
COMMUTING FAMILIES OF DIFFERENTIAL

OPERATORS INVARIANT UNDER

THE ACTION OF A WEYL GROUP

Toshio Oshima and Hideko Sekiguchi

Abstract. For a Weyl group W of a classical root system (Σ, E), we study W -
invariant commuting differential operators on E whose highest order terms generate

the W -invariant differential operators with constant coefficients. We show that the
potential function for the Laplacian in this commuting family of differential opera-
tors is expressed by the Weierstrass elliptic functions. The commuting differential
operators define a generalization of hypergeometric equations.

0. Introduction

Let (Σ, E) be an irreducible and reduced root system of rank n and let W be
the corresponding Weyl group. We denote by S(E) the symmetric algebra over the
complexification Ec of the vector space E. Let ∂ denote the algebra homomorphism
of S(E) to the ring of differential operators on E such that

(0.1) (∂(X)φ)(x) =
d

dt
φ(x+ tX)|t=0

for functions φ on E and X ∈ E. We fix a system of homogeneous generators
p1, . . . , pn of the algebra S(E)W of W -invariant elements of S(E). Here we choose
p1 so that deg p1 = 2.

In this paper we shall study a system of differential operators

(0.2) Pj = ∂(pj) +Rj for j = 1, . . . , n

satisfying

(0.3)


Pj are W -invariant,

ordR1 = 0,

ordRj ≤ deg pj − 1 for 2 ≤ j ≤ n,

[Pi, Pj ] = 0 for 1 ≤ i < j ≤ n

in the case when the root system is of the classical type with n > 1.
We fix a W -invariant inner product 〈 , 〉 on E and identify E and its dual by this

inner product. We extend 〈 , 〉 on Ec×Ec as a complex bilinear form. Since R1(x)
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is a function and ∂(p1) is a Laplacian on E under a natural coordinate system of
E, the operator

(0.4) P1 =
n∑

j=1

∂2

∂x2
j

+R(x)

is a Euclidean Laplacian with the potential R(x) by putting R = R1 for simplicity.
The radial parts of the generators of the ring of invariant differential operators

on a Riemannian symmetric space give an example of the commuting family ([HC]).
In this case

(0.5) R(x) =
∑

α∈Σ+

Cα sinh−2 〈α, x〉
2

,

where Σ is a restricted root system corresponding to the Riemannian symmetric
space, Σ+ is its positive system,

(0.6) Cα =
1

4
mα(mα + 2m2α − 2)〈α, α〉

and mα is the dimension of the root space for α ∈ Σ, which satisfies

(0.7) mα = mwα for w ∈ W

and only take special integers. Then J. Sekiguchi, Heckman-Opdam and Debiard
([Sj], [H1], [H2], [HO], [Op1], [Op2], [D]) studied the operator (0.4) with (0.5)–(0.7)
and proved the existence of a commuting family.

On the other hand, the operator P1 which allows such a commuting family is
called a completely integrable quantum system and has been studied from the view
point of mathematical physics (cf. [OP2]). The construction of such system is
usually related to a root system and the most general potential function which
have been proposed is written by elliptic functions. The similar fact is also true in
the case of classical dynamical systems (cf. [OP1], [P], [IM], [I]).

The main purpose of this paper is to prove that the potential function R(x)
which allows the existence of a commuting family of differential operators with
conditions (0.2) and (0.3) can be explicitly expressed by the Weierstrass elliptic
function ℘(t) and moreover to give certain uniqueness properties of the commuting
family in terms of R(x). We note that the results in this paper are also valid in
the case of classical dynamical systems because the same but easier proof for them
works.

In this paper we assume that the coefficients of the operators Pj can be extended
to holomorphic functions on a W -invariant connected open subset Ω′ of the com-
plexification Ec of E. Here Ω′ = Ω \ V with a proper analytic subset V of an open
neighborhood Ω of the origin of Ec.

In §2 we shall prove that the potential function R(x) can be expressed by even
functions uα(t) of one variable:

(0.8) R(x) =
∑

α∈Σ+

uα(〈α, x〉)
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with

(0.9) uα(t) = uwα(t) for α ∈ Σ, w ∈ W.

Here Σ+ is a positive system of Σ.
In §3 we shall prove a uniqueness for the commuting algebra C[P1, . . . , Pn] in

terms of two generators with small orders.
In §4 and §5 we shall study R(x) when the root system is of type An and prove

that

(0.10) uα(t) = C0 + C1℘(t) for α ∈ Σ+

with suitable C0, C1 ∈ C. Moreover we shall construct the commuting operators
P2, . . . , Pn. These operators and their pairwise commutativity seem to be known.
See [OP3] and references therein. But one of the proofs of the commutativity in
[OP3] is insufficient (cf. Remark 3.7).

In §6 and §7 we shall study R(x) when the root system is of type Bn or of type
Dn. First we shall give a uniqueness theorem (cf. Theorem 6.5) and a functional
differential equation (cf. Theorem 6.1) which is equivalent to the commutativity of
P1 and an operator of the fourth order. When n > 2, we shall solve the equation (cf.
Theorem 7.10), which says that the potential function R(x) is explicitly expressed
by ℘ except for a trivial case.

When the root system is of type B2, we shall only determine R(x) when the
coefficients of the differential operators have expansions of Harish-Chandra type
(cf. Theorem 7.12). Moreover owing to this result we have a characterization of
Sekiguchi-Heckman-Opdam’s operators corresponding to classical Weyl groups (cf.
Remark 7.14). The complete solutions for type B2 and the explicit form of com-
muting differential operators for type Bn and Dn are given in successive papers
[OOS], [OO] and [O].

For readers’ convenience, in §8 we shall give some examples of commuting fami-
lies we have constructed and write them in an algebraic form. We shall see that in
general the ordinary differential equation corresponding to the potential of a higher
rank equals the generic Fuchsian equation of the second order on P1(C) which has
four regular singular points. If we specialize parameters of the equation, it coincides
with the equations of Lamé’s functions, Mathieu’s functions, Gauss’ hypergeomet-
ric functions, Kummer’s confluent hypergeometric functions or Bessel functions.
Hence our commuting families are naturally considered as a generalization of these
ordinary differential equations to systems of partial differential equations.

The authors thank Masaki Kashiwara and Hiroyuki Ochiai for the conversations
with them which encourage us to write this paper. In particular Ochiai pointed us
out a simplification of our original proof of Theorem 2.1.

The main result in this paper is announced in [Sh] and [OOS].

1. Notation

For a positive number m we fix an orthonormal basis {e1, . . . , em} of the Eu-
clidean space Rm and use the coordinate system (x1, . . . , xm) with Rm 3 x1e1 +
· · ·+ xmem. Then the root system (Σ, E) of type An is naturally realized in

(1.1) E = {(x1, . . . , xm) ∈ Rm ; x1 + · · ·+ xm = 0}
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with m = n+ 1 and we may choose the positive system

(1.2) Σ+ = {ei − ej ; 1 ≤ i < j ≤ m}.

Similarly in the case when (Σ, E) is of type Dn we have E = Rn and

(1.3) Σ+ = {ei − ej , ei + ej ; 1 ≤ i < j ≤ n}

and in the case when (Σ, E) is of type Bn we have E = Rn and

(1.4) Σ+ = {ei ; 1 ≤ i ≤ n} ∪ {ei − ej , ei + ej ; 1 ≤ i < j ≤ n}.

We note that we need not to distinguish the root systems of type Bn and type Cn

in our problem.
For the coordinate system (x1, . . . , xm) of Rm we put

∂i =
∂

∂xi
,

∂α = ∂α1
1 · · · ∂αm

m ,

|α| = α1 + · · ·+ αm,

∂(i1, . . . , ik) =
∑

ν 6=i1,... ,ik
1≤ν≤m

∂ν .

Here α = (α1, . . . , αm) with non-negative integers αi.
Let P =

∑
pα(x)∂

α be a differential operator. Then we put

tP =
∑

(−1)|α|∂αpα(x).

In this paper we call the operator is self-adjoint (resp. skew self-adjoint) if tP = P
(resp. tP = −P ).

For integers k and ` with k < ` we put [k, `] = {k, k+ 1, . . . , `} and for a subset
I of [k, `] we denote by |I| the number of elements of I.

For an element g of the permutation group Sk of the set [1, k] with 1 ≤ k ≤ m we
denote by g(P ) the operator transformed from P by the coordinate transformation
(x1, . . . , xk, . . . , xm) 7→ (xσ(1), . . . , xσ(k), . . . , xm). Then the operator P is said to
be symmetric for the coordinate (x1, . . . , xk) if g(P ) = P for all g ∈ Sk.

Moreover we denote by P− the operator transformed from P by the coordinate
transformation (x1, . . . , xm) 7→ (−x1, . . . ,−xm). Then we say that P has an even
(resp. odd) parity if P− = P (resp. P− = −P ).

Lastly in this section we review on the Weierstrass elliptic function ℘ (cf. [WW]),
which is a doubly periodic meromorphic function on C with the Laurent develop-
ment

(1.5) ℘(z|2ω1, 2ω2) = z−2 + a2z
2 + a4z

4 + a6z
6 + · · ·
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at the origin. The complex numbers ω1 and ω2 are primitive half-periods:

(1.6) ℘(z + 2m1ω1 + 2m2ω2|2ω1, 2ω2) = ℘(z|2ω1, 2ω2) for m1,m2 ∈ Z.

It has the expansion

(1.7) ℘(z|2ω1, 2ω2) =
1

z2
+

∑
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
where the sum ranges over all ω = 2m1ω1 + 2m2ω2 except 0 (m1, m2 ∈ Z). This
℘ is uniquely characterized by the differential equation

(1.8) (℘′)2 = 4℘3 − g2℘− g3

with the condition

(1.9) ℘ has a pole of order 2 at the origin.

Here g2 and g3 are complex numbers, which have the relation

(1.10)

g2 = 60
∑
ω 6=0

ω−4 = 20a2,

g3 = 140
∑
ω 6=0

ω−6 = 28a4.

The complex numbers ω1 and ω2 are linearly independent over R but we allow
the period to be infinity. In other words, the numbers g2 and g3 are any complex
numbers. For example we have

(1.11)
℘(z|

√
−1π,∞) = sinh−2 z +

1

3
when g2 =

4

3
and g3 = − 8

27
,

℘(z|∞,∞) = z−2 when g2 = g3 = 0.

2. Reduction to one variable

Now we examine the potential function R(x) of the operator P1 in (0.4) which
allows the commuting family (0.2) and (0.3) and we shall prove

Theorem 2.1. Suppose the root system is of type An with n > 1 or of type Bn

with n > 1 or of type Dn with n > 2. Let {P1, . . . , Pn} be a system of differential
operators of the form (0.2) which satisfies (0.3). Then there exist even functions
u(t) and v(t) of one variable such that

R(x) =
∑

1≤i<j≤n+1

u(xi − xj) if W is of type An,

R(x) =
∑

1≤i<j≤n

(
u(xi − xj) + u(xi + xj)

)
+

∑
1≤j≤n

v(xj) if W is of type Bn,

R(x) =
∑

1≤i<j≤n

(
u(xi − xj) + u(xi + xj)

)
if W is of type Dn.

5



Note that tP1 = P1 and t[P,Q] = −[tP, tQ] for differential operators P and
Q. Hence in the following study to determine the potential function R(x) we may
assume

(2.1) tPj = (−1)ordPjPj

by replacing Pj by (Pj + (−1)ordPj tPj)/2.

First consider the case when the root system is of type An. Identifying E with
a hyperplane of Rm with m = n+1 as in (1.1), we can assume the existence of the
following system of commuting differential operators:

∆1 = ∂1 + · · ·+ ∂m,

∆2 =
∑

1≤i<j≤m

∂i∂j +R(x),

∆3 =
∑

1≤i<j<k≤m

∂i∂j∂k +
∑

1≤i≤m

ai1∂i + a0.

(2.2)

Here R(x), ai1 and a0 are functions of x and the function −2R(x) corresponds to
the original R(x) in (0.4) because P1 = ∆2

1−2∆2. The commutativity [∆1,∆j ] = 0
implies

(2.3) ∆1R = ∆1a
i
1 = ∆1a0 = 0.

Now consider the equation [∆2,∆3] = 0. Then the vanishing of the term ∂2
i

implies ∂(i)ai1 = 0 and by combining this with (2.3) we have

(2.4) ∂ia
i
1 = 0.

The term ∂i∂j with i < j implies ∂(j)ai1 + ∂(i)aj1 = ∂(i, j)R and hence

(2.5) ∂ja
i
1 + ∂ia

j
1 = (∂i + ∂j)R for 1 ≤ i < j ≤ m.

Therefore from (2.4) and (2.5) we have

(2.6) ∂i∂j(∂i + ∂j)R = 0 for 1 ≤ i < j ≤ m.

First we prepare

Lemma 2.2. Let u1(x), . . . um(x) be functions satisfying

∂iuj + ∂jui = 0 for i 6= j.

Then
∂j∂kui = 0 for different indices i, j and k.

Moreover if ∂iui = 0 for any i, we have

∂j∂kui = 0 for i, j, k = 1, . . . ,m.

Proof. When i, j and k are different indices, ∂j∂kui = −∂j∂iuk = ∂i∂kuj =
−∂k∂jui and we have the first claim. The last claim is also obtained by this equality
for arbitrary indices i, j and k. �

Now we claim the following lemma which means that the potential function R
is a sum of functions depends only on two coordinates in (x1, . . . , xm).
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Lemma 2.3 (type An). Under the above notation

(2.7) ∂i∂j∂kR = 0 for 1 ≤ i < j < k ≤ m.

Proof. Let i, j and k are indices in [1,m] which are mutually different. Then (2.5)

implies ∂j(a
i
1 − R) + ∂i(a

j
1 − R) = 0 and we have ∂j∂kR = ∂j∂ka

i
1 by Lemma 2.2

and the lemma follows from (2.4). �
Now we shall continue the proof of Theorem 2.1. Put R12 = ∂1∂2R. Then it

satisfies (∂1 + ∂2)R12 = ∂3R12 = · · · = ∂mR12 = 0 and we have R12 = r(x1 − x2)
with a function r(t). Note that r(t) is an even holomorphic function for 0 < |t| � 1
because of our assumption for ∆2. Let u(t) be a function with u′′ = −r. Define a
W -invariant function by

S(x) = R(x)−
∑

1≤i<j≤m

u(xi − xj).

Here ∂1∂kS(x) = 0 for k = 2, . . . ,m and we can choose a function φ(t) with
∂1φ(x1) = ∂1S(x). Then the function T (x) = S(x) −

∑
1≤j≤m φ(xj) satisfies

∂jT (x) = 0 for j = 1, . . . ,m. Hence replacing φ(xj) if necessary, we may assume

R(x) =
∑

1≤i<j≤m

u(xi − xj) +
∑

1≤j≤m

φ(xj).

Then by using (2.3) we have
∑

j φ
′(xj) = 0 and therefore φ is constant. Modifying

u by a constant, we may moreover assume φ = 0.
Since r(t) is an even function, we may assume u(t) = w(t)+C log t with an even

holomorphic function w(t) for 0 < |t| � 1 and a complex number C ∈ C. Then we
have C = 0 because R(x) is a single valued holomorphic function on Ω′. Thus we
have Theorem 2.1 when the root system is of type An.

Remark 2.4 (H. Ochiai). Suppose the root system is of type An. Then it is clear
from the above argument that we have

R(x) =
∑

α∈Σ+

uα(〈α, x〉)

with suitable functions uα(t) even if we omit the assumption of the W -invariance
for Pj .

Next we consider the case when the root system is of type Bn with n > 1 or of
type Dn with n > 2. Then we may put

P1 =
∑

1≤i≤n

∂2
i +R(x),

P2 =
∑

1≤i<j≤n

∂2
i ∂

2
j +

∑
1≤i≤n

ai2∂
2
i +

∑
1≤i<j≤n

aij11∂i∂j +
∑

1≤i≤n

ai1∂i + a0

(2.8)
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as in the case of type An. We shall use the convention aij11 = aji11 if i > j.
First we study the condition [P1, P2] = 0. The terms ∂3

i , ∂
2
i ∂j and ∂i∂j∂k imply

∂ia
i
2 = 0,(2.9)

∂ja
i
2 + ∂ia

ij
11 = ∂jR for 1 ≤ i, j ≤ n with i 6= j,(2.10)

∂ia
jk
11 + ∂ja

ik
11 + ∂ka

ij
11 = 0 for 1 ≤ i < j < k ≤ n,(2.11)

respectively. Then we have ∂3
j ∂iR = ∂2

j ∂i(∂jR) = ∂2
j ∂i(∂ja

i
2 + ∂ia

ij
11) = ∂2

i ∂
2
j a

ij
11 =

∂3
i ∂jR and hence

(2.12) ∂i∂j(∂i + ∂j)(∂i − ∂j)R = 0.

