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COMPLETELY INTEGRABLE SYSTEMS

WITH A SYMMETRY IN COORDINATES�

Toshio Oshimay

Abstract. We explicitly construct the integrals of completely integrable quantum or classical
systems whose potential functions are invariant under the action of a classical Weyl group. Our
potential functions and integrals are expressed by the Weierstrass elliptic function.

1. Introduction. Many completely integrable quantum or classical dynamical
systems have been constructed in connection with root systems (cf. [OP1], [OP2],
[In]). Consequently most of them are invariant under the action of the corresponding
Weyl groups. Our study is to determine all the completely integrable systems with
this invariant property.

Let W be the Weyl group of type An�1 with n � 3 or of type Bn with n � 2 or of
type Dn with n � 4. We identify W with the group of the coordinate transformations

(x1; : : : ; xn) 7! ("1x�(1); : : : ; "nx�(n))

of Rn , where � are the elements of the n-th permutation group Sn and8<
:
"1 = � � � = "n = 1 if W is of type An�1,
"1 = �1; � � � ; "n = �1 if W is of type Bn,
"1 = �1; � � � ; "n = �1 and #fi ; "i = �1g is even if W is of type Dn.

We study the Schr�odinger operator

(1.1) P = �1

2

X
1�j�n

@2

@x2j
+R(x)

on Rn with a W -invariant potential function R(x) which has enough W -invariant
commuting di�erential operators assuring the complete integrability of P . To be
precise we assume that there exist W -invariant di�erential operators P1; : : : ; Pn with

(1.2) [Pi; Pj ] = 0 for 1 � i < j � n

and

(1.3) P 2 C [P1 ; : : : ; Pn]

such that

(1.4) Pj =
X

1�i1<���<ij�n

@i1 � � � @ij +Rj with ordRj < j for 1 � j � n

or

(1.5) Pj =
X

1�i1<���<ij�n

@2i1 � � �@2ij +Rj with ordRj < 2j for 1 � j � n
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or

(1.6)

8<
:
Pn = @1 � � � @n +Rn with ordRn < n;

Pj =
X

1�i1<���<ij�n

@2i1 � � � @2ij +Rj with ordRj < 2j for 1 � j < n

if the type ofW is An�1 or Bn orDn, respectively. Here C [P1 ; : : : ; Pn] is the commuta-
tive algebra generated by P1; : : : ; Pn, ordRj denote the orders of di�erential operators

Rj and for simplicity we put @i =
@
@xi

.
We assume that the coe�cients of the di�erential operators are extended to holo-

morphic functions on a Zariski open subset of an open connected neighborhood of the
origin of the complexi�cation C n of Rn .

The main result of our previous paper [OS] is the following:
If W is of type An�1 with n � 3, then

(1.7) R(x) =
X

1�i<j�n

u(xi � xj)

with

(1.8) u(t) = C1}(t) + C2:

If W is of type Bn with n � 2, then

(1.9) R(x) =
X

1�i<j�n

�
u(xi � xj) + u(xi + xj)

�
+

X
1�j�n

v(xj):

Here if n � 3, we have

(1.10)

8<
:
u(t) = C1}(t) + C2;

v(t) =
C3}(t)

4 + C4}(t)
3 + C5}(t)

2 + C6}(t) + C7

}0(t)2

or

(1.11) u(t) = C1t
�2 + C2t

2 + C3 and v(t) = C4t
�2 + C5t

2 + C6

or

(1.12) u(t) = C1 and v(t) is any even function.

If W is of type Dn with n � 4, then (1:9) holds with v = 0 and u is given by

(1:10) or (1:11).
Here C1, C2; : : : are complex numbers and }(t) is the Weierstrass elliptic function

}(tj2!1; 2!2) with primitive half-periods !1 and !2, which are allowed to be in�nity.
The purpose of this paper is to construct the operators P1; : : : ; Pn mentioned

above when u or (u; v) is given by (1:8) or (1:10) for any complex numbers C1, C2; : : :
and for any periods of the elliptic function (cf. Theorem 7.2, 7.3 and 7.5), which was
announced in [OOS]. Hence we shall have the complete integrability of the correspond-
ing Schr�odinger operator (1:1). We remark that if W is of type An�1, the complete
integrability and the operators P1; : : : ; Pn are already known (cf. [Ca], [Su], [OP2],
[OS], [Et], Theorem 3.2 in this paper).

Taking the \classical limit", we shall also obtain the integrals of the Hamiltonian
corresponding to the Schr�odinger operator (1:1) because of our simple expression of
the operators P1; : : : ; Pn.
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When W is of type B2, our argument in this paper is valid but there exist other
potentials which assure the complete integrability. This is caused by a symmetry
between u and v. We shall treat this case in another paper (cf. [OOS], [OO], [Oc]).

If u or (u; v) is given by (1:11), the operators P1; : : : ; Pn do not exist in general
and then we need W -invariant operators of higher orders (cf. [OP2]), which will be
discussed in future.

If (u; v) is given by (1:12), the algebra C [P1 ; : : : ; Pn] equals the totality of Sn-
invariants of C [� 1

2@
2
1 + v(x1); : : : ;� 1

2@
2
n + v(xn)].

We note that if 2!1 =
p�1� and !2 =1, then (1:10) is reduced to

(1.13)

�
u(t) = C 0

1 sinh
�2 t+ C 0

2;

v(t) = C 0
3 sinh

�2 t+ C 0
4 sinh

�2 2t+ C 0
5 sinh

2 t+ C 0
6 sinh

2 2t+ C 0
7

with complex numbers C 0
1; : : : ; C

0
7. The system studied by Heckman-Opdam ([He1],

[He2], [HO], [Op1] and [Op2]) corresponds to this trigonometric case with C 0
5 = C 0

6 = 0
and they proved its complete integrability. When C 0

5 = C 0
6 = 0, an explicit form of

P1; : : : ; Pn is given by [De].
Moreover if !1 = !2 =1, then (1:10) is reduced to

(1.14)

�
u(t) = C 0

1t
�2 + C 0

2;
v(t) = C 0

3t
�2 + C 0

4t
2 + C 0

5t
4 + C 0

6t
6 + C 0

7:

Here we quote a result in [OS] for the operator which commutes with the Shor�odin-
ger operator P :

If there exists a nonzero constant ! such that the W -invariant di�erential op-

erators P1; : : : ; Pn are invariant by the parallel translation x1 7! x1 + !, then any

W -invariant di�erential operator Q that is also invariant by the same parallel trans-

lation is contained in C [P1 ; : : : ; Pn] if [P;Q] = 0.

After this paper [Os] was written, [Ch] proved the completely integrability of
the Shr�odinger operator (1.1) with the elliptic potential function attached to the root
system. If the root system is of type Bn in our situation, the potential considered
in [Ch] corresponds to the case where v(t) = C3}(t) + C4 or v(t) = C3}(2t) + C4

in (1.10). The method is quite interesting but di�erent form this note constructing
explicitly all the integrals.

