52+ 12 2 o o, o
b= @+@+2am+(25+5)(5 F 1) 4 y(s 2 +t72),
82 st 2 - , 82 B 62
P, = 838t_2a(82_t2)2 +2Bst| + (yt~* + ot )824-(7 + 55 )3752
4 242 4
+ (78_2 + 582)(7t_2 + 5t2) + ads7t” + day + 45(582152

(52 _ t2)2

from Proposition 6.3 and (7.16). In particular, if & = = 0, we have

(8.19)
02 02 9
P = 05 a5 + w + )\(8 +i )
0? 2 2 07 0? 52 2,2

by putting A = 25 + 6.
Lastly we consider the operators when

(8.20) (u(t), v(t)) = (asinh >t + Bcosh2t, ysinh ™t + §sinh ™~ 2¢),
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which is given by Theorem 7.12. Putting « = sinh? s and y = sinh? ¢, we have

u(s+t)+u(s—t) = 2ax?—xy_—_*—y)2mJ +26(1 + 2z)(1 + 2y),
uls +1) — u(s — t) = +85) NIRRT

7 5
vls) = x * 4r(l+x)’

0 0

i 1 Il

0s (1 + ) ox
and

0 24+z+4vy ad
257 (2 S g T e )
=0'(s)(u(s +t) —u(s —t)) +2v(s) (v (s + t) — /(s — t)).

Thus by Proposition 6.3 we have

(8.21)
82 0?
+ a(sinh~ ?(s41t) +sinh™?(s — t)) + B(cosh2(s + t) + cosh 2(s — t))

+ ’y( sinh™? s 4 sinh ™2 t) + 5( sinh™? 2s + sinh ™2 Qt)

16x(1+x)8—2+8(1+2x)3+16 (1+ )8—2+8(1+2 )2
- 02 or YV TV Yoy
120 Y2 L o511 90y (1 4+ 2)
(z —y)?
+ (1+1>+6( L 1 )
Nz y dr(l+x)  4y(l+y))’
32
B = {asat
a(sinh™?(s +t) —sinh (s — t)) + B(cosh2(s +t) — cosh 2(s — t)) 2

2
82

0?
+ (7 sinh™2t + dsinh ™2 Qt) — + (7 sinh™2 s + dsinh ™2 25) 92

052
+ (’y sinh ™ s 4 ¢ sinh > 23) (fy sinh™2 ¢ + § sinh ™2 2t)
2ay(2 + sinh s + sinh t) +
sinh?(s + t) sinh?(s — t)

2

+ 467 (sinh? s + sinh? t)

2

— [16\/:,:(1 + )yl +y) ajay + ((x__z‘;‘)Q +48) ol + 2)y(1 + )

o2 o2
+ (% + 4y(16-|- y)) o2 * G * 4x(15-|— x)) By?
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+48y(x + ).

+<1+
T

Here if we use the symmetric coordinate system

8l 5 2092+ +y) +ad
4x(1 + a:)> <§ + 4y(1 + y)) (x —y)?

X =
(8.22) { Y
Y =uxy
then by
9_906,06 06_20 0
ar  ax Yoy’ ay  ax ' ‘ay’
and

# _ (o, 9\(o 0
aray  \ox Yoy J\ax "oy
92 92 92

“axz T axay TV avE Ty

f(x’y)a% * f@’x)a% = f(l’,y)(a% + yai,) + f(y, @) (a% + x%)
= (s + 1)) e + (s + 270 ) 1

2 2 82

) 0

f(z,y)

0? 52
+2 (yf(% y) +zf(y, x)) xov T <y2f(w, y) + 2 f (y, w)) Sy2

these operators are
(8.23)
P =16(X + X* —2Y)

2 2 2
xz T 162+ X)Y oo +16(X +2Y)Y o

0 0
16(1 + X)— X +4Y
+16(1 + )8X+8( + )8Y
X +2Y X X +X2-2Y

202 2 9814 2X +4Y) 7= + 6
Tl gy PWAF AN ) by Oy

0? 02 2 9
P, = [16¢Y(1+X+Y)<8X2 + X g Y gy + 8_Y>

20 2
+<m+4ﬂ>\/y 1+X+Y)}

N +5X+X2—2Y 0? (oas 2+ X 0?
Y Twarx+y))ox2 T\ T %40y x 1Y) )oxay
X +2Y 0?
+<7X+5 1+X+Y))6Y2
72 79(2+ X) 52 202+ X) + ad
T 467X,
Y Twasxay) TleviLx1y) Xz_ay i
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