Now we prepare

Lemma 2.5. Given functions ui(x) and ujk(x) = ukj(x) of (x1, . . . , xn) for 1 ≤
i ≤ n and 1 ≤ j < k ≥ n. Suppose n ≥ 3 and

(2.13)
∂jui + ∂iuij = 0 for i 6= j,

∂iujk + ∂juki + ∂kuij = 0 for i 6= j 6= k.

Then

(2.14) ∂2
j ∂kui = 0

and

(2.15) ∂j∂k∂`ui = 0.

Moreover if

(2.16) ∂iui = 0 for i = 1, . . . , n,

then

(2.17)
∂2
j uij = 0,

∂αui = ∂αuij = 0 if |α| ≥ 3.

Here i, j, k and ` are arbitrary indices in [1, n] which are different to each other
and if n = 3, we ignore (2.15).

Proof. It follows from (2.13) that ∂2
j ∂kui = −∂2

j ∂iuik = ∂j∂i(∂iukj + ∂kuji) =

−∂2
i ∂kuj − ∂i∂i∂kuj = −2∂2

i ∂kuj and therefore this equals −2(−2∂2
j ∂kui) and we

have (2.14).
If n > 3, we have similarly 2∂j∂k∂`ui = −∂j∂k∂iui` − ∂j∂`∂iuik = −∂2

i ∂juk`.
Permuting the indices j, k and ` in this equation and summing up them, we get
(2.15) because of (2.13).

Now suppose (2.16). Then ∂2
j uij = −∂j∂iui = 0 and ∂3

j ui = −∂2
j ∂iuij = 0. Thus

we have ∂αui = 0 if |α| ≥ 3. Hence if |α| ≥ 2, we have ∂α∂iuij = −∂α∂jui = 0
and therefore we have ∂`∂

2
kuij = −∂`∂k(∂iujk + ∂juki) = 0. Suppose n > 4.

Then ∂`∂kuij = −∂`∂iujk − ∂`∂juki = ∂i∂juk` + ∂i∂ku`j + ∂j∂kui` + ∂j∂iu`k =
2∂i∂juk` − ∂k∂`uij and so ∂`∂kuij = ∂i∂juk`. Hence ∂m∂i∂juk` = ∂m∂`∂kuij =
∂`∂i∂jumk and this also equals ∂k∂i∂ju`m. Since ∂ku`m + ∂`umk + ∂muk` = 0, we
have ∂m∂i∂juk` = 0. Thus we have completed the proof of the lemma. �
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Lemma 2.6 (type Bn or Dn).

(2.18) ∂i∂j∂kR = 0 for 1 ≤ i < j < k ≤ n.

Proof. Put ui = ai2 − R and uij = aij11. Then Lemma 2.5 and (2.10) and (2.11)
imply

∂2
k∂j(R− ai2) = 0 for i 6= j 6= k 6= i,

∂j∂k∂`(R− ai2) = 0 for different indices i, j, k and `.

Applying ∂i to these equations, we have

∂i∂
2
k∂jR = 0 for i 6= j 6= k 6= i,

∂i∂j∂k∂`R = 0 for different indices i, j, k and `

because of (2.9).
Put R12 = ∂1∂2R. Then

(2.19) R12 = φ(x1, x2) +

n∑
i=3

Cixi

with a function φ of (x1, x2) and numbers Ci ∈ C.
Here we note that Ci do not depend on i because of the W -invariance of R.
If the root space is of type Bn, R12 is invariant under the coordinate change

x3 7→ −x3 and Ci = 0 in (2.19). Hence ∂1∂2∂3R = 0 and we have Lemma 2.6.
Suppose the root system is of type Dn. Since D3 ' A3, we may assume n > 3.

Then by considering the coordinate change (x3, x4) 7→ (−x3,−x4) we have the same
conclusion. �

Now we shall continue the proof of Theorem 2.1 when the root system is of type
Bn with n > 1 or type Dn with n > 3. Under the expression (2.19) it follows from
(2.12) that

φ(x1, x2) = u1(x1 + x2)− u2(x1 − x2)

with suitable holomorphic functions u1(t) and u2(t) with 0 < |t| � 1. Here u2

is an even function since φ(x1, x2) is symmetric for (x1, x2). Moreover we have
u1 = u2 because the coordinate transformation (x1, x2, . . . ) 7→ (x1,−x2, . . . ) or
(x1, x2, x3, x4, . . . ) 7→ (x1,−x2,−x3, x4, . . . ) transforms φ into −φ.

Let u(t) be the function with u′′ = u2. Then by the same argument as in the
case of An, we have

(2.20) R(x) =
∑

1≤i<j≤n

(
u(xi + xj) + u(xi − xj)

)
+

∑
1≤i≤n

v(xi)

with a suitable holomorphic function v(t). Since R(x) is a W -invariant holomorphic
function, we can conclude that u(t) and v(t) are even holomorphic functions for
0 < |t| � 1. Thus we have Theorem 2.1 when the root system is of type Bn.

The remaining part of the proof is to show that we may assume v equals 0 in
the expression when the root system is of type Dn. Before we prove it, we express
functions ai2 and aij11 by the functions u and v for our later purpose:
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Lemma 2.7. Under the notation above we may assume

(2.21)

ai2(x) =
∑
k, 6̀=i

1≤k<`≤n

(
u(xk + x`) + u(xk − x`)

)
+

∑
k 6=i

1≤k≤n

v(xk),

aij11 = u(xi + xj)− u(xi − xj)

by replacing u and v if necessary.

Proof. Note that if we define ai2 and aij11 by (2.21), the system of equations (2.11)
holds. Hence if we denote the differences between the original functions and the
above corresponding functions by the same notation with a bar, they satisfy

∂iā
i
2 = ∂j ā

i
2 + ∂iā

ij
11 = ∂iā

jk
11 + ∂j ā

ik
11 + ∂kā

ij
11 = 0.

Owing to Lemma 2.5, we have

ā1211 = 2Cx1x2 + (x1 + x2)φ1(x
′) + φ2(x

′)

with a constant C and polynomial functions φj(x
′) of x′ = (x3, . . . , xn) with degree

at most j for j = 1 and 2.
Since ā1211 is invariant or changes into −ā1211 under the coordinate transformation

(x1, x2, x3) 7→ (−x1,−x2, x3) or (x1, x2, x3) 7→ (−x1, x2,−x3), respectively, we have
φ1 = 0 and φ2 = C ′x3 · · ·xn with a constant C ′. But since ∂3ā

12
11 is symmetric for

(x1, x2, x3), we have ∂3ā
12
11 = 0 by the relation ∂3ā

12
11 + ∂1ā

23
11 + ∂2ā

13
11 = 0. Hence

we can conclude āij11 = 2Cxixj .
Replacing u(t) and v(t) by u(t) + Ct2 and v(t) − 2C(n − 1)t2, respectively, we

may assume āij11 = 0. Then we have ∂iā
i
2 = ∂j ā

i
2 = 0 and therefore āi2 are constant.

Finally subtracting a constant multiple of P1 from P2, we have the Lemma. �
Lastly we assume the root system is of type Dn to prove Theorem 2.1. We

introduce the following operator which commutes with P1.

(2.22) P ′
n = ∂1 · · · ∂n +

∑
i1+···+in=n−2

ai1···in∂
i1
1 · · · ∂in

n +R′(x, ∂).

Here R′(x, ∂) is a suitable W -invariant differential operator of order < n− 2.
We put a(j, k) = ai1···in with the indices i1, · · · , in given by

iν =

{
1 if ν 6= j and ν 6= k,

0 if ν = j or ν = k.

Then by the term ∂2∂3 · · · ∂n of [P1, P
′
n] we have

(2.23) 2
∑

2≤j≤n

∂ja(1, j) = ∂1R.

Furthermore by the term ∂2
1∂2 · · · ∂n of [P2, P

′
n] with Lemma 2.7 we have

(2.24)

2
∑

2≤j≤n

∂ja(1, j) = ∂1a
1
2 +

∑
2≤j≤n

∂ja
1j
11

=
∑

2≤j≤n

(
u′(x1 + xj) + u′(x1 − xj)

)
.

Comparing this with (2.20) and (2.23), we have v′ = 0. Modifying u by a constant,
we have Theorem 2.1 and subtracting a constant multiple of P1 from P2, we may
assume Lemma 2.7 with v = 0.
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3. Uniqueness of the commuting family

In this section we shall prove that the generator P1 and the generator, say
P2, having the lowest order among the remaining generators {P2, . . . , Pn} of the
commuting family (0.3) uniquely determine the commuting algebra C[P1, . . . , Pn].

In the subsequent sections we shall study the relation [P1, P2] = 0 and we shall
get a more refined result on the dependence of the commuting algebra on the
potential function R(x). First we prepare

Lemma 3.1. Let

(3.1) q(x, ξ) =
∑

|α|=K

qα(x)ξ
α

be a homogeneous polynomial of ξ = (ξ1, . . . , ξm) of degree K whose coefficients
are functions of x = (x1, . . . , xm) and consider the conditions

(3.2.`)
{ m∑

i=1

ξ`i , q(x, ξ)
}
= 0

and

(3.3)
∑

|α|=K

qα(x)∂
α is symmetric for (x1, . . . , xm).

Here
{
,
}
is the Poisson bracket defined by

(3.4)
{
f, g

}
=

m∑
i=1

∂f

∂ξi

∂g

∂xi
−

m∑
i=1

∂f

∂xi

∂g

∂ξi
.

i) If (3.2.2) holds, then qα(x) are polynomials.
ii) Fix a positive integer N with N ≥ 3. Then the functions qα are constants if

one of the following conditions holds:

K ≤ N − 2 and condition (3.2.N) holds.(3.5)

K = N − 1 and conditions (3.2.2) and (3.2.N) hold.(3.6)

K = N and conditions (3.2.2), (3.2.N) and (3.3) hold.(3.7)

K = N + 1, N ≥ 4 and conditions (3.2.2), (3.2.N) and(3.8)

(3.3) hold.

Proof. In this proof we always assume that the index α ∈ Zm satisfies |α| = K.
Put δν = (δ1ν , . . . , δmν) with Kronecker’s δ.

Note that for β ∈ Zm, the coefficients of the term ξβ of (3.2.2) mean

(3.9)

m∑
ν=1

∂νqβ−δν = 0

11



and in general, the coefficients of the term ξβ of (3.2.N) mean

(3.10)
m∑

ν=1

∂νqβ−(N−1)δν = 0.

Here we use the convention that qα = 0 if α has a negative component.

Suppose (3.2.2) and fix an index j. Applying ∂
K−αj

j to (3.9) with β = α + δj ,
we have

∂
K+1−αj

j qα = −
∑
ν 6=j

∂
K−αj

j ∂νqα+δj−δν .

If K−αj = 0, then αν = 0 for ν 6= j and the above equation is reduced to ∂jqα = 0.
Then by the induction on the non-negative integer K − αj we can prove

(3.11) ∂
K+1−αj

j qα = 0.

Thus we have lemma 3.1 i).
Note that if α ∈ Zm satisfies αν ≤ N − 2 for ν = 1, . . . ,m, then equation (3.10)

with β = α+ (N − 1)δj equals

(3.12) ∂jqα = 0.

If (3.5) holds, (3.12) is valid for any j and α and therefore qα are constant. To
prove the remaining part of the Lemma, we may assume that qα(x) are polynomials
without constant terms because of the assumption (3.2.2).

Suppose (3.6). Then the above argument assures that we may assume qα = 0 if
αν ≤ N − 2 for ν = 1, . . . ,m and we have the expression

(3.13) q(x, ξ) =
m∑

ν=1

aνK(x)ξKν .

Since K > 1, we have ∂ia
ν
j = 0 from equation (3.9) with β = δi + Kδj for any i

and j and we have the lemma.
Suppose (3.7). Then by the same argument as above we can write

(3.14) q(x, ξ) =

m∑
ν=1

aνK(x)ξKν +
∑
ν 6=µ

1≤ν,µ≤m

aνµ1k−1(x)ξνξ
K−1
µ .

In equation (3.10), putting β = (2K − 1)δ1 and β = (2K − 2)δ1 + δ2, we have

(3.15) ∂1a
1
K = ∂1a

21
1K−1 = 0

and putting β = Kδ1 + (K − 1)δ2 and β = (K − 1)δ1 + δ2 + (K − 1)δ3, we have

∂2a
1
K + ∂1a

12
1K−1 = 0,(3.16)

∂1a
23
1K−1 + ∂3a

21
1K−1 = 0,(3.17)

12



respectively. On the other hand, from equation (3.9) with β = Kδ1 + δ2 we have

(3.18) ∂2a
1
K + ∂1a

21
1K−1 = 0.

It follows from (3.15), (3.16) and (3.18) that

(3.19) ∂2a
1
K = ∂1a

12
1K−1 = 0

and it follows from (3.15), (3.17) and Lemma 2.2 that

(3.20) ∂2
1a

23
1K−1 = ∂1∂4a

23
1K−1 = 0.

Then from (3.7), (3.15), (3.19) and (3.20) we have aiK = 0 and aij1K−1 = C
∑

ν 6=i,j xν

with a constant number C. But equation (3.17) proves C = 0.
Suppose (3.8). Note that K = N + 1 ≥ 5. We may assume

q(x, ξ) =
∑
ν

aνK(x)ξKν +
∑
ν 6=µ

aνµ1K−1(x)ξνξ
K−1
µ

(3.21)

+
∑
ν 6=µ

aνµ2K−2(x)ξ
2
νξ

K−2
µ +

∑
ν<µ, τ 6=µ,ν

aνµτ11K−2(x)ξνξµξ
K−2
τ .

Putting β = (2K−2)δ1, (2K−3)δ1+δ2, (2K−4)δ1+2δ2 and (2K−4)δ1+ δ2+ δ3,
we obtain

(3.22) ∂1a
1
K = ∂1a

21
1K−1 = ∂1a

21
2K−2 = ∂1a

231
11K−2 = 0

from (3.10). Similarly putting β = Kδ1+(K−2)δ2, β = (K−1)δ1+(K−2)δ2+δ3,
β = (K−2)δ1+(K−2)δ2+2δ3 and β = (K−2)δ1+(K−2)δ2+δ3+δ4 in equation
(3.10) we have

∂1a
12
2K−2 + ∂2a

1
K = 0,(3.23)

∂1a
132
11K−2 + ∂2a

31
1K−1 = 0,(3.24)

∂1a
32
2K−2 + ∂2a

31
2K−2 = 0,(3.25)

∂1a
342
11K−2 + ∂2a

341
11K−2 = 0,(3.26)

respectively. On the other hand, putting β = Kδ1 + δ2, β = (K − 1)δ1 + 2δ2 and
β = (K − 1)δ1 + δ2 + δ3 in equation (3.9), we have

∂1a
21
1K−1 + ∂2a

1
K = 0,(3.27)

∂1a
21
2K−2 + ∂2a

21
1K−1 = 0,(3.28)

∂1a
231
11K−2 + ∂2a

31
1K−1 + ∂3a

21
1K−1 = 0,(3.29)

respectively.
By (3.22) and (3.27) we have ∂2a

1
K = 0 and in general we have ∂ia

j
K = 0 for

i, j = 1, . . . ,m and hence aiK = 0.
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Note that (3.22) and (3.29) means

(3.30) ∂2a
31
1K−1 + ∂3a

21
1K−1 = 0.

Then from (3.28), (3.22), (3.30), (3.3) and Lemma 2.2 we obtain

(3.31) ∂2a
21
1K−1 = ∂2

2a
31
1K−1 = ∂2∂4a

31
1K−1 = 0

and from (3.23), (3.22), (3.25), (3.3) and Lemma 2.2 we obtain

(3.32) ∂1a
12
2K−2 = ∂2

1a
32
2K−2 = ∂1∂4a

32
2K−2 = 0

and from (3.22), (3.24), (3.31), (3.26), (3.3) and Lemma 2.2 we obtain

(3.33) ∂2
1a

132
11K−2 = ∂1∂3a

132
11K−2 = ∂2

1a
342
11K−2 = ∂1∂5a

342
11K−2 = 0.

Thus from (3.3), (3.31), (3.32), (3.32) we have the expression

(3.34)

a211K−1 = C1(x3 + · · ·+ xn),

a212K−2 = C2(x3 + · · ·+ xn),

a23111K−2 = C3(x2 + x3) + C4(x4 + · · ·+ xn)

with suitable constant numbers Ci. Then from (3.24), (3.25), (3.26) and (3.30) we
can conclude C3 + C1 = 0, 2C2 = 0, 2C4 = 0 and 2C1 = 0, respectively, which
completes the proof of the Lemma. �

Now we give the theorem in this section:

Theorem 3.2. Without loss of generality we suppose that the order of the gener-
ator P2 of our commuting family (0.2) equals 3 (resp. 4) in the case when the root
system is of type An (resp. Bn or Dn). Then P1 and P2 uniquely determine the
commuting algebra C[P1, . . . , Pn].