Lastly we give a brief overview of the following sections.
In x2 preliminary remarks are made and two results employed thoughout are

established.
In x3 the two fundamental operators � and �n for An and Dn are introduced

and their commutativity is proved by the results in x2. An expansion of �n gives the
commuting di�erential operators for An.

In x4 the Scr�odinger operator is allowed to have a term in the potential only
depending on the particle position through a given function v. A functional di�erential
equation (4.4) is established that will ensure the commutativity of the fundamental
operators P and Pn for Bn given by (4.2).

In x5, using the lemmas in x2, we establish solutions of the functional di�erential
equation with the assumption u = w which corresponds to the form (1.9).

In x6 we look at various rational and trigonometric degenerations of the solutions
of the functional di�erential equation.

In x7 we bring the results of the previous sections together and establish the
commuting di�erential operators P1; : : : ; Pn for Bn and Dn.
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2. Preliminaries.

First we introduce some notation used in this paper. For an element w of the
permutation group Sn of the set of indices f1; : : : ; ng, we de�ne w(i) = i for any i 2 Z
satisfying i < 1 or i > n and we identify Sn with a subgroup of the group of bijective
transformations of Z. Then we have naturally Sk � Sn if k < n.

When we distinguish the Weyl group that we are looking at, we denote it by
W (An�1), W (Bn) or W (Dn) according to its type. Then W (An�1) ' Sn and
W (An�1) � W (Dn) � W (Bn). We de�ne a homomorphism " of W (Bn) to f�1g
by

(2.1) "(w) =

�
1 if w 2 W (Dn);

�1 if w =2 W (Dn):

For the coordinate system (x1; : : : ; xn) of R
n we put

@i =
@

@xi
; @� = @�11 � � �@�nn and j�j = �1 + � � �+ �n:

Here � = (�1; : : : ; �n) with non-negative integers �i.
Let P =

P
p�(x)@

� be a di�erential operator. Then we put

(2.2) tP =
X

(�1)j�j@�p�(x)

and we say that P is self-adjoint if tP = P and skew self-adjoint if tP = �P . For
w 2 W and a di�erential operator P , we denote by w(P ) the di�erential operator
corresponding to P under the coordinate transformation w of Rn . In particular we
de�ne P� = w�(P ) by w� 2 W (Bn) with w

�(x1; : : : ; xn) = (�x1; : : : ;�xn) and we
call P has an even parity if P� = P and an odd parity if P� = �P . Then we note
that

t(tP ) = (P�)� = P; t(P�) = (tP )�; t(PQ) = tQtP; (PQ)� = P�Q�:

In general the su�x f1; : : : ; kg of a function or an operator (eg. Qf1;::: ;kg) means
that it is a function or an operator of the variables x1; : : : ; xk invariant under w 2 Sk.
And for a function or an operator Qf1;::: ;kg and a subset I of f1; : : : ; ng, we de�ne
QI = w(Qf1;::: ;kg) if there exist w 2W (An�1) ' Sn with w(f1; : : : ; kg) = I .

Now we review the Weierstrass elliptic function (cf. [WW]), which is

(2.3) }(zj2!1; 2!2) = 1

z2
+
X
! 6=0

�
1

(z � !)2
� 1

!2

�
;

where the sum ranges over all periods ! = 2m1!1 + 2m2!2 (m1; m2 2 Z) except 0.
We de�ne

(2.4) !3 = �(!1 + !2) and !4 = 0:

The Weierstrass elliptic function }(t) satis�es the di�erential equation

(2.5)
(}0)2 = 4}3 � g2}� g3

= 4(}� e1)(}� e2)(}� e3):
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Here

(2.6)

g2 = 60
X
! 6=0

!�4; g3 = 140
X
! 6=0

!�6;

}(!�) = e� for � = 1; 2; 3;

e1 + e2 + e3 = 0; e1e2 + e2e3 + e3e1 = �g2
4
; e1e2e3 =

g3
4
:

Moreover we have important formulas

(2.7)

������
}(x) }0(x) 1
}(y) }0(y) 1
}(z) }0(z) 1

������ = 0 if x+ y + z = 0;

(2.8) }(z + !i) = ei +
(ei � ej)(ei � ek)

}(z)� ei
if fi; j; kg = f1; 2; 3g

and

(2.9) }(2z) =

�
12}(z)2 � g2

�2
16}0(t)2

� 2}(z):

In this paper the periods are allowed to be in�nity and hence g1 and g2 or e1 and
e2 take any complex numbers. Then the condition

(2.10) (e1 � e2)(e2 � e3)(e3 � e1) 6= 0

holds if and only if the both periods are �nite. On the other hand, if e1 = e2 =
1
3�

2

and e3 = � 2
3�

2 with � 2 C , then

(2.11) }(zjp�1��1�;1) = �2 sinh�2 �z + 1
3�

2:

In particular, if e1 = e2 = e3 = 0, we have

(2.12) }(zj1;1) = z�2:

We note that if (2.10) holds, the function v(t) given by (1.10) is rewritten into

(2.13) v(t) = C 0
5 +

4X
j=1

C 0
j}(t+ !j)

with suitable complex numbers C 0
1; : : : ; C

0
5 (cf. (2.5) and (2.8)). Moreover for any

complex numbers C 00
1 , C

00
2 and C 00

3 , it follows from (2.9) that

(2.14) v(t) = C 00
1 }(t) + C 00

2 }(2t) + C 00
3

is a special case of (1.10) and the complete integrability of the corresponding Schr�odin-
ger operator was a question in [OP2].

Now we prepare
Lemma 2.1. Let ~vk(t), ~uij(t) and ~wij(t) be functions with a single variable for

1 � i < j � 3 and 1 � k � 3. Put vk = ~vk(xk), v
0
k = ~v0k(xk), uij = ~uij(xi � xj),

u0ij = ~u0ij(xi � xj), wij = ~wij(xi + xj) and w
0
ij = ~w0

ij(xi + xj) for 1 � i < j � 3 and
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1 � k � 3. Then we have

(2.15)

@1
�
(u12�w12)(u13�w13)

�
+@2

�
(u12�w12)(u23�w23)

�
+ @3

�
(u13�w13)(u23�w23)

�
=

������
u12 u012 1
u23 u023 1
u13 �u013 1

������+
������
u12 u012 1
w13 �w0

13 1
w23 w0

23 1

������+
������
u23 u023 1
w12 �w0

12 1
w13 w0

13 1

������+
������
u13 �u013 1
w23 �w0

23 1
w12 w0

12 1

������ ;
(2.16)

@1
�
(u12+w12)(u13�w13)