Proof. First consider the case when the root system is of type An. We may assume
that

(3.35) ∆′
k =

m∑
i=1

∂k
i +R′

k(x,D) for k = 1, . . . ,m

generate our commuting algebra with the identification (1.1). Here ordR′
k(x, ∂) <

k, R′
1(x, ∂) = 0 and ordR′

2(x, ∂) = 0. We shall prove that ∆′
N+1 is uniquely deter-

mined modulo C[∆′
1, . . . ,∆

′
N ] for N = 3, . . . ,m− 1, which implies the theorem.

Suppose this is not true for some N . Then there exist W -invariant differential
operators ∆′

N+1(1) and ∆′
N+1(2) with the same principal symbol

∑
i ξ

N+1
i which

commute with ∆′
1, . . . ,∆

′
N .

Put Q = ∆′
N+1(1) − ∆′

N+1(2) and K = ordQ. We may assume the principal
symbol q(x, ξ) = σ(Q) of Q really depends on x because otherwise we can reduce
the order of Q by subtracting an element of C[∆′

1, . . . ,∆
′
N ].
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Then the condition [∆′
2, Q] = [∆′

N , Q] = 0 implies one of the conditions (3.5),
(3.6) and (3.7) and therefore Lemma 3.1 proves that q(x, ξ) does not depend on x.
This contradicts our assumption and hence we have the theorem.

In the case when the root system is of type Bn we may assume ordPj = 2j and

σ(Pj) =
∑

i ξ
2j
i . Then the proof proceeds in the same way as in the case when the

root system is of type An. In the case when the root system is of type Dn we can
prove the theorem in the same way if we define the operators Pj from lower order
ones. �

Since the condition

(3.36)
{ n∑

i=1

ξ2ki , q(x1, . . . , xn, ξ1, . . . , ξn)
}
= 0 for any k ≥ 1

implies that q does not depend on x, we have the following as in the proof of
Theorem 3.2.

Proposition 3.3. Let P be a W -invariant differential operator which commutes
with any element of the commuting algebra C[P1, . . . , Pn]. Then P ∈ C[P1, . . . , Pn].

Now we give the lemmas which shall be used later.

Lemma 3.4. Let Q0(x, ∂), Q1(x, ∂) and Q2(x, ∂) be differential operators of the
form

Q0(x, ∂) =
n∑

i=0

∂2
i + q0(x),

Q1(x, ∂) =
∑

qα1 (x)∂
α, Q2(x, ∂) =

∑
qα2 (x)∂

α.

Suppose q0(x) and qα2 (x) are polynomial functions of x and furthermore suppose
[Q0(x, ∂), Q1(x, ∂)] = Q2(x, ∂) + r(x)Q1(x, ∂) with a polynomial function r(x).
Then qα1 (x) are also polynomial functions of x.

Proof. We shall prove that qα1 (x) are polynomial functions of x by the induction
on the number |α|.

If |α| > ordQ1(x, ∂), the claim is clear. Let k be a nonnegative integers and
suppose qα1 (x) are polynomial functions of x if |α| > k. Then the (k + 1)-th order
term of [Q0(x, ∂), Q1(x, ∂)] = Q2(x, ∂) shows{ n∑

i=1

ξ2i ,
∑
|α|=k

qα1 (x)ξ
α
}
=

∑
|β|=k+1

(
aβ(x) + r(x)qβ1 (x)

)
ξβ

with some polynomial functions aβ(x).

Choosing a positive integer N so that deg
(
aβ(x) + r(x)qβ1 (x)

)
< N , we have

{ n∑
i=1

ξ2i ,
∑

|α|=K

∂N
` qα1 (x)ξ

α
}
= 0

for ` = 1, . . . , n. Then Lemma 3.1 proves that ∂N
` qα1 (x) are polynomial functions

of x for |α| = k and ` = 1, . . . , n and so are qα1 (x). �
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Lemma 3.5. Let Q0(x, ∂), Q1(x, ∂) and Q2(x, ∂) be holomorphic differential op-
erators defined on a connected open dense subset of the n-dimensional complex
vector space Ec such that Q0 is of the form

Q0(x, ∂) =
n∑

i=0

∂2
i + q0(x)

and they satisfy
[Q0, Q1] = [Q0, Q2] = 0, q0(−x) = q0(x).

Suppose there exist linearly independent vectors τ1, . . . , τn in Ec such that the
operators Q0, Q1 and Q2 are invariant under the parallel translations on Ec by the
vectors τj for j = 1, . . . , n. Then tQ1 = Q−

1 ,
tQ2 = Q−

2 and [Q1, Q2] = 0

Proof. First note that t(P−) = (tP )− for any differential operator P . Put S =
Q1 − tQ−

1 . Then [Q0, S] = −[Q0,
tQ−

1 ] = [Q0, Q1]
− = 0 and Lemma 3.1 proves

that σ(S) is a polynomial function of (x, ξ) and hence the invariance by the parallel
translations shows that σ(S) does not depend on x. Combining this with tS− = −S,
we can conclude S = 0 and therefore tQ1 = Q−

1 .
Put R = [Q1, Q2]. Since [Q0, R] = [Q1, [Q0, Q2]] − [Q2, [Q0, Q1]] = 0, we have

similarly tR = R− and tQ2 = Q−
2 . Then

R = t[Q1, Q2]
− = t[Q−

1 , Q
−
2 ] = [tQ−

2 ,
tQ−

1 ] = [Q2, Q1] = −R,

which proves the Lemma. �
The following proposition also gives a uniqueness for the commuting algebra.

Proposition 3.6. Let P1, . . . , Pn be the commuting differential operators corre-
sponding to the Weyl group of type An, Bn or Dn. Suppose the coefficients of Pj

are holomorphic on a connected open dense subset of Ec and moreover suppose
there exist linearly independent vectors τ1, . . . , τn of Ec such that Pi are invariant
under the parallel translations by τj(i, j = 1, . . . , n). Let Q be a W -invariant dif-
ferential operator with the same invariant property under the parallel translations.
Then the condition [P1, Q] = 0 implies Q ∈ C[P1, . . . , Pn].

Proof. This is a direct consequence of Lemma 3.5 and Proposition 3.3. �
Remark 3.7. In [OP3, §5 Proposition 1] and [OP2] it is claimed that W -invariant
differential operators which commute with P1 are completely determined by their
terms of highest degree. But it is incorrect, which is clear by example (8.18). Note
that if δ = −2β in (8.18), it corresponds to type I (v(q) = q−2) for the root system
B2 under the notation in [OP3]. The same incorrect argument is used to prove the
pairwise commutativity of P2, . . . , Pn (cf. [OP3, §5 Proposition 2 and Appendix E]).

The following lemma will be used in the proof of Theorem 6.5.

Lemma 3.8. Let p(x1, . . . , xn, ξ1, . . . , ξn) =
∑

|α|=3 pα(x)ξ
α be a homogeneous

polynomial of ξ such that p(x, ∂) is symmetric and invariant under the coordinate
transformation (x1, x2) 7→ (−x1,−x2). Suppose {

∑
ξ2i , p(x, ξ)} = 0.
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i) If n > 4, then p(x, ξ) = 0.
ii) If n ≥ 2 and p(x, ∂) is invariant under the coordinate change x1 7→ −x1, then

p(x, ξ) = 0.
iii) If n = 4, then

(3.37)

p(x, ξ) = C
∑
g∈S4

g
( 1
3!
x2x3x4ξ

3
1 − 1

2!
x1x3x4ξ

2
1ξ2 −

1

3!
(x2

1 + x2
2 + x2

3 − x2
4)x4ξ1ξ2ξ3

)
with a suitable constant C, where g naturally acts on suffices.

Proof. Since pα(x) are polynomials by Lemma 3.1 i) and the assumption implies

2
∑

ξi
∂p
∂xi

= 0, we have

p(x, ξ) = h(x2 −
ξ2
ξ1

x1, x3 −
ξ3
ξ1

x1, . . . , xn − ξn
ξ1

x1, ξ1, . . . , ξn)

with a suitable polynomial function h of (2n − 1)-variables. Moreover pα(x) are
polynomials of x with degree at most three because p(x, ξ) is a polynomial of ξ with
degree at most three.

Put
p(x, ξ) =

∑
ai3ξ

3
i +

∑
i 6=j

aij21ξ
2
i ξj +

∑
i<j<k

aijk111ξiξjξk

with polynomials ai3, a
ij
21 and aijk111 of x. Then the coefficients of ξ41 , ξ

3
1ξ2, ξ

2
1ξ

2
2 ,

ξ21ξ2ξ3 and ξ1ξ2ξ3ξ4 of the equation { 1
2

∑
ξ2i , p(x, ξ)} = 0 show

(3.38)

∂1a
1
3 = 0,

∂2a
1
3 + ∂1a

12
21 = 0,

∂2a
12
21 + ∂1a

21
21 = 0,

∂3a
12
21 + ∂2a

13
21 + ∂1a

123
111 = 0,

∂4a
123
111 + ∂3a

124
111 + ∂2a

134
111 + ∂1a

234
111 = 0,

respectively.
Note that the assumption of the invariance says that a13 changes into −a13 under

(x1, x2) 7→ (−x1,−x2). Moreover a13 is symmetric for (x2, . . . , xn) and deg a13 ≤ 3.
Hence the condition ∂1a

1
3 = 0 proves a13 = 0 in the cases i) and ii) and a13 = Cx2x3x4

with C ∈ C in the case iii).
Suppose the invariance in ii) and suppose n ≥ 2. Then ∂1a

12
21 = ∂2

2a
12
21 = 0 and

we can put a1221 = x2φ(x3, . . . , xn) because a1221 changes into −a1221 under x2 7→ −x2.
But 2φ = ∂2a

12
21 + ∂1a

21
21 = 0 and therefore a1221 = 0. Thus ∂1a

123
111 = 0 and the

invariance under x1 7→ −x1 proves a123111 = 0.
It is easy to check that (3.37) satisfies {

∑
ξ2i , p(x, ξ)} = 0 in the case n = 4 and

hence subtracting the right hand side of (3.37) from p(x, ξ), the proof is reduced to
the case a31 = 0.

Suppose n ≥ 4 and a13 = 0. Then we have similarly a1221 = x2φ(x3, . . . , xn) by
the invariance under (x1, x2) 7→ (−x1,−x2), which implies a1221 = ∂1a

123
111 = 0 as in

the proof of ii) and we have a123111 =
(
C + C ′(x2

4 + · · · + x2
n)
)
x4 · · ·xn because a123111

changes into −a123111 under (x1, x4) 7→ (−x1,−x4). Here C ′ = 0 if n > 4. Thus we
have a123111 = 0 by the last equation of (3.38). �
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4. Determination of the potential function - type An

In this section we consider the case when the root system is of type An. We have
W -invariant differential operators

(4.1)

∆1 =
∑

1≤i≤m

∂i,

∆2 =
∑

1≤i<j≤m

∂i∂j +R(x),

∆3 =
∑

1≤i<j<k≤m

∂i∂j∂k +
∑

1≤i≤m

ai1∂i + a0

satisfying [∆1,∆2] = [∆2,∆3] = [∆1,∆3] = 0 and t∆i = (−1)i∆i for i = 1, 2 and
3. Theorem 2.1 says the existence of an even function u(t) with

(4.2) R(x) =
∑

1≤i<j≤m

u(xi − xj).

Moreover we have

Lemma 4.1. There exist a constant number C with

∆3 − C∆1 =
∑

1≤i<j<k≤m

∂i∂j∂k +

m∑
i=1

∑
j,k 6=i

1≤j<k≤m

u(xj − xk)∂i

Proof. We remark that if

(4.3) ai1 =
∑
j,k 6=i

1≤j<k≤m

u(xj − xk)

the functions ai1 satisfy (2.4) and (2.5). Hence put

āi1 = ai1 −
∑
j,k 6=i

1≤j<k≤m

u(xj − xk).

Then the commutativity implies

∂iā
i
1 = ∂j ā

i
1 + ∂iā

j
1 = 0 for 1 ≤ i < j ≤ m

and by Lemma 2.2 we have ∂j∂kā
1
1 = 0 for j, k = 2, . . . ,m. Since ā11 is symmetric

for (x2, . . . , xm),
ā11 = C + C ′(x2 + · · ·+ xm)

with constant numbers C and C ′. Now the equation
∑

i ∂iā
1
1 = 0 means C ′ = 0.

Since ∆3 is skew self-adjoint, we have Lemma 4.1. �
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Lemma 4.1 assures that we may assume (4.3). Then the above proof shows
ord [∆2,∆3] ≤ 1. Since [∆2,∆3] is self-adjoint, we can prove that the condition
[∆2,∆3] = 0 is equals to

(4.4)
∑

1≤i<j<k≤m

∂i∂j∂kR+
∑

1≤k≤m

ak1∂kR = 0

by the 0-th order term of [∆2,∆3]. Applying (4.2) and (4.3) to (4.4), we have

(4.5)
m∑

k=1

{( ∑
µ, ν 6=k

1≤µ<ν≤m

u(xµ − xν)

)
∂k

( ∑
1≤i<j≤m

u(xi − xj)

)}
= 0.

Since the term containing u′(xi−xj) with i < j in the left hand side of (4.5) equals( ∑
µ<ν, µ,ν 6=i

u(xµ − xν)−
∑

µ<ν, µ,ν 6=j

u(xµ − xν)

)
u′(xi − xj)

=

( ∑
k<i<j

u(xk − xj) +
∑

i<k<j

u(xk − xj) +
∑

i<j<k

u(xj − xk)

)
∂iu(xi − xj)

+

( ∑
k<i<j

u(xk − xi) +
∑

i<k<j

u(xi − xk) +
∑

i<j<k

u(xi − xk)

)
∂ju(xi − xj),

we have

Proposition 4.2. Under the above notation the necessary and sufficient condition
for [∆1,∆2] = [∆2,∆3] = [∆1,∆3] = 0 equals

(4.6)
∑

1≤i<j<k≤m

Uijk(u) = 0

with

Uijk(u) = u(xj − xk)∂i
(
u(xi − xj) + u(xi − xk)

)
+ u(xi − xk)∂j

(
u(xi − xj) + u(xj − xk)

)
+ u(xi − xj)∂k

(
u(xi − xk) + u(xj − xk)

)
.

(4.7)

Now we solve equation (4.6) for u:

Theorem 4.3. Let u(t) be an even holomorphic function for 0 < |t| � 1 satisfying
(4.6). Then there exist complex numbers C0 and C1 such that

(4.8) u(t) = C1℘(t|2ω1, 2ω2) + C0

Here ℘(t|2ω1, 2ω2) is Weierstrass’ elliptic function with primitive periods 2ω1 and
2ω2.
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Conversely for complex numbers C0, C1, ω1 and ω2, the function given by (4.8)
satisfies (4.6). Here ω1 and ω2 are complex numbers which are linearly independent
over R and allowed to be ∞.

Proof. Note that ℘ and ℘′ are even and odd functions, respectively. Then it is clear
from the addition formula (cf. [WW]) of ℘-function

(4.9)

∣∣∣∣∣∣
℘(x) ℘′(x) 1
℘(y) ℘′(y) 1
℘(z) ℘′(z) 1

∣∣∣∣∣∣ = 0 for complex numbers x, y and z with x+y+z = 0

that the function u given by (4.8) satisfies Uijk(u) = 0 and therefore it is a solution
of (4.6).

Let u(t) be an even holomorphic function for 0 < |t| � 1 satisfying (4.6). Put
s = xi − xj and t = xj − xk and suppose 0 < |s| � |t| � 1. Then

(4.10)

Uijk(u) = u(t)
(
u′(s) + u′(s+ t)

)
+ u(s+ t)

(
− u′(s) + u′(t)

)
+ u(s)

(
− u′(s+ t)− u′(t)

)
= −

((
u(s+ t)− u(t)

)
u′(s) +

(
u′(s+ t) + u′(t)

)
u(s)

)
+ F (s, t)

with a function F (s, t). Here we note that F (s, t) is holomorphic function of s at
the origin if t is fixed with the condition 0 < |t| � 1.

Now put s = x1−x2 and tj = xj−1−xj for j = 3, . . . ,m. Fix complex numbers
t3, . . . , tm with 0 < |tj | � 1 and suppose 0 < |s| � |tj | � 1 for j = 3, . . . ,m.
Then condition (4.6) implies

(4.11) −
m∑
j=3

((
u(s+ t3 + · · ·+ tj)− u(t3 + · · ·+ tj)

)
u′(s)

+
(
u′(s+ t3 + · · ·+ tj) + u′(t3 + · · ·+ tj)

)
u(s)

)
= f(s)

with a holomorphic function f(s) on a neighborhood of the origin. Now we may
assume the number

C =

m∑
j=3

u′(t3 + · · ·+ tj)

is not zero for generic t3, · · · , tm and from (4.11) we have

(4.12) −(C + c1(s)s)su
′(s)− 2(C + c2(s)s)u(s) = f(s)

with holomorphic functions c1(s) and c2(s) on a neighborhood of the origin. Since
the origin is the regular singular point for the differential equation (4.12) for u and
its characteristic exponent equals −2, the origin is at most a pole of order 2 for u.
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First suppose u(s) is holomorphic at the origin. We may assume u(0) = u′(0) = 0
because u+ C ′ is also a solution of (4.6) for C ′ ∈ C. Then

Uijk(u)
∣∣
xj=xk

= u(xi − xj)∂ju(xi − xj) + u(xi − xj)∂ju(xi − xj)

= −∂i

(
u(xi − xj)

2

)
,

Uijk(u)
∣∣
xi=xj=xk

= 0

and ∑
1≤i<j<k≤m

Uijk(u)
∣∣
x2=x3=···=xm

=
∑

1<j<k≤m

U1jk(u)
∣∣
x2=xj=xk

= −
(
m− 1

2

)
∂1

(
u(x1 − x2)

2

)
.