�
+@2

�
(u12+w12)(u23�w23)

�
+ @3

�
(u13+w13)(u23+w23)

�
=

������
u12 u012 1
u23 u023 1
u13 �u013 1

������+
������
u12 u012 1
w13 �w0

13 1
w23 w0

23 1

�������
������
u23 u023 1
w12 �w0

12 1
w13 w0

13 1

�������
������
u13 �u013 1
w23 �w0

23 1
w12 w0

12 1

������
and

(2.17) v01(u12 � w12) + 2v1(u
0
12 � w0

12) + @2

�
(v1 + v2)(u12 + w12)� 2v1v2

�

=

������
v1 v01 1
v2 �v02 1
u12 �u012 1

������+
������
v1 �v01 1
v2 �v02 1
w12 w0

12 1

������ :
Proof. If we note that u0ij = @iuij = �@juij and w0

ij = @iwij = @jwij , then

equalities (2.15), (2.16) and (2.17) are clear by direct calculations.
In the case when u(t) = C1}(t) + C2, the function u(t) is even and satis�es

(2.18)

������
u(x) u0(x) 1
u(y) u0(y) 1
u(z) u0(z) 1

������ = 0 for x+ y + z = 0;

which is clear from (2.7). Hence we have
Corollary 2.2. For given even functions u(t), v(t) and w(t), put

(2.19)

�ij = u(xi � xj) + w(xi + xj);

 ij = u(xi � xj)� w(xi + xj);

vk = v(xk):

Then clearly

(2.20) �ji = �ij ;  ji =  ij and @i�ij + @j ij = 0:

i) If

(2.21) u(t) = w(t) = C1}(t) + C2

or

(2.22) u(t) = C1}(t) + C2 and w(t) = C3;

then

@i( ij ik) + @j( ij jk) + @k( ik jk) = 0(2.23)

and

@i(�ij ik) + @j(�ij jk) + @k(�ik�jk) = 0:(2.24)
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ii) If

(2.25) u(t) = v(t) = w(t) = C1}(t) + C2

or

(2.26) u(t) = w(t) = C1}(t) + C2 and v(t) = C3;

then

(2.27) (@ivi) ij + 2vi(@i ij) + @j
�
(vi + vj)�ij � 2vivj

�
= 0:

Here the indices i, j and k are mutually di�erent and C1, C2 and C3 are any complex

numbers.

Remark 2.3. The equation (2.18) for u and its generalization are studied by [BP],
[BBy], [OS] in connection with integrable systems and equations similar to those in
Corollary 2.2 are discussed in [BBu]

3. A fundamental integral of type An�1 and Dn.

In this section we use the notation in Corollary 2.2. Put

(3.1)  f1;::: ;2kg =
1

2kk!

X
w2S2k

w( 12 34 56 � � � 2k�1;2k):

We sometimes denote by  i;j in place of  ij to distinguish the su�ces.
De�ne

� = �1

2

nX
j=1

@2j +
X

1�i<j�n

�ij(3.2)

and

�n =
X

0���[n
2
]

1

(2�)!(n� 2�)!

X
w2Sn

w( f1;::: ;2�g@2�+1 � � � @n):(3.3)

Let �� and ��n be the functions of (x; �) obtained by replacing @i by �i for i = 1; : : : ; n
in (3.2) and (3.3), respectively.

The Poisson bracket of functions f(x; �) and g(x; �) is de�ned by

(3.4)
�
f; g

	
=

nX
j=1

� @f
@�j

@g

@xj
� @g

@�j

@f

@xj

�
:

Then we have
Proposition 3.1. Suppose u and w are given by (2.21) or (2.22). Then�

�n;�
�
=
�
��n; ��

	
= 0:

Proof. Put Q = [�n;�] and suppose Q 6= 0. Since t�n = (�1)n�n and t� = �,
tQ = t[�n;�] = �[t�n;

t�] = (�1)n+1Q. Hence the order of Q equals n � 2m � 1
with a suitable positive integer m. Then by using (2.20) and (2.23), the coe�cient of
@2m+2 � � � @n in the Sn-invariant operator Q equals

2m+1X
i=1

 f1;::: ;2m+1gnfig@i
X
�<�

��� +
nX

j=2m+2

@j f1;::: ;2m+1;jg
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=

2m+1X
i=1

X
j 6=i

1�j�n

 f1;::: ;2m+1gnfig@i�ij +

nX
j=2m+2

2m+1X
i=1

 f1;::: ;2m+1gnfig@j ij

= �
2m+1X
i=1

X
j 6=i

1�j�2m+1

 f1;::: ;2m+1gnfig@j ij

= �
2m+1X
i=1

X
j 6=i

1�j�2m+1

X
k 6=i; k 6=j

1�k�2m+1

 f1;::: ;2m+1gnfi;j;kg jk@j ij

= �
X

1�i<j<k�2m+1

 f1;::: ;2m+1gnfi;j;kg

�
@i( ij ik) + @j( ij jk) + @k( ik jk)

�
= 0;

which contradicts to the fact that the order of Q equals n � 2m � 1. Thus we have
[�n;�] = 0 and by the same calculation we have also f ��n; ��g = 0.

The following theorem is known but we repeat it here for the completeness.
Theorem 3.2 (Type An�1. [OP2], [OS, Theorem 5.2 and Remark 5.3]). Put

u(t) = C1}(t) + C and w(t) = 0:

Regard �n as a polynomial function of C, denote it by Pn(C) and put Pn�1(C) =
[Pn(C); x1 + � � �+ xn]. Then

(3.5)
�
Pn(C); Pn(C

0)
�
=
�
Pn(C); Pn�1(C

0)
�
=
�
Pn�1(C); Pn�1(C

0)
�
= 0

for any C, C 0 2 C .
De�ning Pk by Pn(C) =

P
0���[n

2
] Pn�2�C

� and Pn�1(C) =
P

0���[n�1
2

](2� +

1)Pn�2��1C
� , we have

(3.6)
Pk =

X
0�j�[ k

2
]

Cj
1

2jj!(k � 2j)!

X
w2Sn

w
�
}(x1 � x2)}(x3 � x4) � � �

� }(x2j�1 � x2j)@2j+1 � � �@k
�

and P1; : : : ; Pn are the required operators for the Schr�odinger operator (1.1) with (1.7)
and (1.8) when W is of type An�1.

By replacing @i and [ ; ] by �i and f ; g, respectively, we have the same claim for

the corresponding Hamiltonian system.

Proof. Put Q = [Pn(C); Pn(C
0)] and suppose Q 6= 0. Since tPn(C) = Pn(C)

�,
we have �tQ = Q�. By Jacobi's identity for [ ; ], we have [Q;�] = 0, which implies
that the coe�cients of the terms of highest order in Q are polynomial functions of
x (cf. [Be, Lemma 2.5] or [OS, Lemma 3.1 and Lemma 3.5]). Hence if !1 is �nite,
the coe�cients are constant because of their periodicity. Moreover by the analytic
continuation we can conclude that the coe�cients are constant even if !1 =1. This
contradicts to �tQ = Q� 6= 0. Hence we have [Pn(C); Pn(C

0)] = 0.
Note that [Pn�1(C);�] = �[@1 + � � �+ @n; Pn(C)] + [[Pn(C);�]; x1 + � � �+ xn] =

0. Hence the same argument as above shows (3:5) by replacing (Pn(C); Pn(C
0)) by

(Pn(C); Pn�1(C
0)) or (Pn�1(C); Pn�1(C

0)).
The remaining part of the theorem is clear from the de�nition of Pn(C).
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4. A functional di�erential equation. Retain the notation in Corollary 2.2
and the previous section and put

(4.1) �f1;::: ;kg =
X

0���[k
2
]

1

(2�)!(k � 2�)!

X
w2Sk

w( f1;::: ;2�g@2�+1 � � �@k)

for k = 1; : : : ; n (cf. (3.3)). Then we have easily
Lemma 4.1.

�
�f1;::: ;kg; xk

�
= �f1;::: ;k�1g;

�f1;::: ;kg = �f1;::: ;k�1g@k +
X

1���k�1

 �k�f1;::: ;k�1gnf�g:

Let qf1;::: ;kg be suitable symmetric functions of (x1; : : : ; xk) for k = 1; : : : ; n and
put q? = 1. For even functions vj = v(xj), we examine the condition such that the
operators

(4.2)

P = �1

2

nX
j=1

@2j +
X

1�i<j�n

�ij +

nX
j=1

vj ;

Pn =
nX

k=0

1

k!(n� k)!

X
w2Sn

w(qf1;::: ;kg�
2
fk+1;::: ;ng)

satisfy [Pn; P ] = 0. We denote by ��f1;::: ;kg and �P and �Pn the functions of (x; �)
obtained by replacing @i by �i in the above de�nition of the corresponding operators.
We introduce symmetric functions Tf1;::: ;kg of (x1; : : : ; xk) such that

(4.3) qf1;::: ;kg =
X

I1q���qI�=f1;::: ;kg

TI1 � � �TI� ;

where the sum runs over all di�erent partitions of f1; : : : ; kg. For example

q? = T? = 1; qf1g = Tf1g; qf1;2g = Tf1gTf2g + Tf1;2g;

qf1;2;3g = Tf1gTf2gTf3g + Tf1gTf2;3g + Tf2gTf3;1g + Tf3gTf1;2g + Tf1;2;3g:

Theorem 4.2. Retain the above notation. Suppose

(4.4)

8>>><
>>>:

Tf1g = �2v1;

@kTf1;::: ;kg =

k�1X
j=1

�
2Tf1;::: ;k�1g(@j jk) + (@jTf1;::: ;k�1g) jk

�
for k = 2; : : : ; n:

Then
�
Pn; P

�
=
�
�Pn; �P

	
= 0:

Proof. It follows from Proposition 3.1 that

�
Pn; P

�
=
h nX
k=0

1

k!(n� k)!

X
w2Sn

w
�
qf1;::: ;kg�

2
fk+1;::: ;ng

�
; P
i

=

nX
k=0

1

k!(n� k)!

X
w2Sn

w
�h
qf1;::: ;kg�

2
fk+1;::: ;ng;
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� 1
2@

2
1 � � � � � 1

2@
2
k +

nX
�=k+1

�
v� +

kX
�=1

���
�i�

=

nX
k=0

1

k!(n� k)!

X
w2Sn

w
�
qf1;::: ;kg

h
�2
fk+1;::: ;ng;

nX
�=k+1

�
v� +

kX
�=1

���
�i

+ 1
2

h
@21 + � � �+ @2k ; qf1;::: ;kg

i
�2
fk+1;::: ;ng

�
:

Hence by Lemma 4.1 and (2.20) we have

f �Pn; �Pg =
n�1X
k=0

1

k!(n� k � 1)!

X
w2Sn

w
�
2qf1;::: ;kg

�
v0k+1 +

kX
j=1

@k+1�j;k+1
�

� ��fk+2;::: ;ng
��fk+1;::: ;ng

�

+

nX
k=1

1

(k � 1)!(n� k)!

X
w2Sn

w
�
(@kqf1;::: ;kg) ��

2
fk+1;::: ;ng�k

�

=

nX
k=1

1

(k � 1)!(n� k)!

X
w2Sn

w
�
2qf1;::: ;k�1g

�
v0k +

k�1X
j=1

@k�jk
�

� ��fk+1;::: ;ng
��fk;::: ;ng

�

+

nX
k=1

1

(k � 1)!(n� k)!

X
w2Sn

w
�
(@kqf1;::: ;kg)

�
��fk;::: ;ng

�
nX

j=k+1

 kj ��fk+1;::: ;ngnfjg

�
��fk+1;::: ;ng

�

=
nX

k=1

1

(k � 1)!(n� k)!

X
w2Sn

w

��
2qf1;::: ;k�1gv

0
k

�
k�1X
j=1

�
2qf1;::: ;k�1g@j jk + (@jqf1;::: ;k�1g) jk

�

+ @kqf1;::: ;kg

�
��fk+1;::: ;ng

��fk;::: ;ng

�
:

Here the last equality follows from

nX
k=1

1

(k � 1)!(n� k)!

X
w2Sn

w
�
(@kqf1;::: ;kg)

nX
j=k+1

 kj ��fk+1;::: ;ngnfjg
��fk+1;::: ;ng

�

=
nX
`=1

1

(`� 1)!(n� `)!

X
w2Sn

w
� `�1X
i=1

(@iqf1;::: ;`�1g) i` ��f`+1;::: ;ng
��f`;::: ;ng

�
:

Hence if qf1;::: ;kg satisfy

(4.5)

@kqf1;::: ;kg = �2qf1;::: ;k�1gv
0
k

+
k�1X
j=1

�
2qf1;::: ;k�1g(@j jk) + (@jqf1;::: ;k�1g) jk

�
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for k = 1; : : : ; n, then f �Pn; �Pg = 0. Under the assumption of the theorem, the right
hand side of (4.5) equals

X
I1q���qI�=f1;::: ;k�1g

�
TI1 � � �TI�@kTfkg

+

k�1X
j=1

�
2TI1 � � �TI� (@j jk) +

�
@j(TI1 � � �TI� )

�
 jk

��

=
X

I1q���qI�=f1;::: ;k�1g

@k

�
TI1 � � �TI�Tfkg +

�X
�=1

TI1 � � �TI�[fkg � � �TI�
�
;

which equals the left hand side of (4.5) and hence we have f �Pn; �Pg = 0.
Thus we have

�
Pn; P

�
=

nX
k=0

1

k!(n� k)!