Hence d
dt

(
u(t)2

)
= 0 and therefore u(t) is constant, which implies u = 0.

Therefore replacing u by C ′u+ C ′′ with suitable C ′, C ′′ ∈ C, we may assume

u(t) = t−2 + C2t
2 + C4t

4 + C6t
6 + · · ·

with complex numbers Cj . Then under the same notation in equation (4.10) we
have

(4.13)

Uijk(u) =
∂

∂t
u(t)

(
u(s+ t)− u(s)

)
− ∂

∂s
u(s)

(
u(s+ t)− u(t)

)
=

∂

∂t
u(t)

{(
u(t) +

u(1)(t)

1!
s+

u(2)(t)

2!
s2 + · · ·

)
− (s−2 + C2s

2 + C4s
4 + · · · )

}
− ∂

∂s

{(
s−2 + C2s

2 + C4s
4 + · · ·

)
·
(u(1)(t)

1!
s+

u(2)(t)

2!
s2 +

u(3)(t)

3!
s3 + · · ·

)}
.

The coefficient of s−2 in the expansion (4.13) equals −u(1)(t) + u(1)(t) = 0 and
therefore (4.13) is holomorphic at s = 0.

The coefficient of s0 equals

∂

∂t
u(t)2 − 1

6
u(3)(t) =

d

dt
(t−2 + C2t

2 + C4t
4 + · · · )2 − 1

6
(−4!t−5 + 4!C4t+ · · · ),

which is holomorphic at the origin and takes the value zero at the point. Thus we
have ∑

1≤i<j<k≤m

Uijk(u)

∣∣∣∣
x1=x2

=
∑
2<k

{
2u(x2 − xk)u

′(x2 − xk)−
1

6
u(3)(x2 − xk)

}
+ 2

∑
2<j<k≤m

U2jk(u) +
∑

2<i<j<k≤m

Uijk(u).
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and by the induction on ` it is easy to show(
· · ·

( ∑
1≤i<j<k≤m

Uijk(u)

∣∣∣∣
x1=x2

)∣∣∣∣
x2=x3

· · ·
)∣∣∣∣

x`−1=x`

=
(
1 + 2 + · · ·+ (`− 1)

)∑
`<k

{
2u(x` − xk)u

′(x` − xk)−
1

6
u(3)(x` − xk)

}
+ `

∑
`<j<k≤m

U`jk(u) +
∑

`<i<j<k≤m

Uijk(u).

When ` = m− 1, we have

(m− 2)(m− 1)

2

(
2u(xm−1 − xm)u′(xm−1 − xm)− 1

6
u(3)(xm−1 − xm)

)
= 0

and thus

2u(3) = 12(u2)′,

2u(2) = 12u2 − g2,

2u′u′′ = 12u2u′ − g2u
′,

(u′)2 = 4u3 − g2u− g3

with suitable complex numbers g2 and g3. Since u has a pole of order 2 at the
origin, this differential equation implies that u is Weierstrass’ elliptic function. �
Remark 4.4. The claim of Theorem 4.3 follows from the commutativity of the oper-
ators ∆i for i = 1, 2 and 3. In fact we does not use the existence of the commuting
operators ∆i of order > 3 for the proof.

5. Construction of commuting families - type An

As in the previous section we assume the root system is of type An and we shall
construct a commuting family of differential operators ∆j for j = 1, . . . ,m = n+1.
In fact we shall prove the operators

(5.1) ∆k =
∑

0≤`≤ k
2

∑
J⊂[1,m]
|J|=k−2`

{( ∑
Λ∈Σ(J;`)

∏
α∈Λ

u(〈α, x〉)
)∏

j∈J

∂

∂xj

}

form a commuting family for any function u given by Theorem 4.3. Here

Σ(J ; `) =
{
{β1, . . . , β`}; β1, . . . , β`, ej (j ∈ J) are orthogonal

to each other and βi ∈ Σ+
}

for J ⊂ [1,m] and we define∑
Λ∈Σ(J;0)

∏
α∈Λ

u(〈α, x〉) = 1 and
∏
j∈∅

∂

∂xj
= 1.
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We may write them in the following way:

(5.2) ∆k =
∑

0≤`≤ k
2

∑
g∈Sm

1

#G(`, k − 2`)
g(L`,k−2`)

by putting

(5.3) Li,j = u(x1 − x2)u(x3 − x4) · · ·u(x2i−1 − x2i)
∂j

∂x2i+1∂x2i+2 · · · ∂x2i+j
.

Here Sm is the permutation group of the set [1,m] = {1, . . . ,m} and we denote
G(i, j) = {g ∈ Sm; g(Li,j) = Li,j}.
Lemma 5.1. These operators satisfy

(5.4) [∆k,∆1] = [∆k,∆2] = 0, t∆k = ∆−
k = (−1)k∆k for k = 1, . . . ,m.

Proof. Note that [∆k,∆1] = 0 and t∆k = ∆−
k = (−1)k∆k are clear by defini-

tion. Furthermore it is easy to see that (5.1) implies that the commutator [∆k,∆2]
vanishes except for the terms ∂j1 · · · ∂j` with j1 < j2 < · · · < j`.

Suppose Q = [∆k,∆2] 6= 0. Since tQ = (−1)k−1Q, the order of Q is odd if k
is even and even otherwise. Let k − 2N − 1 be the order of Q with a nonnegative
integer N and put I = [k− 2N,m] and J = [1, k− 2N − 1]. Then the coefficient of
∂1 · · · ∂k−2N−1 of [∆k,∆2] equals

m∑
i=k−2N

∑
Λ∈Σ(J∪{i};N)

uΛ(x)∂i
∑
ν<µ

u(xν − xµ)(5.5)

−
k−2N−1∑

i=1

∂(i)
∑

Λ∈Σ(J\{i};N+1)

uΛ(x)

=
m∑

i=k−2N

∑
Λ∈Σ(J∪{i};N)

uΛ(x)

(∑
ν 6=i

u′(xi − xν)

)

+
k−2N−1∑

i=1

m∑
j=k−2N

∑
Λ∈Σ(J∪{j};N)

uΛ(x)u
′(xi − xj)

by denoting

(5.6) uΛ(x) =
∏
α∈Λ

u(〈α, x〉).

Hence for k − 2N ≤ ν < µ ≤ m, the sum of the terms in (5.5) which contain
u′(xν − xµ) equals

( ∑
Λ∈Σ(J∪{ν};N)

uΛ(x)−
∑

Λ∈Σ(J∪{µ};N)

uΛ(x)

)
u′(xν − xµ)

(5.7)

=
∑

i∈I\{ν,µ}

∑
Λ∈Σ(J∪{µ,ν,i};N−1)

uΛ(x)
(
u(xi − xν)− u(xi − xµ)

)
u′(xν − xµ).
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Since we have∑
k−2N≤ν<µ≤m

∑
i∈I\{µ,ν}

(
u(xi − xµ)∂νu(xν − xµ) + u(xi − xν)∂µu(xν − xµ)

)
= 0

from the addition formula (4.9), the terms (5.7) cancel out if we sum up them for all
ν and µ satisfying k−2N ≤ ν < µ ≤ m. On the other hand, in the expression (5.5)
it is easy to see that the terms u′(xi−xν) for i ∈ [k−2N,m] and ν ∈ [1, k−2N−1]
vanish. This assures the vanishing of the term of order k − 2N − 1 of Q, which
contradicts the assumption. Thus we have the Lemma. �

Now we can state our main theorem when the root system is of type An.

Theorem 5.2. i) For Weierstrass’ elliptic function ℘(t|2ω1, 2ω2) and any complex
numbers C0 and C1 we put

(5.8) u(t) = C1℘(t|2ω1, 2ω2) + C0.

Then the differential operators ∆k given by (5.1) satisfy

(5.9)
[∆i,∆j ] = 0 for 1 ≤ i < j ≤ m,

t∆i = ∆−
i = (−1)i∆i for 1 ≤ i ≤ m.

Here we note that ω1 and ω2 are allowed to be infinity.
ii) Let Ω be a W -invariant connected open neighborhood of the origin of Cm.

Let D(An) be a commutative algebra generated by suitable W -invariant differential
operators whose coefficients are holomorphic on an open dense subset Ω′ of Ω such
that Ω \ Ω′ is an analytic subset of Ω. Suppose D(An) contains the operators

(5.10)

( ∑
1≤i1<···<ik≤m

∂k

∂xi1 · · · ∂xik

)
+Rk(x, ∂) for k = 1, · · · ,m.

Here Rk(x, ∂) are differential operators of order ≤ k − 1. Furthermore suppose
R1(x, ∂) = 0, ordR2(x, ∂) ≤ 0 and ordR3(x, ∂) ≤ 1. Then D(An) coincides with
C[∆1, . . . ,∆m] which is determined by a suitable function u of the form (5.8).

Proof. Owing to Theorem 3.2, Proposition 3.3, Theorem 4.3 and Lemma 5.1, we
have only to prove the commutativity of ∆j . But it follows from Lemma 3.5 and
the analytic continuation for the parameters of ℘(t). �
Remark 5.3. It is clear that the commuting algebra C[∆1, · · · ,∆m] in Theorem 5.2
stays invariant even if we change the constant number C0 in (5.8).

Furthermore it is easy to show that if we consider C0 as an element which
commutes with any differential operator and consider the differential operators
∆m and ∆′

m = [∆m, x1 + · · · + xm] defined by (5.1) as a polynomial of C0, then
their coefficients of Ck

0 for k = 0, 1, . . . form a complete set of generators of the
commuting algebra.
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6. A functional differential equation satisfied
by the potential function - type Bn and Dn

Hereafter in this paper we shall study the case when the root system is of type
Bn with n > 1 or of type Dn with n > 3. In this section we examine W -invariant
differential operators P1 and P2 of the form

(6.1)

P1 =
∑

1≤i≤n

∂2
i +R(x),

R(x) =
∑

1≤i<j≤n

(
u(xi + xj) + u(xi − xj)

)
+

∑
1≤i≤n

v(xi),

P2 =
∑

1≤i<j≤n

∂2
i ∂

2
j +

∑
1≤i≤n

ai2∂
2
i +

∑
1≤i<j≤n

aij11∂i∂j +
∑

1≤i≤n

ai1∂i + a0

which satisfy [P1, P2] = 0 and tP2 = P2.
The term ∂i of [P1, P2] gives

(6.2)
∑

1≤ν≤n

∂2
νa

i
1 + 2∂ia0 =

∑
ν 6=i

1≤ν≤n

2∂i∂
2
νR+ 2ai2∂iR+

∑
ν 6=i

1≤ν≤n

aiν11∂νR.

We may assume that ai2 and aij11 are given by (2.21). Furthermore we may assume
v = 0 if the root system is of type Dn, which follows from the argument in the last
part of §2.

The condition tP2 = P2 is equivalent to

(6.3) ai1 =
1

2

∑
ν 6=i

1≤ν≤n

(
u′(xi + xν) + u′(xi − xν)

)

and from (6.2) we have

2∂ia0 =
∑
ν 6=i

2∂i∂
2
νR−

∑
ν

∂2
νa

i
1 + 2ai2∂iR+

∑
ν 6=i

aiν11∂νR(6.4)

=
∑
ν 6=i

(
u(3)(xi + xν) + u(3)(xi − xν)

)
+ 2

( ∑
ν,µ6=i
ν<µ

(
u(xν + xµ) + u(xν − xµ)

)
+
∑
ν 6=i

v(xν)

)

·
(∑

ν 6=i

(
u′(xi + xν) + u′(xi − xν)

)
+ v′(xi)

)

+
∑
ν 6=i

{(
u(xi + xν)− u(xi − xν)

)

·
(∑

µ 6=ν

(
u′(xµ + xν)− u′(xµ − xν)

)
+ v′(xν)

))}
.
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Theorem 6.1.

i) Under the above notation the condition [P1, P2] = 0 is equivalent to the
existence of a W -invariant function a0 satisfying (6.4).

ii) The compatibility condition of the integrability of equation (6.4) for a0 is

(
(n− 2)

(
u′′(x1 + x3) + u′′(x1 − x3)

)
+ v′′(x1)

)(
u(x1 + x2)− u(x1 − x2)

)(6.5)

+ 3

(
(n− 2)

(
u′(x1 + x3) + u′(x1 − x3)

)
+ v′(x1)

)(
u′(x1 + x2) + u′(x1 − x2)

)
+ 2

(
(n− 2)

(
u(x1 + x3) + u(x1 − x3)

)
+ v(x1)

)(
u′′(x1 + x2)− u′′(x1 − x2)

)
+ (n− 2)

(
u′′(x1 + x3)− u′′(x1 − x3)

)(
u(x1 + x3)− u(x1 − x3)

)
=

(
(n− 2)

(
u′′(x2 + x3) + u′′(x2 − x3)

)
+ v′′(x2)

)(
u(x1 + x2)− u(x1 − x2)

)
+ 3

(
(n− 2)

(
u′(x2 + x3) + u′(x2 − x3)

)
+ v′(x2)

)(
u′(x1 + x2)− u′(x1 − x2)

)
+ 2

(
(n− 2)

(
u(x2 + x3) + u(x2 − x3)

)
+ v(x2)

)(
u′′(x1 + x2)− u′′(x1 − x2)

)
+ (n− 2)

(
u′′(x2 + x3)− u′′(x2 − x3)

)(
u(x2 + x3)− u(x2 − x3)

)
.

Proof. Suppose there exists a W -invariant function satisfying (6.4). Since the com-
mutator satisfies t[P1, P2] = −[P1, P2], the order of [P1, P2] equals 1 or 3 or 5 if it
is not zero.

It is clear that the order is smaller than 5. Furthermore equations (2.21) and
(6.4) assure the vanishing of the 3-rd and and first order terms, respectively. Hence
we have the first statement of the theorem.

Note that the function R and the operator
∑

i a
i
1∂i are symmetric with respect

to the coordinate. Therefore the compatibility condition for equation (6.4) equals

(6.6) ∂2U(x1, x2, x
′) = ∂1U(x2, x1, x

′)

by putting

(6.7) U(x1, x2, x
′) =

∑
ν 6=1

2∂1∂
2
νR−

∑
ν

∂2
νa

1
1 + 2a12∂1R+

∑
ν 6=1

a1ν11∂νR.
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with x′ = (x3, . . . , xn). Defining a symmetric function

S(x) =
∑
µ<ν

(
u(2)(xµ + xν) + u(2)(xµ − xν) + 2v(xµ)v(xν)

)
(6.8)

+

(∑
µ<ν

(
u(xµ + xν) + u(xµ − xν)

))2

+
1

2

∑
µ<ν

(
u(xµ + xν)− u(xµ − xν)

)2
+ 2

∑
k

v(xk)

( ∑
µ<ν, µ,ν 6=k

(
u(xµ + xν)− u(xµ − xν)

))
,

we have

U(x1, x2, x
′)− ∂1S(x) =

∑
ν>1

(
u(x1 + xν)− u(x1 − xν)

)
v′(xν)

(6.9)

+ 2
∑
ν>1

(
u′(x1 + xν) + u′(x1 − xν)

)
v(xν)

− 2

(∑
ν>1

(
u(x1 + xν) + u(x1 − xν)

))(∑
ν>1

(
u′(x1 + xν) + u′(x1 − xν)

))
+

{∑
ν>1

(
u(x1 + xν)− u(x1 − xν)

)( ∑
µ6=1,ν

(
u′(xµ + xν)− u′(xµ − xν)

))}

Then

∂2U(x1, x2, x
′)− ∂1∂2S(x)

(6.10)

=
(
u(x1 + x2)− u(x1 − x2)

)
v′′(x2)

+ 3
(
u′(x1 + x2) + u′(x1 − x2)

)
v′(x2)

+ 2
(
u′′(x1 + x2)− u′′(x1 − x2)

)
v(x2)

− 2
(
u′(x1 + x2)− u′(x1 − x2)

)(
u′(x1 + x2) + u′(x1 − x2) + ∂1W (x1, x

′)
)

− 2
(
u(x1 + x2) + u(x1 − x2) +W (x1, x

′)
)(
u′′(x1 + x2)− u′′(x1 − x2)

)
+
(
u′(x1 + x2) + u′(x1 − x2)

)
∂2W (x2, x

′)

+
(
u(x1 + x2) + u(x1 − x2)

)
∂2
2W (x2, x

′)

+
∑
ν>2

(
u(x1 + xν)− u(x1 − xν)

)(
u′′(x2 + xν)− u′′(x2 − xν)

)
by putting

(6.11) W (x1, x
′) =

∑
3≤ν≤n

(
u(x1 + xν) + u(x1 − xν)

)
.
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Denoting

Q(x1, x2, x
′)

(6.12)

=
(
∂2
1W (x1, x

′) + v′′(x1)
)(
u(x1 + x2)− u(x1 − x2)

)
+ 3

(
∂1W (x1, x

′) + v′(x1)
)(
u′(x1 + x2)− u′(x1 − x2)

)
+ 2

(
W (x1, x

′) + v(x1)
)(
u′′(x1 + x2)− u′′(x1 − x2)

)
+

∑
ν≥3

(
u′′(x1 + xν)− u′′(x1 − xν)

)(
u(x2 + xν)− u(x2 − xν)

)
,

the compatibility condition (6.6) can be stated as

(6.13) Q(x1, x2, x
′) = Q(x2, x1, x

′).