X
w2Sn

w

�
qf1;::: ;kg

nX
�=k+1

�
@2�v� +

X
1���k

@2����
�

��2
fk+1;::: ;ngnf�g +

1

2

kX
�=1

(@2�qf1;::: ;kg)�
2
fk+1;::: ;ng

�

and therefore [Pn; P ] is clearly self-adjoint. Since P and Pn are self-adjoint, [Pn; P ] is
skew self-adjoint. Hence we can conclude [Pn; P ] = 0.

Remark 4.3. Let T 1
f1;::: ;kg and T 2

f1;::: ;kg be solutions of (4.4) for (u; v; w) =

(f; g1; h) and (f; g2; h), respectively. Then Ck�1C 0T 1
f1;::: ;kg + Ck�1C 00T 2

f1;::: ;kg are

solutions for (u; v; w) = (Cf;C 0g1 + C 00g2; Ch). Here C, C
0 and C 00 are any complex

numbers and k = 1; : : : ; n.

5. Solutions of the functional di�erential equation.

In this section we shall construct elliptic solutions of (4.4) in the case when

(5.1) u(t) = w(t) = C}(t) + C 0

with C, C 0 2 C (cf. (2.19)).
Retain the notation in the previous section and assume (5.1).
Lemma 5.1. Under the notation in Corollary 2.2, the functions

8<
:
�0 = 1;

�n = (�1)n
X
w2Sn

w
�
�01�12 � � ��n�1;n

�
for n � 1

satisfy

(5.2) @n�n = @0(�n�1 0n) +

n�1X
j=1

�
2�n�1(@j jn) + (@j�n�1) jn

�
:
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Proof. For j = 1; : : : ; n� 1

(�1)n�1
�
2�n�1(@j jn) + (@j�n�1) jn

�
=

X
w2Sn�1

w(n�1)=j

(@j jn)w
�
�01�12 � � ��n�2;n�1

�

+
X

w2Sn�1

w(n�1)=j

�
@j(�w(n�2)j jn)

�
w
�
�01�12 � � ��n�3;n�2

�

+
X

w2Sn�1

w(n�1)6=j

�
@j(�w(w�1(j)�1)j jn)

� Y
i6=w(j)

1�i�n�1

w(�i�1;i)

+
X

w2Sn�1

w(n�1)6=j

�
@j(�jw(w�1(j)+1) jn)

� Y
i6=w(j)

1�i�n�1

w(�i;i+1):

Hence it follows from (2.20) and (2.24) that the right hand side of (5.2) equals

(�1)n
� n�1X

j=1

X
w2Sn�1

w(n�1)=j

@n

�
�jn

n�1Y
i=1

w(�i�1;i)
�

�
X

w2Sn�1

n�1X
k=1

w
�
@k
�
�k�1;k k;n

�
+ @k�1

�
�k�1;k k�1;n

�� Y
i6=k

1�i�n�1

w(�i�1;i)

�

= (�1)n
� X

w2Sn

w(n)=n

@n

� nY
i=1

w(�i�1;i)
�

+
X

w2Sn�1

n�1X
k=1

w
�
@n
�
�k�1;n�n;k

� Y
i6=k

1�i�n�1

�i�1;i

��

= @n�n:

Thus we have the lemma.
Lemma 5.2. Suppose there exist a symmetric function g(s; t) of (s; t) such that

(5.3) 2v1(@1 12) + (@1v1) 12 = @2

�
2g12 � (v1 + v2)�12

�

by denoting gij = g(xi; xj). Put

(5.4)

Sof1g = �2v1;
Sof1;::: ;kg = 2(�1)k

X
w2Sk

w
�
v1�12�23 � � ��k�1;k

�
for k � 1:
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Then

(5.5)

@k
�
Sof1;::: ;kg�(�1)k

X
w2Sk�1

4w(g1k�12�23 � � ��k�2;k�1)
�

=

k�1X
j=1

�
2Sof1;::: ;k�1g(@j jk) + (@jS

o
f1;::: ;k�1g) jk

�
:

i) If

(5.6) 2v1(@1 12) + (@1v1) 12 = @2
�
2�v1v2 � (v1 + v2)�12

�
with a complex number �, then

(5.7)

8><
>:
Sf1g = �2v1;

@kSf1;::: ;kg =

k�1X
j=1

�
2Sf1;::: ;k�1g(@j jk) + (@jSf1;::: ;k�1g) jk

�

by putting

(5.8) Sf1;::: ;kg =
X

I1q���qI�=f1;::: ;kg

(��)��1(� � 1)!SoI1 � � �SoI� for k � 1:

ii) If there exist even functions f(t) and h(t) and complex numbers �, �0 and �00

such that

(5.9)

8<
:
2v1(@1 12) + (@1v1) 12 = @2

�
2�0f1f2 + 2�00(h1 + h2)� (v1 + v2)�12

�
;

2f1(@1 12) + (@1f1) 12 = @2
�� (f1 + f2)�12

�
;

2h1(@1 12) + (@1h1) 12 = @2
�
2�(f1 + f2)� (h1 + h2)�12

�
;

the following functions Sf1;::: ;kg satisfy (5.7).

Sf1;::: ;kg = Sof1;::: ;kg �
X

I1qI2=f1;::: ;kg

(�0S0I1S
0
I2
+ �00S00I1DI2 + �00DI1S

00
I2
)

+
X

I1qI2qI3=f1;::: ;kg

2��00(S0I1DI2DI3 +DI1S
0
I2
DI3 +DI1DI2S

0
I3
);

S0f1;::: ;kg = 2(�1)k
X
w2Sk

w
�
f1�12�23 � � ��k�1;k

�
;

S00f1;::: ;kg = 2(�1)k
X
w2Sk

w
�
h1�12�23 � � ��k�1;k

�
;

Df1;::: ;kg = 2(�1)k
X
w2Sk

w
�
�12�23 � � ��k�1;k

�
:

Here we put fj = f(xj) and hj = h(xj) for j � 1 and S0f1g = �2f1, S00f1g = �2h1 and

Df1g = �2.
Proof. Owing to (5.3) and (2.20) and Lemma 5.1, the right hand side of (5.5)

equals

2(�1)k�1
X

w2Sk�1

w
�
2

k�1X
j=1

v1�12 � � ��k�2;k�1(@j jk)
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+ (@1v1)�12 � � ��k�2;k�1 1k +

k�1X
j=1

v1
�
@j(�12 � � ��k�2;k�1)

�
 jk

�

= 2(�1)k
X

w2Sk�1

w
�
@k(vk�k1�12 � � ��k�2;k�1 � 2g1k�12 � � ��k�2;k�1)

� v1�12 � � ��k�2;k�1(@1 1k)� 2
k�1X
j=2

v1�12 � � ��k�2;k�1(@j jk)

�
k�1X
j=1

v1
�
@j(�12 � � ��k�2;k�1)

�
 jk

�

= 2(�1)k
X

w2Sk�1

w

�
@k

�
vk�k1�12 � � ��k�2;k�1 � 2g1k�12 � � ��k�2;k�1

+
1

(k � 1)!