Then if we put x3 = x4 = · · · = xn, we obtain (6.5).
On the other hand, if (6.5) holds, the function

D(x1, x2, x3)(6.14)

=
(
u′′(x1 + x3) + u′′(x1 − x3)

)(
u(x1 + x2)− u(x1 − x2)

)
+ 3

(
u′(x1 + x3) + u′(x1 − x3)

)(
u′(x1 + x2)− u′(x1 − x2)

)
+ 2

(
u(x1 + x3) + u(x1 − x3)

)(
u′′(x1 + x2)− u′′(x1 − x2)

)
+

(
u′′(x1 + x3)− u′′(x1 − x3)

)(
u(x2 + x3)− u(x2 − x3)

)
−

(
u′′(x2 + x3) + u′′(x2 − x3)

)(
u(x1 + x2)− u(x1 − x2)

)
− 3

(
u′(x2 + x3) + u′(x2 − x3)

)(
u′(x1 + x2) + u′(x1 − x2)

)
− 2

(
u(x2 + x3) + u(x2 − x3)

)(
u′′(x1 + x2)− u′′(x1 − x2)

)
−

(
u′′(x2 + x3)− u′′(x2 − x3)

)(
u(x1 + x3)− u(x1 − x3)

)
does not depend on x3 and therefore (6.13) holds. �
Remark 6.2. If we put

A(x1, x3) = (n− 2)
(
u(x1 + x3) + u(x1 − x3)

)
+ v(x1)

U(x1, x2) = u(x1 + x2)− u(x1 − x2)

B(x1, x2, x3) = (n− 2)
(
u(x1 + x3)− u(x1 − x3)

)(
u(x2 + x3)− u(x2 − x3)

)
C(x1, x2, x3) =

∂

∂x1

(
2A(x1, x3)

∂U(x1, x2)

∂x1
+

∂A(x1, x3)

∂x1
U(x1, x2)

+
∂B(x1, x2, x3)

∂x1

)
,

condition (6.5) is equivalent to

(6.15) C(x1, x2, x3) = C(x2, x1, x3).

When the root system is of type B2, we can state our result in this section as
follows.
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Proposition 6.3. Suppose the root system is of type B2.
i) In Theorem 2.1 we can choose functions u(t), v(t) and T (x, y) such that

R(x, y) = u(x+ y) + u(x− y) + v(x) + v(y),

2
∂

∂y
T (x, y) = v′(x)

(
u(x+ y)− u(x− y)

)
+ 2v(x)

(
u′(x+ y)− u′(x− y)

)(6.16)

and

(6.17) T (x, y) = T (y, x).

ii) Assume that for given functions u(t) and v(t) there exists a function T (x, y)
satisfying (6.16) and (6.17). Then the following two differential operators are com-
mutative.

P1 =
∂2

∂x2
+

∂2

∂y2
+ u(x+ y) + u(x− y) + v(x) + v(y),

P2 =
∂4

∂x2∂y2
+ v(y)

∂2

∂x2
+ v(x)

∂2

∂y2
+
(
u(x+ y)− u(x− y)

) ∂2

∂x∂y

+
1

2

(
u′(x+ y) + u′(x− y)

) ∂

∂x
+

1

2

(
u′(x+ y)− u′(x− y)

) ∂

∂y

+

(
u(x+ y)− u(x− y)

)2
4

+
u′′(x+ y) + u′′(x− y)

2
+ v(x)v(y) + T (x, y)

=

(
∂2

∂x∂y
+

u(x+ y)− u(x− y)

2

)2

+ v(y)
∂2

∂x2
+ v(x)

∂2

∂y2
+ v(x)v(y)

+ T (x, y).

iii) We can choose functions u(t) and v(t) in Theorem 2.1 such that

∂2

∂x2

(
v(x)

(
u(x+ y)− u(x− y)

))
+

∂

∂x

(
v(x)

∂

∂x

(
u(x+ y)− u(x− y)

))(6.18)

=
∂2

∂y2

(
v(y)

(
u(x+ y)− u(x− y)

))
+

∂

∂y

(
v(y)

∂

∂y

(
u(x+ y)− u(x− y)

))
.

iv) If a pair
(
u(t), v(t)

)
=

(
u0(t), v0(t)

)
is a solution of (6.18), then the pair(

u(t), v(t)
)
=

(
C1u0(Ct) +C2, C

′
1v0(Ct) +C ′

2

)
for complex numbers C, C1, C

′
1, C2

and C ′
2 with C 6= 0 and the pair

(
u(t), v(t)

)
=

(
v0(

t√
2
), u0(

√
2t)

)
also satisfy (6.18).

Proof. The first and the second claims follow from the proof of Theorem 6.1. In fact
putting x = x2 and y = x1, they follow from (2.21), (6.3), (6.4), (6.8) and (6.9) and
the fact that the right hand side of (6.16) equals ∂

∂y

(
2a0−S−(u(x+y)−u(x−y))2

)
.

The third claim is obvious from Remark 6.2 and the first pair
(
u(t), v(t)

)
in iv)

clearly satisfies (6.18).
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The last pair in iv) is obtained by the fact that the coordinate transformation

(6.19) X =
1√
2
(x− y), Y =

1√
2
(x+ y)

gives an automorphism of the Weyl group B2 which is identified with a group of
linear transformations of R2. In fact, we can rewrite (6.18) in the form(

v(x)− v(y)
)
u′′(x+ y) + 3

(
v′(x)− v′(y)

)
u′(x+ y) + 2

(
v′′(x)− v′′(y)

)
u(x+ y)

=
(
v(x)− v(y)

)
u′′(x− y) + 3

(
v′(x) + v′(y)

)
u′(x− y) + 2

(
v′′(x)− v′′(y)

)
u(x− y)

and the transformation (6.19) proves the second claim. �
When the rank of the root system is larger than 2, we have

Proposition 6.4. i) If the root system is of type Dn with n ≥ 3, then the function
u in Theorem 2.1 satisfies (6.18) with v = u.

ii) If the root system is of type Bn with n ≥ 3 or of type Dn with n ≥ 3, then
we can choose the function u in Theorem 2.1 such that

u(4)(x)
(
u(x+ y)− u(x− y)

)
+ 3u(3)(x)

(
u(1)(x+ y)− u(1)(x− y)

)(6.20)

+ 2u(2)(x)
(
u(2)(x+ y)− u(2)(x− y)

)
+ 4u(3)(x)u(1)(y)

= u(4)(y)
(
u(x+ y)− u(x− y)

)
+ 3u(3)(y)

(
u(1)(x+ y) + u(1)(x− y)

)
+ 2u(2)(y)

(
u(2)(x+ y)− u(2)(x− y)

)
+ 4u(3)(y)u(1)(x).

iii) Let u(t) and E(x, y, z) be functions which satisfy

∂

∂y
E(x, y, z) = 2

(
u(x+ z) + u(x− z)

)(
∂

∂x

(
u(x+ y)− u(x− y)

))(6.21)

+

(
∂

∂x

(
u(x+ z) + u(x− z)

))(
u(x+ y)− u(x− y)

)
+

(
∂

∂x

(
u(x+ z)− u(x− z)

))(
u(y + z)− u(y − z)

)
,

E(x, y, z) = E(y, x, z).

(6.22)

Then D(x, y, z) = 0 for the function D defined by (6.14).
Furthermore if u(t) is holomorphic on Ω′, then (6.20) is also valid.

Proof. The first claim is clear by putting v = 0 and x3 = 0 in (6.15).

Applying ∂2

∂x2
3
to (6.15) and moreover putting x1 = x, x2 = y and x3 = 0, we

obtain (6.20).
Since D(x, y, z) = ∂

∂xE(x, y, z)− ∂
∂yE(y, x, z), equations (6.21) and (6.22) imply

D(x, y, z) = 0 and therefore we obtain (6.20) in the same way as the proof of the
claim ii). �

For the uniqueness of our commuting family we have the following
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Theorem 6.5. Let {P1, . . . , Pn} be a family of differential operators of the form
(0.2) which satisfies (0.3). Suppose the root system is of type Dn with n ≥ 4 or
of type Bn with n ≥ 2. We may assume that the principal symbol of P2 equals∑

i<j ξ
2
i ξ

2
j and that u and v in (2.20) satisfy (2.21). Then the commuting algebra

C[P1, . . . , Pn] is uniquely determined by the pair (u, v). Here we put v = 0 in the
case of type Dn.

Proof. If tP2 = P2, we have the theorem from Theorem 3.2 and the proof of Theo-
rem 6.1. Put P2 =

∑
i<j ∂

2
i ∂

2
j +R2. Let σ(R2) denote the principal symbol of R2.

Then we have {
∑

ξ2i , σ(R2)} = 0.
Suppose ordR2 = 3. Since R2 is W -invariant, Lemma 3.8 implies that W is of

type D4 and σ(R2) equals the right hand side of (3.37) with C 6= 0. Then we may
assume

P4 = ∂1∂2∂3∂4 +R4

with ordR4 ≤ 3. Let σ3(R4) denote the symbol R4 of order 3. Note that [P1, P2] =
[P1, P4] = [P2, P4] = 0. Hence σ3(R4) = C ′σ(R2) with some C ′ ∈ C and by the
equality [P4 − C ′P2, P2] = 0, we have

{ξ1ξ2ξ3ξ4 − C ′
∑

1≤i<j≤n

ξ2i ξ
2
j ,

C
∑
g∈S4

g
( 1
3!
x2x3x4ξ

3
1 − 1

2!
x1x3x4ξ

2
1ξ2 −

1

3!
(x2

1 + x2
2 + x2

3 − x2
4)x4ξ1ξ2ξ3

)
} = 0.

Then the coefficients of ξ51ξ2 in the above shows −2CC ′x3x4 = 0 and hence C ′ = 0.
The coefficients of ξ41ξ2ξ3 prove −Cx2x3 = 0. This leads the contradiction because
C 6= 0.

Thus we have ordR2 ≤ 2. Put Q = P2 − tP2. Suppose Q 6= 0, then ordQ = 1
and [P1, Q] = 0. But it is easy to see that the equation {

∑
ξ2i , σ(Q)} = 0 never

holds for differential operator of order 1 if σ(Q)(x, ∂) is symmetric. Thus we can
conclude P2 = tP2. �

7. Solutions of the functional
differential equation - type Bn and Dn

In this section we want to solve the functional differential equations (6.18) and
(6.20).

Lemma 7.1. i) Suppose u(t) and v(t) are holomorphic functions for 0 < |t| � 1
satisfying (6.18). Then if u′ 6= 0 and v′ 6= 0, the origin is at most a pole of order 2
for u(t) and v(t).

ii) Let
(
u(t), v(t)

)
be a meromorphic solution of (6.18) defined on a neighborhood

of the origin. Consider the Laurent developments

(7.1)
u(t) = Ukt

k + Uk+2t
k+2 + Uk+4t

k+4 + · · · ,
v(t) = V`t

` + V`+2t
`+2 + V`+4t

`+4 + · · · .

31



Here Ui ∈ C, Vj ∈ C, and k and ` are nonzero even integers. If Uk 6= 0 and
V` 6= 0, then (k, `) equals (−2,−2), (−2, 2), (−2, 4), (−2, 6), (2, 2), (2,−2), (4,−2)
or (6,−2).

Proof. Using the Laurent development

(7.2) u(x+ y)− u(x− y) = 2

(
u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · ·

)
.

with respect to y, it follows from (6.18) that

∂2

∂x2

(
v(x)(

u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · · )

)
(7.3)

+
∂

∂x

(
v(x)

∂

∂x
(
u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · · )

)
=

∂2

∂y2

(
v(y)(

u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · · )

)
+

∂

∂y

(
v(y)

∂

∂y
(
u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · · )

)
.

To prove i) we fix x with 0 < |x| � 1 and u′(x) 6= 0. Suppose 0 < |y| � |x|.
Then (7.3) implies

f(x, y) = y(u′(x) + yc2(x, y))v
′′(y) + 3(u′(x) + yc1(x, y))v

′(x) + c0(x, y)v(x)

with suitable holomorphic functions f(x, y), c0(x, y), c1(x, y) and c2(x, y) of y de-
fined on a neighborhood of the origin. Since this equation for v has a regular
singularity at the origin with the characteristic exponents 0 and −2, the origin is
at most a pole of order 2 for the solution v.

On the other hand Proposition 6.3 iv) assures that the origin is also at most a
pole of order 2 for u and moreover that we may suppose ` ≥ k to prove the second
part of the lemma.

Suppose ` ≥ 4 and ` ≥ k. Then the coefficients of y in equation (7.3) shows

∂2

∂x2

(
v(x)u(1)(x)

)
+

∂

∂x

(
v(x)u(2)(x)

)
= 0.

Expanding this into the Laurent series of x, the coefficients of xk+`−3 proves

k(k + `− 1)(k + `− 2)V`Uk + k(k − 1)(k + `− 2)V`Uk = 0

and hence we can conclude that k equals 2 − ` or 1 − `
2 , from which we have

(`, k) = (4,−2) or (6,−2) because of the assumption. �
Now we want to get solutions of (6.18). Suppose

(
u(t), v(t)

)
is a holomorphic

solution of (6.18) defined for 0 < |t| � 1. Furthermore suppose u′ 6= 0, v′ 6= 0,
u(−t) = u(t) and v(−t) = v(t). Then Lemma 7.1 assures that we may assume

32



k = ` = −2 in (7.1). Here Uk may be 0 and V` may be 0. Subtracting constant
numbers from u and v, respectively, we may moreover assume U0 = V0 = 0.

Then (7.3) equals

∂2

∂x∂y

{
v′(x)

(u(1)

2!
y2 +

u(3)

4!
y4 + · · ·

)
+ 2v(x)

(u(2)

2!
y2 +

u(4)

4!
y4 + · · ·

)}(7.4)

=
∂2

∂x∂y

{(
− 2V−2y

−3 + 2V2y
1 + 4V4y

3 + · · ·
)(u(0)

1!
y +

u(2)

3!
y3 + · · ·

)
+
(
2V−2y

−2 + 2V2y
2 + 2V4y

4 + · · ·
)(u(0)

0!
+

u(2)

2!
y2 + · · ·

)}
.

Comparing the coefficients of y1 and y3 in the above, we have

Lemma 7.2. Under the above notation

(7.5) u(1)v′ + 2u(2)v =
2

3 · 5
V−2u

(4) + 2 · 22V2u+ C1

and

(7.6) u(3)v′ + 2u(4)v =
2

5 · 7
V−2u

(6) + 2 · 42V2u
(2) +

2 · 4! · 3
1!

V4u+ C2

with suitable constant numbers C1 and C2.

Now we give solutions of equation (6.18). The claim i) in Proposition 7.3 is not
necessary for our later purpose if we have Proposition 7.8. The proof of Proposi-
tion 7.8 is similar as that of Proposition 7.3 i). The both proofs are elementary
but the latter one is more complicated. Hence we shall also give the former one
for the reader’s convenience. In fact, it is useful for the calculation in the proofs to
have the aid of a computer with an algebraic programming system such as Reduce,
Maple, Mathematica.

Proposition 7.3. Let
(
u(t), v(t)

)
be a holomorphic solution of (6.18) defined for

0 < |t| � 1. Assume that u′ 6= 0, v′ 6= 0, u(−t) = u(t) and v(−t) = v(t).
i) If u = v, then there exist complex numbers A2, A1, A0, ω1 and ω2 such that

(7.7) u(t) = A1℘(t|2ω1, 2ω2) +A0

or

(7.8) u(t) = A1t
2 +A2t

−2 +A0.

ii) Suppose u(t) = ℘(t|2ω1, 2ω2). Then there exist complex numbers C0, C1, C2,
C3 and C4 such that

(7.9) v(t) =
C4℘(t)

4 + C3℘(t)
3 + C2℘(t)

2 + C1℘(t) + C0

℘′(t)2
.
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On the other hand for any complex numbers Ci, there exists a function T (x, y)
satisfying (6.16) and (6.17) if the function v is defined by (7.9).

iii) Suppose u(t) = t2 + Ct−2 with a complex number C. Then there exist
complex numbers C0, C1 and C2 such that

(7.10) v(t) = C0 + C1t
−2 + C2t

2.