X
w02Sk

w0(1)=1

w0(v1�12�23 � � ��k�1;k)
��

= @k
�
Sof1;::: ;kg � (�1)k

X
w2Sk�1

4w(g1k�12�23 � � ��k�2;k�1)
�
:

Hence we have (5.5) and if (5.6) holds, we have

(�1)k
X

w2Sk�1

4w(g1k�12�23 � � ��k�2;k�1) = �Sof1;::: ;k�1gS
o
fkg

and therefore the right hand side of the second equation of (5.7) equals

k�1X
j=1

X
I1q���qI�=f1;::: ;k�1g

(��)��1(� � 1)!
�
2SoI1 � � �SoI� (@j jk)

+ (@jS
o
I1
� � �SoI� ) jk

�

=
X

I1q���qI�=f1;::: ;k�1g

(��)��1(� � 1)!

�X
�=1

@k

�
SoI1 � � �SoI�[fkg � � �SoI�

� �SoI1 � � �SoI� � � �SoI�Sofkg
�

= @k

� X
I1q���qI�=f1;::: ;kg

(��)��1(� � 1)!SoI1 � � �SoI�
�

= @kSf1;::: ;kg:

Now suppose (5.9). Then by denoting

S1f1;::: ;kg = Sof1;::: ;kg;

S2f1;::: ;kg =
X

I1qI2=f1;::: ;kg

S0I1S
0
I2
;

S3f1;::: ;kg =
X

I1qI2=f1;::: ;kg

(S00I1DI2 +DI1S
00
I2
);
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S4f1;::: ;kg =
X

I1qI2qI3=f1;::: ;kg

(S0I1DI2DI3 +DI1S
0
I2
DI3 +DI1DI2S

0
I3
)

and

F �
k = (�1)k

�
@kS

�
f1;::: ;kg �

k�1X
j=1

�
2S�f1;::: ;k�1g@j jk + (@jS

�
f1;::: ;k�1g) jk

��

for � = 1; : : : ; 4, it follows from (5.5) that

F 1
k = @k(�

0S0f1;::: ;k�1gS
0
fkg + �00S00f1;::: ;k�1gDfkg + �00Df1;::: ;k�1gS

00
fkg);

F 2
k = @k(S

0
f1;::: ;k�1gS

0
fkg);

F 3
k = @k

�
S00f1;::: ;k�1gDfkg +Df1;::: ;k�1gS

00
fkg

+ �
X

I1qI2=f1;::: ;k�1g

�
(S0I1Dfkg +DI1S

0
fkg)DI2 +DI1(S

0
I2
Dfkg +DI2S

0
fkg)

��
;

F 4
k = @k(

X
I1qI2=f1;::: ;k�1g

(S0I1DI2Dfkg +DI1S
0
I2
Dfkg +DI1DI2S

0
fkg):

Since @k
�
(S0I1DI2 +DI1S

0
I2
)Dfkg

�
= 0 in the above, we have

F 1
k � �0F 2

k � �00F 3
k + 2��00F 4

k = 0;

which implies (5.7). Thus we have completed the proof of the lemma.
Definition 5.3. For given even functions f and g of t, we de�ne

�f1;::: ;kg(f; g) =
X

w2W (Bk)

w
�
f(x1)g(x1 � x2)g(x2 � x3) � � � g(xk�1 � xk)

�
;

�f1;::: ;kg(f; g) =
X

I1q���qI�=f1;::: ;kg

(�1)��1(� � 1)!�I1(f; g) � � ��I� (f; g)

for k � 1. Here we note that �f1g(f; g) = �f1g(f; g) = 2f(x1) and �?(f; g) =
�?(f; g) = 0.

Proposition 5.4. Suppose

u(t) = w(t) = C5}(t); v(t) =
4X

j=1

Cj}(t+ !j)� C0

2

with C0; : : : ; C5 2 C . Then (4.4) holds by putting

Tf1;::: ;kg = (�C5)
k�1

�C0

2
�f1;::: ;kg(1; }(t))�

4X
j=1

Cj�f1;::: ;kg(}(t+ !j); }(t))
�
:

Proof. Suppose C5 = 1. If v(t) = }(t + !�) with � = 1; : : : ; 4, the assumption
(5.3) in Lemma 5.2 holds with g12 = v1v2. In fact (2.27) means (5.3) if v(t) = }(t)
and then the coordinate transformation xj 7! xj + !� for j = 1; : : : ; n implies the
case when v(t) = }(t+ !�). If v is constant, then (5.3) is also valid with g12 = v1v2.
Hence the proposition follows from Lemma 5.2 and Remark 4.3.

Remark 5.5. Since we may put g12 = 0 in the above proof when v is constant, we
may replace �f1;::: ;kg(1; }(t)) by �f1;::: ;kg(1; }(t)) in Proposition 5.4.
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6. Degenerate solutions of the functional di�erential equation.

We give trigonometric and rational solutions of (4.4):
Proposition 6.1. For complex numbers �, C0; : : : ; C5 with � 6= 0, put

u(t) = w(t) = C5 sinh
�2 �t;

v(t) = C1 sinh
�2 �t+ C2 cosh

�2 �t+ C3 sinh
2 �t+

C4

4
sinh2 2�t� C0

2
;

g(s; t) = C5

�
C1 sinh

�2 �s � sinh�2 �t� C2 cosh
�2 �s � cosh�2 �t

+ C4(sinh
2 �s+ sinh2 �t+ 2 sinh2 �s � sinh2 �t)

�
:

Then (5.3) holds. Moreover we have (4.4) with

TI = (�C5)
#I�1

�C0

2
T o
I (1)� C1T

o
I (sinh

�2 �t)� C2T
o
I (cosh

�2 �t)

� C3T
o
I (sinh

2 �t)� C4T
o
I (

1
4 sinh

2 2�t)
�

by putting

T o
I (1) = �I(1; �);

T o
I (sinh

�2 �t) = �I(sinh
�2 �t; �);

T o
I (cosh

�2 �t) = ��I(� cosh�2 �t; �);

T o
I (sinh

2 �t) = �I(sinh
2 �t; �);

T o
I (

1
4 sinh

2 2�t) = �I(
1
4 sinh

2 2�t; �)�
X

I1qI2=I

�
2�I1(sinh

2 �t; �) � �I2(sinh
2 �t; �)

+ �I1(sinh
2 �t; �) ��I2(1; �) + �I1(1; �) ��I2(sinh

2 �t; �)
�
;

where I � f1; : : : ; ng, � = sinh�2 �t and the last sum runs over di�erent partitions.

Proof. We can prove (5.3) by direct calculations but here we do it in a di�erent
way. First note that we may assume that C5 and one of the numbers C1; : : : ; C4 equal
1 and that the other 4 numbers are 0. Also by a simple change of coordinates we may
assume � = 1.

Now put u(t) = }(t) � e1. Then if v(t) = }(t + !j) � e1 we have (5.3) with

g12 = v1v2 for j = 1; : : : ; 4. If e1 = e2 =
1
3 and e3 = � 2

3 , then }(t) � e1 = sinh�2 t
and

}(t+ !3)� e1 = e3 � e1 +
(e3 � e1)(e3 � e2)

}(t)� e3

= �1 + 1

sinh�2 t+ 1
= � cosh�2 t:

Hence if u(t) = sinh�2 t and v(t) = sinh�2 t or � cosh�2 t, we have (5.3) with g12 =
v1v2.

Put e1 = 1
3 , e2 = 1

3 � ", e3 = � 2
3 + " with 0 < j"j << 1. Then it follows from

(2.8) that

}(t+ !1)� e1 =
(e1 � e2)(e1 � e3)

}(t)� e1
= " sinh2 t+ o("):
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Hence putting v(t) = }(t + !1) � e1, the coe�cients of " in (5.3) proves (5.3) for

(u; v) = (sinh�2 t; sinh2 t) with g(s; t) = 0.
Next suppose v(t) = (}(t+ !1)� e1) + (}(t+ !2)� e1) + (e1 � e2). Then

v(t) = "
� e1 � e3
}(t)� e1

� e2 � e3
}(t)� e2

�
= "2

}(t)� e3
(}(t)� e1)(}(t)� e2)

= "2
sinh�2 t+ 1

sinh�4 t
+ o("2) =

"2

4
sinh2 2t+ o("2)

and (5.3) holds with

g(s; t) = (}(s+ !1)� e1)(}(t+ !1)� e1) + (}(s+ !2)� e1)(}(t+ !2)� e1)

= (" sinh2 s)(" sinh2 t) + (�" sinh2 s� ")(�" sinh2 t� ") + o("2)

= "2(1 + sinh2 s+ sinh2 t+ 2 sinh2 s � sinh2 t) + o("2):

Hence we have (5.3) if�
g(s; t) = sinh2 s+ sinh2 t+ 2 sinh2 s � sinh2 t;
(u; v) = (sinh�2 t; 14 sinh

2 2t)

The remaining part of the proposition is clear from Lemma 5.2 and Remark 4.3. We
can also get it from Proposition 5.4 by considering the limit as above.

Remark 6.2. Since

sinh2 �s+sinh2 �t+ 2 sinh2 �s � sinh2 �t
= sinh2 �s � sinh2 �t+ cosh2 �s � cosh2 �t� 1;

we may put

T o
I (

1
4 sinh

2 2�t) = �I(
1
4 sinh

2 2�t; �)

�
X

I1qI2=I

�
�I1(sinh

2 �t; �) � �I2(sinh
2 �t; �) + �I1(cosh

2 �t; �) ��I2(cosh
2 �t; �)

�

in Proposition 6.1.

Proposition 6.3. For complex numbers C0; : : : ; C5, put

u(t) = w(t) = C5t
�2;

v(t) = C1t
�2 + C2t

2 + C3t
4 + C4t

6 � C0

2
;

g(s; t) = C5

�
C1s

�2t�2 + C3(s
2 + t2) + C4(s

4 + t4 + 3s2t2)
�
:

Then (5.3) holds. Moreover we have (4.4) with

TI = (�C5)
#I�1

�C0

2
T o
I (1)� C1T

o
I (t

�2)� C2T
o
I (t

2)� C3T
o
I (t

4)� C4T
o
I (t

6)
�

by putting

T o
I (1) = �I(1; �);

T o
I (t

�2) = �I(t
�2; �);

T o
I (t

2) = �I(t
2; �);

T o
I (t

4) = �I(t
4; �)�

X
I1qI2=f1;::: ;kg

�
�I1(t

2; �) ��I2(1; �) + �I1(1; �) � �I2(t
2; �)

�
;



18 t. oshima

T o
I (t

6) = �I(t
6; �)�

X
I1qI2=f1;::: ;kg

�
3�I1(t

2; �) � �I2(t
2; �)

+ �I1(t
4; �) � �I2(1; �) + �I1(1; �) � �I2(t

4; �)
�

+
X

I1qI2qI3=f1;::: ;kg

6
�
�I1(t

2; �) ��I2(1; �) � �I3(1; �)

+ �I1(1; �) � �I2(t
2; �) � �I3(1; �) + �I1(1; �) � �I2(1; �) ��I3(t

2; �)
�
;

where I � f1; : : : ; ng, � = t�2 and the sums run over di�erent partitions.

Proof. Note that the proof proceeds in the same way as in the proof of Proposi-
tion 6.1. Put u(t) = �2 sinh�2 �t. Then for�

v(t) = �2 sinh�2 �t;

g(s; t) = �4 sinh�2 �s � sinh�2 �t

or �
v(t) = ��2 sinh2 �t;
g(s; t) = 0

or �
v(t) = ��4( 14 sinh

2 2�t� sinh2 �t);

g(s; t) = ��2(sinh2 �s+ sinh2 �t+ 2 sinh2 �s � sinh2 �t)
or 8<

:
v(t) = ��6(1� 2 sinh2 �t+ 1

4 sinh
2 2�t� cosh�2 �t);

g(s; t) = ��4(cosh2 �s � cosh2 �t+ sinh2 �s � sinh2 �t
+cosh�2 �s � cosh�2 �t� 2);

we have (5.3). By the analytic continuation of these u(t), v(t) and g(s; t) to � = 0, we
have (5.3) for u(t) = t�2 and v(t) = t�2 or t2 or t4 or t6 with g(s; t) = s�2t�2 or 0 or
s2 + t2 or s4 + t4 + 3s2t2, respectively. In fact, for example, we have

��6(1� 2 sinh2 �t+
1

4
sinh2 2�t� cosh�2 �t)

= ��6
�
1� sinh2 �t+ sinh4 �t� (1 + sinh2 �t)�1

�
= ��6 sinh6 �t+ o(�) = t6 + o(�);

��4(cosh2 �s � cosh2 �t+ sinh2 �s � sinh2 �t+ cosh�2 �s � cosh�2 �t� 2)

= ��4
�
(1 + sinh2 �s)(1 + sinh2 �t) + (1 + sinh2 �s)�1(1 + sinh2 �t)�1

+ sinh2 �s � sinh2 �t� 2
�

= ��4
�
(sinh2 �s+ sinh2 �t)2 + sinh2 �s � sinh2 �t

�
+ o(�)

= s4 + t4 + 3s2t2 + o(�):

The remaining part of the proposition is clear from Lemma 5.2 and Remark 4.3. We
can also get it from Proposition 6.1 by taking the limit at � = 0.