Conversely for any complex numbers C0, C1 and C2 and the function v given by
(7.10), there exists a function T (x, y) which satisfies (6.16) and (6.17).

Proof. First we shall prove the claim iii). Put

(7.11)

{
u(t) = αt−2 + βt2,

v(t) = γt−2 + δt2

with complex numbers α, β, γ and δ. Then

u(x+ y)− u(x− y) = 2
∂

∂y

(
− α

x

x2 − y2
+ βxy2

)
and

(7.12) v′(x)
(
u(x+ y)− u(x− y)

)
+ 2v(x)

(
u′(x+ y)− u′(x− y)

)
= 2

∂T

∂y

with

(7.13) T (x, y) =
4αγ + 4αδx2y2

(x2 − y2)2
+ 4βδx2y2.

Hence (6.18) is clear from (6.16) and (6.17).
Next suppose u(t) = t2 + Ct−2. We want to prove that v is of the form (7.10).

Subtracting a suitable function of the form of the right hand side of (7.10) from v, we
may assume ` = 4 in (7.1). We shall show v = 0, which proves Proposition 7.3 iii).

If C = 0, then (7.5) means

2(t
∂

∂t
+ 2)v(t) = C ′

with a constant number C ′ and therefore we have v = 0.
Hence we may assume C 6= 0. Multiplying the both sides of (7.6) by 1

24 t
6, we

get

C(−t
∂

∂t
+ 10)v(t) = 6V4(Ct4 + t8) +

C ′

24
t6

with a constant C ′. This proves that

v(t) = V4t
4 + V6t

6 +
3V4

C
t8 + V10t

10.

Since

u(1)v′ + 2u(2)v = 4CV4 + (16V6 − 8CV10)t
6 +

60V4

C
t8 + 24V10t

10,

equation (7.5) assures V4 = V6 = V10 = 0.
Next we shall prove the claim ii). Suppose u(t) = ℘(t) and v(t) is given by

(7.10). We shall show equation (6.18). Put

Q(t) = C4t
4 + C3t

3 + C2t
2 + C1t+ C0.

Then we have the following lemma by direct calculation.
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Lemma 7.4.

2Q(s)−Q′(s)(s− t) = 2B(s, t)− (2C4s
2 + C3s)(s− t)2.

by denoting

B(s, t) = C4s
2t2 + C3st

s+ t

2
+ C2st+ C1

s+ t

2
+ C0(7.14)

Since ℘ satisfies

(7.15) ℘(x+ y)− ℘(x− y) =
∂

∂y

(
℘′(x)

℘(y)− ℘(x)

)
(cf. [WW]), we have

v′(x)
(
u(x+ y)− u(x− y)

)
+ 2v(x)

(
u′(x+ y)− u′(x− y)

)(7.16)

=
∂

∂y

{( ∂

∂x

Q(℘(x))

℘′(x)2
) ℘′(x)

℘(y)− ℘(x)
+

2Q(℘(x))

℘′(x)2
∂

∂x

( ℘′(x)

℘(y)− ℘(x)

)}
=

∂

∂y

{
2Q(℘(x))−Q′(℘(x))(℘(x)− ℘(y))

(℘(x)− ℘(y))2

}
= 2

∂

∂y

B(℘(x), ℘(y))(
℘(x)− ℘(y)

)2 .
Since B(s, t) is symmetric for (s, t), we obtain (6.16) and (6.18).

Next suppose (u(t), v(t)) satisfies (6.18) with u(t) = ℘(t). Subtracting a suitable
function of the form of the right hand side of (7.8) from v(t), we may assume ` ≥ 8
in (7.1) to prove the claim ii). But Lemma 7.1 assures that v = 0 and we have the
claim.

Now we shall prove i) and hence we suppose u = v. Note that if u is given by
(7.7) or (7.8) and v = u, then u and v satisfy (6.18) (cf. (1.8)).

Use the developments (7.1) and equations (7.5) and (7.6). Then we may assume
k = −2 or k = 2 and moreover Uk = 1 and U0 = 0 by virtue of Lemma 7.1.

Comparing the coefficients of t2j in equation (7.5), we have

(7.17)

j+2∑
ν=−1

4ν(j + ν)U2νU2j+2−2ν

− 2

15
(2j + 1)(2j + 2)(2j + 3)(2j + 4)U−2U2j+4 − 8U2U2j = 0

for any positive integer j.
First suppose k = 2. Then for j ≥ 2 we have

4(j + 1)U2j + 4j(2j)U2j +

j−1∑
ν=2

4ν(j + ν)U2νU2j+2−2ν − 8U2j−2 = 0.
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and therefore

4(2j − 1)(j + 1)U2j = −4

j−1∑
ν=2

ν(j + ν)U2νU2j+2−2ν .

Hence by the induction on j, we have U2j = 0 for j ≥ 2, which means u(t) = t2.
Next suppose k = −2. Then in equation (7.17) there only appear Uν for ν ≤

2j + 4. We can prove that if j ≥ 2, then U2j+4 are inductively determined by Uν

with ν < 2j + 4. In fact, since the term containing U2j+4 in (7.17) equals

2(−2)(2j + 4)U−2U2j+4 + 2(−2)(−3)U−2U2j+4 + 2(2j + 4)(2j + 3)U2j+4U−2

− 2

15
(2j + 1)(2j + 2)(2j + 3)(2j + 4)U−2U2j+4

= − 2

15
(2j − 2)(2j + 7)(4j2 + 10j + 9)U2j+4,

we have

(7.18)
1

15
(`−3)(2`+3)(4`2−6`+5)U2` =

`−2∑
ν=1

ν(`+ν−2)U2νU2(`−ν−1)−2U2U2(`−2)

for ` = j + 2 ≥ 3. By putting ` = 4, 5, 6 and 7 in (7.18), we obtain

U8 =
3

11
U2U4,(7.19)

U10 =
2

13
U2U6 +

1

13
U2
4 ,(7.20)

U12 =
35

3729
U2
2U4 +

11

113
U4U6,(7.21)

U14 =
270

3604
U2U10 +

75

1802
U4U8 +

30

901
U2
6 ,(7.22)

respectively. In general, if ` ≥ 4, U` are determined by Uν with ν < ` and therefore
the solution of (6.19) with u = v is uniquely determined by the numbers U2, U4

and U6.
Similarly the coefficients of t6 and t8 in (7.6) mean

U12 =
140

3883
U2
2U4 +

26

353
U4U6,(7.23)

U14 =
90

833
U2U10 +

50

833
U4U8 +

15

833
U2
6 .(7.24)

Now it follows from (7.21) and (7.23) that

(7.25) U4(U
2
2 − 3U6) = 0.

Note that U6 = 1
3U

2
2 if u is a ℘-function. Since u(t) = ℘(t) is a solution of

(6.18) and since U2` with ` ≥ 4 are uniquely determined by U2, U4 and U6, we can
conclude that u(t) is Weierstrass’ elliptic function if U2

2 = 3U6.
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Hence to prove the proposition we may assume U2
2 6= 3U6. Then we have U4 = 0

and U10 = 2
13U2U6 by (7.20). Combining this with (7.22) and (7.24), we get

(7.26) U6(U
2
2 − 3U6) = 0.

Then by the assumption U2
2 6= 3U6 we have U4 = U6 = 0 and therefore we can

conclude u(t) = t−2 + U2t
2 by the same reason as in the case U2

2 = 3U6. �
Remark 7.5. i) Suppose u(t) = ℘(t|2ω1, 2ω2) and put ω3 = −ω1 − ω2. If ω1 and
ω2 are finite complex numbers, then the condition that v is of the form (7.9) is
equivalent to say that

(7.27) v(t) = C ′
0℘(t) + C ′

1℘(t+ ω1) + C ′
2℘(t+ ω2) + C ′

3℘(t+ ω3) + C ′
4

with suitable complex numbers C ′
0, C

′
1, C

′
2, C

′
3 and C ′

4 (cf. [WW]).
ii) For complex numbers C1, C2 and C3, the pair

(7.28) (u(t), v(t)) = (C1℘(t), C2℘(t) + C3℘(2t))

satisfies equation (6.18), which follows from the duplication formula for ℘(t) (cf.
[WW]).

Corollary 7.6. Suppose the root system is of type B2 in Theorem 2.1.
i) Suppose u = 0. Then (6.18) always holds and our commuting differential

operators are
P1 = Q1 +Q2, P2 = Q1Q2

with
Qj = ∂2

j + v(xj)

for j = 1 and 2.
ii) The case when v = 0 is also trivial. It corresponds to the case when v = 0 by

the symmetry given by Proposition 6.3 iv).
iii) Suppose

(7.29) (u(t), v(t)) = (αt−2 + βt2, γt−2 + δt2)

or

(7.30) (u(t), v(t)) = (A℘(t),
C4℘(t)

4 + C3℘(t)
3 + C2℘(t)

2 + C1℘(t) + C0

℘′(t)2
).

Then there exists a commuting algebra C[P1, P2], where P1 and P2 are defined by
Proposition 6.3 i) through (7.13) or (7.16).

Now we shall solve equation (6.20). Suppose u(t) is meromorphic at the origin.
We may assume that u(t) has the form given in (7.1).

Suppose k ≤ −2 and Uk = 1. Then by using (7.2), the coefficient of yk−3 of
(6.20) means(

(k)(k − 1)(k − 2)(k − 3) + (k)(k − 1)(k − 2)(3 + 2)
)
u′(x) = 0
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and therefore we have k = −2.
Hence we may assume k = −2 in the expansion (7.1) of u(t) if we allow Uk = 0.

Furthermore we may assume U0 = 0 by subtracting a constant from u. Then
expanding (6.20) into the Laurent series of y, we have

u(4)

{
u(1)

1!
y +

u(3)

3!
y3 + · · ·

}
+ 3u(3)

{
u(2)

1!
y +

u(4)

3!
y3 + · · ·

}
+ 4u(4)

{
u(3)

1!
y +

u(5)

3!
y3 + · · ·

}
=

(
(−2)(−3)(−4)(−5)U−2y

−6 + 4 · 3 · 2 · 1U4 + · · ·
){

u(1)

1!
y +

u(3)

3!
y3 + · · ·

}
+

(
(−2)(−3)(−4)U−2y

−5 + 4 · 3 · 2U4y + · · ·
){

3

(
u(1)

1!
+

u(3)

3!
y2 + · · ·

)
+ 2u(1)

}
+

(
(−2)(−3)U−2y

−4 + 2U2 + 4 · 3U4y
2 + · · ·

){
2

(
u(3)

1!
y +

u(5)

3!
y3 + · · ·

)}
+

(
(−2)U−2y

−3 + 2U2y + 4U4y
3 + · · ·

){
− 2u(3)

}
.

The coefficients of y and y3 in the above equation imply

5u(3)u(2) + u(4)u(1) =
U−2

42
u(7) + 144U4u

(1),

1

3
u(5)u(2) +

2

3
u(4)u(3) =

U−2

1080
u(9) +

2U2

3
u(5) + 56U4u

(3) + 960U6u
(1),

respectively. Integrating the above equations, we have

Lemma 7.7. Suppose a meromorphic function

(7.31) u(t) = U−2t
−2 + U2t

2 + U4t
4 + U6t

6 + · · ·

defined on a neighborhood of the origin satisfies (6.20). Then it also satisfies the
differential equations

(7.32)
U−2

42
u(6) − 2(u′′)2 − u(3)u′ + 144U4u = C

and

(7.33)
U−2

1080
u(8) − 1

3
u(4)u(2) − 1

6
(u(3))2 +

2U2

3
u(4) + 56U4u

(2) + 960U6u = C ′

with suitable constants C and C ′.

Now the following proposition solves the equation (6.20).
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Proposition 7.8. Let u(t) be a meromorphic function defined on a neighborhood
of the origin. Suppose u(t) satisfies (6.20). Then u(t) is of the form (7.7) or (7.8).

Conversely any function u(t) of the form (7.7) or (7.8) satisfies (6.20).

Now we prepare

Lemma 7.9. Let u(t) be a function of the form (7.7) or (7.8). ThenD(x1, x2, x3) =
0 with the function D(x1, x2, x3) defined by (6.14).

Proof. First suppose u(t) is given by (7.7). Then Theorem 5.2 assures the existence
of the commuting algebra D(An) corresponding to the potential function R(x) de-
fined by u. Since A3 ' D3, we have D(x1, x2, x3) = 0 from Theorem 2.1 and
Theorem 6.1

Next suppose u(t) is given by (7.8). Put

E(x, y, z) = 8A2
1

2x2y2 + x2z2 + y2z2

(x2 − y2)2(x2 − z2)(y2 − z2)

(7.34)

+ 8A1A2

(
2x2y2 + x2z2 + y2z2

(x2 − y2)2
+

z2

x2 − z2
+

z2

y2 − z2

)
+ 16A2

2(x
2y2 + x2z2 + y2z2)

+ 8A0A1
x2 + y2

(x2 − y2)2
+ 8A0A2(x

2 + y2).

Then we can prove equality (6.21) by direct calculation. Hence Lemma 7.9 follows
from Proposition 6.4 iii). �
Proof of Proposition 7.8. First expand equations (7.32) and (7.33) into the Laurent
series of t. Then the coefficients of t4, t6, t8, t10, t12 and t14 in (7.32) show

13U−2U10 − 2U2U6 − U2
4 = 0,(7.35)

195U−2U12 − 14U2U8 − 24U4U6 = 0,(7.36)

2159U−2U14 − 90U2U10 − 170U4U8 − 105U2
6 = 0,(7.37)

2888U−2U16 − 77U2U12 − 1532U4U10 − 202U6U8 = 0,(7.38)

20070U−2U18 − 364U2U14 − 735U4U12 − 1020U6U10 − 560U2
8 = 0,(7.39)

97635U−2U20 − 1260U2U16 − 2576U4U14 − 3675U6U12 − 4270U8U10 = 0
(7.40)

by dividing 1680, 560, 168, 336, 112 and 48, respectively.
In general, comparing the coefficients of t2k−6 in (7.32), we obtain

1

42
2k(2k − 2)(2k − 8)(2k + 3)(4k2 − 16k + 43)U−2U2k

(7.41)

=

k−2∑
ν=1

(2ν)(2ν − 1)(4k − 2ν − 2)(2k − 2ν − 8)U2νU2(k−ν−1) − 144U4U2(k−3)
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for k ≥ 4. This equation implies that U2k are uniquely determined by U2ν with
ν < k if k ≥ 5 and U−2 6= 0. Hence we see that u(t) is uniquely determined by U2,
U4, U6 and U8 if U−2 6= 0. In fact, from (7.35), (7.36) and (7.36) we have

U10 =
1

13
(2U2U6 + U2

4 ),(7.42)

U12 =
2

195
(7U2U8 + 12U4U6),(7.43)

U14 =
5

28067
(36U2

2U6 + 18U2U
2
4 + 442U4U8 + 273U2

6 ),(7.44)

if U−2 = 1.
Similarly the coefficients of t6, t8, t10 and t12 in (7.33) mean

221U−2U14 − 20U4U8 − 15U2
6 = 0,(7.45)

57U−2U16 − 3U4U10 − 5U6U8 = 0,(7.46)

13515U−2U18 − 462U4U12 − 795U6U10 − 466U2
8 = 0,(7.47)

93955U−2U20 − 2184U4U14 − 3885U6U12 − 4690U8U10 = 0,(7.48)

by dividing 1008, 21600, 336 and 144, respectively.
First suppose U−2 = 1. Then substituting U14 in (7.45) by the left hand side of

(7.44), we have

30

127
(6U2

2U6 + 3U2U
2
4 − 11U4U8 − 18U2

6 ) = 0

and hence if U4 6= 0

(7.49) U8 =
3

11U4
(2U2

2U6 + U2U
2
4 − 6U2

6 ).

Now suppose U−2 = 1 and U4 6= 0. Then from (7.43), (7.44), (7.38) and (7.49)
we have

U12 =
3

715U4
(14U3

2U6 + 7U2
2U

2
4 − 42U2U

2
6 + 44U2

4U6),(7.50)

U14 =
15

2431
(8U2

2U6 + 4U2U
2
4 − 13U2

6 ),(7.51)

U16 =
1

1032460U4
(1078U4

2U6 + 539U3
2U

2
4 + 36156U2

2U
2
6(7.52)

+ 31443U2U
2
4U6 + 4180U4

4 − 118170U3
6 ).

Then applying (7.42), (7.49) and (7.52) to (7.46), we have

(7.53) (3U6 − U2
2 )(130U

2
6 − 14U2

2U6 − 7U2U
2
4 ) = 0.