7. Integrals of type Bn and Dn.

The argument in the preceding sections gives the integrals when W is of type Bn

or Dn.
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Definition 7.1. For given even function u(t) and symmetric functions Tf1;::: ;kg
of (x1; : : : ; xk) for k = 1; : : : ; n, de�ne W (Bn)-invariant di�erential operator

P (u; T ) =
nX

k=0

1

k!(n� k)!

X
w2Sn

w
�
qf1;::: ;kg�

2
fk+1;::: ;ng

�

by

�f1;::: ;kg =
X

0�j�[ k
2
]

1

2kj!(k � 2j)!

X
w2W (Bk)

"(w)w
�
u(x1 � x2)u(x3 � x4) � � �

� u(x2j�1 � x2j)@2j+1@2j+2 � � � @k
�
;

qf1;::: ;kg =
X

I1q���qI�=f1;::: ;kg

TI1 � � �TI� ;

where

q? = 1; qf1g = Tf1g; qf12g = Tf1gTf2g + Tf1;2g; : : :

Tw(f1;::: ;kg) = w(Tf1;::: ;kg); �w(f1;::: ;kg) = w(�f1;::: ;kg) for w 2 Sn:

Replacing @i by �i for i = 1; : : : ; n in the de�nition of �f1;::: ;kg and P (u; T ), we

de�ne functions ��f1;::: ;kg and �P (u; T ) of (x; �), respectively.
Theorem 7.2 (Elliptic Potentials: Generic cases of Type Bn). Put

(7.1)

8><
>:
u(t) = C5}(t);

v(t) =

4X
j=1

Cj}(t+ !j)� C0

2

and de�ne Pn(C0) = P (u; T ) and �Pn(C0) = �P (u; T ) by

Tf1;::: ;kg = (�C5)
k�1

�C0

2
T o
f1;::: ;kg(1)�

4X
j=1

CjT
o
f1;::: ;kg(}(t+ !j))

�
;

T o
f1;::: ;kg( ) =

X
I1q���qI�=f1;::: ;kg

(�1)��1(� � 1)!SI1( ) � � �SI� ( );

Sf1;::: ;kg( ) =
X

w2W (Bk)

w
�
 (x1)}(x1 � x2)}(x2 � x3) � � �}(xk�1 � xk)

�
:

Then

(7.2)
�
Pn(C); Pn(C

0)
�
=
�
�Pn(C); �Pn(C

0)
	
= 0

for C, C 0 2 C .
Let Pj be the coe�cient of Cn�j

0 in Pn(C0). Then P1; : : : ; Pn are the required

commuting di�erential operators (1.5) for the Schr�odinger operator

(7.3) P = �1

2

nX
j=1

@2

@x2j
+

X
1�i<j�n

�
u(xi � xj) + u(xi + xj)

�
+

nX
k=1

v(xk)

in the case when W is of type Bn.
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By using �Pn(C0) in place of Pn(C0), we have integrals �Pj of the Hamiltonian

(7.4) �P = �1

2

nX
j=1

�2j +
X

1�i<j�n

�
u(xi � xj) + u(xi + xj)

�
+

nX
k=1

v(xk);

where �P1; : : : ; �Pn are functionally independent and satisfy f �Pi; �Pjg = 0.
Proof. Theorem 4.2 and Proposition 5.4 imply

(7.5)
�
Pn(C0); P ] = 0:

Fix C, C 0 2 C and put Q = [Pn(C); Pn(C
0)]. Then we have [Q;P ] = 0 and Q� =

�tQ = Q and therefore we have Q = 0 as in the proof of Theorem 3.2.
Since qf1;::: ;kg is a monic polynomial of C0 with degree k, it is clear that Pj for

j = 1; : : : ; n satisfy (1.5). The remaining part of the theorem is also clear.
Theorem 7.3 (Type Dn). Suppose W is of type Dn. Then by putting C1 =

C2 = C3 = C4 = 0, the operators P1; : : : ; Pn�1 in Theorem 7.2 and Pn = �f1;::: ;ng

are the required commuting di�erential operators (1.6) for the Schr�odinger operator

(7.6) P = �1

2

nX
j=1

@2

@x2j
+

X
1�i<j�n

�
u(xi � xj) + u(xi + xj)

�

with the function u(t) given by (7.1). Here the periods of }(t) are allowed to be

in�nity.

Proof. Theorem 7.2 and Proposition 3.1 prove [Pj ; P ] = 0 for j = 1; : : : ; n. Then

the commutators Qj = [Pj ; Pn] satisfy Q
�
j = �tQj = (�1)nQj and [Qj ; P ] = 0 and

hence Qj = 0 as in the proof of Theorem 3.2.
Remark 7.4. i) In Theorem 7.2 we have Pn = Pn(0) and

(7.7)
Pn�k =

nX
i=k

nX
j=i

1

i!(j � i)!(n� j)!

X
w2Sn

X
I1q���qIk=f1;::: ;ig

w
�
(�C5)

i�k2�kT o
I1
(1) � � �T o

Ik
(1)qfi+1;::: ;jg�

2
fj+1;::: ;ng

�
for k = 1; : : : ; n� 1, where qfi+1;::: ;jg are de�ned by putting C0 = 0.

ii) Because of the uniqueness of C [P1 ; : : : ; Pn] in terms of (u; v) (cf. [OS, Theo-
rem 6.5]), the existence of the commuting di�erential operators P1; : : : ; Pn for (1.10)
which satisfy (1.5) is guaranteed by the analytic continuation of the parameters g2
and g3 of }(t) even if !1 or !2 is in�nite. We have explicitly given the analytic con-
tinuation. In fact Theorem 4.2, Proposition 6.1, Proposition 6.3 and the proof of
Theorem 7.2 imply the following theorem.

Theorem 7.5 (Degenerate cases of Type Bn). Suppose

i) Trigonometric Potentials:

(7.8)

(
u(t) = C5 sinh

�2 �t;

v(t) = C1 sinh
�2 �t+ C2 cosh

�2 �t+ C3 sinh
2 �t+

C4

4
sinh2 2�t� C0

2

with a non-zero complex number � or

ii) Rational Potentials:

(7.9)

(
u(t) = C5t

�2;

v(t) = C1t
�2 + C2t

2 + C3t
4 + C4t

6 � C0

2
:
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Then for the function Tf1;::: ;kg de�ned in Proposition 6.1 or Proposition 6.3, we
have the same statements as in Theorem 7.2.
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