Now we suppose U−2 = 1, U4 6= 0 and 3U6 6= U2
2 . If U2 = 0, then (7.53) implies

U6 = 0, which contradicts the assumption just we have made. Hence we conclude
U2 6= 0. Then from (7.53) we have

(7.54) U2
4 =

1

7U2
(130U2

6 − 14U2
2U6).
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In this case we get

U10 =
10U2

6

7U2
, U12 =

16U3
6

7U2U4
, U14 =

45U2
6

119
, U16 =

20U3
6

931U2
2U4

(7U2
2 + 65U6),

U20 =
48U3

6

14716849U2U4
(154390U6 − 5523U2

2 ).

Applying these equations to (7.48), we obtain

19918080

489307U2U4
U3
6 (3U6 − U2

2 ) = 0

and therefore U6 = 0 because 3U6 6= U2
2 . Then from (7.53) we have U2U

2
4 = 0,

which contradicts our assumption.
Thus we have proved that if U−2 = 1 and U4 6= 0, then U6 = 1

3U
2
2 and u is

uniquely determined by U2 and U4. Since Weierstrass’ elliptic function is a solution
of (6.20), we can conclude in this case that u(t) is Weierstrass’ elliptic function.

Next we assume that U−2 = 1 and U4 = 0. In this case we have

(7.55)

U10 =
2U2U6

13
, U12 =

14U2U8

195
, U14 =

15U6

28067
(12U2

2 + 91U6),

U16 =
U8

281580
(539U2

2 + 19695U6),

U18 =
2

56330469
(3276U3

2U6 + 245061U2U
2
6 + 785876U2

8 ).

from (7.35), (7.42), (7.43), (7.44) and (7.39). Applying these equations with U4 = 0
to (7.45), we have

180U6

127
(U2

2 − 3U6) = 0.

If U6 = 0, then (7.47) is reduced to

−47432U2
8

669
= 0

by using (7.55) and therefore U8 = 0 and we can conclude u(t) = t−2 +U2t
2 in the

same way as in the case when U−2 = 1 and U4 6= 0.
Consider the case when U4 = 0, U6 = 1

3U
2
2 6= 0. In this case (7.46) is similarly

reduced to
−847U2

2U8

3705
= 0.

and hence U8 = 0. Then we can similarly conclude that u(t) is the ℘-function.
Thus we have proved the proposition when U−2 = 1. Since we can reduce the

proof of the proposition to this special case if U−2 6= 0, we may assume U−2 = 0.
Choose a positive integer ` such that U2` 6= 0 and U2ν = 0 if ν < `. Suppose

` ≥ 3. Then the equation (7.41) with k = 2`+ 1 says

2`(2`− 1)(6`+ 2)(2`− 6)U2
2` = 0,
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which implies ` = 3.
Hence we can conclude that the condition U−2 = U2 = U4 = U6 = 0 assures

u(t) = 0.
If U−2 = U2 = 0, we have U4 = 0 from (7.35) and therefore U6 = 0 from (7.45)

and we can conclude u(t) = 0.
Suppose U−2 = 0 and U2 6= 0. Then from (7.35) and (7.36) we have

U6 =
−U2

4

2U2
, U8 =

−12U4U6

7U2
=

6U4
4

7U2
2

and (7.45) is reduced to
−7020U2

4

U2
2

= 0.

Hence U4 = U6 = U8 = 0 and we can conclude u(t) = U2t
2 by the similar argument

as before.
Thus we have completed the proof of the proposition. �
Now we state our main result in this section. For any even function w(t) we can

define the following trivial commuting family

(7.56)
Qk =

∑
1≤i1<i2<···<ik≤n

k∏
ν=1

(
∂2

∂x2
iν

+ w(xiν )

)
for k = 1, . . . , n

D(w) = C[Q1, . . . , Qn].

Theorem 7.10. Suppose there exist a W -invariant connected open neighborhood
Ω of the origin of Cn such that the potential function R(x) in (0.4) is a holomorphic
function defined on an open dense subset Ω′ of Ω. Here Ω \Ω′ is an analytic subset
of Ω.

i) If the root system is of type Dn with n ≥ 3, then the function u(t) in Theo-
rem 2.1 equals A1℘(t|2ω1, 2ω2) + A0 or A1t

2 + A2t
−2 + A0 with suitable complex

numbers Ai and ωk.
ii) Suppose the root system is of type Bn with n ≥ 3 and suppose C[P1, . . . , Pn]

is not equal to any trivial commuting algebra D(w). Then there exist complex
numbers Ai, Cj and ωk such that

(7.57)

u(t) = A1℘(t|2ω1, 2ω2) +A0,

v(t) =
C4℘(t)

4 + C3℘(t)
3 + C2℘(t)

2 + C1℘(t) + C0

℘′(t)2
.

or

(7.58)
u(t) = A1t

2 +A2t
−2 +A0,

v(t) = C1t
2 + C2t

−2 + C0.

Here we remark that ωk (k = 1, 2) may be infinite.

Proof. The theorem is clear from Proposition 6.4, Proposition 7.3 and Proposi-
tion 7.8. �
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Remark 7.11. The proof of Theorem 7.10 shows that when n > 2, (7.57) and (7.58)
give all the solutions of (6.5) such that u(t) and v(t) are holomorphic for 0 < |t| � 1.

When the root system is of type B2, Theorem 7.10 is not valid (cf. [OOS]).
On the other hand, we have the following result under the assumption that the
coefficients of the differential operators have expansions of Harish-Chandra type.

Theorem 7.12. i) Assume the root system is of type B2 in Theorem 2.1. Suppose
u′ 6= 0, v′ 6= 0 and the functions u(log s) and v(log s) are meromorphic for |s| � 1
under the notation (6.1). Then there exist a positive integer r and complex numbers
C1,. . . ,C8 with

(7.59) C2C6 = C4C6 = 0

such that
(
u(t), v(t)

)
or

(
v(t), u(2t)

)
equals

(7.60)
(
C1 sinh

−2 r

2
t+ C2 sinh

−2 rt+ C3 cosh rt+ C4 cosh 2rt+ C5,

C6 sinh
−2 r

2
t+ C7 sinh

−2 rt+ C8

)
.

ii) If
(
u(t), v(t)

)
equals (7.60) with complex numbers C1,. . . ,C8 satisfying (7.59).

Then u(t) and v(t) satisfy the assumption in Proposition 6.3 ii) and therefore we
have commuting differential operators.

Proof. Suppose the meromorphic functions{
u(log t) =

∑
i≥r Uit

i

v(log s) =
∑

j≥r′ Vjs
j

satisfies (6.18). Here r and r′ are integers and Ui and Vj are complex numbers
with Ur 6= 0. By subtracting constant numbers from u and v, we may assume
U0 = V0 = 0 and r 6= 0.

Since
u(log s+ log t)− u(log s− log t) =

∑
i≥r

Ui(t
i − t−i)si,

for 0 < |s| � |t| � 1 it follows from (6.18) that

(
s
∂

∂s

)2{( ∑
j≥r′

Vjs
j
)(∑

i≥r

Ui(t
i − t−i)si)

)}

+
(
s
∂

∂s

){( ∑
j≥r′

Vjs
j
)
s
∂

∂s

(∑
i≥r

Ui(t
i − t−i)si)

)}

=
(
t
∂

∂t

)2{( ∑
j≥r′

Vjt
j
)(∑

i≥r

Ui(t
i − t−i)si)

)}

+
(
t
∂

∂t

){( ∑
j≥r′

Vjt
j
)
t
∂

∂t

(∑
i≥r

Ui(t
i − t−i)si)

)}
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and therefore

(7.61)

∑
i≥r
j≥r′

(i+ j)(2i+ j)UiVj(t
i − t−i)si+j

=
∑
i≥r
j≥r′

(
(2i+ j)(i+ j)UiVjt

i+j − (2i− j)(i− j)UiVjt
−i+j

)
si.

If Vr′ 6= 0 and r′ < 0, the coefficients of trsr+r′ in (7.61) means

(r + r′)(2r + r′)UrVr′ = 0

and therefore r = −r′ or r = − r′

2 . Hence Proposition 6.3 iv) assures that we may
assume r > 0 by replacing (u(t), v(t)) by (v(t), u(2t)) if necessary.

Admitting Vr′ to be 0, we may assume

r > 0 and r′ = −2r.

When j < 0, the coefficients of trsr+j means (r+ j)(2r+ j)UrVj = 0 and therefore

(7.62) Vj = 0 for − 2r < j < −r and − r < j ≤ 0.

The terms in (7.61) corresponding to sr imply∑
r≤i≤3r

r(i+ r)UiVr−i(t
i − t−i)

=
∑

j≥−2r

(2r + j)(r + j)UrVjt
r+j −

∑
j≥−2r

(2r − j)(r − j)UrVjt
−r+j

and hence from (7.62) we have

(7.63)

3r2U2rV−r(t
2r − t−2r) + 4r2U3rV−2r(t

3r − t−3r)

=
∑

k≥−3r

(
(r + k)kUrVk−r − (r − k)kUrVk+r

)
tk

by denoting Vj = 0 for j < −2r.
If k 6= ±2r and k 6= ±3r, then by the coefficients of tk of (7.63) we have

(r + k)kUrVk−r = (r − k)kUrVk+r

and hence

(7.64) Vj = 0 if j 6≡ 0 mod r

and

(7.65) Vjr =
j

j − 1
V(j−1)r for j > 4.
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Furthermore the coefficients of t−2r, t2r and t3r in (7.63) mean

−3r2U2rV−r = −(2r)(−3r)UrV−r

3r2U2rV−r = 6r2UrVr − 2r2UrV3r

and
4r2U3rV−2r = 12r2UrV2r − 6r2UrV4r,

respectively, and thus we have

V−r(U2r − 2Ur) = 0,(7.66)

V3r = 3(Vr − V−r),(7.67)

V4r = 2(V2r − V−2r).(7.68)

On the other hand, the coefficients of t−rs2r in (7.61) says

−6r2UrVr = −3r2U2rVr

and therefore

(7.69) Vr(U2r − 2Ur) = 0.

Now we remark that relations (7.64), (7.65), (7.67) and (7.68) show that the
numbers V−2r, V−r, Vr and V2r uniquely determine the function v(log s) because
we have assumed V0 = 0.

On the other hand, if Vj are the coefficients of tj of the function tr

(1−tr)2 , they

satisfy (7.64), (7.65), (7.67) and (7.68). In fact it is clear from the equation

t

(1− t)2
=

∞∑
k=1

ktk.

Similarly it is easy to see that the functions t2r

(1−t2r)2 , t
r + t−r and t2r + t−2r have

the same property.
Thus we can conclude that

(7.70) v(t) = C1 sinh
−2 r

2
t+ C2 sinh

−2 rt+ C3 cosh rt+ C4 cosh 2rt

with some constant numbers C1,. . . ,C4.
Next we shall show

(7.71) u(t) = C6 sinh
−2 r

2
t+ C7 sinh

−2 rt

with some constant numbers C6 and C7, which proves the first part of the theorem
by virtue of relations (7.66) and (7.69). Here we note that we have assumed that
Ur 6= 0 with r > 0.
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If v(log s) is holomorphic at the origin s = 0, it follows from (7.70) that u(t) is
of the form (7.71) because (v(t), u(2t)) is also a solution of (6.18).

To examine the case when v(log s) is not holomorphic at the origin, we shall study
the solution (v(t), u(2t)) of (6.18) and the proof of Theorem 7.12 i) is reduced to
the determination of u(t) satisfying (7.61) under the assumption r < 0, Ur 6= 0
and r′ > 0 by replacing r if necessary. Under this assumption, the terms in (7.61)
corresponding to sr prove

∑
j≥r′

(
(2r + j)(r + j)UrVjt

r+j − (2r − j)(r − j)UrVjt
−r+j

)
= 0

and furthermore by the coefficients of tj−r in the above we have

(j − r)(j − 2r)Vj = (j − r)jVj−2r for j > 0,

which means

v(t) = C ′
6 sinh

−2 r

2
t+ C ′

7 sinh
−2 rt

with some complex numbers C ′
6 and C ′

7. Thus we have completed the proof of
Theorem 7.12 i).

First suppose C6 = 0 to prove the second part of the theorem. If
(
v(2t), u(t)

)
equals (7.60),

(
u(t), v(t)

)
is a special case given in Theorem 7.3 ii) and therefore it

satisfies the assumption in Proposition 6.3 ii). Hence the second part follows from
Proposition 6.3 iv) when C6 = 0.

Next suppose C2 = C4 = 0. We have proved that if
(
u(t), v(t)

)
equals

(
C1 sinh

−2 r

2
t+ C3 cosh rt+ C5, C7 sinh

−2 rt
)
,

or (
C1 sinh

−2 r′t+ C3 cosh 2r
′t+ C5, C6 sinh

−2 r′t+ C8

)
,

with suitable positive numbers r and r′, it satisfies the assumption in Proposi-
tion 6.3 ii).

Putting r′ = r
2 , it is clear that

u(t) = C1 sinh
−2 r

2
t+ C3 cosh rt+ C5,

v(t) = C6 sinh
−2 r

2
t+ C7 sinh

−2 rt+ C8

satisfy the same assumption. Thus we have completed the proof of Theorem 7.12
owing to Proposition 6.3 iv).

Combining Proposition 3.6, Theorem 5.2, Theorem 7.10 and Theorem 7.12, we
have

46



Theorem 7.13. Let u and v be functions in Theorem 2.1. Suppose u and v are
holomorphic except some isolated singular points and suppose u(log s) and v(log s)
are holomorphically extended to the point s = 0.

i) If the root system is of type An with n > 1 or of type Dn with n > 2, then

(7.72) u(t) = C1 sinh
−2 kt+ C0.

ii) Suppose the root system is of type Bn and suppose u′ 6= 0 and v′ 6= 0. If
n > 2, then

(7.73)
u(t) = C1 sinh

−2 kt+ C0,

v(t) = A1 sinh
−2 kt+A2 sinh

−2 2kt+A0

and if n = 2, then (7.73) holds or

(7.74)
u(t) = A1 sinh

−2 kt+A2 sinh
−2 2kt+A0,

v(t) = C1 sinh
−2 2kt+ C0.

In i) and ii), A0, A1, A2, C0 and C1 are complex numbers and 2k is a positive
integer.

iii) Suppose Pj are invariant under the parallel translation x1 7→ x1 + 2π
√
−1.

Then u and v in Theorem 2.1 determine the commuting algebra C[P1, . . . , Pn].

Remark 7.14. The assumption in Theorem 7.13 gives a characterization for the
commuting algebra C[P1, . . . , Pn] to be equal to the one constructed by [D1], [H1],
[H2], [Op1], [Op2] and [Sj].

8. Examples

In this paper we have studied the potential function R(x) of a Laplacian which
allows a commuting family of differential operators invariant under the action of a
classical Weyl group. In this section we first consider the one-dimensional analogue
of the potential function we have obtained. That is the ordinal differential equation

(8.1)
d2y

dt2
+ uα(t)y = 0

for the function uα in (0.8).
Then the most general potential function in Theorem 7.10 gives

(8.2)
d2y

dt2
+

C4℘(t)
4 + C3℘(t)

3 + C2℘(t)
2 + C1℘(t) + C0

℘′(t)2
y = 0.

Note that

[℘′]2 = 4℘3 − g2℘− g3

= 4(℘− e1)(℘− e2)(℘− e3)
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with some complex numbers e1, e2 and e3 and then

℘′′ = 6℘2 − g2
2

= 2
{
(℘− e2)(℘− e3) + (℘− e3)(℘− e1) + (℘− e1)(℘− e2)

}
,

℘′′

[℘′]2
=

1

2

( 1

℘− e1
+

1

℘− e2
+

1

℘− e3

)
.

Putting x = ℘(t), we have d
dt = ℘′(t) d

dx and

(8.3)
d2

dt2
= [℘′]2

{ d2

dx2
+

1

2

( 1

℘− e1
+

1

℘− e2
+

1

℘− e3

) d

dx

}
.

Hence equation (8.2) equals
(8.4)
d2y

dx2
+

1

2

( 1

x− e1
+

1

x− e2
+

1

x− e3

)dy
dx

+
C4x

4 + C3x
3 + C2x

2 + C1x+ C0

16(x− e1)2(x− e2)2(x− e3)2
y = 0.

Suppose e1 6= e2 6= e3 6= e1. Then (8.4) can be written as

d2y

dx2
+

1

2

( 1

x− e1
+

1

x− e2
+

1

x− e3

)dy
dx

+
( A1

(x− e1)2
+

A2

(x− e2)2
+

A3

(x− e3)2
+

B1

x− e1
+

B2

x− e2
+

B3

x− e3

)
y = 0

(8.5)

with some complex numbers A1, A2, A3, B1, B2 and B3 satisfying

(8.6) B1 +B2 +B3 = 0.

Equation (8.5) is a Fuchsian equation on P1(C) which has the four regular singular
points e1, e2, e3 and ∞. The indicial equations for the singular points are

(8.7)

ρ2j −
1

2
ρj +Aj = 0 at x = ej for j = 1, 2 and 3,

ρ2∞ − 1

2
ρ∞ +

3∑
j=1

(Aj + ejBj) = 0 at x = ∞.

By the transformation y 7→ (x− e1)
λ1(x− e2)

λ2(x− e3)
λ3y with complex numbers

λ1, λ2 and λ3, the equation is transformed into Huen’s equation (cf. [WW]) and
moreover we obtain any Fuchsian equation on P1(C) of order 2 which has the four
regular singular points.

On the other hand, if

(8.8) uα(t) = C1 sinh
−2 t+ C2 sinh

−2 2t+ C5

or

(8.9) uα(t) = C3 cosh 2t+ C5
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or

(8.10) uα(t) = A1t
2 +A2t

−2 +A0

(cf. Theorem 7.10 and Theorem 7.12), (8.1) is isomorphic to the Gauss hypergeo-
metric equation or the modified Mathieu equation or the equation of the paraboloid
of revolution which is equivalent to the equation of Whittaker functions, respec-
tively.

When the root system is of type An, Theorem 4.3 says uα = C1℘+ C0 and the
corresponding equation (8.1) is the Weierstrassian form of Lamé’s equation, which
corresponds to A1 = A2 = A3 = 0 in (8.5). In particular if uα(t) = C1 sinh

−2 t+C0

or uα(t) = C1t
−2 + C0, the equation is reduced to the Legendre equation or the

Bessel equation, respectively.
Next consider the case when the root system is of type A2. First remark that

(8.11)

℘(2s) =
1

4

℘′′(s)2

℘′(s)2
− 2℘(s),

℘(s+ t) + ℘(s− t) =
℘′(s)2 + ℘′(t)2

2
(
℘(s)− ℘(t)

)2 − 2℘(s)− 2℘(t),

℘(s+ t)− ℘(s− t) =
℘′(s)℘′(t)(

℘(s)− ℘(t)
)2 .

For (x1, x2, x3) ∈ C3, we consider the coordinate system (X,Y, Z) with

(8.12) 2X = x1 − x2, X + Y = x1 − x3, Z = x3.

Then 2Y = x1 + x2 − 2x3 and

∂

∂x1
=

∂

∂X
+

1

2

∂

∂Y
,

∂

∂x2
= − ∂

∂X
+

1

2

∂

∂Y
,

∂

∂x3
=

∂

∂Y
+

∂

∂Z
.

The commuting family in this case is generated by
(8.13)

∆1 =
∂

∂x1
+

∂

∂x2
+

∂

∂x3
,

∆2 =
∂2

∂x1∂x2
+

∂2

∂x2∂x3
+

∂2

∂x1∂x3
+ C℘(x1 − x2) + C℘(x2 − x3) + C℘(x1 − x3),

∆3 =
∂3

∂x1∂x2∂x3
+ C℘(x2 − x3)

∂

∂x1
+ C℘(x1 − x3)

∂

∂x2
+ C℘(x1 − x2)

∂

∂x3
.

Let J be the left ideal of the ring of differential operators generated by ∆1 = ∂
∂Z

and put x = ℘(X), y = ℘(Y ) and z = ℘(Z). Then

∆2 = − ∂2

∂X2
− 3

4

∂2

∂Y 2
+

∂2

∂Y ∂Z
+ C℘(2X) + C℘(X − Y ) + C℘(X + Y )

(8.14)
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≡ −(4x3 − 4g2x− g3)
∂2

∂x2
− 3

4
(4y3 − 4g2y − g3)

∂2

∂y2

− (6x2 − g2
2
)
∂

∂x
− 3

4
(6y2 − g2

2
)
∂

∂y
+ C

(
6x2 − g2

2

)2
4
(
4x3 − g2x− g3

)2
+ C

4x3 + 4y3 − g2x− g2y − 2g3

2
(
x− y

)2 − 4Cx− 2Cy mod J,

∆3 =

(
∂2

∂X2
− 1

4

∂2

∂Y 2

)(
∂

∂Y
− ∂

∂Z

)
+ C℘(X − Y )

(
∂

∂X
+

1

2

∂

∂Y

)
+ C℘(X + Y )

(
− ∂

∂X
+

1

2

∂

∂Y

)
+ C℘(2X)

∂

∂Y

≡
(

∂2

∂X2
− 1

4

∂2

∂Y 2

)
∂

∂Y
− C

(
℘(X + Y )− ℘(X − Y )

) ∂

∂X

+ C

(
℘(X + Y ) + ℘(X − Y )

2
+ ℘(2X)

)
∂

∂Y
mod J

=
√
4y3 − g2y − g3

[
(4x3 − g2x− g3)

∂3

∂x2∂y
+ (6x2 − g2

2
)

∂2

∂x∂y

− 1

4
(4y3 − g2y − g3)

∂3

∂y3
− 3

4
(6y2 − g2

2
)
∂2

∂y2

− C
4x3 − g2 − g3

(x− y)2
∂

∂x

+
C

4

(
4x3 + 4y3 − (g2 + 8)x− g2y − 2g3 +

12x2 − g2
8x3 − 2g2x+ 2g3

) ∂

∂y

]
.

Now consider the case when the root system is of type B2. Use the coordinate
system (s, t) ∈ C2 and put x = ℘(s) and y = ℘(t). Let

(8.15)

u(t) = A℘(t),

v(t) =
C4℘(t)

4 + C3℘(t)
3 + C2℘(t)

2 + C1℘(t) + C0

℘′(t)2

in Proposition 6.3 and Proposition 7.3. Then by (7.16) we have

P1 =
∂2

∂s2
+

∂2

∂t2
+A(℘(s+ t) + ℘(s− t))

(8.16)

+
C4x

4 + C3x
3 + C2x

2 + C1x+ C0

4x3 − g2x− g3
+

C4y
4 + C3y

3 + C2y
2 + C1y + C0

4y3 − g2y − g3

= (4x3 − g2x− g3)
∂2

∂x2
+ (6x2 − g2

2
)
∂

∂x
+ (4y3 − g2y − g3)

∂2

∂y2

+ (6y2 − g2
2
)
∂

∂y
+

A(6x2 + 6y2 − g2)

(x− y)2
− 2Ax− 2Ay

+
C4x

4 + C3x
3 + C2x

2 + C1x+ C0

4x3 − g2x− g3
+

C4y
4 + C3y

3 + C2y
2 + C1y + C0

4y3 − g2y − g3
,

50



P2 =

[
∂2

∂s∂t
+

u(s+ t)− u(s− t)

2

]2
+ v(t)

∂2

∂s2
+ v(s)

∂2

∂t2
+ v(s)v(t)

+
2AC4x

2y2 +AC3xy(x+ y) + 2AC2xy +AC1(x+ y) + 2AC0

2(x− y)2

=

[√
(4x3 − g2x− g3)(4y3 − g2y − g3)

∂2

∂x∂y

+
A
√
(4x3 − g2x− g3)(4y3 − g2y − g3)

2(x− y)2

]2
+

C4y
4 + C3y

3 + C2y
2 + C1y + C0

4y3 − g2y − g3

(
(4x3 − g2x− g3)

∂2

∂x2
+ (6x2 − g2

2
)
∂

∂x

)
+

C4x
4 + C3x

3 + C2x
2 + C1x+ C0

4x3 − g2x− g3

(
(4y3 − g2y − g3)

∂2

∂y2
+ (6y2 − g2

2
)
∂

∂y

)
+

(C4x
4 + C3x

3 + C2x
2 + C1x+ C0)(C4y

4 + C3y
3 + C2y

2 + C1y + C0)

(4x3 − g2x− g3)(4y3 − g2y − g3)

+
2AC4x

2y2 +AC3xy(x+ y) + 2AC2xy +AC1(x+ y) + 2AC0

2(x− y)2
.

Here we note that the coefficients of the differential operator P2 are rational func-
tions under the coordinate (x, y).

On the other hand, if

(8.17)
(
u(t), v(t)

)
=

(
αt−2 + βt2, γt−2 + δt2

)
,

the commuting operators are

P1 =
∂2

∂s2
+

∂2

∂t2
+ 2α

s2 + t2

(s2 − t2)2
+ (2β + δ)(s2 + t2) + γ(s−2 + t−2),

(8.18)

P2 =

[
∂2

∂s∂t
− 2α

st

(s2 − t2)2
+ 2βst

]2
+ (γt−2 + δt2)

∂2

∂s2
+ (γs−2 + δs2)

∂2

∂t2

+ (γs−2 + δs2)(γt−2 + δt2) +
4αδs2t2 + 4αγ

(s2 − t2)2
+ 4βδs2t2

from Proposition 6.3 and (7.16). In particular, if α = γ = 0, we have

P1 =
∂2

∂s2
+

∂2

∂t2
+ λ(s2 + t2),

(8.19)

P2 =

[
∂2

∂s∂t
+ (λ− δ)st

]2
+ δ

(
t2

∂2

∂s2
+ s2

∂2

∂t2

)
+ (2λ− δ)δs2t2

by putting λ = 2β + δ.
Lastly we consider the operators when

(8.20)
(
u(t), v(t)

)
=

(
α sinh−2 t+ β cosh 2t, γ sinh−2 t+ δ sinh−2 2t

)
,
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which is given by Theorem 7.12. Putting x = sinh2 s and y = sinh2 t, we have

u(s+ t) + u(s− t) = 2α
x+ y + 2xy

(x− y)2
+ 2β(1 + 2x)(1 + 2y),

u(s+ t)− u(s− t) =

(
−4α

(x− y)2
+ 8β

)√
s(1 + x)y(1 + y),

v(s) =
γ

x
+

δ

4x(1 + x)
,

∂

∂s
= 4

√
x(1 + x)

∂

∂x

and

2
∂

∂t

(
2αγ

2 + x+ y

(x− y)2
+

αδ

(x− y)2
+ 4βγ(x+ y)

)
= v′(s)

(
u(s+ t)− u(s− t)

)
+ 2v(s)

(
u′(s+ t)− u′(s− t)

)
.

Thus by Proposition 6.3 we have

P1 =
∂2

∂s2
+

∂2

∂t2

(8.21)

+ α
(
sinh−2(s+ t) + sinh−2(s− t)

)
+ β

(
cosh 2(s+ t) + cosh 2(s− t)

)
+ γ

(
sinh−2 s+ sinh−2 t

)
+ δ

(
sinh−2 2s+ sinh−2 2t

)
= 16x(1 + x)

∂2

∂x2
+ 8(1 + 2x)

∂

∂x
+ 16y(1 + y)

∂2

∂y2
+ 8(1 + 2y)

∂

∂y

+ 2α
x+ y + 2xy

(x− y)2
+ 2β(1 + 2x)(1 + 2y)

+ γ

(
1

x
+

1

y

)
+ δ

(
1

4x(1 + x)
+

1

4y(1 + y)

)
,

P2 =

[
∂2

∂s∂t

+
α
(
sinh−2(s+ t)− sinh−2(s− t)

)
+ β

(
cosh 2(s+ t)− cosh 2(s− t)

)
2

]2
+

(
γ sinh−2 t+ δ sinh−2 2t

) ∂2

∂s2
+

(
γ sinh−2 s+ δ sinh−2 2s

) ∂2

∂t2

+
(
γ sinh−2 s+ δ sinh−2 2s

)(
γ sinh−2 t+ δ sinh−2 2t

)
+

2αγ(2 + sinh s+ sinh t) + αδ

sinh2(s+ t) sinh2(s− t)
+ 4βγ(sinh2 s+ sinh2 t)

=

[
16
√
x(1 + x)y(1 + y)

∂2

∂x∂y
+
( −2α

(x− y)2
+ 4β

)√
x(1 + x)y(1 + y)

]2
+

(γ
y
+

δ

4y(1 + y)

) ∂2

∂x2
+
(γ
x
+

δ

4x(1 + x)

) ∂2

∂y2
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+
(γ
x
+

δ

4x(1 + x)

)(γ
y
+

δ

4y(1 + y)

)
+

2αγ(2 + x+ y) + αδ

(x− y)2
+ 4βγ(x+ y).

Here if we use the symmetric coordinate system

(8.22)

{
X = x+ y,

Y = xy

then by
∂

∂x
=

∂

∂X
+ y

∂

∂Y
,

∂

∂y
=

∂

∂X
+ x

∂

∂Y
,

and

∂2

∂x∂y
=

(
∂

∂X
+ y

∂

∂Y

)(
∂

∂X
+ x

∂

∂Y

)
=

∂2

∂X2
+X

∂2

∂X∂Y
+ Y

∂2

∂Y 2
+

∂

∂Y

f(x, y)
∂

∂x
+ f(y, x)

∂

∂y
= f(x, y)

(
∂

∂X
+ y

∂

∂Y

)
+ f(y, x)

(
∂

∂X
+ x

∂

∂Y

)
=

(
f(x, y) + f(y, x)

)
∂

∂X
+

(
yf(x, y) + xf(y, x)

)
∂

∂Y

f(x, y)
∂2

∂x2
+ f(y, x)

∂2

∂y2
=

(
f(x, y) + f(y, x)

)
∂2

∂X2

+2

(
yf(x, y) + xf(y, x)

)
∂2

∂X∂Y
+

(
y2f(x, y) + x2f(y, x)

)
∂2

∂Y 2
,

these operators are

P1 = 16(X +X2 − 2Y )
∂2

∂X2
+ 16(2 +X)Y

∂2

∂X∂Y
+ 16(X + 2Y )Y

∂2

∂Y 2

(8.23)

+ 16(1 +X)
∂

∂X
+ 8(X + 4Y )

∂

∂Y

+ 2α
X + 2Y

X2 − 4Y
+ 2β(1 + 2X + 4Y ) + γ

X

Y
+ δ

X +X2 − 2Y

4Y (1 +X + Y )
,

P2 =

[
16
√

Y (1 +X + Y )
( ∂2

∂X2
+X

∂2

∂X∂Y
+ Y

∂2

∂Y 2
+

∂

∂Y

)
+
( −2α

X2 − 4Y
+ 4β

)√
Y (1 +X + Y )

]2
+

(
γ
X

Y
+ δ

X +X2 − 2Y

4Y (1 +X + Y )

)
∂2

∂X2
+

(
2γ + δ

2 +X

4(1 +X + Y )

)
∂2

∂X∂Y

+

(
γX + δ

X + 2Y

4(1 +X + Y )

)
∂2

∂Y 2

+
γ2

Y
+

γδ(2 +X)

4Y (1 +X + Y )
+

δ2

16Y (1 +X + Y )
+

2αγ(2 +X) + αδ

X2 − 4Y
+ 4βγX.
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[D] A. Debiard, Systèm différentiel hypergeómétrique et parties radiales des espaces symétri-

ques de type BCp, Springer Lecture Notes in Math. 1296 (1988), 42–124.
[I] V. I. Inozemtsev, Finite Toda lattice, Commun. Math. Phys. 121 (1989), 629–638.
[IM] V. I. Inozemtsev and D. V. Meshcheryakov, Extensions of the class of integrable dy-

namical systems connected with semisimple Lie algebras, Lett. Math. Phys. 9 (1985),

13–18.
[HC] Harish-Chandra, Representations of semisimple Lie groups IV, Amer. J. Math. 77

(1955), 743–777.
[H1] G. J. Heckman, Root system and hypergeometric functions II, Comp. Math. 64 (1987),

353–373.
[H2] , An elementary approach to the hypergeometric shift operators of Opdam, Invent.

Math. 103 (1991), 341–350.
[HO] G. J. Heckman and E. M. Opdam, Root system and hypergeometric functions I, Comp.

Math. 64 (1987), 329–352.
[OO] H. Ochiai and T. Oshima, Commuting differential operators of type B2, preprint, 1994,

UTMS 94–65, Dept. of Mathematical Science, University of Tokyo.

[OOS] H. Ochiai, T. Oshima and H. Sekiguchi, Commuting families of symmetric differential
operators, Proc. Japan Acad. 70 A (1994), 62–66.

[OP] M. A. Olshanetsky and A. M. Perelomov, Completely integrable Hamiltonian systems
connected with semisimple Lie algebras, Invent. Math. 37 (1976), 93–108.

[OP2] , Quantum system connected with root systems and the radial parts of Laplace
operators, Funct. Anal. Appl. 12, No. 2 (1978), 60–68.

[OP3] , Quantum integrable systems related to Lie algebras, Phys. Rep. 94 (1983), 313–
404.

[Op1] E. M. Opdam, Root system and hypergeometric functions III, Comp. Math. 67 (1988),
21–49.

[Op2] , Root system and hypergeometric functions IV, Comp. Math. 67 (1988), 191–
209.

[O] T. Oshima, Completely integrable systems with a symmetry in coordinates, preprint,
1994, UTMS 94–6, Dept. of Mathematical Science, University of Tokyo.

[P] A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras,
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